
A Text Feature Based Automatic Keyword
Extraction Method for Single Documents

Ricardo Campos1,2(&) , Vítor Mangaravite2 , Arian Pasquali2 ,
Alípio Mário Jorge2,3 , Célia Nunes4 , and Adam Jatowt5

1 Polytechnic Institute of Tomar, Tomar, Portugal
ricardo.campos@ipt.pt

2 LIAAD – INESC TEC, Porto, Portugal
{vima,arrp}@inesctec.pt

3 DCC – FCUP, University of Porto, Porto, Portugal
amjorge@fc.up.pt

4 University of Beira Interior, Covilhã, Portugal
celian@ubi.pt

5 Kyoto University, Kyoto, Japan
adam@dl.kuis.kyoto-u.ac.jp

Abstract. In this work, we propose a lightweight approach for keyword
extraction and ranking based on an unsupervised methodology to select the most
important keywords of a single document. To understand the merits of our
proposal, we compare it against RAKE, TextRank and SingleRank methods
(three well-known unsupervised approaches) and the baseline TF.IDF, over four
different collections to illustrate the generality of our approach. The experi-
mental results suggest that extracting keywords from documents using our
method results in a superior effectiveness when compared to similar approaches.
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1 Introduction and Related Work

With the massive explosion of data, manually processing documents turned out to be an
impossible task. As a direct consequence, several automatic solutions have emerged
over the last few years, some following a supervised approach, of which a well-known
example is KEA [11], others following an unsupervised methodology [5–7, 9], with
TextRank [7], Rake [8], and SingleRank [10] being probably the most well-known
solutions. Although the above-mentioned works offer first insights into how this
problem can be answered, the task of extracting keywords is yet to be solved. In this
work, we present an alternative approach that attempts to overcome the results of the
above-mentioned works, while not being dependent on an external source or on lin-
guistic tools. We follow an unsupervised methodology supported by a heuristic
approach, which can easily scale to different collections, domains, and languages in a
short time span. Our contributions are as follows: (1) we propose an unsupervised
keyword extraction method named Yake! which builds upon text statistical features, to
extract keywords (both single-word and multi-word terms) from single documents,
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thus without the need to rely on a document collection; (2) YAKE! may work for
domains and languages for which there are no ready methods as it neither requires a
training corpora, nor it depends on any external sources (such as WordNet) or linguistic
tools (e.g., NER or PoS taggers).

2 YAKE! Architecture

The proposed method has four main components: (1) Text pre-processing; (2) Feature
extraction; (3) Individual term weighting; (4) Candidate keywords generation.

2.1 Text Pre-processing

In the text pre-processing phase, we apply a tokenization process which splits the text
into individual terms whenever an empty space or a special character (e.g., brackets,
comma, period, etc.) delimiter is found.

2.2 Feature Extraction

Second, we devise a set of five features to capture the characteristics of each individual
term. Although these features may be applied to any language, they are particularly
suited to Western ones for which some characteristics we devise are particularly tuned.
This is the case of word casing, which, in Western languages, reflects an important
signal of a word. The features we considered are: (1) Casing; (2) Word Position;
(3) Word Frequency; (4) Word Relatedness to Context; and (5) Word DifSentence.
A more detailed study of the individual contribution of each of these features, will be
conducted in the future. In the following we shortly describe each one of them.

2.2.1 Casing (WCase)
In this work, we give particular attention to any word starting with a capital letter
(excluding ones at the beginning of sentences) or to any acronym (that is, where all
letters of the word are capital) under the assumption that these words tend to be more
relevant. Instead of counting them twice we only consider the maximum occurrence
within the two of them. Equation 1 reflects this casing aspect:

WCase ¼ max TF U wð Þð Þ;TF A wð Þð Þð Þ
log2 TF wð Þð Þ ð1Þ

where TF U wð Þð Þ is the number of times the candidate word w starts with an uppercase
letter, TF A wð Þð Þ is the number of times the candidate word w is marked as an acronym
and TF wð Þ is the frequency of w.

2.2.2 Word Position (WPosition)
Considering the positions of the sentence where the word occurs may be an important
feature for the keyword extraction process as the early parts of documents (especially,
scientific and news publications) tend to contain a high rate of relevant keywords. We
calculate this weight using the following Equation:
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WPosition ¼ log2 log2 2þMedian Senwð Þð Þð Þ ð2Þ

where Senw indicates the positions of the set of sentences where the word w occurs, and
Median is the median function. The result is an increasing function, where values tend
to increase smoothly as words are positioned at the end of the document, meaning that
the more often a word occurs at the beginning of a document the less its WPosition value.
Conversely, words positioned more often at the end of the document (likely less
relevant) will be given a higher WPositional value. Note that a value of 2, is considered in
the equation to guarantee that WPositional [ 0.

2.2.3 Word Frequency (WFreq)
This feature indicates the frequency of the word w within the document. It reflects the
belief that the higher the frequency, the more important the word is. To prevent a bias
towards high-frequency in long documents the TF value of a word w is divided by the
mean of the frequencies MeanTFð Þ plus one time their standard deviation rð Þ as in
Eq. 3. Our purpose is to score all those words that are above the mean of the terms
(balanced by the degree of dispersion given by the standard deviation).

WFreq ¼ TF wð Þ
MeanTFþ 1 � r ð3Þ

2.2.4 Word Relatedness to Context (WRel)
WRel quantifies the extent to which a word resembles the characteristics of a stopword.
To compute this measure, we resort to the number of different terms that occur in a
window of size n to the left (and right) side of the candidate word. The more the
number of different terms that co-occur with the candidate word (on both sides), the
more meaningless the candidate word is likely to be. WRel is defined in Eq. 4:

WRel ¼ 0:5þ WL � TF wð Þ
MaxTF

� �
þ PL

� �� �
þ 0:5þ WR � TF wð Þ

MaxTF

� �
þ PR

� �� �

ð4Þ

More precisely, WL [WR] measures the ratio between the number of different words
that co-occur with the candidate word (on the left [right] hand side) and the number of
words that it co-occurs with. TF(w) is the frequency of the word with regards to the
maximum term frequency within all words (MaxTF), and PL [PR] measures the ratio
between the number of different words that co-occur with the candidate word (on the
left [right] hand side) and the MaxTF. In practical terms, the more insignificant the
candidate word is, the higher the score of this feature will be. Thus, stopwords-like
terms will easily obtain higher scores.

2.2.5 Word DifSentence (WDifSentence)
This feature quantifies how often a candidate word appears within different sentences.
It is computed using the following equation:
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WDifSentence ¼ SF wð Þ
#Sentences

ð5Þ

where SF wð Þ is the sentence frequency of the word wð Þ, i.e., the number of sentences
where wð Þ appears, and #Sentences is the total number of sentences in the text.

2.3 Individual Term Weighting

In the third step, we heuristically combine all these features into a single measure (see
Eq. 6) such that each term is assigned a weight S wð Þ. The smaller the value S wð Þ, the
more important the word (w) would be. This weight will feed the process of generating
keywords to be explained in the next section.

S wð Þ ¼ WRel �WPosition

WCase þ WFreq

WRel
þ WDifSentence

WRel

ð6Þ

By looking at the equation, we can observe that both WFreq and WDifSentence are
offset by WRel. The motivation behind this offset is to assign a high weight to words
that appear frequently and appear in many sentences (likely indicative of their
importance) as long as the word is relevant (i.e., for which WRel is low). Indeed, some
words may occur plenty of times and in many sentences and yet be useless (e.g.,
stopwords or similar). These terms should be penalized. Likewise, the position of a
word in sentences occurring at the top of a document is an important feature that is
taken into account, when multiplying WRel �WPosition.

2.4 Candidate Keyword List Generation

The fact that a keyword may consist of more than one word, forces us to consider a
further step where the final score of a keyword (be it one, two or n-terms) is deter-
mined. To collect the candidate keywords, we consider a sliding window of 3-g,
generating a contiguous sequence of 1, 2 and 3-g candidate keywords. In addition,
keywords beginning or ending with a stopword will not be considered. It is also
important to mention that no conditions are set in respect to the minimum frequency or
sentence frequency that a candidate keyword must have. This means that we can have a
keyword considered as significant/insignificant with either one occurrence or with
multiple occurrences. Each candidate keyword will then be assigned a final S kwð Þ,
such that the smaller the score the more meaningful the keyword will be. Equation 7
formalizes this:

S kwð Þ ¼
Q

w2 kw S wð Þ
TF kwð Þ � 1þ P

w2 kw S wð Þ� � ð7Þ

where S kwð Þ is the score of a candidate keyword with a maximum size of 3 terms,
determined by multiplying (in the numerator) the score of the first term of the candidate
keyword by the subsequent scores of the remaining terms, such that the smaller this
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multiplication the more meaningful the keyword will be. This is divided by the sum of
the S wð Þ scores to average out with respect to the length of the keyword, such that
longer n-grams do not benefit just because they have a higher n. The result is further
divided by TF kwð Þ- term frequency of the keyword - to penalize less frequent can-
didates. The final step in determining suitable candidate keywords is to eliminate
similar candidates. For this, we use the Levenshtein distance [4] which measures the
similarity between two strings. Among the strings considered similar (in our case, two
strings are considered similar if their Levenshtein distance is above a given threshold)
we keep the one that has the lowest S kwð Þ score. Finally, the method will output a list
of potential relevant keywords, formed by 1, 2 or 3-g, such that the lower the S kwð Þ
score the more important the keyword will be.

3 Evaluation

To evaluate the effectiveness of our method and its generality, we tested it on 4
different datasets characterized by different sizes of documents, data and languages:
SemEval2010 [3], 500N-KPCrowd-v1.1 [5], WICC [1] and Schutz2008 [9]. SemE-
val2010 [3], which is probably one of the most well-known collections in this kind of
evaluation, consists of 244 full scientific computer science papers ranging from 6 to 8
pages collected from ACM (8,020 tokens per document on average, the longest doc-
uments used in our experiments). Schutz2008 [9] in turn, consists of 1,231 papers, but
this time belonging to the medical domain (selected from PubMed Central). A different
collection is 500N-KPCrowd-v1.1 [5], which despite containing short documents (393
tokens per document on average) represents a different type of data: 500 English
broadcast news stories from 10 different categories. Finally, WICC [2], is a Spanish
dataset composed of 1,640 computer scientific articles published between 1999 and
2012 (which makes this not only the largest collection among all the datasets con-
sidered, but also a different one due to its language). In our experiments, we retrieve
keywords with a maximum keyword size of 3-g and make use of a stopword corpus
list. In addition, we consider a Levenshtein threshold of 0.8. To have a fair evaluation,
we compare our method against TextRank1 [7], RAKE2 [8] and SingleRank (See
footnote 2) [10], which are the state-of-the-art of unsupervised approaches. In addition,
we also compare against TF.IDF (See footnote 2) which, despite being unsupervised,
demands the existence of more than one document. Note that, unlike our method,
TextRank, SingleRank and the implementation we used for TF.IDF make use of a PoS
tagger. A python implementation of YAKE! is also available at PyPi3. This will enable
researchers not only to test our method but also to compare their approach against ours,
thus guaranteeing the reproducibility of the research. An online version and API of our
method is also available here: http://bit.ly/YakeDemoECIR2018 [2].

1 Implementation available at http://www.hlt.utdallas.edu/*saidul/code.html.
2 Implementation available at https://github.com/zelandiya/RAKE-tutorial.
3 Implementation available at https://pypi.python.org/pypi/yake.
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3.1 Results

For the task of evaluating our proposal, we follow the traditional match evaluation
scheme. That is, for each single document, we exactly match the keywords in the
ground truth with those retrieved by tested methods, and calculate precision, recall, and
F1-score. In the experiments, we assess the effectiveness over top 10 keywords
retrieved by each method under f different collections to study the effect of document
length, different types of data and languages. Table 1 presents the results for all
datasets. We apply a paired sample t-test considering a significance level of 0.05. ▼
indicates a statistically significant improvement of the results of YAKE! method over
corresponding baselines.

The results illustrate the effectiveness of the proposed method, with YAKE!
achieving both higher precision, recall and F1-M in comparison to the baselines.
Overall, one can note that except for the 500N dataset and the TextRank method, for
which the t-test does not show any significant improvement of one method over
another, all the remaining results reflect the fact that YAKE! method achieves better
and statistically significant results. Among all the datasets, the best results are achieved
in the 500N dataset by TextRank with 0.265 for P@10, followed very closely by
YAKE! with 0.251. However, as previously referred there is no statistically significant
difference between any of the two methods, meaning that they are rather equivalent,
beyond being evidently superior when compared to the remaining methods.

The results further confirm that regardless the type of data, YAKE! method tends to
have relatively stable effectiveness. To study this effect, one can look at the results of
Schutz2008, which in contrast to 500N (a collection of broadcast news) is composed of
full text research articles. Despite a slight drop, results are still relatively good with
YAKE! achieving 0.217 of P@10 still significantly better than the 0.198 achieved by
the TextRank method.

The effect of the document length is then studied by running our experiments under
the SemEval2010 collection (the largest documents here studied –8.020 per document
on average, twice the double of the Schtuz2008 collection and 25 times more than the
500N). Although the results have dropped considerably, still, they are significantly
better than the ones of the second-best approach (TextRank), which only achieves
0.101 of P@10 (significantly lower than 0.154 obtained by our method). This proves
that, although our method performs better than any of the baselines, still the effect of
document length significantly impacts the results obtained. This should be studied in

Table 1. SemEval2010, Schutz2008, 500N-KPCrowd and WICC results

Method SemEval2010 Schutz2008 500N-KPCrowd WICC

P R F1 P R F1 P R F1 P R F1

YAKE! 0.153 0.103 0.123 0.217 0.058 0.091 0.251 0.063 0.101 0.050 0.141 0.073

TextRank 0.101▼ 0.067▼ 0.081▼ 0.198▼ 0.052▼ 0.082▼ 0.265 0.063 0.103 0.018▼ 0.058▼ 0.027▼
TF.IDF 0.036▼ 0.023▼ 0.028▼ 0.100▼ 0.028▼ 0.043▼ 0.223▼ 0.060▼ 0.095▼ 0.026▼ 0.067▼ 0.037▼
SingleRank 0.035▼ 0.022▼ 0.027▼ 0.082▼ 0.024▼ 0.037▼ 0.190▼ 0.054▼ 0.084▼ 0.017▼ 0.045▼ 0.024▼
RAKE 0.007▼ 0.004▼ 0.005▼ 0.013▼ 0.004▼ 0.006▼ 0.120▼ 0.038▼ 0.058▼ 0.004▼ 0.012▼ 0.006▼
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the future. It is also important to stress out that, while TextRank depends and benefits
from NLP techniques, such as PoS taggers, YAKE! simply takes as input a set of plain
features extracted from the text. These may be understood as an advantage over
baselines anchored on PoS taggers, which may not be available or may perform poorly
for some minor languages for which there is either a lack of interest or lack of open
source tools.

Finally, we wanted to evaluate the effectiveness of our method under a different
language. To this regard we consider the WIC dataset. Once again YAKE! returns the
best results, although in this case a score of only 0.05 of P@10 has been obtained,
which has much to do with the fact that only 3.57 of gold keywords per document have
been defined in the collection (the smallest number of gold keywords among all the
datasets). While, one may be tempted to claim that the results are quite low when
compared to other IR tasks, it should be taken into account that unlike other IR core
research areas, the realm of keyword extraction is a different one, with the tendency to
have lower scores. One of the reasons for this is that an exact match between the
ground-truth and the methods keyword is usually used as a rule-of-thumb thus
impeding partial matches. An additional reason is that some of the keywords of the
ground-truth cannot simply be found in the text, thus making it impossible to have an
exact match. Thus, any increase in the effectiveness of current solutions, would always
represent a significant contribution over state-of-the-art solutions.

4 Conclusions

In this paper, we propose a novel approach to extract keywords from single documents.
Based on the experiments, we could confirm that YAKE! achieves better results in
comparison to four state-of-the-art unsupervised keyword extraction algorithms, over a
large number of text documents in four different datasets. Unlike supervised approa-
ches, which require a training corpus, YAKE! is fully unsupervised. Moreover, the fact
that it only leverages features drawn from the text itself together with its independence
with regards to natural language processing techniques makes it suitable for other text
collections, including different domains and languages. As future work, we plan to
investigate how our method performs in comparison with the most popular supervised
approaches like KEA [11].
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