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Abstract— The use of Autonomous Underwater Vehicles
(AUVs) is providing the oceanographic community with very
detailed ocean data at reasonable costs. Typical missions exploit
their mobility and physical autonomy to achieve a wide coverage
with minimal setup and operational costs. Most of this efficiency

In some scenarios, the ability to react to acquired data in real
time is fundamental to acquire data in specific locations, without
a-priori knowledge.

Demand to react to the environment
In this paper, we describe the
one of the examples is the ability to track the thermocline,

specially designed for small scale variations of the thermocline,
such as very shallow waters.

Data from field experiments show that the thermocline track-
ing behavior was able to maintain the vehicle in the vicinity of the
thermocline, even in very shallow waters with badly pronounced
features.

I. INTRODUCTION

Autonomous Underwater Vehicles (AUVs) are becoming
ordinary tools for ocean sampling, with their mobility and
physical autonomy being exploited to achieve wide cover-
age with minimal setup and operational costs. This yields
improvements in efficiency as compared to traditional ocean
sampling techniques, particularly when the main objective
is to obtain a comprehensive 3-D view of a scalar field.
On the contrary, if the objective is to search and map a
specific underwater feature, then there is a complex trade-
off between the dimension of the search grid, the velocity of
the AUV and the total mission duration. This may result in a
small percentage of useful data about the specific feature and
moderate overall efficiency, which may be further stressed if
the feature is dynamic. The concept of adaptive sampling has
been suggested as a way to address this problem, by processing
the environmental data in real time and commanding the AUV
to sample the region of interest more densely. Although the
concept is very appealing, it was only recently, with the
exponential increase in computational power available on-
board, associated with more mature software architectures, that
there have been a few practical implementations.

One example of the utility of the adaptive sampling concept
is the characterization of the thermocline – a vertical transition
layer on the water column, separating the warm surface layer
from the cold deep water bellow it. In a standard approach,
the AUV would be programmed to follow a yo-yo pattern,
resulting in very few data points in the vicinity of the thermo-
cline. Alternatively, the ability to stay within the thermocline

region provides more useful data, but requires the AUV to
process the payload data in real time and adjust the vertical
controllers accordingly. For such an online implementation,
it is important to adopt simple models for the feature and
to compensate for model inaccuracy by using robust tracking
algorithms and overall safety mechanisms. In a previous work
[1], we followed this approach to develop an algorithm for
tracking a thermocline, and we have demonstrated it on board
the MARES AUV [2], a small sized vehicle developed at the
University of Porto, in Portugal (Fig. 1). Using data from
a CTD sensor, the AUV was able to detect the thermocline
in real time, while moving in a standard yo-yo pattern. In
this paper, we build on that previous work to increase the
tracking performance and the utility of the manoeuver and
show how our adaptive sampling approach can be applied
to maintain an AUV in the vicinity of a thermocline. We
describe the algorithms implemented on board the MARES
AUV and, finally, we demonstrate the tracking performance in
the field, in a mission where the MARES AUV autonomously
adapts the motion pattern to track a thermocline with space
and time varying characteristics. The importance of detecting
small scale variations on the thermocline parameters.

Fig. 1. The MARES AUV with an externally mounted CTD.



II. ON-BOARD ADAPTIVE SAMPLING

The concept of adaptive sampling in the ocean has emerged
with the development of low cost robotic tools with increasing
computational power and the ability to process large amount
of information off-line in a short time. In fact, it is frequent
to see adaptive sampling identified as the ability to plan
new missions according to data arriving in real-time from a
variety of sources (such as satellite data, CODAR seasondes
or meteorological sensors, for example). In [3], for example,
both AUVs and research vessels have been programmed to
start missions as soon as a given triggering event has occurred.
In this work, we consider adaptive sampling as the ability of
the vehicle to process payload sensor data in realtime and
decide autonomously the best trajectory to follow, in order to
capture more information about a given oceanographic feature.
This concept is sometimes referred to has real-time adaptive
sampling.

There are many ocean processes that may be efficiently
mapped using the adaptive sampling paradigm, particularly
if they can be identified by sharp transitions or boundaries.
Such efficiency will be accentuated if the processes show high
spatial and temporal variations, since the vehicle trajectory
can be set to concentrate measurements in the boundary
region. Examples of these processes include thermoclines,
fronts, eddies, and all sorts of plumes, such as emanating from
hydrothermal vents or sewage outfalls.

Even though this is not a new concept, there have been very
few practical implementations of real-time adaptive sampling.
Some successful examples include the use of ROVs to track
boundaries on the sea bottom ([4]), and, also, the use of
AUVs for searching for the sources of chemical plumes, trying
to mimic the real behavior of lobsters or bacterium in odor
source localization ([5]–[7]). More recently, there has been
some other thermocline tracking experiments, carried out on
gliders ([8]) and other AUVs ([9], apart from the authors own
implementations ([1]).

One of the main reasons for the shortage of implementations
is vehicle safety. In standard AUV operations, the vehicles are
programmed to move along geo-referenced trajectories that
cover the area of interest. These trajectories are decomposed
in sequences of elementary maneuvers, resulting in a mission
plan to be executed by the on-board software. Although
communications perform poorly underwater, there are many
solutions for tracking the position of an underwater asset from
a remote location and, therefore, it is relatively simple to detect
any malfunction just by tracking the position of the AUV
during a geo-referenced mission plan. On the contrary, during
an adaptive sampling mission, the AUV decides the trajectory
in real time and the vehicle motion directly depends on
mapped features that cannot be easily related with the vehicle
dynamics. It is, therefore, difficult to predict the vehicle motion
and also to devise simple mechanisms to detect malfunctions
and ensure the safe operation of the AUV.

In our case, we have followed a conservative approach to
adapt the onboard software architecture of the MARES AUV

[2] to include the capability of real time adaptive sampling.
The adaptive sampling maneuvers simply define reference
inputs for the already existing real time controllers. This
way, when an adaptive sampling maneuver is activated, the
reference inputs for the control system are computed in real
time by dedicated modules of software (that implement the
adaptive sampling behaviors) and are fed to the controllers.
In the particular case of thermocline tracking, the algorithm
provides in real time the depth reference for the vertical
controller, based on the acquired CTD data, as explained later.
In any case, a protection layer of the control system sets limits
for the reference values provided by the external modules,
preventing the vehicle to enter unwanted regions and ensuring
safety of operation.

III. APPLICATION SCENARIO – THE THERMOCLINE

In this work, we consider the scenario of detection and
characterization of a thermocline in a given region. The
thermocline is the transition layer in the water column that
separates the warmer surface water from the cold deep water.
The so-called mixed layer, closer to the surface, is the most
easily influenced by atmospheric conditions (wind, rain and
solar heat), resulting in a wide range of values throughout
the year, while the deep-water layer is the less dynamic zone,
with a slow variation with depth. In the thermocline, the water
temperature drops as the depth increases, with a significant
gradient as compared to the rest of the profile. Figure 2 shows
an example of a temperature profile measured 2km off the
Portuguese coast, in about 40m of water.

The thermocline can be permanent or seasonal and may
develop both at sea [10] or in inner waters such as lakes and
dam reservoirs [11]. The characterization of the thermocline
is particularly relevant to marine biology, since the location
and variability of the characteristics can provide valuable
information about phytoplankton concentration and primary
production [12]. The thermocline is also associated to water
stratification, with strong impact on underwater acoustics and,
therefore, its characterization can play an important role in
underwater communications and military strategic planning.
By characterization, we mean to gather enough data to provide
a quasi-synoptic 4-D view of the thermocline.

Temperature is probably the most measured parameter in all
water masses and given the huge amount of data that exists
about the world oceans, there have been several attempts to
represent these temperature profiles by simple sets of coeffi-
cients, in order to reduce the data warehousing requirements.
This effort has been helped by the relatively regular shape of
the profiles, that suggests a parametric representation. In any
case, the proposed parametric models (for example [13]–[16])
require the availability of the full temperature profile to extract
the parameters. Note that our idea is not to provide a very
accurate model that approximates the true vertical profiles,
minimizing some optimization criteria, but, instead, our main
concern is that the model is simple enough to be iteratively
estimated in real time. Even with only a partial vertical profile,
the AUV has to be able to determine its main characteristics



Fig. 2. Temperature profile measured 2 km off the Portuguese coast, June
2009. The thermocline can be easily identified at about 11-14 meters of depth.

Fig. 3. Simplified temperature profile.

and maintain a trajectory in the vicinity of the thermocline.
In order to achieve this, we assume a 3-layer piecewise linear
model, similar to the one proposed by Haeger [13], with a high
gradient at the thermocline, and low gradients both above and
below. Figure 3 shows such a representation, where the three
vertical zones can be easily identified.

IV. THE THERMOCLINE TRACKING MANEUVER

Overview

The thermocline tracking maneuver acts directly on the
vertical controllers of the AUV, requiring a set of values
for depth limits, which can be defined with respect to the
surface or the bottom. In case the thermocline is not detected,
the vertical motion of the AUV reverts to a standard yo-yo
between those values. A specific process runs in the onboard
computer, identifying the thermocline, filtering temperature
data and fitting a gradient search algorithm implemented
in real time. The thermocline is detected when the vertical
temperature gradient exceeds a given threshold. The vehicle
will proceed the vertical motion until the algorithm detects a
significant decrease in the gradient, as compared to the current
maximum. At this position, the vertical profile is reversed and
the algorithm restarts on the other direction. In the absence of
a positive identification of the thermocline in either direction,

then the vehicle will continue the vertical motion until the pre-
specified limit is reached (either the surface or the maximum
depth), as in a standard yo-yo motion. All thresholds are
dynamic and depend on the gradient information acquired on
previous profiles, so that the AUV can be used to track a
time- or space-varying thermocline while moving along a pre-
defined lat-lon trajectory.

During the thermocline tracking maneuver, the model pa-
rameters can be passed on to other AUV processes, if nec-
essary. This allows, for example, the AUV to switch on any
special sensor or to trigger an underwater sampler at the right
instant, in order to capture a relevant sample of water for later
laboratory analysis, such as suggested in [17].

The MARES AUV has 4 independent controllers for 4
degrees of freedom, and the vehicle is able to control the
vertical velocity, from zero (i.e. hovering) to a maximum value
around 40cm/s. This means that the vehicle can implement this
algorithm to track the vertical thermocline at a single lat-lon
location, or while following a completely independent hori-
zontal trajectory. In most other AUVs, however, the vertical
motion is obtained using horizontal fins or deflectors, in which
case the vertical motion requires a minimum value for the
horizontal velocity. In any case, the same principles described
here can be implemented as a particular case of the yo-yo
maneuver.

The current implementation of the thermocline tracking ma-
neuver is the evolution of the first implementation, described
in [1]. The main new features can be summarized as:

• all parameters are computed on line, requiring no a-priori
estimation of the thermocline;

• the thermocline tracking manoeuver has been extended to
include additional parameters adjusted to the objectives
for the mission (for example, extend the vertical span
downwards to map possible chlorophyll or phytoplankton
patches below the thermocline);

• An auto-diagnosis performance index is computed in real
time and transmitted to a mission supervisor.

Tracking the thermocline

The algorithm developed for thermocline tracking can be
described by the state machine represented in fig. 4. Note that
the darker arrows represent the transitions that are expected
during a normal tracking maneuver. These transitions will
cycle the state machine through the most relevant states:

• TOP - The vehicle is located above the thermocline.
• TC2BOT - The AUV is within the region of the thermo-

cline, on a downward vertical motion.
• BOTTOM - The vehicle is located below the thermocline.
• TC2TOP - The AUV is within the region of the thermo-

cline, on an upward vertical motion.
The process usually starts when the vehicle is at the surface,

so the first state is set to TOP. On entering this state, the depth
reference is set to Zmax, which means the AUV will try to dive
in the water column. The vehicle will then evaluate the vertical
temperature gradient and compare it with a given threshold,



Fig. 4. State machine and transitions representing the thermocline tracking
maneuver. The bold arrows represent the expected cyclic transitions during
normal tracking.

Thr tc. When this threshold is exceeded, the vehicle will
assume the thermocline has been detected on the downward
motion, entering the TC2BOT state. This can be seen as the
upper limit of the thermocline region and then the vehicle
will try to detect the lower limit of this region, by diving
deeper. Therefore, the vertical direction will remain the same
as before, with Zref = Zmax. At this state (TC2BOT), the
gradient search algorithm will try to find if the level decreases
below another threshold, Thr bot. Note that this low gradient
level has to be searched only for depths greater than the
depth of the maximum gradient. In order to confirm the lower
limit of the thermocline and avoid (early) false detections, an
additional test is performed, verifying that the vertical span is
large enough, i.e. if z − Ztc > Zspan, where z is the current
depth, Ztc is the depth of the maximum gradient and Zspan
his an optional parameter set by the user. When both these
conditions are met, the vehicle enters the BOTTOM state.

Note from the state machine of fig. 4 that the BOTTOM
state is also reached if z≥ Zmax. This is a safety mechanism
to ensure that the maximum depth the AUV will be limited to
Zmax, even if the algorithm is not able to positively find the
thermocline. More, this condition contributes to a performance

index, since it signals a failure in the algorithm.
When the vehicle enters the BOTTOM state, the thermocline

characteristics are extracted from the previous vertical profile
(in particular, the maximum gradient and the thermocline
limits) and this information is used to adapt the thresholds
for the thermocline detection during the next vertical profile.
At this state, the depth reference changes to Zmin, which
means the AUV will now move towards the surface. The
temperature and depth values arriving from the CTD sensor
will be used to determine when the vertical gradient exceeds
the new thermocline threshold, Thr tc. This will change de
state machine into the TC2TOP state, signaling the lower
limit of the thermocline. In order to find the upper limit,
the algorithm will proceed in much the same way as in the
downward motion, but with a natural symmetry: the reference
for the vertical controllers will be maintained at Zmin and the
gradient search will be done for depths lower than the depth
of the maximum gradient. Once again, the TOP state is only
confirmed if a minimum vertical span has been covered.

As long as this process is active, the above cycle will be
maintained, resulting in a yo-yo pattern around the thermo-
cline. In case the thermocline is not detected in one of the
vertical profiles, the vehicle will extend the vertical span up to
Zmin or Zmax. It should be noted than on the very first time the
algorithm runs (usually during the first descend), it is possible
either to use a priori data to define the detection thresholds,
or to use no information at all and let the AUV acquire a full
vertical profile to determine those values.

V. PRACTICAL IMPLEMENTATION ISSUES

In order to estimate the temperature gradients, we cluster
data points into bins and take the differences of the averaged
values. The size of the bins is adjusted dynamically according
to the thickness of the thermocline, the vertical velocity of the
AUV and the sampling rate of the CTD. At an initial stage,
the vehicle makes a full yo-yo profile between depth limits,
in order to compute a first estimate of the relevant parameters
for the algorithm: maximum gradient, depth bins, etc.

During normal tracking, the transitions between states are
triggered by the detection of temperature gradients above or
below specific thresholds. These thresholds are updated for
each new profile, to allow for temporal and spatial variations
of the thermocline parameters. All data from the thermocline
model can be passed on to other AUV processes, if necessary.
This allows, for example, the AUV to switch on any special
sensor or to trigger an underwater sampler at the right instant
to capture a relevant sample of water for lab analysis, such
as suggested in [17]. We can also use this information to
extend the vertical guidance of the AUV, towards the surface
or towards the bottom. This is useful to correlate thermocline
information with other ocean data, such as Chlorophyll con-
centration, for example. In terms of the state machine, the
only difference is that the AUV needs to verify, not only the
temperature gradient, but also if the vertical span of the motion
has been exceeded in either direction.



The manoeuver performance index is computed in real
time, simply by counting the number of times the AUV has
successfully detected the thermocline (by means of gradient
thresholds) and the number of times the vertical limits have
been reached without thermocline detection. If the AUV is
not able to maintain tracking of the thermocline, this index
gets too low and a proper action is triggered, according to
instructions given by the user when preparing the mission
(abort the mission or revert to a broader yo-yo survey).

there are 3 counters used to evaluate the performance of the
algorithm, depending on the state transitions.

Iterative gradient estimation

When looking at a full temperature profile such as the
example of fig. 2, one can clearly visualize a thermocline
and imagine an online algorithm to extract 3 regions from
that profile. However, this seemingly simple task is visually
facilitated by the long low gradient regions, both above and
below the thermocline. In a practical implementation, the
challenge is to maintain the AUV in the region of the ther-
mocline, detecting as early as possible a significant decrease
in the temperature gradient and avoiding as much as possible
to navigate within those flat regions. A difficult problem in
detecting the thermocline is then to estimate de derivatives
dT
dz for a limited number of previous values of depth and
decide if those derivatives are sufficient to conclude that the
thermocline has already been passed and there is no need to
proceed further. More, this data is updated several times per
second (16, in our case), it may show small scale variations,
it is not uniformly distributed and, surely, may have errors.

In order to estimate the gradient, we start by clustering
the depth and temperature values into bins, as soon as they
are available. For each new data point, only the derivatives
(or differences, to be more accurate) affected by this data are
updated. The derivatives are then estimated by the differences
of the averaged bin values. In order to prevent biases in the
average values of depth, we consider the average of both
temperature values and depth values within a bin, as compared
to considering an average temperature in the middle of the
depth bin. This is particularly relevant if we increase the size
of the bins, because as the vehicle ascends/descends in the
water column, the first few samples within a depth bin are
biased towards the bin boundary.

Robustness and performance

Even with the clustering of data into bins, there may exist
some false detections of gradients if we only consider a single
bin at a time. In order to avoid these false detections, we need a
consecutive number of differences, above or below a threshold,
to confirm the change of state. Note that if we increase the
number of confirmations required to validate a low gradient,
the main consequence will be for the AUV to dive further
into the flat regions of the profile, with a minor impact on
performance. On the contrary, if we increase the number of
confirmations for the high gradients, we may not be able to
detect a very thin thermocline.

The described algorithm provides information to monitor
the performance in real time, by counting the times the
thermocline boundaries are detected (the state machine of
fig. 4 passes in the dark transitions) and the times the limits
of depth are reached (both Zmax and Zmin). The percentage
of detections is then a good performance metric and if it
gets too low, a proper action may be triggered, according to
instructions given by the user when preparing the mission. For
example, the user can define that if the AUV doesn’t detect a
proper temperature variation, then the mission is aborted or,
alternatively, the vehicle just reverts to a broader survey to
try to reacquire the feature – a standard yo-yo pattern with
user-defined vertical limits.

Magic numbers

The size of the depth bins is an important parameter for
the algorithm, since it acts as a low pass filter which may
affect the ability to detect gradients. If the bins are too small,
only few data points will fall into that bin, resulting in large
errors in gradient estimation. If the bins are too large, then
they will smooth the temperature variations and the algorithm
will have difficulty in separating significant variations. After
several tests with both real and simulated vertical temperature
profiles, we’ve found that we should have at least 5 to 8 bins
spanning the depths of the thermocline to have significant
changes in the gradients. As a rule of thumb, we usually set
this value so that the first estimated thermocline spans about
10 bins.

The number of consecutive detections required to confirm
a given threshold also depends on the size of the bins. For
the size of our bins, we’ve considered a minimum number
of 3 consecutive detections to confirm the gradient thresh-
olds. We’ve also implemented a mechanism of validating a
bin, depending on the quantity of data points used. For our
experiments, we’ve considered a minimum number of 5 data
points in a bin for its data to be used for gradient detection.

VI. FIELD TESTS AND RESULTS

A. Operational setup

The thermocline tracking maneuver was validated by a set
of field trials carried out with the MARES AUV in a dam
reservoir in the Douro river, close to Porto, in the north of
Portugal. This location is only a 30 minute drive from our lab
and it is known to develop a seasonal thermocline from late
spring to early autumn. Just before the mission, we used a
small support boat to deploy 2 buoys with acoustic beacons,
located 350m apart, which provided a baseline for acoustic
navigation.

difficult thermocline.
We started by running a vertical profile in the operation area,

in order to confirm the thermocline and also to extract some
initial data for the algorithm. This profile can be seen in fig.
5. Comparing this profile with a typical ocean profile (see for
example, fig. 2), it is clear that the reservoir thermocline has
much more small-scale variations, particularly in the mixed
layer, above the thermocline. For the thermocline tracking
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Fig. 5. Temperature profiles measured by the MARES AUV at approximately
the same location of the Crestuma reservoir. The thermocline is visible in the
summer profiles, reaching the surface in the last plot.

algorithm, this provides a much harder scenario than a smooth
variation and, therefore, it is a good way of demonstrating
its effectiveness. From the vertical profile, we estimate a
maximum temperature gradient of around 1oC/m, with a very
thin thermocline between about 6.1 and 7.3 meters of depth.
As described earlier, taking these numbers, we chose a bin
size of 12cm so that we would have a thermocline spanning
around 10 bins. For a vertical velocity of about 10cm/s and a
16Hz sampling rate, this results in about 18 samples per bin.

The MARES AUV was then programmed to perform a yo-
yo pattern from a minimum depth of 2 meters up to a depth of
12 meters, while the thermocline tracking algorithm was run-
ning in parallel. Fig. 6 shows the details of the depth during the
yo-yo motion, the temperature readings and the corresponding
state of the algorithm state machine, as described earlier: TOP
(3), TC2BOT (2), BOTTOM (0), and TC2TOP (1). Note in
the first graph the solid red line indicating the depth reference
suggested by the thermocline tracking algorithm. It can be seen
that the algorithm suggests an inversion in the direction of the
vertical motion around t = 95 seconds, when the vehicle was
at 7.9 meters of depth. On the upward motion, the algorithm
also indicates the upper limit of the thermocline to be around
5.5 meters of depth.

B. Results

Although the AUV was not directly controlled by the
thermocline tracking algorithm, it is possible to simulate the
behavior of the vehicle if the depth reference suggested by
the algorithm were transmitted to the vehicle controllers. We
assume a simple kinematic model for the vehicle, which is a
reasonable assumption since the vertical velocity is very slow.
We also assume that the temperature profile is constant, which
is also reasonable for such a short duration. Figure ?? shows
the resulting profile if the vehicle were to use the information
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Fig. 6. MARES AUV tracking a thermocline in the Crestuma reservoir,
August 2010.

provided by the algorithm, superimposed to the original yo-yo.
With the new algorithm, the initial 10 meters of vertical span
are reduced to about 2.5 meters, resulting in a corresponding
4-fold increase in the sampling frequency of the thermocline
(from the original 200 seconds period of the yo-yo down to
50 seconds). It is obvious that this increase can be much more
significant when the ratio between the full water depth and the
thickness of the thermocline layer increases, such as the case
of deeper water scenarios.

refer to state machine to explain transitions

VII. CONCLUSIONS AND FUTURE WORK

The MARES onboard software architecture was adapted
to incorporate the capability of real time adaptive sampling,
providing a framework to implement innovative guidance
algorithms, not only to track the thermocline, but also to
efficiently characterize other ocean processes under the same
paradigm.

In this work, we have implemented a new approach to AUV
surveys that is to replace the standard predefined mission by
an adaptive sampling strategy. Such an approach exploits the
on-board computational power to infer some characteristics of
the oceanographic environment and react to this environment
by making decisions about the best sampling strategy to use.
By continuously interpreting collected data, this decision can
be made in real time so that the vehicle can use most of the
available resources (mainly power) in sampling the ocean in
regions of interest. Naturally, this will contribute to faster and
more efficient surveys.

In our implementation, we assume that the thermocline can
be coarsely approximated by a very simple model with time
varying parameters. We’ve described how a small size AUV
can change the sampling pattern in order to maintain tracking
of a thermocline and therefore contribute to a more efficient
characterization of a space- and time-varying thermocline.



We’ve developed a very low complexity algorithm that may
be implemented in real time, with minor impact on CPU
load and memory usage. Using an illustrative example, we’ve
shown that the new maneuver allows the AUV to gather much
more information about the thermocline than a standard yo-
yo. This improvement may be accentuated in scenarios with
a thin thermocline layer, particularly in deeper waters. We
estimate that a similar approach can be followed to increase the
efficiency in the sampling process of other ocean processes.

Even though the acquired data affects the vehicle motion
pattern, the algorithm was implemented on the MARES AUV
in such a way as to ensure safety of operation – in case the
algorithm is not able to positively detect the thermocline, then
the AUV will revert to a standard yo-yo pattern. This has
been extensively tested with both real and simulated vertical
temperature profiles, in order to make sure that the inclusion
in the library of maneuvers will result in a safe operation.
During the summer of 2010, the MARES AUV will be using
this new maneuver to follow lat-lon transects while tracking
the thermocline. At the same time, the vehicle will gather data
from the optical sensors, in order to evaluate the correlation
between thermocline characteristics and chlorophyll concen-
tration. If required, the algorithm may be adapted for different
sampling requirements, for example, the AUV may extend the
bottommost part of the yo-yo to evaluate a phytoplankton layer
trapped below the thermocline.

As far as the thermocline tracking is concerned, we expect
to improve on the mechanism of initializing the algorithm, by
calculating the size of the depth bins automatically. This will
be done using information gathered on the first vertical profile
and adjusting the bin size to maximize detectability. We also
plan to improve the real time filtering of the parameters of the
algorithm, so that the tracking mechanism may benefit more
from the results of previous profiles, such as thermocline depth
limits, detection thresholds, and temperature levels both above
and below the thermocline.

the algorithm incorporates additinal mechanisms of redun-
dancy in the detection of the thermocline;
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