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Abstract—As blockchains go beyond cryptocurrencies into
applications in multiple industries such as Insurance, Healthcare
and Banking, handling personal or sensitive data, data access
control becomes increasingly relevant. Access control mechanisms
proposed so far are mostly based on requester identity, partic-
ularly for permissioned blockchain platforms, and are limited
to binary, all-or-nothing access decisions. This is the case with
Hyperledger Fabric’s native access control mechanisms and, as
permission updates require consensus, these fall short regarding
the flexibility required to address GDPR-derived policies and
client consent management. We propose SDAM, a novel access
control mechanism for Fabric that enables fine-grained and
dynamic control policies, using both contextual and resource
attributes for decisions. Instead of binary results, decisions may
also include mandatory data transformations as to conform with
the expressed policy, all without modifications to Fabric. Results
show that SDAM’s overhead w.r.t baseline Fabric is acceptable.
The scalability of the approach w.r.t to the number of concurrent
clients is also evaluated and found to follow Fabric’s.

Index Terms—access control, blockchain, privacy, confidential-
ity

I. INTRODUCTION

Since inception, blockchain applications have diversified
from implementations of cryptocurrencies [1] to enabling
distributed application in a multitude of domains. Along with
a multitude of uses, different trust models emerged, from
the permissionless model where anyone can participate in
the blockchain network and trust is tied to the consensus
protocol (PoW [1], e.g), to the permissioned model, as in
Hyperledger Fabric (HLF) [2], where a consortium of nodes
decide on the set of operations to be committed, where more
traditional BFT consensus protocols can be used [3], [4].
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Public permissionless networks, such as Bitcoin and Ethereum,
by design, expose transaction attributes and records, even if the
association between wallets and users is not direct. However,
some use cases may require transactions and/or its attributes
to be private, while maintaing public accountability. Different
concerns can be grouped under the concept of privacy:

1) keeping values, which might represent personal data,
involved in transactions, private;

2) that proposed or committed transactions between peers
are kept secret from competitors;

3) or that the rules that govern negotiation, and that might
be implemented in smart contracts, be opaque.

Several approaches to handle each of these concerns in both
permissioned and permissionless blockchains have been pro-
posed. In this work, we focus on 1. For example, Fabric uses
two different constructs to accommodate 1) and 2). Channels
define groups of transaction visibility (and persistence). Private
collections define which participants can see the actual data
in a collection or just a hashed version.

Handling sensitive information, such as clinically relevant
or simply personally-identifiable information, increasingly re-
quires striving for confidentiality and managing user consent,
namely regarding how, for which purposes, and by whom their
data can be processed [5].

This work was motivated by the development of a collabo-
rative platform that enables processes in the insurance domain
to be dematerialized and automated focusing on contract
negotiation and claim processing, using Hyperledger Fabric.
The issue of handling personal data impacts not only insurance
underwriting and claim processing, but also other uses such
as performing analytics, including using machine learning, to
generate new business insights.

However, Fabric’s current access control mechanisms, with
channels and collections, are coarse-grained, geared towards
enforcing permissions for peers and organizations in access-
ing related sets of data. Thus, these are not well-suited for
enforcing policies such as a user giving consent for personal
data to be used in for a specific purpose (e.g. claim pro-



cessing) but not others (e.g. cross-selling) within the same
organization, the same peer. An alternative could be to use
libraries such as CID1, to define identity-based access control
in chaincode. However, issues arise: maintainability, as access
control code would need to be written for each chaincode
function; updatability as each change in access policy might
require changing chaincode directly and redeploying. Addi-
tionally, enforcing access control mediated by user consent,
which can be dynamic, is even less amenable to chaincode-
based implementation. This makes it necessary to find suitable
mechanisms for expressing and enforcing dynamic access con-
trol policies, pliable to user consent, specifically for reading
information. Suitability depends not only on the expressiveness
and flexibility of the chosen mechanism, as to fit the different
needs that may arise from different organizations, but also on
the simplicity of conveying and managing permissions.

We propose the Smart Data Access Management system
(SDAM), a middleware-based access control system for Hy-
perledger Fabric that enables the flexible and manageable
definition and enforcement of dynamic fine-grained access
control policies. It does not require any change to Fabric’s
implementation and works in tandem with the native control
mechanisms, nor does it require all peers or organizations in a
network or channel to adopt this system. It provides a simple
way to implement GDPR-based policies, namely in terms of
purpose and right to forget and can do so dynamically, as
changes in permissions do not require chaincode or Fabric to
be re-instantiated or changed in any way. Additionally, it can
be used to enable off-chain access to on-chain data, as well
as on-chain access to off-chain data. The remaining paper is
organized as follows: Section II presents relevant background,
while Section III addresses related work. Section IV introduces
SDAM and Section V assesses the overhead and scalability of
the system. Finally, Section VI concludes the work and sets
challenges for future work.

II. BACKGROUND

First, we provide a focused overview of access control, and
of the XACML standard [6] in particular. Then, we describe
how Hyperledger Fabric implements access control.

A. Access Control

Access control serves to limit the actions that a user
or process can take regarding a given resource or sets of
resources. Ideally, it should be complemented by auditing,
thus recording who, when, the intended action and its potential
success [7]. Implementations vary: access control lists (ACLs)
associate, to each resource, a list of users or processes and the
respective level of access. Capabilities take a dual approach,
associating to each user or process the list of accessible
resources and the level of access. Policies can then be built
on these implementations:

• discretionary policies follow directly from access control
lists, using a user’s identity to determine permissions;

1https://github.com/hyperledger/fabric-chaincode-go/tree/main/pkg/cid

• mandatory policies define a hierarchical ordered set of
levels of access for resources and as a clearance associ-
ated to each user;

• role-based policies define roles based on the activities that
users perform in the system, associate a set of permissions
to each role, and require authorization to allow users to
assume roles;

• attribute-based policies enable complex rules to be de-
fined based on characteristics or properties of the user,
the resource intended to be accessed and possibly en-
vironmental attributes to decide whether a given access
request should be granted.

Attribute-based access control can implement discretionary,
mandatory and role-based policies as well as finer-grained
policies, being particularly well-suited for federated sys-
tems [8].

The XACML standard [6] defines an architecture that sepa-
rates policy enforcement, decision-making and administration
into a set of components geared for attribute-based access
control.

• Policy Enforcement Point (PEP): component to which the
user makes requests and that applies request decisions.

• Policy Information Point (PIP): a repository of client
information (attributes).

• Policy Decision Point (PDP): the component that decides
whether to allow or deny the client request.

• Policy Administration Point (PAP): the component that
manages the access control policies.

• Policy Retrieval Point (PRP): a component that stores
access control policies.

• Accounting or Auditing: a component responsible for
tracking access attempts.

The request flow is as follows:
1) The user makes a request to the PEP, which forwards

the request to the PDP.
2) The PDP retrieves the relevant policies from the PRP

(managed by the PAP, as needed) and attributes from
the PIP (if needed).

3) The PDP decides on the request and notifies the PEP of
the decision.

Policies are specified using a markup language, with three
main elements: rules, that contain boolean expressions; poli-
cies, i.e. sets of rules; and policy sets, containing multiple
policy or policy set elements. Other standardization proposals
include PERMIS [9] and SDDL [10].

B. Hyperledger Fabric

Hyperledger Fabric is part of the Hyperledger meta-project,
an effort to promote blockchain utilization in industry. Fabric
is a permissioned distributed ledger, geared towards use cases
where the identities of participants are (or must be) known,
such as to comply with anti-money-laundering regulations.
The system is modelled as a replicated state machine, mod-
ified by transactions with immediate finality. The ledger is
composed of: a blockchain, to store an immutable sequence



of transactions and a state database, to store the current
state. Along with a global ledger, Fabric allows groups of
participants to create separate transaction ledgers, thereby
creating closed, private channels. Only channel members store
a copy of the channel’s ledger.

One of Fabric’s distinguishing features is its execute-order-
validate philosophy, which contrasts the order-execute phi-
losophy of competing implementations. Instead of requiring
transactions to be deterministic, by executing the transactions
and then ordering their tentative results precludes the possible
divergence caused by obtaining different outcomes at different
peers when executing a non-deterministic transaction. Partici-
pant nodes in a Fabric network can have one of the following
roles: clients propose transactions, request transaction order-
ing; peers maintain the ledger; endorsing peers (endorsers), are
defined according to the chaincode’s endorsement policy, ex-
ecute proposals and validate transactions; orderers implement
consensus to totally order transactions; the same set of nodes
can be used by multiple channels as these are unaware of the
global state.

Smart contracts (chaincode) on the Fabric framework can
be implemented in multiple programming languages and are
typically executed in Docker containers. External applications
interact with a Fabric network by invoking chaincode. In most
cases, chaincode queries or updates the global state, but does
not interact directly with the transaction log proper. Chaincode
is installed by a transaction, only on endorsing peers and
requires appropriate permissions. An endorsement policy must
be associated to the chaincode, which defaults to requiring
the endorsement of a member of any of the organizations
present in the channel. Other policies, such as requiring a
given number of endorsers or specific combinations of roles
and organizations are possible.

Due to its permissioned nature, participants need be iden-
tified. Identity management (and authentication) in Fabric is
done through Membership Service Providers (MSP). Each ac-
tor (users/clients or nodes (peers, orderers)) has an associated
local MSP that: authenticates and handles access control and
permissions for users within its organizational domain; handles
permissions for the capabilities of the node.

Fabric implements two types of access control: (1) simply
put, to define who can operate on given resources, for example,
defining the set of organizations that must agree for an
update to be committed, be it a transaction, chaincode update
or channel configuration update; and (2) to regulate data
access, using channels and private collections to implement
multiple data sharing patterns among organizations. Type (1)
is orthogonal to our proposal and is therefore not the subject
of further discussion here. Regarding (2), channels are the pri-
mary mechanism for data segmentation, as these have separate
ledgers and only peers of member organizations store and
access data associated to a channel. Private data collections
make it possible to restrict data sharing to a subset of channel

organizations and implement more flexible sharing patterns2.
Permissions are based on identity and/or organization member-
ship, and changes requiring consensus are embedded in chan-
nel’s configuration or defined in chaincode. Also, decisions
are binary, i.e. allow or deny. We propose a more flexible and
dynamic access control mechanism that complements existing
controls, predicated on multiple attributes other than identity
and capable of implementing more flexible decisions, i.e. by
defining mandatory data transformations.

III. RELATED WORK

Focus on access control in the blockchain domain has been
spurred, in part, by the need to handle personal data, increas-
ingly desired for value extraction and increasingly protected by
legislation. In order for personal data to be legally processed,
the owner must consent to it explicitly, considering a set of
purposes and processors. An analysis of the interplay between
the GDPR and blockchains is available in [11].

Bhaskaran et at [12] propose a blockchain-based platform
that integrates consent management, access control and data
sharing, using Fabric. The goal of the platform is to share
KYC information to avoid repeated instances of the customer
enrolment process. Two of the main goals are to guarantee
that data sharing conforms strictly to the consent expressed
by the customer while maintaining customer/provider relations
hidden. The identity of the providers is concealed by through
pseudonymous certificates, while data sharing rules are en-
forced through smart contracts that regulate the availability of
decryption keys. As presented, the access control policy is very
simple, with customers stating explicitly the list of documents
a provider should have access to.

The approach presented in [13] exemplifies some pitfalls
in consent management. Specific issues include storing user
passwords in smart contracts and, more relevant to the par-
ticular goal of the system, the terms of consent the user
actually agrees to are apparently not stored in the blockchain.
Also, consent seems to be binary, without the possibility of
considering some granularity of implementing complex access
control policies.

A different approach is to map relevant aspects of the GDPR
for data handling and user rights to blockchain records and
transactions [14]. Three types of participants are considered:
users, those that own the data and can consent to its use;
data controllers, those that collect and store the data; and
data processors, those that process the data for some purpose.
Consent records should explicitly state to which categories of
data it extends, the authorized processing purposes, conditions
of storage, authorized time frame for processing, identify the
data controller or joint controllers and authorized processors.
When a data controller grants a data processor access to
some collected data, information related to this action are also
stored, including the categories of data that where shared, the
authorized processing purposes and time frame and the identity

2https://hyperledger-fabric.readthedocs.io/en/release-2.4/private-
data/private-data.html



of the data processor. This makes it possible for users to audit
how their data are being handled.

While most presented solutions do not provide support
for implementing complex access control policies, there are
proposals for leveraging machine learning techniques for
policy analysis, conflict detection and recommendation [15].
Truong et al. [16] propose a framework combining consent
management and access control over Fabric (or Ethereum),
taking compatibility with the GDPR into consideration in
defining roles and requirements. Two ledgers are used: one
for authentication, authorization and access control and the
other for validation and logging. Data are not shared through
the blockchain platform, storing a pointer to the encrypted
data instead. A Distributed Hash Table (DHT) may be used
as a distributed data store for this purpose [17]. Moreover,
data policy is recorded in the blockchain, defined as an access
control list of public keys associated to CRUD operations, in
JSON.

Rouhani et al. [18] propose using Fabric to implement
an access control system, compatible with XACML, that
implements enforcement, administration and decision com-
ponents as smart contracts in Fabric, storing access control
attributes and policies as JSON, in the ledger. The protected
resources are off-chain. Access requests and decisions are
thus part of the ledger and can be audited. Fabric’s private
data collections are used to store sensitive user attributes. By
configuring endorsement policies appropriately, multiple (or
specific) organizations can be required to agree on an access
request for it to be granted.

The need for multiple authorities to validate different sets
of user attributes in the context of a given access request is
the focus of [19]. In short, data are encrypted by the owner,
who also creates an Ethereum smart contract that specifies the
data’s access policy. A prospective user attempting to access
the data will need to obtain authorization tokens from a set of
authorities, which depend on the specific attributes. In order
to do so, the user creates a set of smart contracts: one for
each required authority and one to request the decryption key
from the data owner. While the decryption key is encrypted
with the requesting user’s public key, to avoid exposing it
in the ledger, it should be noted that there is no mechanism
that prevents the user from leaking the decryption key and
compromising the confidentiality of the data. While SDAM
also uses XACML, enforcement, administration and decision
components are implemented as middleware, instead of smart
contracts, thus extending Fabric capabilities generically.

A significantly different approach, the Digital Asset Mod-
elling Language (DAML) [20] enables the implementation of
smart contracts in a strongly-typed, functional language. This
makes contracts amenable to formal verification, a measure
of which is included in the framework. DAML has built-in
types and functions that allow concepts such as contracts,
parties, rights, obligations, and authorization to be expressed
directly in the language. DAML supports multiple blockchains,
including Fabric (in alpha version) through either commercial
or community editions. DAML implements access control in

its runtime, along with business logic, sidestepping Fabric’s
access control mechanisms.

Complementary approaches for controlling data access in-
clude establishing a trustworthy oracle for accessing external
data, which is particularly useful for Ethereum, as by design,
smart contracts are restricted to on-chain interactions. Another
approach is to control computation along with data access
by establishing limits on the computation that can be per-
formed [21]. Data do not leave the owner’s infrastructure and,
instead, the computation expressed in a MapReduce model by
the requester is validated and executed in the infrastructure
where the data reside. Validation includes approving specific
operations to be executed over the data.

In summary, there have been several proposals for integrat-
ing blockchain and access control but these mainly consist of
devising access control systems as applications of blockchain
technology, i.e. using a blockchain to register and enforce
user consent, optionally supporting (possibly external) data
sharing [12]–[14], [16], [18], [22]. We propose a significantly
different approach: extending the blockchain platform (Fabric)
with the capability for flexible and fine-grained access control.
In fact, we can take advantage of the same approach to provide
seamless but controlled access to off-chain data from chain-
code execution, as well as controlled access to on- or off-chain
data for external applications. Moreover, we extend policies
with the optional definition of mandatory data transformations
as conditions for data access.

While this discussion is out of scope for this work, SDAM
can leverage this type of platforms for managing user consent,
further integrated into policy definitions to be enforced by
the SDAM middleware. Another important difference is that
organizations can choose to use SDAM and still seamlessly
interact with those that choose not to. This means that SDAM
can be used and useful without requiring all organizations to
agree on its usage, thus lowering the barrier for entry.

IV. SMART DATA ACCESS MANAGEMENT (SDAM)

SDAM is designed as middleware, serving as a proxy be-
tween data requestors and data sources. This enables requests
and responses to be transformed as needed to enforce flexible
access control policies. It replicates CouchDB’s REST API,
so that no changes to Fabric’s implementation are required.
All that is required is for a peer to be configured to direct
its queries to SDAM as if it were its CouchDB instance.
This could be done by changing the appropriate Dockerfile.
SDAM can also be used to allow Fabric’s peers to access
off-chain data, by configuring external data sources in the
middleware, redirecting requests and processing queries and
responses to the external data sources. It can also be used to
allow external access to a peer’s on-chain data, with the same
guarantees, by serving external requests through the same
REST API that is exposed to Fabric peers. The remainder
of this section focuses on using SDAM within typical Fabric
operation, i.e. with queries for on-chain data, within the regular
transaction lifecycle. It should be highlighted that each peer’s
(or organization’s) SDAM proxy is independent. There is no



need to synchronize SDAM instances across organizations as
each may require different policies to be implemented and
some may not wish to use SDAM at all.

A. Architecture

The system architecture is presented in Figure 1. SDAM is
based on two modules implementing XACML functionality:
(i) the Proxy, which interfaces with a Fabric peer, queries the
underlying state database and serves as a PEP, enforcing access
control decisions emitted by the Policy module; and (ii) the
Policy module, which stores access control policies and emits
decisions on authorization requests, serving as PAP, PRP and
PDP. SDAM does not require a PIP, but one could be added
if needed.

1) SDAM Proxy Module: The Proxy is the central mod-
ule of SDAM. It exposes CouchDB’s REST API en-
abling seamless integration with Fabric, without requir-
ing customizations. As an example, retrieving a document
from the database by document id can use CouchDB API
method GET /{db}/{docid} 3 which translates to GET
http://url/database/documentID. Other API meth-
ods used by Fabric include retrieving multiple documents
POST /{db}/_bulk_get and querying for documents
matching given criteria POST /{db}/_find. SDAM sup-
ports all API calls used by Fabric. With SDAM, API requests
carry additional information in the body of the request (e.g. a1,
b1 and b2), using JSON declarative syntax, i.e. attributes rele-
vant for access control. Using a declarative syntax provides the
flexibility to define attributes as needed for each request: these
can be related to identity, purpose, conditional use according to
a defined time interval, etc. Application logic dictates which
context attributes to inject into a given request, e.g. intent.
Others, such as requester identity are always injected.

When a request is received by the Proxy (e.g.query(A,a1)),
it strips away the access control attributes before forwarding
it (query(A)) to the CouchDB instance. An XACML request
is created from these attributes along with attributes from the
retrieved documents: it may identify the document type being
accessed, subjects to whom information pertains 4, etc. The
XACML request is sent to the Policy module which replies
with a decision to deny or allow access, along with optional
ObligationExpressions, a list of mandatory transformations to
perform on the documents before returning these to the peer.
For example, an obligation may require the JobInfo field and
any sub-fields to be removed from the documents the policy
applies to, for a given request intention.

The Proxy implements a set of generic Transformations that
operate on document fields. Current supported transformations
include Filter (pink pentagon), which removes the specified
fields from a document (matching circle disappears - depicted
as query(A,a1)), and Obfuscation (purple and green pen-
tagons), which instead of removing fields applies a transfor-

3https://docs.couchdb.org/en/3.2.0/api/document/common.html#get–db-
docid

4Implementing “right to forget” would simply require denying access to all
documents pertaining to a specific subject”

mation. The latter hides the raw value and replaces it with one
that can still be used to perform some operations, resembling
a fingerprint (hash code) (purple circle becomes diamond -
depicted as query(A,a1)), or replacing a numeric value with
one with less precision, e.g. replacing age with age bracket
(green circle becomes triangle - depicted as query(B,b1)).
Adding new transformations simply requires writing a Java
class that implements a method that operates on ObjectN-
ode type and a constructor that receives the corresponding
ObligationExpression. Write requests and replies are simply
forwarded through the Proxy and are only subject to Fabric’s
native access control mechanisms. The Proxy module has been
implemented using the Spring Reactive Framework.

2) SDAM Policy Module: The Policy module manages
and stores access control policies based on XACML and
decides on access requests. We use DPD AuthZForce5 for this
purpose without modification. For most use cases, it would
make sense to deploy one Policy module per organization,
allowing policies to be managed at the organisation level.
We envision policies originating from two main mechanisms:
structural policies, stemming from business logic processes
and/or organization management structure, which would prob-
ably be generally applicable per document type, for example;
an consent-driven policies, with a more dynamic nature, gener-
ated from the expression of consent by individuals. A platform
for consent management is out of scope but could probably
be addressed by adapting some of the proposals discussed in
Section III.

B. SDAM and Insurance

The need for SDAM was motivated by the development of a
collaborative network for automating and simplifying business
processes mainly in contract negotiation and claim processing,
with applications to multiple insurance domains: event-related
insurance, reinsurance management, savings plans, etc. Con-
sortia to support these use cases would consist of multiple
stakeholders with possibly very different profiles, including:
SMEs, large companies, healthcare providers, event organiz-
ers, regulators, etc. SIS, represented in Figure 1, is a system
under active development geared mainly towards insurance
companies to mediate their participation in blockchain-based
collaborative networks such as Fabric. Opportunities arise
from collaborative data sharing, for example, to leverage on-
chain data to calculate more accurate estimates of factors that
impact premium calculations. But these can come into conflict
with the need for tracking individual consent, to comply with
data protection regulations, namely for processing for non-
essential purposes. We can, therefore, improve individual pri-
vacy by restricting visible information to that strictly relevant
for a given purpose, within organizations. Other blockchain-
based use cases for Insurance have been proposed [23], [24]
with different purposes.

Let us consider a client’s address, composed of several
fields: street, building and/or apartment number and city. Taken

5https://authzforce-ce-fiware.readthedocs.io/en/latest/



Fig. 1. SDAM Architecture. Pentagons represent available transformation implementations and squares represent obligations defined at the Policy Module.

as a whole it can probably be used to identify the client,
without being provided with a name. The full address will
be required if underwriting house insurance. But what about
car insurance? Knowing the city should be enough, maybe
the neighborhood for larger cities, but not the full address. As
such, there should be no need to expose the full address to an
insurance mediator when simulating car insurance premiums.
Moreover, it may happen that a client consents to sharing
only a subset of information to be processed for cross-selling
purposes. An even simpler example can be found in the
banking industry: when making an in-person deposit, the teller
doesn’t really require access to previous banking operations
(privacy-breaking) on that or other accounts, but just to the
before and after balances (privacy-preserving), even if the
organization, the bank has that information. Naturally, if a
customer requests an account extract, the teller has a purpose
for accessing this information. These insights fuel the need for
finer-grained access control that takes multiple attributes into
account along with identity, namely intention or purpose.

SIS instances hold application context and invoke chaincode
functions on their organization’s peers, also injecting the
appropriate attributes for access control with each request,
on behalf of employees or automatic processes. Each peer
requires an instance of an SDAM Proxy and CouchDB, but
there can be a single SDAM Policy module per organization,
common to all Proxies. As mentioned in Section IV-A writes
and other operations that do not retrieve data from the state
database are simply forwarded through the Proxy along with
its replies. It should be pointed out that SDAM does not impact

the content of the state database in any way. That is managed
completely by Fabric’s consensus and peer-replication mech-
anisms, thus documents doc A and doc B are the same in
all state databases, unless if part of some private collection.
Naturally, transaction validation also eschews access control.

The insurance use case is as follows: SIS provides insurance
companies with a platform for managing multiple workflows
regarding insurance negotiation, underwriting, claim process-
ing and persistence, among others, interacting with customers,
competing insurance companies and other consortium mem-
bers. Documents may represent insurance contracts, with
coverage and conditions, for example. Figure 1 depicts an
example with two organizations, with two peers for Org1
and one for Org2. As an example, let us consider that the
pink circle represents a client’s name, the purple circle, a
job title and the green circle, age. On the left, the query for
document doc A with attribute a1 results in the application of
the Filter policy (pink), which removes the client’s name from
the document, and the purple Obfuscate policy to be applied,
which replaces the job title with its hashed value. The other
queries, in the middle and on the right both query for document
doc b, but get different results: in the middle, in what could
be an analytical task, attribute b1 resulted in the application
of the green Obfuscate policy, which replaces the age with an
age bracket possibly a consequence of the expression of user
consent; on the right, attributes a1 and b2, resulted in just
filtering out that client’s name.

While this section describes an insurance centric use-case,
SDAM is applicable to any sort of use-case where consortium-



generated data require fine-grain access control policies geared
by according to application context.

V. EVALUATION

We evaluate SDAM by assessing its overhead w.r.t. a vanilla
deployment of Fabric and its scalability as the number of
concurrent clients increases. The evaluation setup uses Fab-
ric’s test network, configured with two organizations, with
a peer each. Each peer uses its own CouchDB instance as
the state database. Where SDAM is used, an instance of
the SDAMProxy is deployed, co-located with each CouchDB
instance, and an instance of the SDAM Policy Module (AuthZ-
Force) is deployed per organization, co-located the respective
organization’s peer. The test-network is deployed in a single
machine with 12 CPUs, 16 GB RAM and SSD storage. Clients
are evenly deployed to two similar host machines, connected to
the test-network deployment by a Gigabit network. The only
Fabric test-network configuration that is modified from the
default is the address and port of the state database, pointing
it to the SDAM Proxy instead.

The experiment assesses the overhead of reading data from
the state database (i.e. CouchDB) through SDAM. Requests
use the rich querying mechanism (getQueryResult()), more
useful for exploratory or analytical purposes, which also pre-
vents Fabric from caching responses. Using Apache JMeter6,
each client (thread) invokes Fabric’s peer command, repeat-
edly, for 30 seconds7, issuing a new request after receiving the
response from the previous one. All requests are directed to
the same peer. Each test was run 3 times, with results showing
the average of each run set.

We defined a policy that applies to the retrieved document
that specifies that if the user (application-dependent attribute)
belongs to a given group (application-dependent attribute), the
document can be accessed but only after applying a Filter
transformation, to hide the document attribute
name. Data access policies are cached at the SDAM Proxy,
as these are unlikely to be very dynamic, to avoid the perfor-
mance penalty of consulting the Policy Module whenever a
request is made. Caching can be turned off which we found to
add an average of 2 milliseconds (1 client) to 571 milliseconds
(200 clients) to the global response time.

Figure 2(a) shows the overhead of using SDAM w.r.t the
baseline (Fabric) as the number of clients increases. Fig-
ure 2(b) shows a break down of the response time. Figure 3
shows the cumulative distribution of response times when
using SDAM for increasing numbers of clients.

A. Overhead

As the number of clients increases, we observe that SDAM
follows the same trend as the baseline, with an increase in
response time. Between 1 and 10 clients, the overhead is
almost negligible. The average overhead of using SDAM over
all workloads is of 92 milliseconds.

6https://jmeter.apache.org
7Longer runs showed the same behaviour.

We instrumented the SDAM Proxy so that we can decom-
pose the response time into: querying CouchDB; retrieving
decisions and policies from the Policy Module or from the
cache; applying transformations to the data; as well as net-
work latency, HLF request and internal processing and Spring
routing (Other). Figure 2(b) offers a breakdown of the time
each distinct step takes. Regardless of the number of clients,
querying CouchDB and Other tasks are by far the main
contributions to the overall response time, rendering the impact
of retrieving the policy and transforming the data negligible
(below 0.03 and 0.005 milliseconds, respectively).

We highlight that, overall, HLF is not a system geared for
querying performance. Experiments with the same requests
being directed to SDAM, bypassing Fabric, showed that Fabric
contributes significantly to the response time: going through
Fabric imposes a penalty of 45 to 402 milliseconds w.r.t.
querying SDAM directly, for 1 to 200 clients. We could
observe a reasonable amount of variability in the results
stemming, in part, from the behaviour of the peer’s CouchDB
instance. For example, for 200 clients, the difference between
the average response time between SDAM and the baseline
is 118 milliseconds, while the standard deviation of querying
CouchDB was between 164 and 212 milliseconds. This effect
propagates to the overall evaluation of SDAM. Still, the
average overhead of 92 milliseconds across all tests ranks as
a good compromise in favor of the added capabilities.

B. Scalability

Figure 2(a) and (b) showcase the behavior as the number of
clients increases from 1 to 200. The trend shows an increase
in the total response time per request. The steady performance
penalty and the growing trend for both HLF and SDAM
suggest that the system can potentially scale beyond 200
clients, which we found to be an adequate upper-bound for the
described use case. We should highlight that these results refer
to a single peer and that multiple peers scale independently,
even within the same organization.

The empirical CDFs for response time with SDAM, as the
number of clients increases is depicted in Figure 3. With 1
up to 10 clients, over 90% of requests completed in less than
5 milliseconds. With 30 clients, 90% of clients completed in
less than 10 milliseconds, with the remaining 10% accumulate
response times going up to 100 milliseconds.

With 100 or more clients, distributions have larger tails,
which indicates larger variability in response times. As men-
tioned, this seems to be a direct consequence of the variability
introduced by the underlying system, namely CouchDB.

VI. CONCLUSION AND FUTURE WORK

This paper introduced SDAM, a middleware system that
extends HLF with the capacity for flexible and fine grained
access control policies on on-chain data, leveraging data
transformations. Working as a proxy, SDAM sits between
each HLF peer and its CouchDB state database. It exports
the same API as CouchDB for transparent operation, thus
eschewing the need to change HLF’s implementation. We
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extend data access policies with the optional definition of
mandatory data transformations as conditions for data access
to improve flexibility. Also, organizations can choose to use
flexible access control and still seamlessly interact with those
that choose not to, thus lowering the barrier for adoption.

The evaluation campaign validated the query workflow and
assessed the overhead and scalability of the solution: the
average response time penalty is 92 milliseconds, yielding
a small, acceptable impact on performance, considering the
added functionality; and SDAM’s scalability follows HLF’s.

The current version of SDAM is geared towards medi-
ating access when querying the state database, not query-
ing nor writing to the ledger. Thus, SDAM only intercepts
getQueryResult() calls, which generally should not be used
in transactions submitted for ordering. SDAM has no effect

on transactions which update the ledger. Extending SDAM
functionality, as future work, to impact reading/writing to the
ledger will require intercepting writes to CouchDB. One option
is for writes to require full document visibility. If not, the
full document must be reconstructed in the Proxy merging the
write set into the full document read from the state database,
before writing. Additionally, getState() requests would also
need to be processed by SDAM with policies synced across
all endorsing peers.

While such a demonstration is future work, SDAM’s mid-
dleware approach can be used to provide seamless but con-
trolled access to off-chain data from chaincode execution (as
an oracle), as well as controlled access to on- or off-chain data
for external applications.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash
system,” 2009, (Retrieved on 2022-08-01). [Online]. Available:
http://www.bitcoin.org/bitcoin.pdf

[2] V. E.Androulaki, A.Barger et al., “Hyperledger fabric: A distributed
operating system for permissioned blockchains,” in Proceedings of the
13th EuroSys Conference, ser. EuroSys ’18. Association for Computing
Machinery, 2018.

[3] D. Ongaro and J. Ousterhout, “In search of an understandable consensus
algorithm,” in 2014 USENIX Annual Technical Conference (Usenix ATC
14), 2014, pp. 305–319.

[4] A. Barger, Y. Manevich, H. Meir, and Y. Tock, “A byzantine fault-
tolerant consensus library for hyperledger fabric,” in IEEE International
Conference on Blockchain and Cryptocurrency (ICBC), 2021, pp. 1–9.

[5] E. Commission, D.-G. for Justice, and Consumers, The GDPR : new
opportunities, new obligations : what every business needs to know
about the EUs General Data Protection Regulation. Publications Office,
2018.

[6] O. technical commitee, “Xacml: extensible access control markup
language,” 2005, (Retrieved on 2022-08-01). [Online]. Available: http:
www.oasisopen.org/committees/xacml/repository

[7] P. R.Sandhu, “Access control: principle and practice,” IEEE communi-
cations magazine, vol. 32, no. 9, pp. 40–48, 1994.

[8] S. Rouhani and R. Deters, “Blockchain based access control systems:
State of the art and challenges,” in IEEE/WIC/ACM International
Conference on Web Intelligence, 2019, pp. 423–428.



[9] G. D.Chadwick et al., “Permis: a modular authorization infrastructure,”
Concurrency and Computation: Practice and Experience, vol. 20, no. 11,
pp. 1341–1357, 2008.

[10] Microsoft, “Security descriptor description language,” (Retrieved
on 2022-08-01). [Online]. Available: https://docs.microsoft.com/en-
us/openspecs/windows protocols/ms-dtyp/4f4251cc-23b6-44b6-93ba-
69688422cb06

[11] C. Wirth and M. Kolain, “Privacy by blockchain design: a blockchain-
enabled gdpr-compliant approach for handling personal data,” in Pro-
ceedings of 1st ERCIM Blockchain Workshop 2018. European Society
for Socially Embedded Technologies (EUSSET), 2018.

[12] P. K.Bhaskaran et al., “Double-blind consent-driven data sharing on
blockchain,” in 2018 IEEE International Conference on Cloud Engi-
neering (IC2E). IEEE, 2018, pp. 385–391.

[13] K. C. Kouzinopoulos et al., “Implementing a forms of consent smart
contract on an iot-based blockchain to promote user trust,” in 2018
Innovations in Intelligent Systems and Applications (INISTA). IEEE,
2018, pp. 1–6.

[14] J. Camilo et al., “Blockchain-based consent manager for gdpr compli-
ance,” Open Identity Summit, 2019.

[15] K. Rantos, G. Drosatos, K. Demertzis, C. Ilioudis, and A. Papanikolaou,
“Blockchain-based consents management for personal data processing
in the iot ecosystem.” ICETE (2), vol. 298, 2018.

[16] K. N.Truong et al., “Gdpr-compliant personal data management: A
blockchain-based solution,” IEEE Transactions on Information Forensics
and Security, vol. 15, pp. 1746–1761, 2019.

[17] G. Zyskind, O. Nathan et al., “Decentralizing privacy: Using blockchain
to protect personal data,” in 2015 IEEE Security and Privacy Workshops.
IEEE, 2015, pp. 180–184.

[18] R. S.Rouhani et al., “Distributed attribute-based access control system
using permissioned blockchain,” World Wide Web, vol. 24, no. 5, pp.
1617–1644, 2021.

[19] H. Guo, E. Meamari, and C.-C. Shen, “Multi-authority attribute-based
access control with smart contract,” in Proceedings of the 2019 inter-
national conference on blockchain technology, 2019, pp. 6–11.

[20] I. EU, “Daml on fabric - technical document,” 2020, (Retrieved on
2022-08-01). [Online]. Available: https://github.com/digital-asset/daml-
on-fabric/blob/master/docs/DAML on Fabric v2 Architecture.pdf

[21] A. T.Jose et al., “Totem: Token for controlled computation: Integrating
blockchain with big data,” in 10th International Conference on Comput-
ing, Communication and Networking Technologies (ICCCNT). IEEE,
2019, pp. 1–7.

[22] S. J.Gazsi et al., “Vault: A scalable blockchain-based protocol for secure
data access and collaboration,” in 2021 IEEE International Conference
on Blockchain (Blockchain), 2021, pp. 376–381.

[23] V. N.Bhamidipati et al., “Claimchain: Secure blockchain platform for
handling insurance claims processing,” in IEEE International Confer-
ence on Blockchain (Blockchain). IEEE, 2021, pp. 55–64.

[24] F. Loukil, K. Boukadi, R. Hussain, and M. Abed, “Ciosy: A collaborative
blockchain-based insurance system,” Electronics, vol. 10, no. 11, p.
1343, 2021.


