
Exon: An Oblivious Exactly-Once Messaging
Protocol

1st Ziad Kassam
HASLab, INESC TEC & Minho University

Braga, Portugal
ziad.a.kassam@inesctec.pt

2nd Paulo Sérgio Almeida
HASLab, INESC TEC & Minho University

Braga, Portugal
psa@di.uminho.pt

3rd Ali Shoker
RC3, CEMSE - KAUST

KSA
ali.shoker@kaust.edu.sa

Abstract—TCP is typically the default transport protocol of
choice for its supposed reliability, even for message-oriented
middleware (e.g., ZeroMQ) or inter-actor communication (e.g.,
distributed Erlang). However, under network issues, TCP con-
nections can fail, which requires ensuring both at-least-once and
at-most-once delivery at the upper middleware layer. Moreover,
the use of TCP at scale, in highly concurrent systems, can lead
to drastic performance loss due to the need for TCP connection
multiplexing and the resulting head-of-line blocking. This paper
introduces Exon, an oblivious exactly-once messaging protocol,
and a corresponding lightweight library implementation. Exon
uses a novel strategy of a per-message four-way protocol to ensure
oblivious exactly-once messaging, with on-demand protocol-level
“soft half-connections” that are established when needed and
safely discarded. This achieves correctness, obliviousness, and
performance, through merging and pipelining basic protocol mes-
sages. The empirical evaluation of Exon demonstrates significant
improvements in throughput and latency under packet loss, while
maintaining a negligible overhead over TCP in healthy networks.

Index Terms—Exactly-Once EO; message delivery; reliability;
fault tolerance; oblivious

I. INTRODUCTION

As modern applications are becoming more networked and
distributed, there is an increasing interest in reliable messaging
protocols to reduce the application complexity and the burden
on developers. At the core of reliable messaging, exactly-
once message delivery is a crucial property to guarantee
both at-least-once and at-most-once delivery [19]. The TCP
protocol [27] is often the transport protocol of choice as it is
known to ensure exactly-once within a connection (in addition
to its good performance).

However, TCP poses two problems. The first is when the
connection fails, exactly-once is no longer guaranteed and
must, therefore, be delegated to the upper layers [9], [5], [4],
[23]. This promoted the trend of using some message queue
(MQ) middlewares on top of the transport layer to ensure
exactly-once, and simplify building distributed applications.
However, these MQs are heavyweight, going beyond tolerating
network problems, aiming for tolerance to node failures, by us-
ing persistent storage and replication (e.g., Apache Kafka [23],
RabbitMQ [29], ActiveMQ[34]). If the purpose is simply
tolerating network failures while scaling to highly concurrent
settings (e.g., distributed Erlang [38]), the quest for a general

purpose lightweight exactly-once messaging protocol is not
over.

The second problem of TCP is the head-of-line (HOL)
blocking while using TCP multiplexing, where a single con-
nection is shared by several application entities [9]. TCP
multiplexing pervades large-scale distributed systems (e.g.,
CORBA ORBs [15], distributed Erlang [38]) to reduce used
resources (e.g., ports and buffers) and latency of TCP connec-
tion establishment. Nevertheless, multiplexing TCP connec-
tions can cause needless latency in delivering messages from
concurrent entities, which could be delivered in any order, but
will be constrained by the FIFO order in the multiplexed TCP
stream. This problem, observed in HTTP/2 due to multiplexing
TCP connections lead to abandoning TCP in HTTP/3 [7].
Moreover, this problem is aggravated by message loss. As our
evaluation shows that even a small message loss rate degrades
the performance significantly.

This paper presents Exon, a new general purpose oblivious
exactly-once messaging protocol, and corresponding library.
The protocol guarantees exactly-once by design: 1) at-most-
once, as no message payload, carried in a token, can be
delivered without previously “booking” a unique receptor slot,
which is consumed upon delivery; 2) at-least-once because no
message is discarded without being sure that the corresponding
token has been consumed.

Moreover, even though the protocol is conceptually 4-way
per-message, to ensure correctness, it achieves efficiency by
using what we call soft half-connections: on-demand half-
duplex connections transparent to the API, which remains
message-based. This allows achieving both: 1) latency sim-
ilar to TCP, that requires three one-way trips to deliver the
first of a sequence of messages and then just one RTT, 2)
obliviousness, being able to discard all per connection state
without depending on any timing assumption for correctness
(i.e., no TIME_WAIT or similar concept).

Being connectionless, Exon allows long-lived messaging
that survives IP changes, such as in mobility scenarios, using
logical node identifiers. Being oblivious, Exon is useful for
systems having constrained devices, such as in IoT, and when
each node communicates with many others over time. This
is possible by avoiding memory buildup, as it requires only
a single sequence number as a persistent state. Moreover,
the experimental evaluation shows Exon performance to be

significantly better than TCP under packet loss, and to have
negligible overhead otherwise.

In general, Exon is a useful abstraction that can serve many
different roles: replacing TCP in inter node communication
used by distributed algorithms on a large highly concurrent
system; replacing a too-heavy messaging middleware used
by a higher-level application; replacing TCP in a generic
messaging middleware.

The contributions in this paper are summarized in the
following: (1) A novel general purpose protocol, Exon, for
oblivious exactly-once messaging. (2) A proof (sketch) of
safety and liveness properties to achieve exactly-once delivery.
(3) An open-source library, Exon-Lib, implementing Exon
over UDP, that exposes a generic API to be used as a building
block for distributed applications. (4) An empirical evaluation
in different network settings.

The rest of the paper is organized as follows. We start
with an overview of related work in Section II to show how
our work positions itself. We then present the protocol in
Section III, followed by the proof sketches in Section IV. We
finally present a performance evaluation in Section V, and we
conclude with Section VI.

II. RELATED WORK

The works on reliable communications, to provide both
exactly-once (EO) delivery and good performance, date back
to the early days of the ARPA network [10]. In particular, the
research on the transport layer [37], [11] lead to the foundation
of the Internet Protocol (IP) that results in two mainstream
transport protocols: TCP and UDP. UDP [28] is a basic
datagram protocol that provides no reliability guarantees, but
stands as a communication primitive to support building other
protocols as needed. TCP [27] is a stream- and connection-
based protocol that provides reliability guarantees like exactly-
once, FIFO ordering, and performance (e.g., congestion and
flow control).

Nevertheless, EO guarantees in TCP only hold within a
connection/session; when the connection fails (likely to occur
in current WAN environments and long-lived communica-
tions), it either allows for message loss or duplication, as
Belsnes [6] shows for any single-message communication.
Attiya et al. [2] proved that when state information is not
saved between incarnations, the problem is solvable if and
only if the network is FIFO—which is not the case for most
networks. Therefore, to ensure EO, it is necessary to retain
inter-connection information, e.g., at an upper layer. One
possibility is using a fail-over protocol [40], [33], [12], [35].

Among the TCP fail-over protocols, Zandy et al. [40] used
the idea of Persistent Connections to preserve the endpoint of
a failed connection in a suspended state for an arbitrary period
of time. Then, the protocol automatically reconnects using
session fail-over to another process transparently. However,
no guarantees are made beyond the defined time. Similarly,
Snoeren [33] used Connection Migration to migrate a connec-
tion session to another endpoint. Both Robust TCP (RTCP)
and Exactly-Once Middleware used a similar technique, called

Connection Persistence, when a TCP connection breaks [12],
[20]. They used an out-of-band UDP connection recovery
for EO and FIFO. RTCP retains unique connection identifier
(CID) in order to distinguish between different incarnations;
this makes it non-oblivious, unlike Exon. FT-TCP [1] used
a wrapper that saves the states in a logger (another process)
to mask and recover the TCP connection, even under node
failures.

Since TCP is optimized for the general use, it exhibits
limitations in scenarios like bulk transfer, multicast, concurrent
systems, computational grids, fast networks, etc. [36], [16],
[13], [25], [24], [21], [17]. This motivated the design of reli-
able transport-level alternatives on top of UDP. Nevertheless,
although these protocols managed to solve the ordering and
performance reliability (congestion control) issues of TCP,
they only partially solved the EO. The reason is that they
embraced the connection-based approach, which eventually led
to the same TCP issues discussed above.

In particular, Reliable UDP (RUDP) uses redundant con-
nections over UDP [8]. A connection failure is solved by
signaling a timed state transfer to an Upper Layer Protocol. If
the latter does not transfer the state before the timer expires
(after one second), the connection state is lost, and its buffers
are freed—thus not ensuring EO. The RTP [31] protocol has
the same issues as it provides UDP connections without EO
guarantees; but it relies on an RTP Control Protocol (RTCP) to
maintain reliability through storing a lot of meta-data sessions
with timeouts. The same holds for RBUDP [18] that must
keep a tally of the packets to determine which packets must
be retransmitted at the end of a bulk transmission under
failure. Like Exon, other protocols like SCTP, UDT, and ENet
improved reliability without ordering guarantees [36], [16],
[41], [30], but again using connection timeouts.

A. Efficiency, exactly-once, obliviousness and no timing as-
sumptions, pick four

The novelty of Exon is simultaneously achieving EO de-
livery, obliviousness, efficiency and no dependence on timing
assumptions for correctness. For efficiency, some notion of
connection is needed. Our starting point, a 4-way message
protocol would need 3 one-way trips to deliver each message.
Less than 3 one-way trips is possible: but ensuring optimal
two-way handshake in [32] is achieved by forgoing oblivi-
ousness, as it assumes the existence of a cache that holds
meta-data about nodes.

Indeed, Attiya et al. [3] proved that if the nodes have
unbounded memory, a three-way handshake oblivious protocol
exists, whereas a two-way handshake oblivious protocol does
not exist. The same paper proved also that if a bound on
maximum packet lifetime (MPL) exists and is known, then
a two-way handshake oblivious protocol is possible, but at
least MPL must elapse between the time two consecutive
incarnations are established—which is impractical in most
networked applications. Therefore, most reliable and efficient
protocols are three-way handshake based, but they expose

full-duplex connections in the API, and depend on timing
assumptions for obliviousness.

The protocol most related to Exon is Attiya’s three-way
handshake oblivious unbounded memory protocol [3], in
also only requiring a single integer as node state between
incarnations. But Attiya’s protocol is classically connection
based, with API-visible full-duplex connections, which pre-
vents safely ensuring exactly-once message delivery, as the
receiving side can concurrently close the connection, prevent-
ing delivery.

Our approach starts from a message-based four-way proto-
col, inefficient but ensuring exactly-once, obliviousness, and
no dependence on timing assumptions. It is then augmented
with on-demand half-duplex soft-connections, hidden from the
API, to achieve performance, while retaining the other three
properties. This novel combination of components results in
an efficient, oblivious, exactly-once messaging protocol with
no timing assumptions for correctness.

III. EXON PROTOCOL

Exon is a host-to-host message-based protocol that is op-
timized to guarantee the exactly-once (EO) delivery of these
messages. This is possible through the concept of reserving
slots at the destination host before sending any payload. When
a slot is first consumed at the destination host, it is deleted
and, therefore, duplication will not occur no matter how many
retransmissions are done, e.g., given possible network issues.

In a nutshell, Exon has a combination of components which
allows ensuring EO while being network and memory efficient,
namely:

Soft- half-connections: connections are useful to group
identifiers like sequence numbers and achieve performance.
We have what we call soft- half-connections (s-connection),
that group messages from the same sender-receiver pair,
created on-demand if messages are requested to be sent. For
performance, the s-connection can be discarded if there are
no pending unacknowledged messages, after some non-short
timeout. EO correctness is ensured without timeouts though
(e.g., no TIME_WAIT as in TCP).

Oblivious: Exon achieves EO correctness without the need
to keep s-connection-related information forever, keeping only
a single integer per node as permanent state, when no s-
connections are present.

Order-less: to be more generic, Exon is deprived from un-
necessary ordering restrictions of messages. Message ordering
(e.g., FIFO) can be implemented on top of Exon if required.

In the following, we emphasize Exon in more detail.

A. System Model

We consider a networked or distributed system of any
number of nodes. A node can have wide or constrained
capacities, but a local memory is required. Nodes can be long-
lived sticky members of some service or transient ones (e.g.,
as in vehicular networks). Nodes can crash but will eventually
recover with the content of the last state prior to the crash. In
this case, a stable persistent storage is assumed.

On the network side, any node can communicate with any
other node via a network (e.g., WAN, WSN, LAN). The net-
work is asynchronous, with no global clock, no bound neither
on the time it takes for a message to arrive, nor on the process-
ing speeds. The network is unreliable: messages can be lost,
duplicated or reordered (but are not corrupted). The network
may have long partitions, but these will eventually heal. Exon
assumes the existence of an underlying transport-level com-
munication channel—or any equivalent non-IP abstraction—to
send messages in any form (bytes, datagrams, etc.); although
our current Exon-lib is implemented on top of UDP.

B. Overview

The communication is done between two nodes, a sender
(i) and a receiver (j), as follows: (1) Node i starts the
communication where it has a message to send to j, it sends
a REQSLOTS message to j, (2) j creates a slot for i and
sends it back. Then, (3) after node i receives the slot, it
generates a message payload token and sends it to j. After
that, (4) j receives the token, removes the slot, delivers the
“payload” to the specific upper layer application, and sends
an acknowledgment ack to i, where i can safely removes the
token.

In order to optimize the slot-at-a-time request overhead,
the sender can request a window of slots in advance using
empty message place-holders, we call envelopes. The sender
can associate message tokens to these ready envelopes with
reserved slots when needed.

C. The Algorithm

We now describe the algorithm details of Exon. To sim-
plify the presentation, we refer to the corresponding lines in
Algorithm 1. We also exemplify the algorithm with a simple
instance, which we walk through to clarify how the state is
changing at each step.

Algorithm 1 is the protocol for a generic node i. It conveys
the node state, the types used in defining it, the atomic actions
(both for when a send is requested locally and when messages
arrive), and the called auxiliary procedures. The algorithm
also presents a procedure that runs periodically, to show in
a minimal way how to cope with message loss (an actual
implementation could have, e.g., timeouts per half-connection
to trigger these sends).

1) Notations and Definitions: Each node i has an Exon
state. The state is a node-wide clock (cki) keeping a mono-
tonically increasing integer, and a pair of maps: Si keeping
sender-side half-connection records of type S and Ri keeping
receiver-side half-connection records of type R. We use an
i subscript to denote node state variables or actions and
unsubscripted names for local temporary variables; we use :=
for assignment, typically to a state variable, and = for a let
binding which binds a name to a value.

While in abstract, and for correctness, we use the concepts
of slots, envelopes and tokens as globally unique entities,
which are kept in the node state grouped in the sender-side

1 types
2 I, node identifiers
3 M, message payloads
4 S : record {
5 sck : N, sender clock
6 rck : N, receiver clock
7 msg : M∗, messages queued to send
8 env : N∗, list of available envelopes
9 tok : N ↪→ M, tokens with messages

10 }, sender-side connection record
11 R : record {
12 sck : N, sender clock
13 rck : N, receiver clock
14 slt : P(N), set of available slots
15 }, receiver-side connection record

16 parameters
17 N : N, number of slots requested in advance

18 state:
19 cki : N = 0, node clock
20 Si : I ↪→ S = ∅, map of sender-side records
21 Ri : I ↪→ R = ∅, map of receiver-side records

22 on EOsendi(j,m)
23 if j /∈ dom(Si) then
24 Si[j] := S{sck : cki, rck : 0,msg : [m], env :

[], tok : ∅}
25 requestSlotsi(j)
26 else
27 c = Si[j]
28 if c.env 6= [] then
29 e = c.env. dequeue()
30 if |c.env| = N − 1 then
31 requestSlotsi(j)
32 c.tok[e] := m
33 sendi,j(TOKEN, e, c.rck,m)
34 else
35 c.msg. enqueue(m)

36 proc requestSlotsi(j)
37 c = Si[j]
38 n = N + |c.msg| − |c.env|
39 if n > 0 then
40 l = if c.tok 6= ∅ then min(dom(c.tok))
41 else if c.env 6= [] then c.env[0]
42 else c.sck
43 sendi,j(REQSLOTS, c.sck, n, l)
44 else if c.tok = ∅ and c.msg = [] then
45 sendi,j(REQSLOTS, c.sck, 0, c.sck)
46 cki := max(cki, c.sck)
47 Si. remove(j)

48 on receivej,i(REQSLOTS, s, n, l)
49 if j /∈ dom(Ri) then
50 Ri[j] := R{sck : s, rck : cki, slt : ∅}
51 cki := cki + 1
52 c = Ri[j]
53 c.slt := {m ∈ c.slt | m ≥ l}
54 if n > 0 then
55 if s + n > c.sck then
56 c.slt. union({c.sck, . . . , s + n− 1})
57 c.sck := s + n
58 sendi,j(SLOTS, s, c.rck, n)
59 if c.slt = ∅ then
60 Ri. remove(j)

61 on receivej,i(SLOTS, s, r, n)
62 if j /∈ dom(Si) then
63 sendi,j(REQSLOTS, cki, 0, cki)
64 else if s = Si[j].sck then
65 c = Si[j]
66 c.rck := r
67 c.env. append([s, . . . , s + n− 1])
68 c.sck := s + n
69 while c.env 6= [] and c.msg 6= [] do
70 e = c.env. dequeue()
71 m = c.msg. dequeue()
72 c.tok[e] := m
73 sendi,j(TOKEN, e, c.rck,m)
74 requestSlotsi(j)

75 on receivej,i(TOKEN, s, r,m)
76 if j ∈ dom(Ri) then
77 c = Ri[j]
78 if r = c.rck and s ∈ c.slt then
79 c.slt. remove(s)
80 deliveri(m)
81 sendi,j(ACK, s, r)

82 on receivej,i(ACK, s, r)
83 if j ∈ dom(Si) then
84 c = Si[j]
85 if r = c.rck and s ∈ dom(c.tok) then
86 c.tok. remove(s)

87 periodically
88 for (j, c) in Si do
89 for (s,m) in c.tok do
90 sendi,j(TOKEN, s, c.rck,m)
91 requestSlotsi(j)
92 for (j, c) in Ri do
93 sendi,j(SLOTS, c.sck, c.rck, 0)

ALGORITHM 1: Exon algorithm for a generic node i

or receiver-side half-connection records. We now define these
concepts and describe how they are stored in nodes.

Definition 1 (Slot). A slot with id (j, i, s, r) represents the
obligation of node i to deliver a message from j tagged by
this id, or for node j to explicitly waive this obligation.

A (j, i, s, r) slot is kept at node i as a j entry in the Ri

map, having rck = r and slt containing s.

Definition 2 (Envelope). An envelope with id (i, j, s, r) repre-
sents the option (but not the obligation) of node i to generate
a token with this same id (consuming the envelope) to which
a user message is associated

An (i, j, s, r) envelope is kept at node i as a j entry in the Si

map, having rck = r and env containing s. For uniformity and
compactness of presentation, this env field is a list of integers,
when an actual implementation would need only a pair of
integers, as this list always contains a contiguous sequence.

Definition 3 (Token). A token with id (i, j, s, r) associated
with user message m, created from an envelope of this same
id, represents the obligation of node i to request j to deliver
message m until acknowledged.

An (i, j, s, r) token associated with user message m is kept
at node i as a j entry in the Si map, having rck = r and tok
mapping s to m.

2) Messaging Steps: We now present the four main
messaging steps of Exon by referring to Algorithm 1. For
simplicity, we assume the communication is occurring between
a sender node “A” and a receiver node “B”. To ease tracking
the steps of Algorithm 1, we added Figure 1.

Step 1. Requesting Slots: Sender node A does not hold
a previous S-record for receiver node B. Consequently, the
former creates an S-record for B and requests “n” slots
from B via REQSLOTS.

EOsenda(b,m) called first at node A in order to send a
payload “m” to node B. Node A instantiates an S-record (line
24) for node B since it is sending for it the first time, puts
the payload “m” in a message queue (msg), and then calls the
function requestSlots (line 25). Consequently, node A sends a
REQSLOTS message (line 43) to node B in order to request a
number of slots “n” (line 38) based on N (number of standby
slots for node A at node B to satisfy N subsequent EOSends),
number of messages queued, and envelopes (discussed later).
The REQSLOTS message holds the variables sck (sender
clock), n (number of slots), and l (the “Garbage Collection”
frontier to tell node B to safely remove the old slots (line 53)
which (node A) has no tokens for them).

Step 2. Sending Slots: Node B creates the requested slots
and sends them back to A. If B has a prior record for A with
outdated or consumed slots, it checks if garbage collection
can be done.

Figure 1: Exon step-by-step example for node ‘a’ communi-
cating with node ‘b’; window n = 5, n = N+ | msg | − | env |.

Node B then receives the REQSLOTS message (line 48), it
checks if there is any receiving record (R-record) for node A
from a past communication. If not, node B then instantiates
the R-record of node A (line 50). In the R-record at B, sck is
assigned the received clock “s” from A in order to synchronize
the clocks (sck) between them. Also, rck is assigned the global
clock ck as an incarnation number, and then ck is incremented.

Node B then checks if the summation of the received sck
and the number of slots requested (s+ n) is greater than the
local sck to know if the received message is an old duplicate
or for garbage collection purpose, then it creates the slots (line
56) and sets the lower limit for the next range of slots to be
created (line 57).

Therefore, after creating the slots, node B can send them
(line 58) by sending 1) the sender clock s received from node
A, where node A can assure that the requested slots received
are based on its sck, 2) the incarnation number rck (node B
receiver clock), and 3) the variable n that refers to the number
of created slots.

Step 3. Sending Token (Holding a payload m): Node A
creates a token from an envelope, associates a message m
to it, and sends it.
Node A then receives the slots (line 61), actually it receives

“s” (sck: the base sender clock), the rck receiver clock “r”, and
the number of created slots “n”. Then it verifies if the received
slots are based on the sender clock (sck) (line 64), in a way to
avoid old slots (duplicates). Then, node A assigns the received
rck “r” to the local rck in order to synchronize the incarnation
clocks between the two nodes, creates the envelopes (line 67),
and advances the sck by “n”. After that, node A checks if there
is any message in the msg queue and if there is an available
envelope (line 69), in order to create a token that holds the
message m and sends it to B (line 73).

When the sender runs out of envelopes and there are
messages still in the queue, it requests more slots. Also, if
the messages in the message queue become empty, then the
“requestSlots” function will be called (line 74) in order to
request slots in advance and keep N available envelopes at the

sender for future EOsends.
Step 4. Payload delivery and sending ACK: Node B
receives a token from node A, delivers its payload if there
is a corresponding slot, and deletes the slot. Node B then
sends an ACK to A.
Node B then receives the token (line 75), it receives “s”

(token number), “r” (rck of node A), and the payload “m”.
It checks if the received token is not from an old incarnation
and has the same incarnation number as the rck, and also
checks if the token has a slot for it in slt. Therefore the slot
can be removed from node B and the message “m” could
be delivered to its destination layer successfully. After that,
an “ACK” message is sent to node A (line 81) telling it to
remove the token safely (line 86).

IV. CORRECTNESS PROOFS

In this section, we provide a proof sketch of Exon exactly-
once correctness, referring to Algorithm 1. In particular, we
prove at-most-once which represents the safety property, and
at-least-once, representing the liveness property. We analyze
these properties under potential message failures, i.e., loss and
duplication, demonstrating how Exon guarantees exactly-once
despite such situations.

A. At-most-once

Exon is optimized for the at-most-once case by design. It
achieves this through booking a slot for each message token to
be sent. As long as this association is unique, the message will
be delivered at-most-once. Consequently, the following should
be proven correct: (1) Slots and tokens are unique, which
requires an increasing clock across soft-connection (a.k.a.,
s-connection or incarnation). This is proven in Lemma 1.
(2) Within an incarnation, the combination slot-envelope is
unique. This means a slot is created at most once at the
receiver, and the corresponding envelope at the sender is
created at most once. These are proven in Lemmas 2 and 3.
(3) A message payload is associated to at most one token and
one envelope (Lemma 4); and a slot is consumed once by the
receiver (Prop. 1).

Lemma 1. For each node i, each receiver-side s-connection
identifier rck is instantiated at most once, whether for the same
or different senders.

Proof. When a receiver-side’s s-connection record is created
(upon a first message receipt), the s-connection’s identifier rck
gets assigned the node’s clock cki, that is then incremented
(lines 50, 51). Since cki is always incremented across s-
connections (line 46), then rck can be instantiated at most
once. Under duplication, any subsequent (duplicate or new)
message will belong to this incarnation (notice that no incar-
nation request exist). If the incarnation is deleted (e.g., after a
long silence period), a new rck′ > rck is assigned to the new
incarnation.

Lemma 2. Each slot (j, i, s, r) is created at most once.

Proof. For each node i, from Lemma 1, slots created at i
for different incarnations will have different rck values. For

each incarnation with a given r, for some sender j, each slot
(j, i, s, r) is created in a range with s starting from the sck in
the connection record, which is incremented to become one
past the last value in the range created (lines 56, 57). This
makes the subsequent creations in the same incarnation to
have non-overlapping ranges and no duplicate slots are created
under retransmissions.

Lemma 3. Each envelope (i, j, s, r) is created at most once.

Proof. For each node i, for each incarnation with a given r, for
some receiver j, each envelope (i, j, s, r) is created in a range
with s starting from the sck in the connection record, which
is incremented to become one past the last value in the range
created (lines 67, 68). This makes the subsequent creations in
the same incarnation to have non-overlapping ranges. When
an incarnation terminates (e.g., not being used for long time,
since Exon has no notion of closing connections), the node’s
clock cki is made to be at least as large as the sck in
the incarnation being discarded (line 46), making subsequent
incarnations have larger starting sck value, non-overlapping
with previous incarnations to the same receiver. Therefore, no
duplicate envelopes are created under retransmissions.

Remark: different co-existing sending-side half-connection
incarnations can have at some point overlapping values of sck,
but as they are to different receivers, the uniqueness of each
envelope created is maintained.

Lemma 4. A message payload m to be sent to j is associated
into some token (i, j, s, r) at most once.

Proof. A message payload m is associated either immediately
(lines 29-33) or later (lines 70-73) after being queued for
some time to a uniquely created envelope that is immediately
consumed. In addition, a token, associated to a single envelope
and a message payload m, is deleted after message delivery
(line 86), which makes it impossible to associate any message
to that token (including the duplicated message itself).

Proposition 1. A sent message payload m to receiver node j
is delivered at j at most once.

Proof. From Lemmas 3 and 4, a message is associated to
at most one token before it gets deleted. On the other hand,
Lemmas 2 and 3 prove that at most one slot is created for an
envelope (associated to a token). The proposition holds since a
message is only delivered by consuming the slot corresponding
to the token holding the message (lines 79, 80). A duplicate
token message will not have a corresponding slot and will
results in discarding it or sending an ACK if retained (line
81).

Remark: in principle, deleting a token and delivering the
message in lines 79 and 80 should be atomic. Since we do
not assume node crashes, we exclude this from the algorithm.

B. At-least-once

To guarantee at-least-once message delivery, we need to
prove the following: (1) A sender having a buffered message

m will not give up until receiving a corresponding slot
(Lemma 5). (2) A sender having received a slot will not give
up retransmitting the corresponding token until the messages
is delivered and ACKed (Lemma 6).

Lemma 5. A sender node of message payload m will eventu-
ally receive a SLOTS message, to send a corresponding token.

Proof. The sender having a message to send will send a
REQSLOTS message to receive a SLOT. It however does not
know if a REQSLOTS message is lost or delayed. Therefore,
it may send the same or a new REQSLOTS message based
on different cases: either some slots may have been received,
or some EOSends are invoked (lines 87-93). In either case,
a different slot range is calculated (line 38). Notice that
the protocol will not block even if some tokens have been
lost since a receiver node can still create new slots without
limits.

Lemma 6. A receiver node of message payload m will
eventually receive a TOKEN message delivering m.

Proof. The sender having a message token to send will send
a TOKEN message until it receives an ACK. The sender
does not know whether a TOKEN or ACK message is lost.
Therefore it keeps retransmitting the TOKEN message (lines
89,90) until an ACK is received. A duplicate TOKEN will
have no effect because a slot has been already deleted at the
receiver; however, the latter will resend the ACK (lines 78,81).
A duplicate ACK will not have effect on the sender because
the first ACK deletes the corresponding TOKEN at the sender
and the duplicated ACKs are just discarded.

Therefore, Lemmas 5 and 6 ensure at-least-once message
delivery under network loss and duplication.

We make two final notes on correctness. The first is that
Exon is not blocking if a node is communicating with many
nodes since each node has its specific independent record
either for sending (S record) or in receiving (R record). The
second is that the algorithm does not keep any garbage meta-
data throughout the different phases. In particular, sending
the ACK messages in the end is important not only to stop
the senders retransmissions of TOKEN messages, but also to
garbage collect these delivered message tokens.

V. EVALUATION

A. Implementation

We implemented the Exon-lib as a Java library [22], in order
to test and evaluate the algorithm under different settings and
scenarios. The architecture of the Exon-lib is multi-threaded;
one thread runs all the algorithm code and another thread reads
from the network. Communication occurs through two main
ArrayBlockingQueues: AQMsg (algoQueue), read by the main
thread, for all client EOsend requests and protocol messages
(received from the network and parsed and forwarded by the
network reader thread); DQMsg (deliveryQueue) for delivering
messages to the local client. A semaphore is used for flow

 0

 2000

 4000

 6000

 8000

 10000

 12000

0% 1% 5%

m
sg

s/
s

Message loss rate

Exon

TCP

UDT

Figure 2: One-way throughput under packet loss (Setting:
RTT=10ms, Bandwidth=100 Mbps)

control, blocking a client thread doing a send if many messages
were previously requested to be sent but are not yet acknowl-
edged. We currently use UDP for the entire message transport,
leaving message fragmentation and merging for future work.

B. Experimental Setup

To evaluate the performance of our protocol we prepared
experiments that reflect a real-world environment. For this
purpose, we used Emulab [39], an online network testbed that
has a wide range of environments in which researchers can
develop, debug, and evaluate their systems. We used in the
experiments two machines, each with a 2.4 GHz 64-bit 8-
Core Xeon E5-2630v3 processors, 64 GB DDR4 RAM and
20 MB cache, and running Linux 16.04 64-bit Ubuntu OS,
We configure the network as two hosts connected to a router
in between. The router is configured to induce delays and
message loss, mimicking a real network.

C. Evaluation Methodology

We examine two common messaging patterns: a no-wait
unidirectional pattern one-way without replies, and Remote
Procedure Call (RPC), a request/reply pattern where sub-
sequent request is sent only after the ACK of the preceding
request is received.

The evaluation focuses on throughput and latency, being
the most relevant metrics in messaging protocols. We send
a sufficient number of messages (between 10K and 1M) per
burst to stabilize the network (in addition to warming up).
Finally, we do not measure the latency in the one-way message
because it is less important in this pattern and it is hard to
measure in the lack of perfect synchronized clocks.

We compared Exon with TCP and UDT. We chose TCP as
the most widely used reliable and efficient transport protocol—
discarding the inter-connection EO issues; and UDP-based
Data Transfer (UDT) [16] as a reliable messaging protocol
on top of UDP.

To compare the three protocols with large scale or highly
concurrent systems, where each node has many objects/ pro-
cesses/actors of unpredictable lifetimes, we perform RPC tests
where a given number of actors perform independent (con-
current) RPCs to a server. Such systems that use TCP (e.g.,
distributed Erlang) normally use multiplexed TCP connections

shared by many local actors. We run tests for different numbers
of actors, until we saturate the bandwidth. With respect to
message size, we opted for 1 KB messages, to have relatively
“full” datagrams, allowing good use of bandwidth, without
risking UDP fragmentation.

We run the experiments under two environments: fault-
free environment, to test the performance of the protocols
under normal circumstances, under different network latencies
and bandwidths; message loss environment, to evaluate how
well the protocols tolerate network faults. Thus, we tested the
protocols under three variables: bandwidth, network latency,
and message loss rate. We tried to set the parameter’s values
to common network cases. For bandwidth tolerance, protocols
were tested under a fixed latency (RTT= 10ms) over differ-
ent bandwidths: 1, 10, and 100 Mbps. For network latency
tolerance, bandwidth was set to 10 Mbps, and RTT taking
the values 6, 10, and 100 ms. For message loss tolerance,
bandwidth and latency were set to 100 Mbps and RTT=10 ms
respectively, while using message loss rates of 0%, 1%, and
5%. In each of these experiments, we tested the protocols using
the two patterns described: one-way messaging and RPC. In
the one-way messaging pattern, we measured the throughput
(msgs/s) while in the RPC messaging pattern, we measured
the throughput (requests/s) and response latency (ms).

D. Tolerance to Packet Losses

In this experiment, we aim to compare the throughput and
latency of Exon, TCP, and UDT under packet loss. In all cases,
no messages were lost or delivered in duplicate, despite packet
loss and retransmissions. We configured Emulab to induce
packet loss, dropping packets at 1% and 5% rate. To assess
packet loss overhead, we also provide a baseline experiment
with 0% loss. We used for network parameters RTT=10 ms,
and bandwidth of 100 Mbps.

1) One-way messaging: Figure 2 shows the throughput
results of the protocols under 0%, 1%, and 5% message loss.
In these scenarios the sender loops sending one million 1KB
messages, as fast as possible (throttled only by flow control).
The throughput of Exon and TCP are very close in the 0%
loss case, delivering more than 11K messages/sec (i.e., around
88Mbps), which is close to the maximum bandwidth capacity.
This means that even though Exon is based on a four-way
per-message exchange, it can pro-actively requests a batch
of N slots in advance (where N is a parameter based on
the BANDWIDTH*DELAY product), by the occasional REQ-
SLOTS message, which causes negligible overhead over TCP.
However, the UDT throughput is much worser than Exon and
TCP. It is believed that being equipped with DAIMD has
resulted in degrading the throughput [26].

Nevertheless, with a 1% and 5% packet drop rate, Figure 2
shows a significant throughput drop, i.e., around 50% in
Exon, 80% in UDT, and more than 90% in TCP. This is not
surprising due to the delays and network congestion caused
by retransmissions of failed packets in the three protocols.
The drop was however sharper in the TCP and UDT cases
because of the congestion control they use. Indeed, following

 0

 2000

 4000

 6000

 8000

 10000

 12000

Exon TCP UDT

re
q

u
es

ts
/s

message loss rate= 0%

1 actor

50 actors

100 actors

150 actors

200 actors

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

Exon TCP UDT

re
q

u
es

ts
/s

message loss rate= 1%

1 actor

50 actors

100 actors

150 actors

200 actors

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

Exon TCP UDT

re
q

u
es

ts
/s

message loss rate= 5%

1 actor

50 actors

100 actors

150 actors

200 actors

Figure 3: RPC latency under packet loss (Setting: RTT=10ms, Bandwidth=100 Mbps)

 0

 200

 400

 600

 800

 1000

 1200

Exon TCP UDT

re
q
u
es

ts
/s

RTT=6 ms, Bandwidth=10 Mbps

1 actor

3 actors

6 actors

9 actors

12 actors

 0

 200

 400

 600

 800

 1000

 1200

Exon TCP UDT

RTT=10 ms, Bandwidth=10 Mbps

1 actor

5 actors

10 actors

15 actors

20 actors

 0

 200

 400

 600

 800

 1000

 1200

Exon TCP UDT

RTT=100 ms, Bandwidth=10 Mbps

1 actor

40 actors

80 actors

120 actors

160 actors

Figure 4: RPC throughput under packet loss (Setting: RTT=10ms, Bandwidth=100 Mbps)

the retransmission timeout (RTO) degradation scheme [14]
causes a faster drop in throughput than Exon as shown in
the 5% packet loss case. To the contrary, the retransmission
timeout in Exon is less pessimistic, i.e., proportional to the
network RTT, which is possible given the protocol’s core
resilience to dropping and duplication. Also we can see that
the dropping of UDT is lighter than that of TCP since that the
DAIMD in UDT does not overreact to packet losses as the
AIMD in TCP. In the 5% packet loss rate, Exon’s throughput
is 8 times higher than TCP and UDT, which demonstrates its
high resilience to hostile networks with packet losses.

2) RPC messaging: Here we test the scenario in which a
host (client) contains a given number of independent actors,
each actor performing RPCs to the other host (server) in a
sequential loop. For TCP, a single connection is shared by
all actors, as is common in real general purpose distributed
actor middleware, like Erlang. We aim to see how many
requests per second (in aggregate) can be achieved and RPC
latency, increasing the number of actors until we saturate the
bandwidth.

Figures 3 and 4 convey the latency and throughput results
for 0%, 1%, and 5% packet loss rate experiments, in the
same WAN setting as before (RTT=10ms, Bandwidth=100
Mbps). In general, the conclusions are similar to the one-way,
demonstrating the high resilience of Exon to packet losses, in
terms of performance, compared to TCP and UDT.

For the fault-free test, UDT has the worst performance
compared with Exon and TCP where they have similar per-
formance, a little worse or better depending on the number
of actors. It can be seen that as we increase the number
of actors, the RPC latency increases, first slowly, and then
abruptly when the number of client actors (200) saturates the

available bandwidth; unlike the UDT case, where the RPC
latency increases rapidly as the number of actors increase.
As in the one-way case, UDT has the worst performance,
where that of Exon and TCP increases roughly linearly with
the number of actors, until reaching network saturation, when
it even decreases slightly.

For scenarios with packet loss, even 1%, the performance
of TCP and UDT drops drastically, compared with Exon,
even more than for the one-way tests. The reason is that,
while for Exon each message is delivered independently, not
delaying other messages in case of packet loss, for TCP
packet loss will delay the whole stream, which must be
delivered in order. This means that, for TCP, for a single
packet loss, all other concurrent actors will have their requests
or responses delayed, increasing RPC latency, as can be seen
in Figure 3, and delaying the issue of their next RPC. It can
be seen in Figure 4, for both 1% and 5% packet loss cases
that, while for Exon throughput still scales linearly with the
number of actors (before saturating the network), for TCP and
UDT throughput stops scaling much sooner. For 5% packet
loss, TCP throughput stops at around 500 requests/s, UDT
at around 200 requests/s, while Exon reaches around 6400
requests/s. This shows the serious impact of packet loss, due
to HOL blocking, when using multiplexed TCP connections in
general purpose middleware, something which unfortunately is
common.

E. Overhead under Normal Conditions

In this experiment, we aim to compare the throughput and
latency of Exon, TCP, and UDT under different bandwidths
and latencies, in a fault-free scenario, for the two messaging
patterns (one-way and RPC).

 64

 128

 256

 512

 1024

 2048

 4096

 8192

 16384

1 10 100

m
sg

s/
s

Bandwidth (Mbps)

Exon

TCP

UDT

(a) RTT= 10 ms

 128

 256

 512

 1024

 2048

6 10 100

m
sg

s/
s

Latency (ms)

Exon

TCP

UDT

(b) Bandwidth=10Mbps

Figure 5: One-way throughput as bandwidth and RTT varies

1) One-way messaging: Figure 5a shows the throughput
of Exon, TCP, and UDT for RTT=10ms, and bandwidths of
1, 10, and 100Mbps. In the three cases, the three protocols
make almost full bandwidth utilization except UDT under the
100Mbps case. This is expected since the network is saturated
with the successive one-way 1KB messages, where the RTT
effect is negligible. Nevertheless, the overhead in Exon is
8% in the worst case, and this is referred to the overhead
of REQSLOT messages that asks for a window of N slots,
as mentioned above. This small overhead justifies the use of
Exon in systems that require EO guarantees and exhibit some
packet loss.

Regarding UDT, its performance increases as bandwidth
increases, however it does not reach the maximum bandwidth
utilization with 100 Mbps, and it shows bad performance
comparing with Exon and TCP.

Figure 5b shows that the full bandwidth utilization remain
the same with a fixed bandwidth and different RTT (6, 10
and 100 ms) for the same reasons. However, UDT shows bad
performance with high latency.

2) RPC messaging: We aim to see how many requests
per second (in aggregate) can be achieved, using several
concurrent actors, each performing RPCs in a loop, increasing
the number of actors until we saturate the bandwidth.

Figure 6a conveys the throughput with varying bandwidth
of 10 and 100 Mbps (with RTT=10ms). We observe a max of
7% throughput overhead of Exon over TCP in the worst case.
Both protocols hit the bandwidth limits as the number of actors
increase (which is higher for higher bandwidth) unlike with
UDT where as the number of actors increase, the performance
got worse, and this is consistent with the one-way case in
sending burst of messages. The low throughput in the three
protocols in the 1Mbps may look surprising at a glance; but
this looks reasonable after a deeper observation since this

 10

 100

 1000

 10000

 100000

 1 10 100

T
h

ro
u

g
h

p
u

t
(r

e
q

u
e

s
ts

/s
)

Number of Actors

Exon 10Mbps
TCP 10Mbps
UDT 10Mbps

Exon 100Mbps
TCP 100Mbps
UDT 100Mbps

(a) RTT=10ms

 10

 100

 1000

 1 10 100

T
h

ro
u

g
h

p
u

t
(r

e
q

u
e

s
ts

/s
)

Number of Actors

Exon 10ms
TCP 10ms
UDT 10ms

Exon 100ms
TCP 100ms
UDT 100ms

(b) Bandwidth=10Mbps

Figure 6: RPC throughput as bandwidth and RTT varies-log. scale

bandwidth is not fast enough to compensate the RTT delay,
which causes a buffering bottleneck quickly.

On the other hand, the throughput is negatively affected
when RTT varies (between 10 and 100ms) as shown in
Figure 6b (with fixed bandwidth=10Mbps).

In the RPC pattern, the RTT is major factor since a succes-
sor message depends on the round-trip delay of the previous
one. However, as more actors are used, the channel gets more
utilized and the protocols hit the bandwidth limits (10Mbps).
Also, UDT has the worst performance as the number of actors
increase, and this conforms with the result of the throughput
experiment one-way which has a similar scenario (sending
one-way burst messages).

A nice observation (in Figure 6b) is that as the RTT
increases, the difference between Exon and TCP protocols
almost fades away (i.e., from 10% to 2%). The same is
observed in Figure 6a where the overhead degrades from 7%
to 1% as the bandwidth increases.

This can be explained by the relative overhead of the
REQSLOTS and SLOTS messages in these scenarios, as the
algorithm sends a new REQSLOTS message upon receiving a
SLOT (as long as some TOKEN messages where sent). This
problem is easily fixed either by piggybacking REQSLOTS
messages in TOKEN, and SLOTS in ACK, or by having a
low-high watermark system for envelopes in reserve, so as to
send REQSLOTS less frequently. We leave this improvement
for further work.

VI. CONCLUSION

We presented Exon, a message-based lightweight transport-
level exactly-once oblivious protocol. Exon ensures at-most-
once delivery by design, by reserving placeholders at the des-
tination before (re)transmitting the payload. Exon is oblivious
as it can forget all information about other nodes, retaining

only one integer as node state when communication stops,
without violating safety, not depending on timeouts for cor-
rectness. Performance is obtained by on-demand “soft-half-
connections”, hidden from the API, created and freed transpar-
ently, while ensuring exactly-once by preventing concurrent-
close as in standard full-duplex connections.

Exon is order-less, making it more flexible as a building
block for concurrent systems, avoiding the HOL blocking that
occurs when using TCP, thus leaving ordering for upper layers.
This makes Exon robust and performant even under packet
loss. Even the current prototype already performs similarly to
TCP under normal fault-free conditions and much better under
even small packet loss rates. We identified a slight performance
loss under low bandwidth and low network latency, for which
we have already devised a solution, to be implemented for the
next library version.

ACKNOWLEDGMENT

Partially funded by project AIDA – Adaptive, Intelligent
and Distributed Assurance Platform (POCI-01-0247-FEDER-
045907) co-financed by the European Regional Development
Fund (ERDF) through the Operational Program for Compet-
itiveness and Internationalisation (COMPETE 2020) and by
the Portuguese Foundation for Science and Technology (FCT)
under CMU Portugal.

REFERENCES

[1] L. Alvisi, T. C. Bressoud, A. El-Khashab, K. Marzullo, and D. Zagorod-
nov. Wrapping server-side tcp to mask connection failures. In
Proceedings IEEE INFOCOM 2001. Conference on Computer Com-
munications. Twentieth Annual Joint Conference of the IEEE Computer
and Communications Society (Cat. No. 01CH37213), volume 1, pages
329–337. IEEE, 2001.

[2] H. Attiya, S. Dolev, and J. L. Welch. Connection management without
retaining information. Information and Computation, 123(2):155–171,
1995.

[3] H. Attiya and R. Rappoport. The level of handshake required for
managing a connection. Distributed Computing, 11(1):41–57, 1997.

[4] B. Aziz. A formal model and analysis of the mq telemetry transport
protocol. In 2014 Ninth International Conference on Availability,
Reliability and Security, pages 59–68. IEEE, 2014.

[5] G. Banavar, T. Chandra, R. Strom, and D. Sturman. A case for mes-
sage oriented middleware. In International Symposium on Distributed
Computing, pages 1–17. Springer, 1999.

[6] D. Belsnes. Single-message communication. IEEE Transactions on
Communications, 24(2):190–194, 1976.

[7] M. Bishop. Hypertext Transfer Protocol Version 3 (HTTP/3). Internet-
Draft draft-ietf-quic-http-34, Internet Engineering Task Force, Feb. 2021.
Work in Progress.

[8] T. Bova and T. Krivoruchka. Reliable UDP Protocol. Internet-draft,
Internet Engineering Task Force, Feb. 1999.

[9] G. Camarillo, R. Kantola, and H. Schulzrinne. Evaluation of transport
protocols for the session initiation protocol. IEEE network, 17(5):40–46,
2003.

[10] C. Carr, S. Crocker, and V. Cerf. Host-host communication protocol in
the arpa network. In AFIPS ’70 (Spring), 1970.

[11] V. Cerf and R. Kahn. A protocol for packet network intercommunication.
IEEE Transactions on communications, 22(5):637–648, 1974.

[12] R. Ekwall, P. Urbán, and A. Schiper. Robust tcp connections for fault
tolerant computing. In Ninth International Conference on Parallel and
Distributed Systems, 2002. Proceedings., pages 501–508. IEEE, 2002.

[13] W.-c. Feng and P. Tinnakornsrisuphap. The failure of tcp in high-
performance computational grids. In SC’00: Proceedings of the 2000
ACM/IEEE Conference on Supercomputing, pages 37–37. IEEE, 2000.

[14] B. Ganguly, B. Holzbauer, K. Kar, and K. Battle. Loss-tolerant tcp (lt-
tcp): Implementation and experimental evaluation. In MILCOM 2012 -
2012 IEEE Military Communications Conference, pages 1–6, 2012.

[15] A. Gokhale and D. C. Schmidt. Principles for optimizing corba internet
inter-orb protocol performance. In Proceedings of the Thirty-First
Hawaii International Conference on System Sciences, volume 7, pages
376–385. IEEE, 1998.

[16] Y. Gu and R. L. Grossman. Udt: Udp-based data transfer for high-speed
wide area networks. Computer Networks, 51(7):1777–1799, 2007.

[17] S. Ha, I. Rhee, and L. Xu. Cubic: a new tcp-friendly high-speed tcp
variant. ACM SIGOPS operating systems review, 42(5):64–74, 2008.

[18] E. He, J. Leigh, O. Yu, and T. A. DeFanti. Reliable blast udp: Predictable
high performance bulk data transfer. In Proceedings. IEEE International
Conference on Cluster Computing, pages 317–324. IEEE, 2002.

[19] P. Helland. Life beyond distributed transactions: an apostate’s opinion.
Queue, 14(5):69–98, 2016.

[20] N. Ivaki, F. Araujo, and R. Barbosa. A middleware for exactly-once
semantics in request-response interactions. In 2012 IEEE 18th Pacific
Rim International Symposium on Dependable Computing, pages 31–40.
IEEE, 2012.

[21] C. Jin, D. X. Wei, and S. H. Low. Fast tcp: motivation, architecture,
algorithms, performance. In IEEE INFOCOM 2004, volume 4, pages
2490–2501. IEEE, 2004.

[22] Z. Kassam, P. S. Almeida, and A. Shoker. Exon Exactly-Once Oblivious
Messaging Library. https://github.com/ziadkassam/Exon. Accessed:
2021-08-09.

[23] J. Kreps, N. Narkhede, J. Rao, et al. Kafka: A distributed messaging
system for log processing. In Proceedings of the NetDB, volume 11,
pages 1–7, 2011.

[24] I. Lightbend. Apache akka: Message delivery reliability. https://doc.
akka.io/docs/akka/current/general/message-delivery-reliability.html. Ac-
cessed: 2021-08-09.

[25] A. Lindberg, S. Merle, and P. Stritzinger. Scaling erlang distribution:
going beyond the fully connected mesh. In Proceedings of the 18th
ACM SIGPLAN International Workshop on Erlang, pages 48–55, 2019.

[26] M. Masirap, M. H. Amaran, Y. M. Yussoff, R. Ab Rahman, and
H. Hashim. Evaluation of reliable udp-based transport protocols for
internet of things (iot). In 2016 IEEE Symposium on Computer
Applications & Industrial Electronics (ISCAIE), pages 200–205. IEEE,
2016.

[27] J. Postel. Rfc0793: Transmission control protocol, 1981.
[28] J. Postel et al. User datagram protocol, 1980.
[29] RabbitMQ. https://www.rabbitmq.com/.
[30] L. Salzman. ENet v1.3.17: Reliable UDP networking library. http:

//enet.bespin.org/Features.html. Accessed: 2021-08-09.
[31] H. Schulzrinne, S. Casner, R. Frederick, V. Jacobson, et al. Rtp: A

transport protocol for real-time applications, 1996.
[32] A. U. Shankar and D. Lee. Modulo-n incarnation numbers for cache-

based transport protocols. In 1993 International Conference on Network
Protocols, pages 46–54. IEEE, 1993.

[33] A. C. Snoeren, D. G. Andersen, and H. Balakrishnan. Fine-grained
failover using connection migration. In USITS, volume 1, pages 19–19,
2001.

[34] B. Snyder, D. Bosanac, and R. Davies. Introduction to apache activemq.
Active MQ in action, pages 6–16, 2017.

[35] R. Stewart and C. Metz. Sctp: new transport protocol for tcp/ip. IEEE
Internet Computing, 5(6):64–69, 2001.

[36] R. R. Stewart. Stream Control Transmission Protocol. RFC 4960, Sept.
2007.

[37] C. Sunshine and Y. K. Dalal. Connection management in transport
protocols. Comput. Networks, 2:454–473, 1978.

[38] R. Virding, C. Wikström, and M. Williams. Concurrent programming
in ERLANG. Prentice Hall International (UK) Ltd., 1996.

[39] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,
M. Hibler, C. Barb, and A. Joglekar. An integrated experimental
environment for distributed systems and networks. ACM SIGOPS
Operating Systems Review, 36(SI):255–270, 2002.

[40] V. C. Zandy and B. P. Miller. Reliable network connections. In
Proceedings of the 8th annual International Conference on Mobile
Computing and Networking, pages 95–106, 2002.

[41] M. Zhang, B. Karp, S. Floyd, and L. Peterson. Rr-tcp: a reordering-
robust tcp with dsack. In 11th IEEE International Conference on
Network Protocols, 2003. Proceedings., pages 95–106. IEEE, 2003.

