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Abstract. We present a new algorithm to discover overlapping commu-
nities in networks with a scale free structure. This algorithm is based
on a node evaluation function that scores the local influence of a node
based on its degree and neighbourhood, allowing for the identification of
hubs within a network. Using this function we are able to identify com-
munities, and also to attribute meaningful titles to the communities that
are discovered. Our novel methodology is assessed using LFR benchmark
for networks with overlapping community structure and the generalized
normalized mutual information (NMI) measure. We show that the eval-
uation function described is able to detect influential nodes in a network,
and also that it is possible to build a well performing community detec-
tion algorithm based on this function.
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1 Introduction

Nature and human derived complex networks follow certain patterns in their
structure and development[2]. Social networks, computer networks, protein in-
teraction networks, among others, tend to follow fat tailed distributions of node
degree at least asymptotically. Many of these networks also display a commu-
nity structure revealed by the existence of groups with highly interconnected
nodes, with low connectivity to other groups. In most cases maintaining a low
average path length between any node in the network, whether or not in the
same group. Community detection algorithms are an attempt to retrieve these
groups. The most currently used algorithms retrieve disjunct clusters from the
networks. Recent developments have shown that many networks display overlap-
ping clusters or an hierarchical disposition of clusters[13, 10,8, 11], which creates
a pressing need for newer techniques that should be not only able to retrieve
these communities, but that should also be capable of doing so in the large scale
networks.

1.1 Previous Developments in Overlapping Community Detection

The Clique Percolation Method (CPM)[10] is a popular method for overlapping
community detection which assumes that communities arise as densely connected



sub-graphs. The search for communities is done by the identification of all cliques
of a certain size. After this step it generates a new graph containing all iden-
tified cliques as nodes that are considered adjacent if they share most of their
elements (clique size minus one). The communities are then found by retrieving
the connected components in this final graph. Speaker-listener Label Propaga-
tion Algorithm (SLPA)[12] is another algorithm that uses a variant of the label
propagation algorithm to construct the communities. In this algorithm labels
are shared between neighbour nodes, and afterwards in the distribution of these
labels is processed in order to retrieve the communities.

Our approach differs from these algorithms by using a local evaluation func-
tion that discovers the structure of the network around a certain node, and uses
this information to guide the search to a local maxima of the function. Clusters
are then formed by nodes around the local maxima. Our algorithm is relatively
stable since its results will only be affected by the order of evaluation, and if the
order remains the same the results will be the same.

2 Community Detection by Local Influence

This research was developed in order to retrieve socially relevant information
from a tag co-occurrence network, to be used to socially influence[4] the clas-
sification of documents in a news related social network[1]. Stability and per-
formance were paramount to this research in order to maintain user acceptable
results and delays.

2.1 The Local Influence Score

We developed a new local scoring function, the local influence, in order to re-
trieve hub candidates from the neighbourhood of a node. This function is built
upon the properties of networks having a community structure, and of scale free
networks, and is a local measure of the influence of a node in a network. In-
formally the local influence of a node can be defined as a score that measures
the importance of a given node to the overall structure of a network. Nodes
that poorly affect the structural properties of the network will have a low score,
while high scoring nodes will have a significant impact. Higher influence nodes
not only connect to most nodes within a certain range (i.e. in the same commu-
nity), but they also provide connectivity to other sets of well connected nodes
farther within the network, by forming bridges or providing increased connec-
tivity to nodes that do so. Due to this, their removal would increase the average
shortest path length between nodes within the same community, and also de-
crease connectivity to other communities in the network.

Scale free networks[3] have hubs which are high degree nodes that connect a
large set of nodes, where the removal of just one of them can result in a signifi-
cant increase in network diameter. The overall influence of these nodes over the



structure of the network is high, since they ensure the low average shortest path
between all nodes in the network when compared to random graphs. Based on
this structural importance of hubs in scale free networks, a node influence on
the network structure needs, by our informal definition, to be proportional to
its degree.

Communities[5], in the context of community detection, are loosely defined as
groups of highly interconnected nodes, with significantly lower connectivity to
other communities. Given this definition we add to our previous hypothesis that
a node influence is higher if it connects with other high degree nodes, as would
be the case of nodes within communities, and even more if they also connect to
other communities.

Finally, we add that in a weighted network the neighbours importance is pro-
portional to the weight of the edge that connects with them. Based on this set
of hypothesis we construct the local influence scoring function as

score(n) = degree(n) x Z(degree(v) x weight(n,v)) (1)

v~n

where n is the node under evaluation, v a neighbour node of n, and ~ the
adjacency relation of the network. This function can be used to score nodes pro-
portionally to the chance of being a hub, where its value will decrease for lesser
connected nodes, and increase for nodes that follow our informal definition of
local influence. This measure can also be viewed as an extension of the notion
of degree centrality, taking into account the neighbourhood of the node being
scored. The Hyperlink-Induced Topic Search (HITS)[6] algorithm also enables
the identification of network hubs, using iterative improvement to compute its
authority and hub scores. Unlike the local influence function here described,
HITS takes a global approach, and therefore presents a higher complexity.

In figure 1 we show the nodes’ local influence on the Zachary’s Karate Club
network[14]. It is visible that the hubs are the two nodes that originated the
split, which consequentially have an high local influence score using our metric.
There are other nodes that can be identified as influential given their high degree
centrality and connections with other influential nodes.

3 The Community Detection Algorithm

In algorithm 1 we present the pseudo code for our algorithm. We have excluded
the initialization and post-processing phases for conciseness. The initialization
phase is simply the construction of a table of all node scores in order to be
possible to access them in constant time.



Fig. 1. Zachary Karate Club network local influence scores

Algorithm 1 Community Detection by Local Influence

1: function FINDCOMMUNITIES(VertexList)
2: Counts + (empty sparse matrix)

3: maxHop « |In(In(|VertexList|))]

4: for all candidate € VertexList do

5: mazScore < —oo

6: hub < nil

T S+ 0

8: while (candidate # hub) A (hop < maxHop) do
9: hub < candidate

10: hop < hop + 1

11: for all v € hub.Adjacency do

12: if (score(v) x weight(hub,v)) > maxScore then
13: maxScore < score(v)

14: candidate < v
15: S+ SuUwv
16: for all w € S do
17: Countslhub][u] < Counts[hub][u] + 1
18: return process(Counts)

3.1 The Community Detection Algorithm

The detection phase uses a guided search strategy to find a single path from each
node to the nearest local hub, storing the set of the evaluated nodes. This path
length is limited by an approximation of the average path length, since for nodes
within the same community the path length will be less than the average. We
use |In(In(|N]))| as the approximation, building upon the result by Cohen et al.
in [3], about the order of the distance in scale free networks. This limit enables

us to reduce the overall complexity of the algorithm, given the slow growth of
In(In(|NY|)).



The communities are formed by processing the node occurrence counts in the
paths leading to each hub. Given Counts[h] the count vector of all nodes found
in the paths to hub h, we retrieve Com/h], the community formed around h, as
follows

ZuECounts (h] (COUTLtS [h] [u] )

Comlh] = {v € Counts|h] : Counts[h][v] > |Counts[h]|

(2)

being that v and u are nodes. By joining together only those nodes with a sig-
nificant occurrence count, equal to or greater than the arithmetic mean, we are
able to reduce the presence of non related nodes in the same cluster.

The retrieved communities can be optionally post-processed to join similar com-
munities and attribute titles. We cycle through all clusters and use the top n
scoring nodes in each cluster to assign a title, merging all clusters sharing the
exact same title. This allows us to reduce the number of clusters with very
similar node sets without the need for costly comparisons. Also in word based
networks we are able to obtain meaningful titles that allow to better identify the
underlying context of the cluster.

3.2 Complexity

Since the scores are not updated during the detection phase, we can generate the
table of all scores prior to that phase so we can have constant access time to the
scores. In order to do this all the neighbours for each node must be processed,
which takes a total of ), degree(n) steps. This value can be simplified to a
bound of |N|d where d is the ceiling of the average node degree. Also, given that
the node degree distribution follows a power law for scale free networks, it holds
that the average node degree is significantly smaller than the number of nodes.
For the detection phase we will once again have to process all the neighbours
for each node, but in addition we have a cycle with at worst In(In(|N|)) time
complexity. The complexity for processing nodes was shown before to be |N|d,
but with the additional cycle it becomes |N|dIn(In(|N|)). The count processing
operation, after the inner loops, takes time linear on the size of the smallest
set, so its complexity is bounded by the complexity of the inner loops. This is
because at most the number of nodes to add to the count will be the same as
the number of steps in the inner loops, therefore it only increases the complexity
by a constant factor, and so it can be discarded. Therefore the overall complex-
ity upper bound for the detection phase will be |N|dIn(In(]N])), being below
quadratic in relation to |N| for most non complete graphs, and well below that
value for scale free networks.

In the count processing phase we process for each cluster ¢ all of its nodes |C;].
Since the mean calculation for each cluster only increases complexity by a con-
stant factor, the complexity for this phase is bounded by > |C;l, the

i€clusters



sum of the sizes of all clusters. This sum cannot ever exceed the bound of the
detection phase, since all the cluster elements are retrieved in that phase, there-
fore this sum of the cardinalities of the clusters will be at most the same as the
number of steps of the detection phase. Thus the complexity for the processing
phase is the same as that of the detection phase.

The overall complexity of the algorithm is bounded by |N|d+ 2|N|dIn(In(|N])),
that can be simplified to a time complexity bound of |N|dIn(In(|N|)). In prac-
tice the average shortest path of most real complex networks will remain mostly
constant and it can also be assumed that the degree will always be significantly
smaller than the number of nodes in the network. Therefore, this algorithm
presents near linear complexity over the number of nodes, and edges, in these
specific networks.

The algorithm we present is also inherently parallelizable, since the computation
of the path to the hub of a node needs not to update any information relevant to
any computation for any other node. Therefore, with little modification, these
paths can theoretically be computed concurrently, followed by the processing of
clusters.

4 Evaluation

4.1 Benchmark and Evaluation Metric

In order to evaluate the our algorithm we use the LFR model, by Lancichinetti et
al. 1[9, 7], for weighted undirected graphs with overlapping structure to generate
the graphs with a ground truth. LFR has various parameters, but we allow
variation in only a few. The number of nodes (| NV|) is set to {5000, 50000} in order
to test the algorithm in different scale graphs. The number of overlapping nodes
(0,,) was set to {1%|N|,10%|N|} in order to evaluate the algorithm in networks
with different overlapping structural tendencies. The maximum membership size
for overlapping nodes (O,,) for {2,6} in order to assess the response of the
algorithm to higher overlaps. The mixing parameter for topology (1) allows,
for higher values, changes on the structure of the network in order to simulate
more dense networks with less defined community structures and was set to
{0.1,0.2,0.3}. The rest of the parameters are set as Xie et al.[11] in the case
of small communities, with u,, = p¢, community sizes between [20, 50], average
degree of 10 and maximum degree of 50. We used the generalized NMI[8] for
overlapping clusters to evaluate the results obtained

4.2 Results

Our results follow the general trend shown by others in previous comparisons|11]
using the same benchmark, though showing a particular sensitivity to changes
in the topology of the network and increases in the total number of overlapping



Table 1. The results of our tests for [N| = 5000

Om 2 6
pe| 0.1 0.2 0.3 0.1 0.2 0.3
NMI(1%On)|0.7534|0.6148]0.4476|0.7315|0.5818|0.4260
NMI(10%0n)|0.6170{0.5035|0.3335|0.4473|0.3566|0.2333

Table 2. The results of our tests for |[N| = 50000

Om 2 6
me| 0.1 0.2 0.3 0.1 0.2 0.3
NMI(1%O0n)|0.7734|0.6030|0.4249|0.7345|0.5863|0.4087
NMI(10%0n)|0.6242|0.4821|0.3455|0.4528|0.3656|0.2728

nodes. This may be due to the restrictions imposed onto the path finding process,
that may not be entirely compatible with the structural changes resulting from
changes in u. Overall, and given its low complexity, it performs well on networks
with a well defined community structure as shown on tables 1 and 2.

5 Conclusion

We presented a new technique for community detection, performing as well as
some other techniques previously reported while remaining mostly deterministic
and presenting a good complexity profile. These characteristics are indispensable
in order to provide users with a real time response and a consistent experience,
necessary features of most real time non-technical systems. The scoring function
here presented can be used independently from the algorithm, as a measure of
influence, in order to analyse the network and identify potential hubs. It can
also be used to assign meaningful titles to groups or clusters of nodes based
on their scores. This algorithm can be further enhanced with optimized cluster
generation, to better take into account the distribution nodes into communities.
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