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Abstract We use the reinfection SIRI epidemiological model to analyze the impact
of education programs and vaccine scares on individuals decisions to vaccinate or
not. The presence of the reinfection provokes the novelty of the existence of three
Nash equilibria for the same level of the morbidity relative risk instead of a single
Nash equilibrium as occurs in the SIR model studied by Bauch and Earn (PNAS
101:13391–13394, 2004). The existence of three Nash equilibria, with two of them
being evolutionary stable, introduces two scenarios with relevant and opposite fea-
tures for the same level of the morbidity relative risk: the low-vaccination scenario
corresponding to the evolutionary stable vaccination strategy, where individuals will
vaccinate with a low probability; and the high-vaccination scenario corresponding to
the evolutionary stable vaccination strategy, where individuals will vaccinate with a
high probability. We introduce the evolutionary vaccination dynamics for the SIRI
model and we prove that it is bistable. The bistability of the evolutionary dynamics
indicates that the damage provoked by false scares on the vaccination perceived mor-
bidity risks can be much higher and much more persistent than in the SIR model.
Furthermore, the vaccination education programs to be efficient they need to imple-
ment a mechanism to suddenly increase the vaccination coverage level.
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1 Introduction

The SIR model is an epidemiological model introduced in the beginning of the 20th
century by Kermack and McKendrick (1927) and describes a Susceptible, Infected,
Recovered epidemic process. The infection of a susceptible individual can occur at
a certain infection rate when he/she contacts with an infectious individual, whereas
after some time the infected individual can recover with a certain recovery rate and
acquires some immunity, becoming resistant to reinfection. The SIRI epidemiological
model extends the SIR model by allowing the possibility of reinfection due to partial
immunity. Hence, the recovered individuals in contact with infected individuals can
become infected again. The SIRI epidemic model was introduced by Tudor (1990) to
model the spread of a herpes-type of infection in either human or animal population.
The conditions for asymptotic stability of the disease-free equilibria and the endemic
equilibria were derived by Moreira and Wang (1997). The reinfection phenomena
present in the SIRI model were also studied by Driessche and Zou (2007) and by van
den Driessche et al. (2007). Besides herpes, the authors claim that such a model is
appropriate for tuberculosis, including bovine tuberculosis in cattle and wildlife. In a
spatial context, the SIRI model and its phase transitions were studied by Stollenwerk
et al. (2007, 2010) and by Stollenwerk and Jansen (2010). Based on a cellular automata
method, Song et al. (2011) showed that the reinfection can induce the persistence of
the disease in the SIRI model with a spatial structure. The phenomenon of partial
immune protection present in the SIRImodel can also be found in infections caused by
Streptococcus pneumoniae (Lipsitch 1997),Neisseriameningitidis (Gupta andMaiden
2001), tuberculosis (Gomes et al. 2004b) and influenza A and B viruses (Andreasen
et al. 1997; Hay et al. 2001; Ferguson et al. 2003). Influenza A is an example of a
virus that evolves over time resulting in continuous replacement of circulating strains
able to reinfect hosts immune to earlier types (Palese and Young 1982; Andreasen
et al. 1997; Ferguson et al. 2003). The evolution of influenza A virus is caused by two
processes that change the two proteins, hemagglutinin (HA) and neuraminidase (NA),
present in the surface of the influenza virus (Andreasen et al. 1997). One process is the
antigenic drift, and the other is the genetic shift. The genetic shift occurs as a genome
reassortment, resulting in drastic alternation in HA or NA subtypes. The antigenic
drift is related to small mutations in HA and NA, which are responsible for annual or
biennial influenza epidemics. Cross-immunity is high between similar strains but very
low between genetically different strains (Chamchod and Britton 2012). Therefore,
reinfection and imperfect vaccination can occur due to the presence of multi-strains.
Influenza often requires new vaccines before each annual epidemics (Davies et al.
1983; Sonoguchi et al. 1986; Ferguson et al. 2003). Childhood diseases like measles
and rubella also have imperfect vaccines (Moghadas 2004). The SIRI model can be
considered a simplified version of multi-strain models with partial cross-immunity
and imperfect vaccination (Gomes et al. 2004a, 2005; Aguiar et al. 2008).
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The theory of vaccination games probably started with the work of Fine and Clark-
son (1986). Bauch and Earn (2004) used the SIR model to study the impact of the
changes of the perceived morbidity relative risk on the individuals’ decisions between
to vaccinate or not. Galvani, Reluga, Chapman andmany other authors conducted sev-
eral studies about how health policies should be designed and implemented to drive
the vaccination coverage level to the utilitarian community optimum instead of the
level attained according to the individuals’ self-interest (Reluga et al. 2006; Galvani
et al. 2007; Cojocaru and Bauch 2009; Reluga and Galvani 2011; Liu et al. 2012; Shim
et al. 2012; Bauch and Bhattacharyya 2012). Basu et al. (2008) considered a modified
version of the SIRS model to simulate transmission of four representative types of the
human papilomavirus (HPV). They observed that public perceptions regarding cervi-
cal cancer, genital warts, and HPV vaccination generate vaccination levels far lower
than those that maximize the overall health-related utility for the population. The SIRI
model differs from the SIRS model by allowing the recovered individuals to become
directly infected, without previously passing through the susceptible class. Buonomo
et al. (2008) considered a nonlinear SIR model with information dependent vaccina-
tion, i.e., they introduce a feedbackmechanism in the epidemicmodel which describes
the influence of information on the vaccination coverage level obtained by a vaccina-
tion campaign. In Bauch and Earn (2004) and in this paper, the available information
and the vaccination campaigns are exogenous factors that can modify significantly the
vaccination coverage level. Chen (2006) observed that the availability of an imperfect
vaccine in a susceptible-infected epidemic model can lead to multiple endemic equi-
libria and the introduction of a subsidy for vaccination can rise the disease prevalence
by increasing the practice of risky behaviors in sexually transmitted diseases. Reluga
(2009) found multiple vaccination Nash equilibria resulting from two interacting sub-
populations in an SIS model. Liu et al. (2012) studied the effect of the vaccination cost
on the multiple Nash and the utilitarian equilibria in a chickenpox vaccination model.
Here, we also obtain multiple vaccination Nash equilibria provoked by the possibility
of reinfection, that is a characteristic captured by the SIRI model and inexistent in the
SIR model.

For diseases in which vaccination is not compulsory, individuals take into account
different aspects when deciding between to vaccinate or not, such as the probability
of becoming infected and also the adverse consequences that might result from both
infection and vaccination. The morbidity relative risk is the ratio between the morbid-
ity risk from vaccination and the morbidity risk from infection. The morbidity relative
risk is one of the most relevant information for the susceptible individuals to make
their decisions between to vaccinate or not. Susceptible individuals decide to vaccinate
or not with some probability that measures their uncertainty. In vaccination models,
the probability of vaccination for each susceptible individual determines his/her vac-
cination strategy. For each susceptible individual, we construct his/her vaccination
expected payoff, depending upon his/her vaccination strategy and the population vac-
cination strategy. The relevant terms that appear in the construction of the susceptible
individual vaccination expected payoff are the following: (i) the susceptible individual
vaccination strategy; (ii) the population vaccination strategy, that is the mean of all the
susceptible individuals vaccination strategies; (iii) the morbidity relative risk; (iv) the
probability of infection for a vaccinated individual; and (v) the probability of infec-
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tion for a non-vaccinated individual. In this paper, we add to the vaccination expected
payoff introduced by Bauch and Earn (2004) a term corresponding to the probability
of infection for a vaccinated individual due to imperfect vaccination (see Sect. 3).

A population vaccination strategy is a Nash equilibrium if no single susceptible
individual is able to increase his/her expected payoff by changing his/her vaccination
strategy from the population strategy (Hofbauer and Sigmund 1998). A population
vaccination strategy is an evolutionary stable vaccination (ESV) strategy if no small
group of susceptible individuals are able to increase their expected payoff by devi-
ating their vaccination strategy from the population strategy (Maynard-Smith 1982;
Hofbauer and Sigmund 1998). An ESV strategy is a strategy that, if adopted by the
population, can not be invaded by a competing strategy adopted by a small group of
individuals. Hence, the ESV strategies are more robust than the Nash equilibria that
are not ESV strategies, and so more likely to be observed in reality (see Sect. 2).

We study the ESV strategies dependence upon the morbidity relative risk and upon
the parameters of the SIRI model. Our analysis asks for a detailed bifurcation analy-
sis, differing from the analysis in Bauch and Earn (2004) where bifurcations do not
occur. The most relevant quantity for our bifurcation analysis is the basic reproductive
number, that is the expected number of new cases of infection produced by a typi-
cal infected individual in a susceptible population (Heesterbeek 2002). We introduce
the basic reproductive bifurcation threshold that decreases with the reinfection rate.
For values of the basic reproductive ratio below the basic reproductive bifurcation
threshold, we prove that there is a unique ESV strategy for each morbidity relative
risk. Hence, there is a single vaccination scenario corresponding to the unique ESV
strategy, and so our result has similar qualitative, but not quantitative, features to the
results obtained by Bauch and Earn (2004). However, for values of the basic repro-
ductive ratio above the basic reproductive bifurcation threshold, there are values of the
morbidity relative risk, such that there exist three Nash equilibria, with two of them
being ESV strategies. This phenomenon is not captured by the SIR model and intro-
duces two new scenarios with relevant and opposite features for the same level of the
morbidity relative risk: the low-vaccination scenario where individuals vaccinate with
a low probability; and the high-vaccination scenario where individuals vaccinate with
a high probability. For the high-vaccination scenario, we prove that the vaccination
expected payoff and the probability of vaccination does not increase with the mor-
bidity relative risk. Furthermore, we show that the individuals vaccination expected
payoff is higher at the high-vaccination scenario than at the low-vaccination scenario
(see Sect. 4).

We introduce the evolutionary vaccination dynamics for an homogeneous popula-
tion, where the expected probability of vaccination of the population evolves along
time such that the individuals payoff increase, based on the replicator or evolution-
ary dynamics theory (Maynard-Smith 1982; Hofbauer and Sigmund 1998; Nowak
2006). In the vaccination dynamics, the strains evolve along time and the partial
cross-immunity is due, mainly, to the new strains. For values of the basic reproductive
ratio below the basic reproductive bifurcation threshold, we prove that the unique ESV
strategy is a global stable fixed point. However, for values of the basic reproductive
ratio above the basic reproductive bifurcation threshold, we prove that the dynamics
are bistable for some values of the morbidity relative risk: The two ESV strategies are
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stable fixed points of the evolutionary vaccination dynamics; and the Nash equilibrium
that is not an ESV is the boundary vaccination threshold between the basin of attrac-
tions of the two stable equilibria. Hence, if the individuals adopt vaccination strategies
such that the expected probability of vaccination of the population is smaller than the
boundary vaccination threshold, then the population vaccination strategy is trapped
in the low-vaccination scenario that is undesirable for the population. On the other
hand, if individuals adopt vaccination strategies such that the expected probability of
vaccination of the population is larger than the boundary vaccination threshold, then
the population vaccination strategy is in the high-vaccination scenario (see Sect. 5).

The existence of the low-vaccination and the high-vaccination scenarios that are
stable equilibria of the evolutionary vaccination dynamics contrasts significantly with
the case of a single vaccination scenario showed by Bauch and Earn (2004). In the
presence of the two possible vaccination scenarios, vaccination scares and vaccination
education programs can have a higher impact on the population vaccination strategy
than in the case of a single vaccination scenario. For values of the basic reproductive
ratio above the basic reproductive bifurcation threshold, we determine a low and
a high morbidity threshold for the morbidity relative risk, such that (i) for values
of the morbidity relative risk below the low morbidity threshold there is only the
high-vaccination scenario; (ii) for values of the morbidity relative risk above the high
morbidity threshold there is only the low-vaccination scenario; and (iii) for values of
the morbidity relative risk between the low and the high morbidity threshold, the two
vaccination scenarios exist. A vaccine scare can wrongly increase the perception of
the morbidity relative risk above the high morbidity threshold, such that a catastrophe
can occur, and so the population moves abruptly from the high-vaccination scenario to
the low-vaccination scenario, provoking a large and quick decrease in the vaccination
expected payoff.After a vaccine scare, to drive the population from the low-vaccination
scenario to the high-vaccination scenario, the vaccination education programs need
two effects to be successful: (i) to decrease the perception of the morbidity relative
risk below the high morbidity threshold; and (ii), if the perception of the morbidity
relative risk is higher than the low morbidity threshold, to increase the population
vaccination strategy above the boundary vaccination threshold. A possible efficient
mechanism can consist in offering vaccines and/or make it compulsory, at least to part
of the population.

2 Vaccination Nash and ESV Strategies

In this section, we define the Nash and the evolutionary stable vaccination strategies.
We classify them in terms of the morbidity relative risk r and of the vaccination-
infection risk index π , that we also introduce in this section.

As in Bauch and Earn (2004), we denote by P the probability that a susceptible
individual will choose to vaccinate. This probability P is the individual’s strategy in
the vaccination game. The vaccine uptake level in the population is the proportion of
individuals who will be vaccinated and, hence it is the mean of all strategies that will
be adopted by the individuals of the population. We denote the vaccine uptake level
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or the proportion of the population vaccinated by p, i.e., the population vaccination
strategy.

Let rv denote the morbidity risks from vaccination and ri denote the morbidity risks
from infection. We define the morbidity relative risk r by

r = rv/ri.

Let πv(p) denote the probability of a non-vaccinated individual to become infected
and πv(p) denote the probability of a vaccinated individual to become infected for a
vaccination coverage level p in the population. We define the vaccination-infection
risk index π by

π(p) = πv(p) − πv(p). (1)

The payoff of a non-vaccinated individual is −riπv(p) and the payoff of a vaccinated
individual is −rv − riπv(p).

Definition 1 The vaccination expected payoff E(P, p) ≡ E(P, p; r) expressed in ri
units is defined by

E(P, p) = (−rv − riπv(p))P + (−riπv(p))(1 − P)

ri
= −(r + πv(p))P − πv(p)(1 − P)

= −πv(p) + (π(p) − r)P . (2)

Using the usual concepts of game theory, we will define the Nash and the evolution-
ary stable vaccination strategies that are more likely to be adopted by the individuals.

Definition 2 For a given morbidity relative risk r ≥ 0, the population vaccination
strategy P∗ is a vaccination Nash equilibrium, if

E(Q, P∗) − E(P∗, P∗) = (π(P∗) − r)(Q − P∗) ≤ 0 , (3)

for every strategy Q ∈ [0, 1].
Hence, if the population vaccination strategy is the Nash equilibrium P∗ then no

single individual has the incentive to change his/her strategy of vaccination to any
other strategy P �= P∗. Since the vaccination-infection risk index π is continuous for
the SIRI model [see (8)], we state the following lemma that will be used later.

Lemma 1 (Nash equilibria) Let us assume that the vaccination-infection risk index
π is continuous. The population vaccination strategy P∗ is a Nash equilibrium if, and
only if, P∗ satisfies one of the following conditions:

(i) P∗ = 0 and r ≥ π(0); or
(ii) P∗ ∈ (0, 1) and r = π(P∗); or
(iii) P∗ = 1 and r ≤ π(1).
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ByLemma 1, for every P∗ ∈ (0, 1), r = π(P∗) is the uniquemorbidity relative risk
such that P∗ is a Nash equilibrium. Hence, we define the Nash vaccination expected
payoff map E : [0, 1] → [−1, 0] by

E(p) = E(p, p;π(p)),

where p = P∗ is the Nash equilibrium. By Lemmas 1 (ii) and (2), we have, for
p ∈ (0, 1),

E(p) = −πv(p).

Hence, the Nash vaccination expected payoff map E is minus the probability of infec-
tion for a non-vaccinated individual. Again, by Lemma 1 (i), we observe that for
p = 0, the vaccination expected payoff is constant

E(0) = E(0, 0; r) = −πv(0),

for every r ≥ π(0). For p = 1, by Lemma 1 (iii), we observe that the vaccination
expected payoff attains a minimum at r = π(1), given by

E(1) = E(1, 1;π(1)) = −πv(1),

and a maximum at r = 0, given by E(1, 1; 0) = −πv(1). Hence,

−πv(1) = E(1) ≤ E(1, 1; r) = −πv(1) + (π(1) − r) ≤ −πv(1)

for every 0 ≤ r ≤ π(1).
Now, suppose that all individuals were opting for a vaccination strategy P and a

proportion ε of individuals (instead of a single individual) opt for a new vaccination
strategy Q. Hence, the new population vaccination strategy is

p(ε) = (1 − ε)P + εQ = P + ε(Q − P).

The vaccination expected payoff of the individuals with vaccination strategy P is

E(P, p(ε)) = −πv(p(ε)) + (π(p(ε)) − r)P ;

and the vaccination expected payoff of the individuals with vaccination strategy Q is

E(Q, p(ε)) = −πv(p(ε)) + (π(p(ε)) − r)Q.

Weobserve that both vaccination expected payoffs E(P, p) and E(Q, p) depend upon
the vaccination strategy of the individuals and on the proportion ε of the individuals
opting by the new vaccination strategy. The vaccination expected payoff gain function
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�EP→Q(p(ε)) ≡ �EP→Q(p(ε); r) of moving from the vaccination strategy P to
Q is

�EP→Q(p(ε)) = E(Q, p(ε)) − E(P, p(ε)) = (π(p(ε)) − r) (Q − P).

Hence, the vaccination expected payoff gain function �EP→Q(p(ε)) measures the
incentive that a group of individuals, of proportion ε, has to change their vaccination
strategy from P to Q.

Definition 3 For a given relative morbidity risk r ≥ 0, the population vaccination
strategy P∗ is an evolutionary stable vaccination (ESV) strategy, if there is a ε0 > 0,
such that for every ε ∈ (0, ε0) and for every Q ∈ [0, 1], with Q �= P∗,

�EP∗→Q(p(ε)) < 0 .

Hence, the population vaccination strategy P∗ is an ESV strategy if any small
group of individuals that choose a different strategy Q obtain a lower payoff than
those choosing P∗.

Lemma 2 (ESV strategies) Let us assume that the vaccination-infection risk index π

is continuous. A population vaccination strategy P∗ is an ESV strategy if, and only if,
P∗ satisfies one of the following conditions:

(i) P∗ = 0 and r > π(0); or
(ii) P∗ ∈ [0, 1], r = π(P∗) and π is strictly decreasing at P∗; or
(iii) P∗ = 1 and r < π(1).

Furthermore, a strategy P∗ is a Nash equilibrium that is not an ESV strategy if, and
only if, P∗ satisfies the following condition:

(iv) P∗ ∈ [0, 1], r = π(P∗) and π is not strictly decreasing at P∗.

Now, we present some extensions of the previous definitions that we will use in the
next sections. For a given relative morbidity risk r ≥ 0, the population vaccination
strategy P∗ is a left (resp. right) ESV strategy if there is a ε0 > 0, such that for every
ε ∈ (0, ε0) and for every Q < P∗ (resp. right Q > P∗),

�EP∗→Q(p(ε)) < 0 .

The population vaccination strategy P∗ is a left (resp. right) weak ESV strategy if
there is an ε0 > 0, such that for every ε ∈ (0, ε0) and for every Q < P∗ (resp. right
Q > P∗),

�EP∗→Q(p(ε)) ≤ 0 .

The population vaccination strategy P∗ is a weak ESV strategy, if P∗ is a left and a
right weak ESV strategy.
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Lemma 3 (weak ESV strategies) Let us assume that the vaccination-infection risk
index π is continuous.

(i) P∗ ∈ (0, 1] is a left ESV strategy if, and only if, π(P∗) ≥ r and π is left strictly
decreasing at P∗.

(ii) P∗ ∈ (0, 1] is a weak left ESV strategy if, and only if, π(P∗) ≥ r and π is left
decreasing at P∗.

(iii) P∗ ∈ [0, 1) is a right ESV strategy if, and only if, π(P∗) ≤ r and π is right
strictly increasing at P∗.

(iv) P∗ ∈ [0, 1) is a weak right ESV strategy if, and only if, π(P∗) ≤ r and π is right
decreasing at P∗.

Assuming the continuity of the vaccination-infection risk index π , we observe that
a weak ESV strategy P∗ is a vaccination Nash equilibrium, i.e., for all Q ∈ [0, 1],

�EP∗→Q(P∗) ≤ 0.

Proof of Lemma 1 Case (i) P∗ = 0. For Q ≥ P∗, (3) is satisfied if, and only if,

π(P∗) − r ≤ 0.

Hence, P∗ = 0 is a Nash equilibrium if, and only if π(P∗) ≤ r .
Case (ii) P∗ ∈ (0, 1). For Q ≥ P∗, (3) is satisfied if, and only if,

π(P∗) − r ≤ 0;

and for Q ≤ P∗, (3) is satisfied if, and only if,

π(P∗) − r ≥ 0.

Hence, P∗ ∈ (0, 1) is a Nash equilibrium if, and only if π(P∗) = r .
Case (iii) P∗ = 1. For Q ≤ P∗, (3) is satisfied if, and only if,

π(P∗) − r ≥ 0.

Hence, P∗ = 1 is a Nash equilibrium if, and only if π(P∗) ≥ r .

Proof of Lemma 3 For all P∗, Q, ε ∈ [0, 1],

|p(ε) − P∗| = |ε(Q − P∗)| ≤ 2ε. (4)

By (4) and continuity of π , there is ε0 > 0 sufficiently small such that for all 0 < ε <

ε0, π is left strictly decreasing at P∗ if, and only if,

π(p(ε)) − π(P∗) > 0.
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Hence, P∗ ∈ (0, 1] is a left ESV equilibrium if, and only if, r ≤ π(P∗) and π is left
strictly decreasing at P∗,

π(p(ε)) − r = π(p(ε)) − π(P∗) + (π(P∗) − r) > 0.

The other conditions of Lemma 3 follow in a similar way. 	

Proof of Lemma 2 The proof follows from Lemma 3 and from the following observa-
tions: (i) P∗ = 0 is a (resp. weak) ESV equilibrium if, and only if, P∗ is a (resp. weak)
right ESV equilibrium; (ii) P∗ ∈ (0, 1) is a (resp. weak) ESV equilibrium if, and only
if, P∗ is a (resp. weak) left and right ESV equilibrium; and (iii) P∗ = 1 is a (resp.
weak) ESV equilibrium if, and only if, P∗ is a (resp. weak) left ESV equilibrium. 	


3 Vaccination Expected Payoff Dependence upon the SIRI Model

In this section, we compute the vaccination expected payoff for the SIRI model. We
perform the static analysis of the Nash vaccination expected payoff E , showing that
E increases with the vaccination population strategy p and decreases with the basic
reproductive number, for a given morbidity relative risk.

3.1 The Reinfection SIRI Model

The SIRI epidemiological model is described by the following ODE system

dS

dt
= μ(S + I + R) − μp − βSI − μS

dI

dt
= βSI − μI − γ I + β̃RI

dR

dt
= μp + γ I − β̃RI − μR

where: μ is the per capita mean birth and death rate; β is the mean transmission rate
for a first infection; β̃ is the mean transmission rate for reinfections; γ is the mean
recovery rate and so 1/γ is the mean infectious period; p is the susceptible vaccine
uptake level and so μp susceptible individuals, or newborns, move to the recovered
individuals by vaccination. The novelty of the SIRI model is the introduction in the
SIR model of a transition from the recovered class to the infected class, determined
by the reinfection rate β̃. Hence, the recovered individuals are only partially immune
and reinfection can occur.

The state variable S corresponds to the density of the susceptible and non-vaccinated
individuals, the state variable I corresponds to the density of the infected individuals,
and R corresponds to the density of the recovered and vaccinated individuals. We
consider a population with fixed size, S + I + R = 1.

Let f = μ/γ be the mean birth and death rate in time units given by the infectious
mean lifetime period, typically very small; σ = β̃/β be the ratio between the rein-
fection and infection rates; let R0 = β/(γ + μ) be the basic reproductive number;
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and R̃0 = (1 + f )R0 the transformed basic reproductive number. The value of R0
measures the intensity of the infection and the value of σ measures the force of the
reinfection with relation to the first infection.We assume that σ ∈ (0, 1), because after
a first infection an individual typically acquires some resistance to the reinfection. In
the presence of partial cross-immunity, it is natural to assume that β̃ < β, and so
σ ∈ (0, 1), because β̃ measures, mainly, the immunity against the new strain and β

measures, mainly, the immunity against all the strains. Furthermore, for some sexually
transmitted diseases (Tudor 1990; van den Driessche et al. 2007), individuals recon-
sider some practices after recovering from a first infection, which leads to a smaller
interaction with infected individuals and a smaller probability of being reinfected.
Normalizing the time scale τ = t/γ , by the mean infectious period 1/γ , we obtain
the following ODE system

dS

dτ
= f (1 − p) − (R̃0SI + f S) (5)

dI

dτ
= R̃0SI + σ R̃0RI − (1 + f )I (6)

dR

dτ
= f p + I − (σ R̃0RI + f R). (7)

3.2 The Vaccination Expected Payoff

Now, we will use the values of the state variables described by the ODE system
(5–7) to define the probabilities of a non-vaccinated and a vaccinated individual to
become infected for a given susceptible vaccine uptake level p. First, we observe
that the state variables S, I and R depend, in particular, on p. In (5), we observe
that in the susceptible class: (i) f represents the proportion of newborns; (ii) − f p
represents the proportion of vaccinated susceptible individuals, or newborns; (iii)
−R̃0SI represents the proportion of susceptible individuals that become infected; and
(iv) − f S represents the proportion of susceptible individuals that die. Hence, the
probability of a non-vaccinated individual become infected πv(p) is the ratio between
the susceptible individuals that become infected −R̃0SI and all the individuals that
leave the susceptible class without vaccination −(R̃0SI + f S), i.e.,

πv(p) = R̃0SI

R̃0SI + f S
= R̃0 I

R̃0 I + f
.

In (7), we observe that in the recovered and vaccinated class: (i) f p represents the
proportion of vaccinated susceptible individuals; (ii) I represents the proportion of
infected that become recovered; (iii) −σ R̃0RI represents the proportion of recovered
individuals that become infected; and (iv)− f R represents the proportion of recovered
individuals that die. Hence, the probability of a recovered or vaccinated individual to
become infected πv(p) is the ratio between the recovered or vaccinated individuals
that become infected −σ R̃0RI and all the individuals that leave the recovered or
vaccinated class −(σ R̃0RI + f R), i.e.,
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πv(p) = σ R̃0RI

σ R̃0RI + f R
= σ R̃0 I

σ R̃0 I + f
.

By (1), for the SIRI model, the vaccination-infection risk index is

π(p) = πv(p) − πv(p) = R̃0 I

R̃0 I + f
− σ R̃0 I

σ R̃0 I + f
= f

σ R̃0 I + f
− f

R̃0 I + f
.

(8)

By (2), for the SIRImodel, the vaccination expected payoff E(P, p) ≡ E(P, p; r, R0)

is

E(P, p) = − R̃0 I

R̃0 I + f
+

(
f

σ R̃0 I + f
− f

R̃0 I + f
− r

)
P . (9)

3.3 SIRI Stationary States

Here, we present the critical vaccine uptake level and the stationary states for the SIRI
model.

Definition 4 The critical vaccine uptake level pc : (0,+∞) → [0, 1] ∪ {+∞} is

pc(R0) =

⎧⎪⎨
⎪⎩
0 if R0 ≤ 1
R0−1

R0(1−σ)
if 1 < R0 ≤ 1

σ

+∞ if R0 > 1
σ

.

Let

K = f/( f + 1) and A = (σ (R0 − K ) − 1) /(2σ R0) ,

B = A2 + K (R0 − 1)/(σ R2
0) and C = K (1 − σ)/(σ R0).

Lemma 4 (SIRI stationary states) The stationary stable value of the infected individ-
uals I ∗(p) ≡ I ∗(p; R0) for the SIRI model is

I ∗(p) =
{
A + √

B − Cp > 0 if 0 ≤ p < pc
0 if pc ≤ p ≤ 1

.

The value pc ≡ pc(R0) ≤ 1 is called the critical vaccine uptake level because, as
shown in Lemma 4, pc is the vaccination boundary between the disease-free stationary
state I ∗(p) = 0 and the endemic stationary state I ∗(p) = A + √

B − Cp. We note
that the notation pc ≡ pc(R0) = +∞means that, for this value of R0, there is only an
endemic stationary state, and there is no disease-free stationary state for any vaccine
uptake level p ∈ [0, 1]. The basic reproductive ratio R0 = 1/σ , above which we
have pc = +∞, is the reinfection threshold (Gomes et al. 2004a, b; Stollenwerk et al.

123



Bistability of Evolutionary Stable Vaccination Strategies… 865

0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

0.04

0.05

p

I* (p
)

R0 = 1.5

R0 = 3

R0 = 4

R0 = 4.1

Fig. 1 The stationary value of infected individuals I∗(p) for the basic reproduction numbers R0 = 1.5,
R0 = 3, R0 = 4 and R0 = 4.1. The other parameters are f = 0.01 and σ = 0.25, and so, 1/σ = 4 (Color
figure online)

2010). We also note that the endemic state I ∗(p) = A + √
B − Cp decreases with

0 < p < pc. (see Fig. 1). By (10) below, we observe that 0 ≤ p ≤ 1.

Proof of Lemma 4 The stationary equation given by (5) is

S∗(p) = f (1 − p)

R0(1 + f )I ∗(p) + f
. (10)

The stationary equation given by (6) is the disease-free stationary state I ∗(p) = 0 or
the endemic stationary state

R̃0S
∗(p) + σ R̃0(1 − S∗(p) − I ∗(p)) − (1 + f ) = 0 .

Hence, applying (10), we obtain

C2 I
∗2(p) + C1 I

∗(p) + C0 = 0,

where B0 = f (R0 − 1), B1 = (1 − σ) f R0 and

C0 = B0 − B1 p,

C1 = σ R0 R̃0 − R̃0 − σ f R0,

C2 = −σ R0 R̃0.
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The positive solution is

I ∗(p) = −C1/(2C2) +
√

(C2
1 − 4C0C2)/(2C2)2

= −C1/(2C2) +
√

(C2
1 − 4B0C2 + 4B1C2 p)/(4C2

2 ).

Hence, I ∗(p) = A + √
B − Cp with A = −C1/(2C2), B = (C2

1 − 4B0C2)/(4C2
2 )

and C = −4B1C2/(4C2
2 ) = −B1/C2. Now, we observe that the endemic stationary

value vanishes, I ∗(p) = 0, for the critical vaccine uptake level pc ∈ (0, 1) presented
in Definition 4. 	


3.4 The Stationary Vaccination Expected Payoff

Here, we derive the stationary vaccination-infection risk index and the stationary vac-
cination expected payoff for the SIRI model. We prove that the stationary vaccination
expected payoff increases as the vaccination probability increases.

Theorem 1 (Stationary vaccination-infection risk index) For the SIRI model, if 0 ≤
p < pc, the stationary probability of a vaccinated individual to become infected is
given by

πv(p) = σ R̃0(A + √
B − Cp)

σ R̃0(A + √
B − Cp) + f

and the stationary probability of a non-vaccinated individual to become infected is
given by

πv(p) = R̃0(A + √
B − Cp)

R̃0(A + √
B − Cp) + f

.

Furthermore, the stationary vaccination-infection risk index π(p) ≡ π(p; R0) is

π(p) =
{

f
f +σ R̃0(A+√

B−Cp)
− f

f+R̃0(A+√
B−Cp)

if 0 ≤ p < pc

0 if pc ≤ p ≤ 1
.

Proof of Theorem 1 The proof follows from applying the formulas presented in
Lemma 4 to (8). 	


By Lemma 1, (i) for p = 0, the 0-probability vaccination Nash level region is
implicitly given by r ≥ π(0, R0), (ii) for every p ∈ (0, 1), the p-probability vacci-
nation Nash level curve is implicitly given by r = π(p, R0), and (iii) for p = 1, the
1-probability vaccination Nash level region is implicitly given by r ≤ π(1, R0) (see
Fig. 2).

For every p ∈ [0, 1], the left level point RL
0 (p) is defined implicitly by pc(RL

0 (p)) =
p, and the critical level point RM

0 (p) by dπ(p, RM
0 (p))/dR0 = 0, i.e., RM

0 (p) is the
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Fig. 2 The p-probability vaccination Nash level curves. In blue it is denoted the 0-probability vaccination
Nash level region, and in red the 1-probability vaccination Nash level region. In b, we show the blowup of
a around R0 = 4, to exhibit the 1-probability vaccination Nash level region. We observe that: for p = 0,
the left level point is RL

0 (0) = 1 and the critical level point is RM
0 (0) ≈ 2.001; for p = 1, the left level

point is RL
0 (1) = 4 and the critical level point is RM

0 (1) ≈ 4.002; the maximum morbidity relative risk is

rM (p) = 1/3 for every p. The other parameters are f = 0.001 and σ = 0.25 (Color figure online)

maximum point of π with respect to R0. Let the maximum morbidity relative risk
rM (p) of the p-probability level curve be rM (p) = π(p, RM

0 (p)) (see Fig. 2).
We observe that, (i) the left level points at p = 0 and p = 1 are RL

0 (0) = 0 and
RL
0 (1) = 1/σ = 4, (ii) RL

0 (p) < RM
0 (p), (iii) both RL

0 (p) and RM
0 (p) are strictly

increasing with p, (iv) rM (p) = (1− √
σ)/(1+ √

σ) does not depend upon p, as we
will show in (11) (see Fig. 2).

By (9) and Lemma 4, the stationary vaccination expected payoff E(P, p) ≡
E(P, p; r, R0) for the stationary SIRI model is

E(P, p) =
{

− R̃0(A+√
B−Cp)

R̃0(A+√
B−Cp)+ f

+ (π(p) − r) P if 0 ≤ p < pc

−r P if pc ≤ p ≤ 1
.

Theorem 2 (SIRI vaccination expected payoff) The stationary Nash vaccination
expected payoff E : [0, 1] → [−1, 0] for the SIRI model is

E(p; R0) =
{

f
R̃0 I ∗(p)+ f

− 1 if 0 ≤ p < pc
0 if pc ≤ p ≤ 1

.

Furthermore, for 0 ≤ p < pc,

∂E(p; R0)

∂p
= −∂ I ∗

∂p

f R̃0

(R̃0 I ∗(p) + f )2
> 0

∂E(p; R0)

∂R0
= − f

(1 + f )I ∗(p) + R̃0∂ I ∗/∂R0

(R̃0 I ∗(p) + f )2
< 0
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Fig. 3 The Nash vaccination expected payoff E(p; R0) for R0 = 1.5, R0 = 3 and R0 = 4.01. The other
parameters are f = 0.001 and σ = 0.25 (Color figure online)

where the stationary value of infected individuals I ∗(p) is given by Lemma 4. Fur-
thermore, E(p) = 0 is a global maximum, for every p ≥ pc.

Recall from Sect. 2 that the Nash vaccination expected payoff is

E(p) = E(p; r) = E(p, p;π(p)),

for all 0 ≤ p ≤ 1. For p = 0, E(0) = −πv(0), and for p = 1,

−πv(1) ≤ E(1, 1; r) ≤ −πv(1),

for all 0 ≤ r ≤ π(1). Hence, (i) for every p ≥ pc, E(p) = 0 is a global maximum;
(ii) for every p < pc, E(p) increases with p and so the worst case appear when the
morbidity relative risk r is above the vaccination-infection risk π(0) and the ESV
strategy is not to vaccinate p = 0 (see Fig. 3). Furthermore, E(p) decreases with the
basic reproductive number R0.

In Fig. 2, we observe some regions where the vaccination Nash level curves inter-
cept. Hence, there might exist more than one vaccination Nash equilibrium for the
same relative morbidity risk. By Theorem 2, the vaccination expected payoff is higher
at the Nash equilibrium with higher vaccination probability. The existence of these
multiple vaccination equilibria will be studied in the next section.

Proof of Theorem 2 The stationary Nash vaccination expected payoff is

E(p; R0) = −πv(p) = f

R̃0 I ∗(p) + f
− 1 .

Case pc ≤ p ≤ 1 E(p; R0) = 0 and so p is a global maximum.
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Fig. 4 The vaccination Nash equilibria strategies for different morbidity relative risks r and different basic
reproductive ratios R0. The strategies for the small basic reproductive ratio R0 = 1.5 < RB ≈ 2.001, for
the large basic reproductive ratio R0 = 3 < 1/σ = 4 and for R0 = 4.01 > RC ≈ 4.002 are highlighted on
the left and plotted on the right. For R0 = 3, the low morbidity threshold r = r(3) and the high morbidity
threshold r = r(3) are also marked with dashed lines. The other parameters are f = 0.001 and σ = 0.25
(Color figure online)

Case 0 < p < pc: Since −1 ≤ E(p; R0) < 0 and ∂ I ∗/∂p < 0, we get

∂E(p; R0)/∂p = −∂ I ∗

∂p

f R̃0

(R̃0 I ∗(p) + f )2
> 0.

Since ∂ I ∗/∂R0 > 0 and I ∗(p) > 0, we get

∂E(p; R0)

∂R0
= − f

(1 + f )I ∗(p) + R̃0∂ I ∗/∂R0

(R̃0 I ∗(p) + f )2
< 0.

4 Vaccination Scenarios

In this section, we study the Nash and the ESV strategies effects on the vaccination
population strategy depending upon the morbidity relative risk and upon the basic
reproductive number.

4.1 Basic Reproductive Bifurcation Thresholds

We will introduce the basic reproductive bifurcation and critical thresholds and the
low and the high morbidity relative risk thresholds 4.

Definition 5 The basic reproductive bifurcation threshold is

RB = 1√
σ

+ f

1 + f
.

Furthermore, a basic reproductive ratio R0 is small, if R0 ≤ RB , and large, if R0 > RB .
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As usual, we consider the hypotheses that f is sufficiently small such that 1/
√

σ <

RB < 1/σ . We observe that when σ = β̃/β tends to zero, RB tends to +∞.

Definition 6 The basic reproductive critical threshold is

RC = 1

σ
+ f

1 + f

1√
σ

.

Hence, RC = RB/
√

σ and 1 < RB < 1/σ < RC .
We observe that the critical level points at p = 0 and p = 1 are RM

0 (0) = RB ≈
2.001 and RM

0 (1) = RC ≈ 4.002 (see Fig. 2).

Lemma 5 The vaccination-infection risk index π attains its unique local (and global)
maximum at the point

pM : (RB,+∞) → (0, 1]

given by

pM ≡ pM (R0) =
{

B
C − 1

C

(
A − f√

σ R̃0

)2
if R0 < RC

1 if R0 ≥ RC

.

Hence, pM (RM
0 (p)) = p, i.e., pM is the inverse function of RM

0 . Furthermore, the
maximum morbidity relative risk rM (p) of the p-probability level curve is

rM (p) = π
(
p, RM

0 (p)
)

= π (pM (R0), R0) ,

where R0 = RM
0 (p). By Lemma 5 and Theorem 1, we obtain

rM (p) = 1 − √
σ

1 + √
σ

. (11)

We also observe that pM (RB) = 0, pM (RC ) = 1, and pM (R0) is an increasing
function for R0 ∈ [RB, RC ].
Proof of Lemma 5 By (8), we obtain

∂π

∂p
= − f σ R̃0(∂ I ∗/∂p)

(σ R̃0 I ∗(p) + f )2
+ f R̃0 ∂ I ∗/∂p

(R̃0 I ∗(p) + f )2

Hence, ∂π/∂p = 0 if, and only if, (i) ∂ I ∗/∂p = 0 or (ii)

(σ R̃0 I
∗(p) + f )2 − σ(R̃0 I

∗(p) + f )2 = 0 . (12)

Case (i): ∂ I ∗/∂p = 0. Since I ∗(p) = A + √
B − Cp and C > 0 does not have any

solution.
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Fig. 5 Ablowup close to p = 0 of the vaccinationNash strategies for basic reproductive ratios R0 = 1.999,
R0 = RB ≈ 2.001 and R0 = 2.005. The other parameters are f = 0.001 and σ = 0.25 (Color figure
online)

Case (ii): (12) is equivalent to I ∗(p) = f/(
√

σ R̃0). Hence, pM is a candidate to be
maximum at

pM ≡ pM (R0) = B

C
− 1

C

(
A − f√

σ R̃0

)2

. (13)

Now, pM (RB) = 0 if

RB = 1√
σ

+ f

1 + f

and, pM (RC ) = 1 if

RC = 1

σ
+ f

1 + f

1√
σ

.

Hence, for R0 ∈ (RB, RC ) the vaccination-infection risk map π(p) attains its maxi-
mum at pM ∈ (0, 1) given by (13). For R0 ≥ RC , the vaccination-infection risk map
π(p) attains its maximum at pM = 1. 	


We observe that the derivative of the vaccination-infection risk map at p = 0
satisfies the following properties (see Fig. 5):

(i) for R0 = RB , ∂π(0, RB)/∂p = 0;
(ii) for R0 < RB , ∂π(0, R0)/∂p < 0;
(iii) for R0 > RB , ∂π(0, R0)/∂p > 0.

The vaccination-infection risk map has the following properties:
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Fig. 6 A blowup close to p = 1 of the vaccination Nash strategies for the basic reproductive ratios around
R0 = 1/σ = 4 (left) and R0 = RC ≈ 4.002 (right). The other parameters are f = 0.001 and σ = 0.25
(Color figure online)

(i) for 1 < R0 ≤ RB ,

0 < pc(R0) ≤ pc(RB) < 1,

and so π(pc(R0)) = 0, π(p) is strictly decreasing for p ∈ [0, pc(R0)] and
π(p) = 0 for p ∈ [pc(R0), 1] (see Fig. 4 for R0 = 1.5);

(ii) for RB < R0 ≤ 1/σ ,

pc(RB) < pc(R0) ≤ pc(1/σ) = 1, and 0 < pM (R0) < pc(R0),

and soπ(p) is strictly increasing for p ∈ [0, pM (R0)],π(p) is strictly decreasing
for p ∈ [pM (R0), pc(R0)], and π(p) = 0 for p ∈ [pc(R0), 1] (see Fig. 6 (left)
for R0 = 3.999);

(iii) for 1/σ < R0 ≤ RC ,

pc(R0) = +∞, and pM (1/σ) < pM (R0) ≤ 1,

and soπ(p) is strictly increasing for p ∈ [0, pM (R0)],π(p) is strictly decreasing
for p ∈ [pM (R0), 1], and π(1) > 0 (see Fig. 6 for R0 = 4.001);

(iv) for R0 > RC , π(p) is strictly increasing for p ∈ [0, 1] (see Fig. 6 (right) for
R0 = 4.003).

Definition 7 For large basic reproductive ratios R0 > RB , the lowmorbidity threshold
is r ≡ r(R0) = π(0); and the high morbidity threshold is r ≡ r(R0) = π(pM ).

4.2 Vaccination Scenarios for Free Morbidity Relative Risk

For free morbidity relative risk r = 0 diseases, we will show that the reinfection
threshold R0 = 1/σ plays the following role, (i) for R0 ≤ 1/σ , the left ESV strategy
pc eradicates the disease; and (ii) for R0 > 1/σ , the ESV strategy corresponding to
full vaccination coverage 1 does not eradicate the disease.
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Theorem 3 (Free relativemorbidity risks)Suppose that the disease is free ofmorbidity
relative risk r = 0. The following strategies are the Nash equilibria:
For R0 < 1/σ :

(i) pc is a left ESV strategy and a right weak ESV strategy; and
(ii) p∗ ∈ (pc, 1] are weak ESV strategies.

For R0 ≥ 1/σ :

(iii) P∗ = 1 is an ESV strategy.

Proof of Theorem 3 Case R0 < 1/σ By Lemma 4, π |(0, pc)) > 0 is decreasing
and π([pc, 1]) = 0. Hence, by Lemma 3 (i) and (iv), we get that P∗ = pc is a left
ESV strategy and a weak right ESV strategy. By Lemma 3 (ii) and (iv), we get that
P∗ ∈ (pc, 1] areweakESVstrategies. Furthermore, there is nootherNash equilibrium.
Case R0 ≥ 1/σ : By Lemma 4, π |[0, 1]) > 0. Hence, by Lemma 2 (iii), P∗ = 1 is an
ESV strategy. Furthermore, there is no other Nash equilibrium. 	


For a free morbidity risk disease, this theorem reinforces the relevance of the rein-
fection threshold R0 = 1/σ :

(i) For R0 < 1/σ , the left ESV strategy P∗ = pc gives the lower bound for the
Nash equilibria of vaccination uptake level of the population. Hence, the vaccine
uptake level of the population P∗ ≥ pc guarantees that the population is at a
disease-free stationary state.

(ii) For R0 = 1/σ , the ESV strategy P∗ = 1 gives the vaccine uptake level of the
population that still reaches a disease-free stationary state.

(iii) For R0 > 1/σ , the ESV strategy P∗ = 1 gives the vaccine uptake level of the
population. However, even a full vaccination level of susceptible individuals, or
newborns, is not enough to eradicate the disease (i.e., to attain a disease-free
stationary state). Hence, further action is needed like, for instance, to vaccine
the recovery individuals as well (e.g., influenza).

4.3 Vaccination Scenarios for Positive Morbidity Relative Risks

In Theorem 4 below, we will show that for small basic reproductive ratios R0 ≤ RB ,
there is a single ESV strategy (see also Fig. 4, for R0 = 1.5). In Theorem 5, we
will show that for large basic reproductive ratios R0 > RB and for morbidity relative
risks between the low and the high morbidity thresholds r(R0) < r < r(R0), there
are a low and a high ESV strategies PL and PH , with PL < PH (see also Fig. 4, for
R0 = 3 and R0 = 4.01). By Theorem 2, the expected payoff is larger for the high
ESV strategy PH than for the low ESV strategy PL .

4.3.1 Vaccination Scenarios for Small Basic Reproductive Ratios

Here, we characterize the Nash and the ESV strategies for small basic reproductive
ratios R0 ≤ RB and positive morbidity relative risks.
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Theorem 4 (Small basic reproductive ratios)For small basic reproductive ratios R0 ∈
(1, RB] and morbidity relative risks r > 0, the Nash equilibria are the following:

pE ≡ pE (r; R0) =
{
0 if r ≥ π(0)
π−1(r) if 0 < r < π(0)

.

Furthermore, PE (r; R0) are ESV strategies.

Proof of Theorem 4 By Lemma 5, π |[0, pc) is strictly decreasing and π(pc) = 0.
Hence, by Lemma 2 (ii), P∗ ∈ [0, pc) is an ESV strategy with 0 = π(pc) < r =
π(P∗) ≤ π(0). Hence, in particular, 0 is an ESV strategy for r = π(0). By Lemma 2
(i), 0 is an ESV strategy for r > π(0). Furthermore, there is no other Nash equilibrium.

	

For small values of the basic reproductive ratio, there is a unique ESV strategy for

each morbidity relative risk. Hence, there is a single vaccination scenario correspond-
ing to the unique ESV strategy, and so our result has similar qualitative features, but
not the same quantitative features, to the results obtained by Bauch and Earn (2004).

4.3.2 Vaccination Scenarios for Large Basic Reproductive Ratios

Here, we characterize the Nash and the ESV strategies for large basic reproductive
ratios R0 > RB and positive morbidity relative risks.

By Lemma 5, for large basic reproductive ratios R0 > RB , we observe that 0 < r <

r . Using Lemma 2, for every 0 < r < r , we will construct below the high vaccination
strategies pH ≡ pH (r; R0) that are going to be ESV strategies.

For R0 ∈ (RB, 1/σ ], (i) 0 < pM < pc ≤ 1, and so (ii) π |(pM , pc) is strictly
decreasing, and (iii)π |[pc, 1] = 0.LetπD : (pM , pc) → R

+ be the strictly decreasing
branch of the vaccination-infection risk map πD = π . For every 0 < r < r , let

pH (r; R0) = π−1
D (r).

For R0 ∈ (1/σ, RC ), (i) 0 < pM < 1 < pc, and so (ii)π |(pM , 1] is strictly decreasing.
Let πD : (pM , 1] → R

+ be the strictly decreasing branch of the vaccination-infection
risk map πD = π . Observing that π(1) > 0, let

pH (r; R0) =
{

π−1
D (r) if π(1) ≤ r < r

1 if r < π(1)
.

Hence, pH (r) is a continuous piecewise smooth map with a non-smooth point at
r = π(1).
For every R0 ≥ RC , the vaccination-infection risk index π is increasing. For every
0 < r < r , let

pH (r; R0) = 1 .
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For R0 > RB , let the low vaccination strategy be pL ≡ pL(r; R0) = 0, for r > r .
Furthermore, (i) pM > 0, and so (ii) π |[0, pM ] is increasing. Let πN : [0, pM ] → R

+
be the increasing branch of the vaccination-infection risk map πN = π . Let

pN ≡ pN (r; R0) = π−1
N (r).

Theorem 5 (Large basic reproductive ratios)For large basic reproductive ratios R0 >

RB and morbidity relative risks r > 0, the Nash equilibria are the following:

(i) (low-vaccination scenario) the low ESV strategy pL = 0, for r > r;
(ii) (high-vaccination scenario) the high ESV strategy pH , for r < r; and
(iii) the Nash equilibrium pN that are not weak ESV strategy, for r ≤ r ≤ r .

Furthermore, for R0 ∈ (RB, RC ) and r = r ,

(iv) the Nash equilibrium pN = pM is a right ESV strategy.

Proof of Theorem 5 By Lemma 2 (i), 0 is an ESV strategy for r > π(0) = r .
By construction, (i) π is strictly decreasing at PH (r; R0) or (ii) PH (r; R0) = 1 <

π(1). Hence, by Lemma 2 (ii) and (iii), PH (r; R0) are ESV strategies.
By construction, π is increasing at π−1

N (r). Hence, by Lemma 2 (iv), π−1
N (r) are Nash

equilibria that are not ESV strategies.
π is left increasing and right decreasing at pM because pM is a o local maximum.
Hence, by Lemma 3 (ii) and (iii), pM is a right ESV strategy but pM is a weak left
ESV strategy.
Furthermore, there is no other Nash equilibrium. 	


For large values of the basic reproductive ratio R0 > RB , we have three cases to
consider (i) r < r ; (ii) r < r < r ; and (iii) r > r :

(i) formorbidity relative risks below the lowmorbidity threshold r < r , there is only
one ESV strategy that is the high-vaccination scenario, but for some diseases,
like influenza, there might be the need to take another actions, like to vaccine the
recovered individuals, because there might not be a critical probability pc ≤ 1
that will eradicate the disease.

(ii) for morbidity relative risks between the low and high morbidity thresholds r <

r < r , there are three Nash equilibria with two of them being ESV strategies.
This phenomenon is not captured by the SIR model, studied in Bauch and Earn
(2004), and introduces two scenarios with relevant and opposite features: the
low-vaccination scenariowhere individuals will vaccinatewith a low probability;
and the high-vaccination scenario where individuals will vaccinate with a high
probability.

(iii) for morbidity relative risks above the high morbidity threshold r > r , there is
only one ESV strategy that is the low-vaccination scenario, and so there is the
urge to do a vaccination program that reduces the morbidity relative risk, to
promote vaccination for part of the population and, if possible, to introduce a
new vaccine.
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5 Evolutionary Vaccination Dynamics

Based on the replicator dynamics theory, we introduce on the SIRI model the evo-
lutionary vaccination dynamics for an homogeneous vaccination strategy p of the
population, where the individuals change their strategies along time, such that their
payoffs increase (Maynard-Smith 1982; Hofbauer and Sigmund 1998; Bauch 2005;
Nowak 2006; Cojocaru et al. 2007).

For the evolutionary vaccination dynamics, we prove that: (i) the ESV strategies
are attractors of the dynamics; and (ii) the Nash equilibria that are not ESV strategies
are boundaries of the basin of attractions of the ESV strategies.

Consider that a small group, of size ε, opts to change its vaccination strategy from
the population vaccination strategy P to P + �P . The payoff gain function satisfies

�EP→(P+�P)

�P
= E(P + �P, p(ε)) − E(P, p(ε))

�P
= π(p(ε)) − r , (14)

where

p(ε) = (1 − ε)P + ε(P + �P) = P + ε�P.

The evolutionary vaccination dynamics is given by

dp

dτ
= α(p) lim

�P→0

�EP→(P+�P)

�P
= α(p)(π(p) − r) , (15)

where α(p) ≥ 0 is a smooth map that measures the vaccination strategy adaptation
speed of the population and might depend upon the parameters of the SIRI model and
of the relative morbidity risk r .

A point p is a dynamic equilibrium if, and only if, dp/dτ = 0. Hence, a point p is
a dynamic equilibrium if, and only if,

(i) α(p) = 0 or (ii) π(p) = r .

As usual, we assume the following on the vaccination strategy adaptation speed α:
(i) α(p) > 0, for all 0 < p < 1, and so α does not generate any interior dynamic
equilibria; (ii) if π(0) < r then α(0) = 0 and α′(0) > 0, and so p is bounded below
by 0; (iii) if π(1) > r then α(1) = 0 and α′(1) < 0, and so p is bounded above 1; (iv)
if π(0) > r then α(0) > 0, and so α does not generate any extra dynamic equilibrium
at 0; and (v) if π(1) < r then α(1) > 0, and so α does not generate any extra dynamic
equilibrium at 1.

A dynamic equilibrium p is a left (resp. right) attractor with basin of attraction
B = (ql , p] (resp. B = [p, qr )), if, for all q ∈ B,

lim
t→+∞ p(t; q) = p.

A dynamic equilibrium p is an attractor, if p is a left attractor and a right attractor.
A dynamic equilibrium p is a global attractor, if its basin of attraction is B = [0, 1].

123



Bistability of Evolutionary Stable Vaccination Strategies… 877

Fig. 7 The stable (solid line) and the unstable (dashed line) equilibria ofODE (15) for the basic reproductive
numbers R0 = 1.5 (a), R0 = 3 (b), and R0 = 4.01 (b). The other parameters are f = 0.001 and σ = 0.25
(Color figure online)

In Fig. 7, we show the evolutionary vaccination dynamics for different vaccination
scenarios.

Theorem 6 (Free of morbidity relative risks) Suppose that the disease is free of mor-
bidity relative risks r = 0. The dynamic equilibria are the following:
For R0 < 1/σ :

(i) the Nash equilibria p∗ ∈ [pc, 1] are equilibria points; and
(ii) the left ESV pc is a left attractor, whose basin of attraction is [0, pc].
For R0 ≥ 1/σ :

(iii) 1 is a global attractor.

In the case of an ideal situation, where themorbidity relative risks r = 0, Theorem 6
indicates that, for R0 < 1/σ , the vaccination population strategy tends to pc and so
the disease is eradicated. For R0 ≥ 1/σ , the vaccination population strategy tends to
1, meaning that all susceptible, or newborns, get vaccinated but new measures, like to
vaccine the recovered should be taken to eradicate the disease.

Let us introduce the function

F(p) = α(p)(π(p) − r)

to simplify the presentation of the proofs of Theorems 6, 7 and 8.

Proof of Theorem 6 Case (i) R0 < 1/σ . By Lemma 4, for every p∗ ∈ [pc, 1],
π(p∗) = 0 = r . Hence, F(p∗) = 0, and so p∗ is an equilibrium point.
Case (ii) R0 < 1/σ . By Lemma 5, for all q ∈ [0, pc), π(q) > 0 = r , and so
F(q) > 0. Hence,

lim
t→+∞ p(t; q) = pc,

and so pc is a left attractor with basin of attraction [0, pc].
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Case (iii) R0 ≥ 1/σ . Either π(1) = 0 or π(1) > 0. If π(1) = 0 then F(1) = 0,
and so 1 is an equilibrium point. If π(1) > 0 then α(1) = 0, and so 1 is an
equilibrium point.
By Lemma 5, for all q ∈ [0, 1), π(q) > 0, and so F(q) > 0. Hence,

lim
t→+∞ p(t; q) = 1,

and so 1 is a global attractor. 	

Recall the ESV strategy pE presented in Theorem 4.

Theorem 7 (Small basic reproductive ratios)For small basic reproductive ratios R0 ∈
(1, RB] and morbidity relative risks r > 0, the ESV strategy pE is a global attractor.

For small basic reproductive ratios, the vaccination population strategy tends to
pE . If the morbidity relative risks are small, pE is close to pc (the case r = 0) and so
the disease is close to eradication. However, if the morbidity relative risks are large,
then pE is close to 0 and so the vaccination is not effective. Hence, the vaccination
programs have the goal to keep the morbidity relative risks small.

Proof of Theorem 7 Case (i) r > π(0). Since pE = 0 and π(0) < r , we get that
α(0) = 0, and so 0 is a Nash equilibrium. For every q ∈ [0, 1], π(q) ≤ π(0) < r ,
and so F(q) < 0. Hence,

lim
t→+∞ p(t; q) = 0,

and so 0 is a global attractor.
Case (ii) 0 < r ≤ π(0). Hence, π(PE ) = r and so pE is a Nash equilibrium. By
Lemma 5, for every q ∈ [0, pE ), π(q) > r , and so F(q) > 0. Hence,

lim
t→+∞ p(t; q) = pE ,

and so pE is a left attractor in [0, pE ). By Lemma 5, for every Q ∈ (pE , 1],
π(q) < r , and so F(q) < 0. Hence,

lim
t→+∞ p(t; q) = pE ,

and so pE is a right attractor in [0, pE ]. Therefore, pE is a global attractor.
	


Recall the low and high ESV strategies pL and pH presented in Theorem 5.

Theorem 8 (Large basic reproductive ratios) For large basic reproductive ratios
R0 > RB and morbidity relative risks r > 0, the dynamic equilibria are the following:

(i) for r > r , the low ESV strategy 0 is a global attractor;
(ii) for r < r , the high ESV strategy pH is a global attractor;
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(iii) for r < r ≤ r , the low ESV strategy pL = 0 is an attractor, whose basin of
attraction is

[0, pN );

(iv) for r ≤ r < r , the high ESV strategy pH is an attractor whose basin of attraction
is

(pN , 1].

Furthermore, for R0 ∈ (RB, RC ) and r = r ,

(v) the Nash equilibrium pH is a right attractor.

Proof of Theorem 8 Case (i) r = r . Hence, π(0) = r = r , and so 0 is a dynamic
equilibrium.
Case (ii) r > r . Hence, π(0) = r < r , and so α(0) = 0. Thus, 0 is a dynamic
equilibrium.
Case (iia) r > r . For all q ∈ [0, 1], π(q) ≤ r < r , and so F(q) < 0. Hence,

lim
t→+∞ p(t; q) = 0,

and so 0 is a global attractor.
Case (iib) r < r ≤ r . By Lemma 5, for all q ∈ [0, pN ), π(q) < r , and so
F(q) < 0. Hence,

lim
t→+∞ p(t; q) = 0,

and so 0 is an attractor with basin of attraction [0, pN ).
Case (iii) r ≤ r ≤ r . π(pH ) = r , and so pH is a dynamic equilibrium.
Case (iiia) If pH < 1, by Lemma 5, for all q ∈ (pH , 1], π(q) < r , and so
F(q) < 0. Hence,

lim
t→+∞ p(t; Q) = pH ,

and so pH is a right attractor with basin of attraction (pH , 1]. In particular,
pH (r; R0) is a right attractor.
Case (iiib) r ≤ r < r . By Lemma 5, for all q ∈ (pN , pH ), π(q) > r , and so
F(q) > 0. Hence,

lim
t→+∞ p(t; q) = pH ,

and so pH is a left attractor with basin of attraction (pN , pH ]. Therefore, pH is
an attractor with basin of attraction (pN , 1]
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Case (iv) r < r . For all q ∈ [0, 1], π(q) ≥ r > r , and so F(q) > 0. Hence,

lim
t→+∞ p(t; q) = pH ,

and so pH is a global attractor with basin of attraction [0, 1].
	


Let us consider large basic reproductive ratios R0 > RB and so r < r . First
period: Suppose that the true relative morbidity risk rT ∈ (r , r) and the population
vaccination strategy is in the high-vaccination scenario with PT . Second period: A
false vaccine scare occurs and the relativemorbidity risk rises above the highmorbidity
threshold rF > r . Hence the vaccination dynamicswill lead the population vaccination
strategy to the only stable equilibria that is PF = 0. Hence, the individuals get totally
unprotected. Third period: A vaccination program is implemented to restore the true
relative morbidity risk rT ∈ (r , r). Now, the population vaccination strategy keeps
being trapped in the low-vaccination scenario PF = 0, that is an attractor, and it is
not able to move to the high-vaccination scenario. Hence, the vaccination program
to be efficient has to offer vaccines or to make the vaccine compulsory to part of
the population to increase, in this way, the population vaccination strategy above the
probability of the Nash vaccination equilibrium, that is not a weak ESV strategy, PN .
Only now the vaccination dynamics can start helping the population to evolve and
reach the initial equilibrium PT .

We observe that if the true relative morbidity risk is below the low morbidity
threshold rT < r then the vaccination program to be efficient might have not to offer
vaccines or to make the vaccine compulsory because the vaccination dynamics will
drive the population strategy to the high-vaccination scenario. However, it might take
too long to achieve the ESV strategy equilibrium and, again, an extra incentive like to
offer vaccines or to make the vaccine compulsory for part of the population might be
needed.

6 Conclusions

Wemade an analyzes of theSIRI susceptible, or newborns, vaccinationmodel. For high
values of the large basic reproductive ratios R0, there are the low morbidity threshold
r and the high morbidity threshold r with the following property: For every relative
morbidity risk r < r < r there are two ESV strategies: the low-vaccination scenario
where individuals will vaccinate with a low probability; and the high-vaccination
scenario where individuals will vaccinate with a high probability. We introduce the
evolutionary vaccination dynamics and prove that these two ESV are attractors and
have a common boundary point, in their basins of attraction, consisting of a Nash
equilibrium that is not an ESV strategy. Hence, the evolutionary vaccination dynamics
is bistable. The existence of these two vaccination scenarios contrastswith the previous
studies for the SIR model, where there is only a single vaccination scenario for the
same level of the morbidity relative risk (Bauch and Earn 2004). The appearance
of different vaccination scenarios is due to the partial immunity in the SIRI epidemic
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model. We show that the vaccination expected payoff is smaller at the low-vaccination
scenario than at the high-vaccination scenario.We study the effect of vaccine scares and
the effect of vaccination education programs. A vaccine scare can wrongly increase
the perception of the morbidity relative risk above the high morbidity threshold r
and so the population will change its vaccination strategy moving from the high-
vaccination scenario to the low-vaccination scenario. Hence, when a vaccine scare
emerges it is very important to have, immediately, an effective vaccination education
program to decrease the value of the perceived morbidity relative risk. To drive the
population from a low-vaccination scenario to a high-vaccination scenario, we observe
that a vaccination education program will have not only to advertise the advantages
of the vaccine but will also have to give an incentive to increase the probability of
vaccination, like to offer the vaccines or, even, to make it compulsory for part of the
population. Future work can consist in analyzing other epidemiological models and do
a comparative study with the results obtained for the SIRmodel and for the reinfection
SIRI model. In particular, (i) to consider distinct compartments for recovered and
vaccinated individuals to study different levels of immunity after recovery fromnatural
infections and after vaccination (Alexander et al. 2004); (ii) to consider different strains
in the epidemicmodel and to study the effects of imperfect vaccines (Nuño et al. 2005);
and (iii) to endogenize the side effects of vaccination or the available information of
education campaigns and to introduce higher death rates for infected individuals.
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