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Abstract A key issue in video object tracking is the representation of the
objects and how effectively it discriminates between different objects. Several
techniques have been proposed, but without a generally accepted method.
While analysis and comparisons of these individual methods have been pre-
sented in the literature, their evaluation as part of a global solution has been
overlooked. The appearance model for the objects is a component of a video
object tracking framework, depending on previous processing stages and affect-
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ing those that succeed it. As a result, these interdependencies should be taken
into account when analysing the performance of the object description tech-
niques. We propose an integrated analysis of object descriptors and appearance
models through their comparison in a common object tracking solution. The
goal is to contribute to a better understanding of object description methods
and their impact on the tracking process. Our contributions are threefold: pro-
pose a novel descriptor evaluation and characterisation paradigm; perform the
first integrated analysis of state-of-the-art description methods in a scenario
of people tracking; put forward some ideas for appearance models to use in
this context. This work provides foundations for future tests and the proposed
assessment approach contributes to the informed selection of techniques more
adequately for a given tracking application context.

Keywords Computer Vision · Descriptors · Appearance Models · Tracking
Assessment · Video Object Tracking

1 Introduction

The automatic tracking of objects has been gaining importance in recent years.
However, everyday situations still present complex problems within the scope
of research activities. There are innumerous research efforts targeting different
aspects of the problem and a vast number of published work in international
journals, conferences and workshops. Tracking multiple objects, and in partic-
ular humans, is a difficult problem presenting many challenges, especially if it
occurs in non-controlled environments as in everyday scenarios. In these situ-
ations, algorithms or tracking systems must deal with factors such as coverage
of large areas, group movement, partial or total occlusion, shape deformation,
fast changes in direction, illumination variations and shadows, among others.

The main steps of a video object tracking (VOT) framework can be sum-
marised as: object detection, often based on background/foreground segmen-
tation; object description, where different cues (e.g., appearance, shape) are
extracted to uniquely characterise each object; definition of correspondences
for each tracked object throughout the video sequence. Consequently, the rep-
resentation of objects and how effectively it discriminates between different
instances is a key issue [16]. Several techniques have been proposed, each with
its strengths and weaknesses, but without a generally accepted method.

The appearance model receives and provides information from and to other
modules of a VOT framework. As a result, its performance will depend on
previous processing stages and will affect those that succeed it. For example,
by estimating the position of an object in the next frame it is possible to reduce
the uncertainty that the appearance model must resolve; lower discriminative
capabilities of the appearance model may cause track drift or even track loss
(inability to detect an object being tracked or erroneous identity assignment
to the tracked object).

The standalone comparison of descriptors has been the subject of several
studies [24,25,7,38,31] and is not within the scope of this paper to make an
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exhaustive review or benchmarking. Rather, recognising the importance of
these techniques to visual tracking we found necessary, and a logic evolution,
to also perform this analysis from a tracking solution point of view. This
will enable a better understanding of the impact on the overall tracking. To
validate our proposal, we compare a set of widely used description methods in
a common object tracking solution.

Video object tracking strategies are still highly related to the application
scenario. Even though the concepts and strategy proposed in this paper can
be applied to different tracking scenarios, we present a proof of concept by as-
sessing state-of-the-art descriptors in a people tracking solution. Furthermore,
we also put forward some ideas for appearance models.

The remaining of this paper is organised as follows. A brief overview of
state-of-the-art description methods and their use in video object tracking al-
gorithms is presented in Section 2.1; in Section 2.2 we present a brief summary
of the results from a standalone comparison of the descriptors. Our proposal
is described in Section 3. It includes the main concepts, suggested metrics
and datasets. In Section 4 we describe a set of experiments intended to serve
as proof of concept for the proposed assessment approach. The results and
conclusions are presented in Sections 5 and 6 respectively.

2 Object Descriptors

2.1 Literature review

Ideally, an object’s description should enable its discrimination from other ob-
jects during the tracking process. However, this is hard to achieve in a real
scenario. Towards this goal, two main approaches can be found on the lit-
erature: (1) based on the analysis of histrogram responses; (2) based on the
extraction and matching of local feature descriptors. Following the formula-
tion that objects’ appearance and shape, within an image, can be described
by its distribution of colour, intensity gradients, or edge directions, histogram
analysis has been widely studied. Interesting results have been reported using
colour appearance and colour histograms in single camera tracking, but poor
performance was achieved in multi-view scenarios. As a result, increasing at-
tention has been given to the research of edge or gradient based features as an
alternative or complement to colour based descriptors [1].

Local feature descriptors have been widely used in different areas including
video object tracking and image retrieval. These descriptors are commonly
computed at key points of an image, which are salient patches that contain
rich local information about the image [17]. High repeatability of the key
points is desirable since it expresses the reliability of a detector for finding
the same physical key points under different viewing conditions. The feature
vector used to represent the neighbourhood of the key point should be robust
(invariant) to noise, detection displacements, and geometric and photometric
deformations. It has been recognised that the dimension of the descriptors has
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a direct impact on the computation time [4]. Although descriptors of lower
dimensions are desirable for fast key point matching, they are in general less
distinctive than their high-dimensional counterparts.

The SIFT (Scale Invariant Feature Transform) key point detector and de-
scriptor proposed by Lowe [23] is one of the most well known methods to
determine local descriptors that are invariant to changes in scale, rotation and
translation. The detector generates a great number of key points compared to
other detectors, but the extraction process tends to be slower. Furthermore, the
high dimensionality of SIFT descriptors has significant impact on the matching
step. Ke and Sukthankar [19] applied Principal Component Analysis (PCA)
to decrease the dimension of the vector. Although the resulting vector enabled
a faster matching, Mikolajczyk and Schmid [25] proved that it is less distinc-
tive than SIFT and the PCA slows down the feature computation. Gradient
location-orientation histogram (GLOH) [34] is another variant of SIFT using a
log-polar binning structure instead of four quadrants. In the study by Mikola-
jczyk and Schmid [25], GLOH slightly outperforms SIFT, but the use of PCA
has a negative impact on the computational weight [19]. In [4], Bay et al. de-
scribed a fast scale and rotation invariant key point detector and descriptor
which they named SURF (Speeded-Up Robust Features). It shares many sim-
ilarities with SIFT, but with performance gains due to the approach followed
on the detection of key points and on the matching process. FIRST (Fast In-
variant to Rotation and Scale feature Transform), proposed by Bastos et al. [3]
in the context of Augmented Reality and Computer Vision, relies on the de-
tection of local maxima Shi and Tomasi corners to define key points location.
Each feature’s intrinsic scale factor is determined by selecting the multiplica-
tion factor that maximizes the luminance average around the key point, using
integral images for fast indexation. Similar to SIFT, FIRST uses an orien-
tation histogram to make the descriptor rotation invariant. However, instead
of recording the histogram itself, the final patch is rotated by the maximum
bin value found. Since FIRST uses 15x15 non-normalized patches, matching is
performed through Normalized Cross Correlation, which formulation is largely
simplified by describing features through a DoG (Difference of Gaussians). In
order to accelerate the matching step on large feature databases, DoG patches
are clustered based on its sum of all pixels sign (positive or negative). Each
patch is evaluated in 6 distinct regions (3 vertical regions and 3 horizontal
regions) resulting in a 6 bits string which enables fast cluster creation and
matching problem reduction. Reported results indicate that FIRST algorithm
is faster than SURF, although yielding slightly less repeatability.

Methods using key point selection and local descriptors have produced
interesting results. However, in some cases, such as their application to objects
with large smooth regions, the number of selected points may be insufficient
for a successful matching process [1].

Dalal et al. [12] proposed a new human detector based on a grid of His-
tograms of Oriented Gradient (HOG). Unlike descriptors such as SIFT, these
are computed on a dense grid of uniformly spaced cells. It has been shown
that HOG is insensitive to colour variation. The HOG descriptor has a high
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dimensionality, thus requiring a large amount of memory storage [18]. Also,
it has difficulties with the effective representation of objects or backgrounds
with large smooth regions since the contours are indistinctive. Usually HOG
presents high sensitivity to rotation transformations.

Most of the base invariant descriptors presented, being local based key
point descriptors such as SIFT, SURF and FIRST, or being based on his-
togram analysis such as colour histograms and HOG, fall into the same prob-
lem formulation: the need to identify corresponding properties between dif-
ferent images taken from the same scene under different conditions, such as
presence of affine transformations (rotation, scale), changes in noise, image
blurring, and luminance conditions variation. This ability is usually denoted
as repeatability.

The above mentioned techniques share some shortcomings. It has been
recognised that in image patches of reduced dimension or with little texture it
may not be possible to extract an effective description of the objects [1]. More-
over, these descriptors disregard spatial information, which has been identified
as an important feature to increase the object identification rate [28,37,42,33].
Histogram approaches are typically faster than common invariant descriptors,
but ignore spatial and shape information. Han et al. [16] proposed the combina-
tion of colour histograms and HOG descriptors arguing that the computation
is efficient and the combination of these two features can effectively represent
an object because they complement each other.

Jiang et al. [18] used the HOG people detector to initialise the bounding
box (BB) of pedestrians and colour histograms to describe each object. Rather,
than extracting a single histogram, the BB was divided into a lower and up-
per part. A colour histogram was computed for each part, thus incorporating
spatial information. During the tracking process, different weights were used
for the upper and lower parts based on the argument that the lower part is
more likely to become occluded. Tang and Tao [35] used SIFT descriptors in
conjunction with a graph-based model to increase the robustness to occlusion.
However, the matching efficiency tended to deteriorate with the increase of
the number of objects or the complexity of the model (number of key points).

Other methods have been proposed to represent objects namely human
objects. In [40], the authors propose modelling the human shape using skeleton
decomposition. The human shape is subdivided iteratively into elementary
disks. Following the same approach, in [41] it was presented an inter-frame
interpolation method. The shape model was updated with partial changes to
the skeleton decomposition model, which was built based on the interpolation
of the input and output frames. The authors claimed that better performances
could be achieved with only a small complexity overhead.

The mean-shift algorithm has been widely used for visual tracking [6,22,
45] and colour-based mean-shift has been identified as a fast and effective
algorithm for tracking colour blobs, but sensitive to large “distracters”. Zhou
et al. [45] used mean-shift in combination with the SIFT technique to improve
tracking. The SIFT features were used to match a region of interest across
frames and mean-shift applied for a similarity search through the use of colour
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histograms. Shahed et al. [32] tracked a deformable object using rectangles
with a minimum overlap and colour information extracted for each box. In [1]
SIFT and SURF were tested in a cascade of region descriptors.

2.2 Overview of Individual Benchmarkings

Many different studies have performed the independent evaluation of descrip-
tor methods [24,25]. In Bastos et al. [3] a framework simulating the complete
pipeline of images 3D viewing and projection was proposed following the same
evaluation metrics. As a result, it was possible to generate and render images
under different viewing variations, namely scale and rotation, as well under
different perturbations, specifically, luminance, blurriness and random noise
changes. The authors also analysed the extraction and matching times per
key point for the descriptors. The studies with this benchmarking framework
showed that SIFT is typically superior to FIRST and SURF in terms of re-
peatability and distinctiveness. Exceptions occurred in the presence of noise
and luminance variations, which suggests that the DoH (Determinant of Hes-
sian) adopted in SURF is less sensitive to these perturbations than key points
extracted in SIFT via DoG (Difference of Gaussians). Considering perspec-
tive transformations tested, the computation of Sobel derivatives to find key
points’ dominant orientation in SIFT and FIRST proved more robust than
the Haar wavelet responses used in SURF. Since FIRST key points do not
have a scale-space representation, the repeatability across scale changes is
considerable smaller than in SIFT, even though is similar to SURF. Regard-
ing extraction and matching times per key point, SURF outperformed SIFT in
both measures, while FIRST presented the best computational performance.
In terms of quality, SIFT key points are highly distinctive and accurate, while
SURF is the most error-prone algorithm, but has the highest matching rate
due to the large number of key point extracted.

The authors also performed the tests for colour histogram and HOG algo-
rithms, which are not based on local key points. Due to the nature of these
methods, the evaluation was made by measuring the average chi-squared (χ2)
distance between the histogram created from an original image, and the his-
togram created from the transformed or perturbed image. Colour histogram
proved to be more robust than HOG to all invariance tests, but at a higher
computational cost.

A noticeable result of these standalone tests was the need for different
evaluation approaches due to the nature of the methods.

3 The Proposed Integrated Analysis Strategy

The main concepts of the proposed assessment approach are described in Sec-
tion 3.1. While the proposed concepts are horizontal to different tracking con-
texts, in this paper we focus on people tracking scenarios. In Sections 3.2
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and 3.3 we describe a set of suggested metrics and datasets applicable to this
context.

3.1 A New Assessment Paradigm

In the specific context of video object tracking, the performance of the appear-
ance model and the corresponding descriptor technique is not independent of
other modules. Rather, it is influenced by the preceding modules and affects
those that succeed it. In Figure 1 it is represented the conceptual architecture
of a tracking solution1. This architecture focuses on common tracking modules.
Upon receiving images of a stream, some pre-processing can be performed, for
example to reduce noise in the image or change the colour space. An initial
step of the tracking solution consists of the detection of the objects of interest,
in this case people, and the initialisation of the corresponding models (in our
particular case the focus is on the appearance model). Once the objects are
detected in the current frame it is necessary to define correspondences with
previous detected objects; this process makes use of the information stored
in the appearance model. The final step consists of the update of the models
with the new observed information. Modules for higher level processing using
the output of tracking may exist, but they are not relevant to this proposal.

Pre-Processing Object Detection

Appearance 

Model

Object Matching

Input 

Stream
Tracking 

Output

Model 

Initialisation

Model 

Comparison/

Update

Fig. 1 Conceptual generic architecture of a video object tracking solution.

In this paper we propose a new paradigm for the assessment of object de-
scription techniques for video object tracking, with the individual description
methods being integrated in a common tracking solution and the evaluation
performed upon the tracking results. This approach takes into account the
interdependencies among the modules of the system and is performed from
the tracking point of view, i.e., it uses the tracking output. To our knowledge,
such approach has never been attempted.

The underlying framework must be prepared to accommodate the inte-
gration and test of different appearance models. Throughout the experiments
only the extraction of the object appearance and the matching between two
individual instances should be model specific. All other stages of the algorithm
must be common. The appearance models are to be encompassed in modules

1 The reader may note some similarities with the architecture proposed by Moeslund [26].
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with a common and generic API (application programming interface). Each
of these modules should filter and store the required information and be re-
sponsible for performing all model specific information, namely initialisation,
comparison and update.

3.2 Evaluation Metrics

The evaluation of tracking results is by itself a research problem with several
open issues, such as: what factors to evaluate?; what information is available?;
what metrics to use?

The criteria used in the evaluation of the tracking algorithms should be ap-
propriate to the application scenario. This has resulted in the use of different
features (e.g., as objects’ trajectory, silhouette or assigned identifier) and ap-
plication of different metrics (e.g., trajectory root mean square error, detected
and reference region overlap, identity consistency). Proposals for evaluation
frameworks and metrics already exist, but they haven’t been generally adopted
by the research community [5,30,15,2,27,13,8]. Some of these approaches fo-
cus on evaluation without comparing with a reference (commonly known as
ground truth (GT)), but the results provided typically lack sufficient discrimi-
native information. Consequently, evaluations based on comparisons with GT
are commonly favoured and most test sequences are not accompanied by this
information.

To objectively evaluate the impact of the different representation models
in the tracking solution we propose two complementary strategies, intended
to provide greater flexibility. The first consists of a set of metrics proposed
by Bashir et al. [2] to summarise evaluation results for a complete sequence.
Specifically, the object paradigm was used, which implies a previous alignment
of reference and detected tracks. These will be referred to as ‘object metrics’.
The use of these metrics was motivated by its use, or of slight variations, in
other papers of the literature such as [14,20,5,39]. From the proposed set of
metrics in [2] we selected:

Tracker Detection Rate (TRDR) =
TP

TG
(1)

Detection Rate (DR) =
TP

TP + FN
(2)

False Alarm Rate (FAR) =
FP

TP + FP
(3)

TG is the total number of ground truth tracks; true positives (TP) consists
of the number of tracked objects mapped to a GT track; similarly, false posi-
tives (FP) are the number of tracked objects without a correspondence in the
GT and false negatives (FN) the number of GT track without a tracked object
mapped to it. The tracker detection rate (TRDR) and false alarm rate (FAR)
characterise the tracking performance of the algorithm, while the detection
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rate (DR) measures the sensitivity of the algorithm. The fragmentation error
rate (FER) was also considered to indicate how often a track label changes; it
consists of the average number of detected tracks per GT track (tracks paired
with a GT track). Ideally, the FER value should be one, with larger values
reflecting poor tracking and trajectory maintenance. Note that for the first
two metrics, TRDR and DR, we wish to obtain high values, while for metric
FAR low values are desirable. The computation of these metrics requires the
existence of reference information for the sequences. Specifically, the metrics
are calculated using information of the bounding boxes enclosing each object.
This requirement limits the test sequences that can be used.

The second evaluation strategy consists of the hybrid framework described
in [9,10], which enables the computation of an error metric for every frame
of the sequence, i.e., it can also capture the temporal evolution of the error.
Moreover, it has been demonstrated [8–10] that this framework: (1) enables
the use of different types of GT; (2) this information is not required for the
complete sequence. The output of this framework will be referred to as ‘hybrid
metric’.

Due to the described properties of these metrics, we suggest their use,
particularly in a context of people tracking. Nevertheless, other metrics can
be selected and, for different application contexts, that can be a require-
ment. The important point is that the evaluation is done using the tracking
output. Moreover, different application scenarios may require the maximisa-
tion/minimisaton of a specific metric or subset of metrics.

Additionally, we propose the computation of several time measures in each
experiment to assess the impact of the descriptor and appearance representa-
tion in the algorithm execution and the corresponding computational weight.
These consist of: the average frame processing time, which we will refer to as
SPT (sequence processing time), in seconds per frame; the average descriptor
extraction time (DET), in seconds per track; the average descriptor matching
time (DMT), in seconds per track. For each track, the values for DET and
DMT were averaged over the number of iterations performed to define object
correspondences.

3.3 Dataset

The evaluation should be performed using datasets representative of the sce-
nario and accessible to researchers, thus favouring replication and comparison
of results. For our particular demonstration scenario we selected sequences
of two widely used datasets: CAVIAR project [11]; PETS 2006 [29] work-
shop. Specifically, we used the sequences: OneShopOneWait1 (OSOW1) and
OneShopOneWait2 (OSOW2) from the CAVIAR project; ST1-C1/cam3 (ST1C3)
and ST1-C1/cam4 (ST1C4) from the PETS 2006 workshop. These sequences
are representative of monitoring and surveillance scenarios depicting com-
monly observed problems: group movement; shape deformation; appearance
similarity; occlusion; object crossing. Also, they were captured with dissimilar
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cameras and offer different perspectives over the scene. Figure 2 depicts illus-
trative frames of the sequences. The sequences of the CAVIAR project have
half-resolution of the PAL (Phase Alternating Line) standard (384x288 pixels,
25 frames per second) and were compressed using MPEG-2; the resolution of
the PETS sequences are PAL standard (768x576 pixels, 25 frames per second)
and were compressed as JPEG image sequences (approx. 90% quality).

(a) CAVIAR - OSOW1 (b) CAVIAR - OSOW2

(c) PETS 2006 - ST1C3 (d) PETS 2006 - ST1C4

Fig. 2 Illustrative frames of the dataset used in the experiments.

The sequences have associated different types of ground truth (GT). The
CAVIAR project provided reference information, in the form of bounding
boxes (BB), for every sequence of the dataset; this was provided in an XML file
following the CVML (Computer Vision Markup Language) syntax [21]. This
BB GT information was also mapped to the corresponding image mask [10].
Additionally, for the sequences OSOW1 and OSOW2 reference segmentations
were manually generated for a subset of the frames. Sequences ST1C3 and
ST1C4 are not provided with reference information applicable to this context
(provided GT consists of a list of events), thus reference segmentations were
manually produced for a subset of frames.



Analysis of Object Description Methods in a Video Object Tracking Environment 11

4 Proof of Concept

In the previous section we described a new paradigm for assessing object de-
scription techniques in a video object tracking context. In this section we aim
to provide a proof of concept and demonstrate the benefits of this proposal.

Tracking algorithms are intrinsically related to a given context. Hence,
different tracking solutions can be conceived. It is not our intention to restrict
the tracking solution. Rather, we selected a state-of-the-art people tracking
algorithm, presented below, which is well described in the literature.

4.1 Tracking Test Environment

The selected testing environment consists of an implementation of the tracking
algorithm proposed by Zhao and Nevatia [44,43]. The algorithm was intended
for surveillance or human monitoring scenarios and was described as having:
capability of real time operation; acceptable detection and tracking rate in
low to medium complexity scenarios. Furthermore, it has features that enable
human detection and the separation of individuals in a group.

In the original proposed solution, a shape model - an ellipsoid - is used
to approximate the human shape, in the detection of people and in their dis-
crimination when moving together or with partial occlusion. The shape model
helps to minimise some problems introduced by segmentation, such as object
split or boundary detection errors. Once an object, more precisely a person,
is detected, an instance of the shape model is assigned and an appearance
template is initialised; it consists of colour information. In subsequent frames,
the shape model is used to indicate the possible area of the image correspond-
ing to the person after a position estimation performed through the use of a
Kalman filter. A scan is conducted in the uncertainty region centred on the es-
timated position, with a dissimilarity measure obtained in each iteration using
information from the input image and segmentation, and from the appearance
model.

The test framework has been prepared to accommodate the integration
and test of different appearance models according to the description done in
section 3.1. Object matching is performed by searching for the most similar
instance in an uncertainty region. In each iteration, the appearance model in-
stance receives the images, shape and position information; it computes and
compares the object descriptors. The output is the corresponding dissimilarity
measure that will be used by the tracking algorithm to define the best match;
once it is found, information is passed to the module for model update. Video
segmentation was performed using the algorithm proposed in [36]. The exper-
iments were performed on a computer with an Intel(R) Core(TM) i5 CPU at
3.20GHz with 8GB of RAM.



12 Pedro Carvalho et al.

4.2 Appearance Models

For our experiments, we have selected the following state-of-the-art description
methods, using available implementations: SIFT; SURF; FIRST; HOG; colour
histogram. For colour histogram, we used the proposal described in [18], where
the bounding box is divided into an upper and lower part with a greater weight
assigned to the upper part, thus adding more relevant spatial information to
the model. For the local descriptors, the set of description vectors extracted
from the region corresponding to an object was taken as model.

Variations for the appearance models were also tested in order to emphasise
particular contributions thereof to the performance of the tracking algorithm,
e.g., accuracy and consistency of human detection, computational complexity
of appearance extraction and matching, adequate discrimination of humans
when occlusions occur. Specifically:

– Grid Points: Commonly, SIFT, SURF and FIRST descriptors use a key
point detector. In tracking, due to the reduced dimensions of the objects
or their smoothness, the number of detected key points may be small. As
an alternative to the automatic detection we also tested the use of a dense
scan, where the points for the computation of the descriptors are indicated
by an evenly spaced grid. We tested grids with a number of points equal
to 1% and 4% of the object’s image.

– Bounding Box Scaling : Typically, models are computed in the object’s re-
gion defined by its bounding box. This region tends to include information
from the background or even from other objects (Figure 3). We argue that
the top and bottom of the bounding box (for a human in the upright po-
sition these are associated with the head and feet) are more likely to be
subject to noise (e.g., from the segmentation) and more background points
may be wrongly included into the object’s model. Hence, we experimented
with the variation of the size of the bounding box where the models are de-
termined. Specifically, the bounding box’s height was scaled down around
the centre to a final BB height that is a percentage (90%, 75% and 50%)
of the original BB. This concept is illustrated in Figure 3. We will refer
to these variations as object patch, or simply BB, accompanied by a per-
centage, e.g., ‘for a 90% object patch’ or ‘90% BB’, where the percentage
is related to the full BB height in each instance.

Concluding, a total number of 49 appearance models were tested: 4 for
colour histogram, 12 for SIFT, 12 for SURF, 4 for HOG, 16 for FIRST and
the baseline (texture model proposed in [44]). These were applied to the 4
sequences (Section 3.3), adding up to 196 experiments.
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(a) 100% BB (b) 90% BB (c) 75% BB

Fig. 3 Example of the height variation of the bounding box. In the left image, full bounding
box is used; the bounding box is scaled down from left to right. (sample frame of the CAVIAR
project [11])

4.3 Measuring Models Dissimilarity

Due to the nature of the description techniques, two different dissimilarity
measures where used. Note that these measures are model specific, but are
hidden from the overall tracking solution. For both colour histogram and HOG
models, the straightforward and well-known normalised χ2 distance was used
as dissimilarity measure. For the key point based descriptors SIFT, SURF and
FIRST, the ensemble of descriptors was adopted as the model; the descriptors
were computed in an object’s patch and in a possible instance of the object
in the next frame, and a matching process was formulated. For two sets with
N1 and N2 descriptors, and K matches, a dissimilarity measure is calculated.
The simple use of the distances between matched descriptors can easily induce
errors. As an example, consider the situation depicted in Figure 4 where two
local descriptor based models are compared.

For object #1, six descriptors were computed (N1), while for object #2
only four descriptors were calculated (N2). From these, only two pairs were
identified (K). Due to the small number of matched descriptors, one could
consider these to be different objects. However, if only the distance of the two
pairs is used, the dissimilarity may be low and the objects matched; this is
particularly true if the two individual distances (d1, d2) are small. Hence, the
number of unmatched descriptors must also be taken into account. Toward
this objective, different measures may be defined; we chose the formulation

D =

K∑
i=1

di + Pmax [max(N1, N2) −K] (4)
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d1

d2

Object #1 Object #2

Fig. 4 Dissimilarity for local descriptor based models.

where di is the distance for the ith match; the second component of the
sum was introduced to penalise non-matched descriptors, where Pmax is a
constant greater than the maximum possible value for the distance between
two descriptors. The measure is normalised by Pmax in each iteration. In each
case, the best match corresponds to the pair that minimises the dissimilarity.

5 Results

Given the large number of experiments conducted, we will adopt a phased ap-
proach intended to make the presentation of the results clearer. First, the local
descriptor base models are compared with both key and grid point strategies.
It follows the comparison of the histogram base descriptors. Finally, an overall
comparison of all the models is performed.

With regards to the hybrid metric (Section 3.2), note that only a reduced
number of frames with reference information exists for the PETS’s sequence;
this may prevent the identification of events if the corresponding frames are
not encompassed in a sequence segment with frames containing reference infor-
mation [10]. Since this metric tends to be ‘noisier’ due to the sparse GT (about
3% of the full sequence) and given the possible superimposition of several re-
sults, we chose to present only the hybrid metric for the PETS’ sequences
when justified by a relevant behaviour of the assessed methods.

In Table 1, it is compared the widely used SIFT and SURF descriptors, as
well as the more recent FIRST descriptor. The results correspond to the ob-
ject metrics (Section 3.2) for sequences OSOW1 and OSOW2 of the CAVIAR
dataset; different heights of the object patches (in percentage of the object’s
full bounding box height) were considered (Section 4.2). Specifically we anal-
yse the key point detectors and grid points in the computation of the models.
Furthermore, given the characteristics and existing implementation of FIRST,
we tested the use of different patch sizes in the calculation of these descriptor.
The best results are highlighted per sequence and BB variation (i.e., per table
column). Note that for the first two metrics, TRDR and DR, we wish to ob-
tain high values, while for metric FAR low values are desirable. In the case of
the FER the best result is 1, with increasing values traducing a performance
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degradation. These experiments were also assessed with the hybrid metrics for
the full dataset and the corresponding results are depicted in Figure 5 and
Figure 6 for SIFT and SURF respectively.

From the observation of Table 1 a major conclusion is the best tracking re-
sults obtained with SURF using a grid of points in alternative to the key point
detector. While the performance of the tracking algorithm with SURF descrip-
tors increased by using a dense scan, with SIFT no significant advantage was
observed. These individual behaviours can also be observed in Figure 5 and
Figure 6 respectively. Given a superimposition of the values and for clarity
of the graphs, only the values for full object’s patch are used in this anal-
ysis. For SIFT, (Figure 5), little changes are visible between the use of key
and grid points; when applied to the PETSs’ sequences; slight differences are
visible around frame 1500 (Figure 5(c) and Figure 5(d)) and frame 900 (for
Figure 5(d)) where the error value is zero due to the misdetection of objects.
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Fig. 5 Tracking error, using the hybrid metric, for SIFT descriptors with both key points
and a grid of points using the full object patch.

In Figure 7, we compare SIFT and SURF through the hybrid metric using
the best methods for each descriptor: SIFT with key points; SURF with grid
points. In both cases, full object patch was used. The results for the CAVIAR
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Table 1 Assessment of tracking performance using object metrics. It summarises results
for the use of a sparse (key points) or dense (grid) scan in the computation of SIFT, SURF
and FIRST descriptors, and for different heights of the object patch.

OSOW1 OSOW2
Bounding Box Height (%) Bounding Box Height (%)

Metric 100 90 75 50 100 90 75 50

TRDR 0.68 0.58 0.61 0.44 0.64 0.64 0.58 0.59
SIFT DR 0.68 0.57 0.61 0.44 0.63 0.62 0.57 0.57

FAR 0.10 0.12 0.12 0.26 0.23 0.25 0.32 0.24
FER 2.57 2.71 3.43 4.71 3.38 4.12 4.50 6.33

TRDR 0.56 0.51 0.60 0.53 0.64 0.66 0.66 0.66
SIFT Grid DR 0.55 0.51 0.60 0.53 0.63 0.65 0.64 0.65

1% FAR 0.19 0.27 0.11 0.26 0.24 0.20 0.23 0.21
FER 2.00 1.86 1.57 1.86 2.78 2.88 3.56 3.13

TRDR 0.45 0.47 0.63 0.43 0.56 0.56 0.62 0.66
SIFT Grid DR 0.45 0.47 0.63 0.43 0.55 0.56 0.61 0.65

4% FAR 0.34 0.36 0.15 0.38 0.39 0.36 0.34 0.29
FER 1.43 1.71 1.71 1.57 3.11 2.50 2.67 2.78

TRDR 0.14 0.14 0.14 0.09 0.20 0.17 0.17 0.10
SURF DR 0.14 0.14 0.14 0.09 0.20 0.17 0.17 0.10

FAR 0.08 0.04 0.12 0.52 0.21 0.23 0.22 0.50
FER 1.57 1.57 1.86 1.57 4.25 4.25 4.13 4.33

TRDR 0.71 0.72 0.70 0.71 0.68 0.70 0.72 0.65
SURF Grid DR 0.71 0.71 0.70 0.71 0.66 0.68 0.71 0.65

1% FAR 0.02 0.09 0.10 0.03 0.21 0.18 0.16 0.19
FER 1.00 1.29 1.14 1.57 2.25 1.88 2.56 3.13

TRDR 0.78 0.54 0.72 0.75 0.64 0.42 0.63 0.64
SURF Grid DR 0.75 0.53 0.72 0.75 0.63 0.42 0.62 0.64

4% FAR 0.12 0.36 0.09 0.05 0.37 0.59 0.38 0.36
FER 1.71 1.14 1.43 1.43 1.38 1.14 1.38 2.00

TRDR 0.09 0.09 0.11 0.10 0.18 0.18 0.11 0.04
FIRST DR 0.09 0.09 0.11 0.10 0.18 0.18 0.11 0.04

15x15 patch FAR 0.15 0.13 0.06 0.18 0.06 0.09 0.05 0.07
FER 2.00 1.33 1.00 1.67 4.33 3.50 3.67 1.50

TRDR 0.11 0.10 0.10 0.10 0.23 0.23 0.21 0.21
FIRST DR 0.11 0.10 0.10 0.10 0.23 0.23 0.21 0.21

9x9 patch FAR 0.09 0.19 0.20 0.15 0.08 0.06 0.21 0.15
FER 1.33 1.00 1.00 1.00 2.67 2.50 3.00 5.00

TRDR 0.08 0.07 0.08 0.07 0.22 0.23 0.18 0.20
FIRST Grid 1% DR 0.08 0.07 0.08 0.07 0.22 0.23 0.18 0.20

9x9 patch FAR 0.39 0.43 0.35 0.38 0.09 0.11 0.12 0.12
FER 2.00 3.00 1.33 1.00 2.33 2.50 3.33 2.67

TRDR 0.12 0.05 0.10 0.06 0.22 0.21 0.21 0.21
FIRST Grid 1% DR 0.12 0.05 0.10 0.06 0.22 0.21 0.21 0.21

6x6 patch FAR 0.09 0.58 0.33 0.55 0.07 0.12 0.15 0.11
FER 1.33 1.00 1.33 1.00 2.00 1.83 2.33 2.50

sequences (Figure 7(a) and Figure 7(b)) are very similar, indicating SURF
as a valid alternative to the heavier SIFT for tracking. For sequence ST1C3
(Figure 7(c)), the results are also alike, with the SIFT based solution failing
to detect any object around frame 1700 and 2100. For sequence ST1C4 (Fig-
ure 7(d)), tracking with both methods does not detect objects around frame
1700, but with the SURF based solution failing for a longer period.

Unlike in the individual assessments, the tracking results using the FIRST
descriptor in the appearance model were not competitive with regards to SIFT
and SURF (see Table 1). Similar to SIFT, the use of a grid of points did not
provide significant advantages. From our experiments, it is clear that a reduc-
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Fig. 6 Tracking error, using the hybrid metric, for SURF descriptors with both key points
and a grid of points using the full object patch.

tion of the default patch size (region around a point used in the computation
of the description vector) can lead to better results. It is noteworthy that mod-
ification of the patch size was a preliminary contribution of these experiments
to the FIRST implementation.

The object metrics’ values for the tracking results using colour histogram
and HOG based models are summarised in Table 2. These descriptors are com-
puted over the object’s patch, thus a grid of points is not applicable in this case.
It can be observed that HOG presented the best results with the exception
of the fragmentation error; nevertheless, the differences of the methods with
regards to this measure is small. Moreover, the results show that variations of
the object patches are more noticeable when using the colour histogram model;
while small object patches (50% of the bounding box height) tend to slightly
deteriorate the performance, the use of the full bounding box does not lead to
better results either. This is coherent with the argument that smaller heights
for the object patch (and consequently its image) can limit the background
noise added to the models, without forgetting the known limitations of these
descriptors within small, possibly homogeneous, regions. The results for full
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Fig. 7 Comparative analysis of using SIFT with key point detection and SURF with a grid
of points (number of points equal to 1% of the object’s patch pixels) over the test sequences.

Table 2 Assessment of tracking performance using object metrics. It summarises tracking
results for the used HOG and histogram based models.

OSOW1 OSOW2
Bounding Box Height (%) Bounding Box Height (%)

Metric 100 90 75 50 100 90 75 50

TRDR 0.56 0.73 0.72 0.54 0.68 0.69 0.66 0.67
Histogram DR 0.56 0.73 0.72 0.54 0.67 0.69 0.66 0.67

FAR 0.32 0.08 0.08 0.33 0.27 0.28 0.28 0.30
FER 1.00 1.29 1.29 1.29 1.29 1.25 1.22 1.11

TRDR 0.77 0.75 0.79 0.60 0.74 0.72 0.72 0.76
HOG DR 0.76 0.74 0.78 0.59 0.73 0.72 0.70 0.73

FAR 0.09 0.13 0.14 0.27 0.24 0.25 0.28 0.25
FER 1.29 1.57 1.29 1.14 1.87 1.62 1.50 1.56

BB conveyed by the hybrid metric are represented in Figure 8 and show that
no method clearly surpassed the other in terms of tracking performance.

Table 3 summarises the results of all experiments. With regards to the BB
variations we selected the best results for each model. The best results per
metric are highlighted. It is noticeable that the assessment approach proposed
in this paper enables the comparison of the different methods and variations.
It can be observed that HOG, color histogram and SURF with grid points en-
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Fig. 8 Comparative analysis of colour histogram and HOG based appearance models for
the CAVIAR sequences.

abled the best tracking performances, but without a clear dominant technique.
Furthermore, with these methods, the tracking solution performed better than
with the originally proposed model (using texture [44]).

Table 4 presents the time measures described in Section 3.2 for the most
relevant experiments corresponding to the presented tracking performance re-
sults. As expected, tracking using colour histogram and HOG exhibited a good
computational performance. Even though the time for descriptor extraction
and matching for HOG was slightly higher than with color histogram, the
overall processing time was smaller due to less iterations in object matching;
this is a clear example of the interdependencies between the different mod-
ules of the tracking solution. As expected, SIFT implied a high computational
complexity, the highest for our experiments. An interesting observation is the
significant decrease of the computational time through the use of a grid of
points and without a degradation of the tracking results. SURF enabled low
computational time values, but as already stated the tracking results were
poorer. However, it is noteworthy the time values obtained for SURF with a
grid of points; although they are higher than with the use of key point detec-
tion, they remain smaller than with SIFT and it was demonstrated in Table 3
that they enable better tracking results.

6 Conclusions

In this paper, we proposed a new paradigm for the assessment of appearance
models and corresponding description techniques. Recognising the difference
between tracking and standalone image or object matching, it was considered
logic to analyse the different description models from a tracking point of view.
In this novel approach, different description techniques or models are assessed
through their integration in a common tracking solution with the assessment
performed on the tracking output. While the current proposal has people track-
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ing as application scenario, the underlying concepts can be seamlessly applied
to other tracking contexts. In addition to the assessment paradigm descrip-
tion, a set of metrics are suggested towards the goal of a complete and flexible
evaluation.

For proof of concept, we assessed the computational performance and accu-
racy of the results for a set of well known description techniques and different
representations. Furthermore, some ideas for appearance models were put for-
ward and the first application and analysis of the FIRST descriptors to video
object tracking was made. From this work it naturally derived the set up of
foundations for the future test of other techniques. Although the choice of the
algorithm can be argued considering the vast number of published work, such
discussion has no effect in the current context since all representations meth-
ods are assessed in a common framework under the same conditions; it is the
impact of the individual models that we wish to evaluate.

A major result of the experiments conducted as proof of concept is the abil-
ity of a uniform assessment of heterogeneous techniques. Moreover, the results
depicted different behaviours from those observed in individual evaluations.
For example, HOG and SURF with grid points performed better than colour
histogram and SIFT respectively. These results support the proposal of this
paper.

Tracking with the SIFT base models achieved competitive accuracy, but
at the expense of a higher computational weight. While the use of a dense
scan in alternative to key points proved negligible in terms of robustness, it
enabled a significant reduction of the computational performance - similar
results were achieved in less time. An opposite behaviour was exhibited by
SURF since its computational performance was significantly better than SIFT,
where the tracking results were degraded due to the reduced dimensions and
homogeneity of the objects, which caused a small number of detected key
points. The use of dense scan greatly improved the tracking results surpassing,
in several cases, the other methods. This is indicative that using a dense scan
over the object’s patch can offer a more powerful representation than the sparse
key points. In small image patches with possibly smooth regions the number of
detected key points may be very small or even null. By using a grid of specified
points this problem can be minimised enabling better tracking results. It is
noteworthy that, even with the use of a grid of points, tracking using SURF still
exhibited a better computational performance than with SIFT. While SIFT
and FIRST formulations rely on 1st order derivatives to discard low contrast
key points located on eigenvalues to create a robust descriptor, SURF finds key
points on 2nd order mixed derivatives using DoH, which is sensitive to several
perturbations such as noise. These differences may define why only SURF
clearly improves TRDR using a regular grid of key points, since alternative
approaches describe more specific image regions, thus failing in a regular grid.

The results obtained with FIRST illustrate advantages of the proposed
assessment paradigm. While individual evaluations showed that the FIRST
descriptors are faster than SIFT and SURF, the results of these experiments
show a different behavior due to interdependencies of the modules. Tracks are
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only considered if they remain stable for a minimum number of frames; the
difficulties in establishing object correspondences between consecutive frames
reflects in an increased uncertainty (conveyed by the TRDR and DR measures)
of the overall process implying the initialization of more (temporary) tracks
and a greater number of iterations during the matching step. Regarding the
several configurations tested in FIRST, none of them led to drastic changes.
Reducing the patch size slightly improved the results, while reducing the BB
causes an opposite behavior. This motivates a more in-depth study of the
parameterization influence on the overall tracking.

As expected from the literature, tracking using colour histograms and HOG
based appearance models exhibited good performances. In particular, the re-
sults for colour histograms were not surprising considering the scenario; the
use of a single camera with a reasonable frame rate enabled smooth transitions
from one frame to the next. Nevertheless, the integrated assessment of these
techniques indicated a superiority of the HOG base models in both tracking
robustness and overall processing time.

There was a decision to use sequences widely known to the research com-
munity, focusing on surveillance scenarios, and a solution designed for people
tracking. However, the reasoning underlying this assessment proposal can and
should be extended to other scenarios and description methods. Given the ad-
ditional challenges placed by multi-camera scenarios, e.g., differences in scale
and color, it would be interesting to perform the analysis proposed in this
paper in multi-camera scenarios. This can result in more complete informa-
tion regarding the description methods robustness and the feasibility of their
use for both single and multiple cameras. Even though interest results were
obtained from our proof of concept, a major outcome is the setup for future
experiments not only at level of the appearance model, but also in the other
modules of a tracking solution, e.g., object detection.
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