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Abstract Nowadays, video surveillance systems are taking the first steps toward automa-
tion, in order to ease the burden on human resources as well as to avoid human error. As the
underlying data distribution and the number of concepts change over time, the conventional
learning algorithms fail to provide reliable solutions for this setting. In this paper, we formal-
ize a learning concept suitable for multi-camera video surveillance and propose a learning
methodology adapted to that new paradigm. The proposed framework resorts to the universal
background model to robustly learn individual object models from small samples and to
more effectively detect novel classes. The individual models are incrementally updated in an
ensemble-based approach, with older models being progressively forgotten. The framework
is designed to detect and label new concepts automatically. The system is also designed to
exploit active learning strategies, in order to interact wisely with operator, requesting assis-
tance in the most ambiguous to classify observations. The experimental results obtained both
on real and synthetic data sets verify the usefulness of the proposed approach.
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1 Introduction

Much of the history of learning algorithms has focused on some idealized settings, in where
independent and identically distributed observations are drawn from a fixed yet unknown
distribution, and fixed and known concepts are available. In practice, these assumptions are
unlikely to be all exactly true. Still, since they are a good approximation to some of real-
life problems, there is a broad range of solutions for this task. However, in many of the real
world applications some of the previous assumptions are violated, rendering the conventional
algorithms suboptimal or impractical. For instance, if the process is not strictly stationary (the
distribution of data changes over time), the future field data may come from a distribution
different from the primitive field data on which the model was developed in the first place.
Hence, the model would fail to reflect the latest concept(s).

Video surveillance is a crucial application where traditional learning settings do not hold,
becoming the main source of big and challenging data these days (Huang 2014). While it
is relatively easy and inexpensive to acquire a large amount of un-labelled data, obtaining
labelled data is particularly acute. Additionally, due to the typical video acquisition setup, the
concepts of interest are not known beforehand and the statistics of the collected data evolve
in time.

In this paper, we discuss a learning setting appropriate to learn fromdata streams generated
in a multi camera scenario in where all the previously identified assumptions are violated.We
extend and explore a preliminary study (Khoshrou et al. 2014a) in various directions. First,
the new learning concept is better formulated. Second, a new learning methodology based
in the Universal Background Model is proposed as a natural solution for the new learning
paradigm. The learning method presented in the preliminary study is also framed under the
same paradigm. A further development is the instantiation of the framework with different
visual descriptors, highlighting the robustness of the framework. The experiments reported at
the end of this paper include a thorough testing on synthetic and real data, greatly extending
the initial results.

In Sect. 2, we review the current incremental learning algorithms for visual data. The
Universal Background Model is briefly introduced in Sect. 3. We provide a detailed presen-
tation of the proposed learning method in Sect. 4, starting with an overview and then filling
in the details. We discuss the experimental methodology in Sect. 5 and in Sect. 6 we present
the results of our method on a variety of synthetic and real datasets. Finally, conclusions are
drawn in Sect. 7.

1.1 Relevance and problem definition

Over the last decades, video surveillance began spreading rapidly, specifically targeted at
public areas. Recording for hours, days, and possibly years, provides massive amounts of
information coming from an evolving environment in where traditional learning methods
fail to reflect evolutions taking place (Dick and Brooks 2003). In such environments, the
underlying distribution of data changes over time—often referred to as concept drift—either
due to intrinsic changes (pose change, movement, etc.), or extrinsic changes (lighting con-
dition, dynamic background, complex object background, changes in camera angle, etc.).
Thus, models need to be continually updated to represent the latest concepts. The problem
is further aggravated when new objects enter the scene—referred to as class evolution in
machine learning literature—as new models need to be trained for the novel classes.

Figure 1 demonstrates a typical surveillance scenario.Depending on the view angle and the
quality of the camera, every surveillance camera covers an area called Field of View (FoV).
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When entering the scene, the object will enter the coverage area of at least one of the cameras.
In such environments where objects move around and cross the FoV of multiple cameras,
it is more than likely to have multiple streams, potentially overlapping in time, recorded at
different starting points with various lengths, for the same individual object (Fig. 1). The
surveillance system will have to track that object from the first moment it was captured by a
camera and across all cameras whose fields of view overlap the object’s path. Thus, a suitable
outcome of the framework could be a timeline graph assigning each stream in each camera
to an identity for the indicated presence period, as illustrated in Fig. 2. This graph can be
used for behaviour analysis as well as security purposes. In this simple scenario the typical
tracking systems are likely to encounter problems. In fact, mutual occlusion may occur if
persons B and C cross. Consequently, their identities can be switched. Moreover, prolonged
occlusion might occur, which might lead to track loss or mistaken identities (Teixeira and
Corte-Real 2009). Since the cameras are supposed to track all objects in their coverage area,
the definition of a global identity for each object is necessary.Multiple appearances of objects
captured by the same or by different cameras are identified in the process, allowing also to
know the path followed by a given object. This setting is inherently different from person
re-identification scenarios, either image-to-image (Farenzena et al. 2010) or video-to-video
(Pagano et al. 2014), that seek to determine if the images (videos) correspond to the person(s)
of interest (Vezzani et al. 2013). Whereas, this framework focuses on the design of a system,
where no pre-defined class of interest is available. Moreover, typical person re-identification
works assume that the acquired data has enough detail to support identification on facial data,
while in our setting appearance-based approaches are more likely to be successful.
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Learning in such multi-camera scenario can be characterized as follows:

Definition Let D be a set of time-series Di . The starting points ti,0 of the streams Di may
differ, the same being true for the ending points ti, f . Each observation x within each stream is
in a d-dimensional space, x ∈ Rd . Within each stream, the class explaining the observations
is not the same for the whole duration of the stream. At a given time instance the same class
may be responsible for the observations in multiple streams. Finally, the representation of a
given class is not stationary, drifting with time.

Requirements An effective and appropriate algorithm to fit in our scenario is required to: (a)
learn frommultiple streams; (b)mine streamswith various lengths and starting points (uneven
streams); (c) handle concept drift; (d) accommodate new classes; (e) deal with partially
labelled or unlabelled data; (f) be of limited complexity; (g) handle multi-dimensional data.

Herein we put forward a framework to learn continuously from parallel video streams
with partially labelled data and that allow us to learn novel knowledge, reinforce existing
knowledge that is still relevant, and forget what may no longer be relevant. The framework
receives directly the tracked sequences outputted by the tracking system and maintains a
global object identity common to all the cameras in the system.

Considerable body of multi-camera surveillance research assumes that adjacent camera
view overlap (Chang and Gong 2001; Kuo et al. 2010; Hamid et al. 2014; Wang 2013),
whereas (Javed 2005; Shan et al. 2005; Javed and Shah 2008; Pflugfelder and Bischof 2010;
Matei et al. 2011) assume non-overlapping views. While our proposed method makes no
assumption of overlapping or non-overlapping views. Hence, it can be applied in either
settings.

1.2 Main contributions

In this paper, we present an ensemble of generative models that includes the maximum a-
posteriori (MAP) adaptation of the universal background model (UBM). This framework
applies a double threshold strategy in order to detect novel classes and unreliable decisions.
The decisions are categorized into three groups: novel classes when the existing classes are
unable to explain satisfactorily the observed data; unreliable, leading to a request of user
input; and reliable when there is strong evidence in favor of one of the existing classes.
The adopted batch approach enables to achieve a good balance between the need to have
enough data to make reliable decisions and the need to adapt quickly enough to drifts and
new concepts in the data streams.

2 Literature review

Intelligent video surveillance (IVS) is a multi-disciplinary field, related to computer vision,
pattern recognition, signal processing, communication, embedded computing and image sen-
sors (Wang 2013); however, much of the history of IVS systems has addressed the problem
employing computer vision techniques (Lim et al. 2003; Kuo et al. 2010; Matei et al. 2011;
Zheng et al. 2011; Berclaz et al. 2011).

Whereas various SSL (Semi-Supervised Learning) methods have been proposed for video
annotation (Song et al. 2005; Wang et al. 2009; Xu et al. 2012), deploying such methods in
IVS systems is less explored. InBalcan et al. (2005), the person identification task is posed as a
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graph-based semi-supervised learning problem,where only a few lowqualitywebcam images
are labelled. The framework is able to track various objects in limited drifting environments.
The classification of objects that have been segmented and tracked without the use of a
class-specific tracker has been addressed with an SSL algorithm in Teichman and Thrun
(2011). Given only three hand-labelled training examples of each class, the algorithm can
perform comparably to equivalent fully-supervised methods, but it requires full-length tracks
(it is therefore an off-line process) generated by a perfect tracker (each stream represents a
single object), which would be challenging for real applications, where multiple streams
are available simultaneously. The underlying assumption made by most learning algorithms
simply do not hold in real-world surveillance environment.

Learning from time-changing data streams has mostly appeared in data mining context
and various approaches have been proposed (Gama et al. 2013; Keogh and Kasetty 2003).
Ensemble-based approaches constitute a widely popular group of these algorithms to handle
concept drift (Ackermann et al. 2012; Kolter and Maloof 2007) and in some recent works
class evolution (Elwell and Polikar 2011), as well. Learn++.NSE (Elwell and Polikar 2011) is
one of the latest ensemble-based classificationmethods in literature, that generates a classifier
using each batch of training data and applies a dynamic weighting strategy to define the share
of each ensemble in the overall decision. As success is heavily dependent on labelled data,
thismethodwould not be applicable inwild scenarios.Masud et al. (2011) proposed an online
clustering algorithm for single stream that employs an active strategy in order to minimize
oracle collaboration.

COMPOSE (Dyer et al. 2014) is designed for learning from non-stationary environment
facing gradual drift but it cannot support neither abrupt drift nor class evolution. Although
(Capo et al. 2013; Zliobaite et al. 2011; Ditzler and Polikar 2011) can handle more dramatic
changes in data distributions, novel concept detection is an issue.Masud et al. (2010) presents
ActMiner, which addresses the problem of concept-drift as well as concept evolution in a
single infinite length data stream.

Since we look at the problem as learning from multiple data streams (herein, visual data)
in wild environments, that views segments of a stream as a unique element to classify, single
stream mining methods cannot be employed. Most of the methods proposed for parallel
stream mining (Beringer and Hüllermeier 2006; Rodrigues et al. 2008; Chen 2009; Chen
et al. 2012) require equal-length streams coming from a fixed number of sources. Thus, they
would fail to leverage information from time-varying video tracks.

We addressed the problem of mining uneven streams in prior works (Khoshrou et al.
2014a, b). NEVIL (Khoshrou et al. 2014b) exploits an ensemble of discriminative classifiers
in order to actively classify parallel video streams. If the reliability of a decision is below
a user-defined threshold (either due to a class evolution or abrupt concept drift), NEVIL
queries the oracle for labelling. It does not provide more information about the source of
confusion, being unable to detect novel classes. Moreover, the classifier becomes biased
towards the most frequent class in the case of severe class imbalance. Subsequent work
(Khoshrou et al. 2014a) lessens the problem, using a class-based ensemble of Gaussian Mix-
ture Models in the framework (NEVIL.g). Class-based ensemble was firstly introduced in
Al-Khateeb et al. (2012) where a model is trained for each class in a chunk. The ensemble
keeps a fixed size micro-ensemble of each class and it has been shown that this approach
is more robust than traditional ensembles. Although NEVIL.g produces superior perfor-
mance compared to NEVIL, stability in high-dimensional visual data is still a big issue and
the novel class detection is unreliable due to the difficulty of setting a suitable threshold.
In here we address those issues by adopting a UBM-normalized strategy and class-based
ensembles.
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3 Universal background model

Universal background modeling is a common strategy in the field of voice biometrics (Povey
et al. 2008). It can be easily understood if the problem of biometric verification is interpreted
as a basic hypothesis test. Given a biometric sample Y and a claimed ID, S, we define:

H0: Y belongs to S
H1: Y does not belong to S

as the null and alternative hypothesis, respectively. The optimal decision is taken by a
likelihood-ratio test:

S (Y |H0) = p(Y |H0)

p(Y |H1)

{
≥ θ accept H0

≤ θ accept H1
(1)

where θ is the decision threshold for accepting or rejecting H0, and p(Y |Hi ), i ∈ {0, 1} is
the likelihood of observing sample Y under hypothesis i . Biometric recognition can, thus,
be reduced to the problem of computing the likelihood values p(Y |H0) and p(Y |H1). Note
that H0 should characterize the hypothesized individual, while, alternatively, H1 should be
able to model all the alternatives to the hypothesized individual.

From such formulation arises the need for a model that successfully covers the space
of alternatives to the hypothesized identity. The most common designation in literature for
such a model is universal background model or UBM (Reynolds 2002). Such model must
be trained on a large set of data, so as to faithfully cover a representative user space and a
significant amount of sources of variability.

3.1 Hypothesis modeling

Gaussian Mixture Models (GMM) are typically chosen to model both the UBM, i.e. H1,
and the individual specific models (IDSM), i.e. H0. Such models are capable of capturing
the empirical probability density function (PDF) of a given set of feature vectors, so as to
faithfully model their intrinsic statistical properties (Reynolds et al. 2000). The choice of
GMM to model feature distributions in biometric data is extensively motivated in many
works of related areas. From the most common interpretations, GMMs are seen as capable of
representing broad “hidden” classes, reflective of the unique structural arrangements observed
in the analysed biometric traits (Reynolds et al. 2000). Besides this assumption, Gaussian
mixtures display both the robustness of parametric unimodal Gaussian density estimates, as
well as the ability of non-parametric models to fit non-Gaussian data (Reynolds 2008). This
duality, alongside the fact that GMM have the noteworthy strength of generating smooth
parametric densities, confers such models a strong advantage as generative model of choice.

3.1.1 H1: UBM parameter estimation

To train the Universal Background Model a large amount of “impostor” data, i.e. a set
composed of data from all the enrolled individuals, is used, so as to cover a wide range of
possibilities in the individual search space (Shinoda and Inoue 2013). The training process
of the UBM is simply performed by fitting a k-mixture GMM to the set of feature vectors
extracted from all the “impostors”.

If we interpret theUBMas an “impostor”model, its “genuine” counterpart can be obtained
by adaptation of the UBM’s parameters using individual specific data. For each enrolled
individual, I D, an individual specific model (IDSM) is therefore obtained.
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3.1.2 H0: MAP adaptation of the UBM

IDSMs are generated by the tuning of theUBMparameters in amaximum a posteriori (MAP)
sense, using individual specific biometric data. This approach provides a tight coupling
between the IDSM and the UBM, resulting in better performance and faster scoring than
uncoupled methods (Xiong et al. 2006), as well as a robust and precise parameter estimation,
even when only a small amount of data is available (Shinoda and Inoue 2013). This is indeed
one of the main advantages of using UBMs. The determination of appropriate initial values
(i.e. seeding) of the parameters of a GMM remains a challenging issue. A poor initialization
may result in a weak model, especially when the data volume is small. Since the IDSM is
learnt only from each individual data, it is more prone to a poor convergence that the GMM
for the UBM, learned from a big pool of individuals. In essence, UBM constitutes a good
initialization for the IDSM.

3.2 Recognition and decision

After the training step of both the UBM and each IDSM, the typical recognition phase in
biometric systems is somewhat trivial. As referred in the previous sections, the identity check
is performed through the projection of the new test data, Xtest , onto both the UBM and either
the claimed IDSM (in verification mode) or all such models (in identification mode). The
recognition score is obtained as the likelihood-ratio. This is a second big advantage of using
UBM. The ratio between the IDSM and the UBM probabilities of the observed data is a more
robust decision criterion than relying solely on the IDSM probability. This results from the
fact that some subjects are more prone to generate high likelihood values than others, i.e.
some people have a more “generic” look than others. The use of a likelihood ratio with an
universal reference works as a normalization step, mapping the likelihood values according
to their global projection. Without such step, finding a global optimal value for the decision
threshold, θ , presented in Eq. (1), would be a far more complex process.

4 Never ending visual information learning with UBM

In this section we present our framework named Never Ending Visual Information Learning
with UBM (NEVIL.ubm). NEVIL.ubm is designed for non-stationary data environments in
which no labelled data is available but the learning algorithm is able to interactively query
the user to obtain the desired outputs at carefully chosen data points. The algorithm is an
one-pass class-based ensemble of classifiers that trains a separate model (h j

t ) for a class j at
every time slot t . It also keeps models of each class in a separate ensemble (Micro-Ensemble).
A time-adjusted weighting strategy combines the probabilities outputted by the models in
order to make the final decision.

4.1 Algorithm overview

Algorithm 1 outlines our approach. The framework receives multiple visual streams, gen-
erated by a typical tracking algorithm, which analyses sequential video frames and outputs
the movement of targets between the frames. Inside each frame the data corresponds to
some pre-selected object representation (e.g. bag of words, histogram). Experimentally we
will evaluate the stability of NEVIL.ubm with several object representations. Environmen-
tal challenges such as varying illumination, lack of contrast, bad positioning of acquisition
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Algorithm 1 NEVIL.ubm

Input: D
mi
t , i = 1, . . . , M

W0 ← 1
k

H0 ← W0
while Dt is True do

Batch label prediction (Sect. 4.1.1)
S (Ck |Dmi

t , Ht−1) ← (D
mi
t , Ht−1)

Novelty Detection (Sect. 4.1.2)
maxCk S (Ck |Dmi

t , Ht−1) < T ⇒ D
mi
t ⊂ novel class

Batch Confidence Level Estimation (Sect. 4.1.2)
BCL ← S (Ck |Dmi

t , Ht−1)
Model design (Sect. 4.1.3)
h j
t ← D

j
t , j = 1, . . . , k

Composite model structure and update (Sect. 4.1.4)
ME j

t ← h j
t , j = 1, . . . , k

Ht ← (ME1
t , . . . , MEk

t , Ht−1, Wt )
end while

devices, blurring caused bymotion aswell as occlusionmake data often noisy and/or partially
missing. We address these challenges by a batch divisive strategy, as learning from a data
batch may reduce the noise and fill the gaps caused by miss-tracking. Initially, the composite
model is initialized to yield the same probability to every possible class (uniform prior).
When the batches Dmi

t in time slot t become available, the framework starts computing the
scores S (D

mi
t |Ck, Ht−1) for each batch D

mi
t in the time slot. The scores are obtained from

the likelihood ratio test of the batch data obtained by the individual class model Ck and the
UBM Fig. 3. This kind of on-line learning approach addressed in this work can suffer if
labelling errors accumulate, which is inevitable. Unrelated objects will sooner or later be
assigned the same label or different labels will be assigned to different views of the same
object. To help mitigate this issue, we allow the system to interact wisely with a human, to
help it stay on track. OnceS (D

mi
t |Ck, Ht−1) is obtained, a batch confidence level (BCL) is

estimated; if BCL is high enough (above a predefined threshold), the predicted label

argmax
Ck

S (D
mi
t |Ck, Ht−1)

is accepted as correct; if the BCL is very low (lower than a pre-determined second threshold),
the batch data is assigned to a novel class; otherwise the user is requested to label the data
batch. The labelled batches (either automatically or manually) are used to generate new
separate models hkt (k runs over all the classes available in t), which are then integrated
in the composite model, yielding Ht . Four tasks need now to be detailed: (a) the batch
label prediction (by the composite model); (b) novelty detection and batch confidence level
estimation (c) the individual class model design in current time slot; (d) the composite model
structure and update.

4.1.1 Batch label prediction

A batch D
mi
t is a temporal sequence of frames Dmi

t, f , where f runs over 1 to the batch size

B. The composite model, Ht−1, can be used to predict directly p(Dmi
t, f |Ck, Ht−1) but not

p(Dmi
t |Ck, Ht−1). The individual scores per frame S (D

mi
t, j |Ck, Ht−1) can be immediately

obtained asS (D
mi
t, j |Ck, Ht−1) = p(D

mi
t, j |Ck ,Ht−1)

p(D
mi
t, j |UBM)

. The batch label prediction can be analysed
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as a problem of combining information from multiple (B) classification decisions. Consider-
ing that, per frame, the composite model produces approximations to the likelihoods/scores
for each class, different combination rules can be considered to build the batch prediction
from the individual frame predictions (Alexandre et al. 2001; Kittler et al. 1998). Assuming
independence between the scores of the individual frames, the score per batch is readily
obtained as

S (D
mi
t |Ck, Ht−1) = B

√√√√ B∏
j=1

S (D
mi
t, j |Ck, Ht−1) (2)

Some authors have shown that the arithmetic mean outperforms the geometric mean in the
presence of strong noise (Alexandre et al. 2001; Kittler et al. 1998). Thus, as a second option
we defined the BCL as:

S (D
mi
t |Ck, Ht−1) =

∑B
j=1 S (D

mi
t, j |Ck, Ht−1)

B
(3)

In our scenario, it is very likely to obtain outlier values for some frames in a batch due to
occlusion ormiss tracking. Themedianmight be seen as a better indication of central tendency
than the arithmetic mean in such cases, since it is less susceptible to the exceptionally large
or small values in data. Hence, as a third option we consider estimating the score of a given
batch by:

S (D
mi
t |Ck, Ht−1) = M edian {S (D

mi
t, j |Ck, Ht−1), j = 1, . . . , B} (4)

Although other robust statistics could be considered from the individual frame scores, exper-
imentally we will only compare the three options.

In the end, NEVIL.ubm assigns each batch to the class maximizing S (D
mi
t |Ck, Ht−1).

4.1.2 Novelty detection and batch confidence level (BCL) Estimation

In our scenario, the number of classes is unknown beforehand.When a previously unobserved
person enters the area of coverage by the camera network, the system should create a new
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model to represent the novel class.Weconsider automating this decision.Applying a threshold
to detect novel classes is extensively explored in the literature (Markou and Singh 2003).

In our NEVIL.ubm framework, if the scores associated to all observed classes
(S (C j |Dmi

t , Ht−1), j = 1, . . . , k) are significantly low (below a predetermined threshold),
it is very likely that this class has not observed before and it is considered novel:

max
Ck

S (Ck |Dmi
t , Ht−1) < T ⇒ data belongs to a novel class

Having decided that the batch data belongs to an existing class, one needs to decide if
the automatic prediction is reliable and accepted or rather a manual labelling needs to be
requested.

Various criteria have been introduced as uncertainty measures in literature for a proba-
bilistic framework (Settles 2009). Perhaps the simplest and most commonly used criterion
relies on the probability of the most confident class, defining the confidence level as

max
Ck

S (Ck |Dmi
t , Ht−1) (5)

This criterion only considers information about the most probable label. Thus, it effectively
“throws away” information about the remaining label distribution (Settles 2009).

To correct for this, an option is to adopt a margin confidence measure based on the first
and second most probable class labels under the model:

S (C∗|Dmi
t , Ht−1) − S (C∗|Dmi

t , Ht−1), (6)

whereC∗ andC∗ are the first and second most probable class labels, respectively. Intuitively,
batches with large margins are easy, since the classifier has little doubt in differentiating
between the two most likely class labels. Batches with small margins are more ambiguous,
thus knowing the true label would help the model discriminate more effectively between
them (Settles 2009).

Herein, we put forward a variant of the margin measure. We also evaluate experimentally
the BCL base on the ratio of the first and second most probable class labels:

S (C∗|Dmi
t , Ht−1)/S (C∗|Dmi

t , Ht−1), (7)

4.1.3 Model design

The Universal Background Model is trained offline, before the deployment of the system.
UBM is designed from a large pool of streams aimed to be representative of the complete set
of potentially observable ‘objects’. The training process of the UBM is simply performed by
fitting a GMM to the set of feature vectors extracted from the complete pool.

At time slot t , we obtain a new set of batches that are automatically or manually labelled.
We assume all the frames belonging to a batch are from the same object and that the M
batches in a time slot correspond to L < M labels (some batches can have the same label).

At each time slot, the data from the batches predicted to belong from the same class is used
to generate the class model by tuning of the UBM parameters, in a maximum a posteriori
(MAP) sense. This approach provides a tight coupling between the individual model and
the UBM, resulting in better performance and faster scoring than uncoupled methods, as
well as a robust and precise parameter estimation, even when only a small amount of data is
available (Shinoda and Inoue 2013). The adaptation process consists of two main estimation
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steps. First, for each component of the UBM, a set of sufficient statistics is computed from
a set of M class specific feature vectors, X = {x1, . . . , xM } computed from the batch data:

ni =
M∑

m=1

p(i |xm) (8)

Ei (x) = 1

ni

M∑
m=1

p(i |xm)xm (9)

Ei (xxt ) = 1

ni

M∑
m=1

p(i |xm)xmxtm (10)

where p(i |xm) represents the probabilistic alignment of xm into each UBM component.
Each UBM component is then adapted using the newly computed sufficient statistics, and
considering diagonal covariance matrices. The update process can be formally expressed as:

ŵi = [αi ni/M + (1 − αi )wi ] ξ (11)

μ̂i = αi Ei (x) + (1 − αi )μi (12)

Σ̂i = αi Ei (xxt ) + (1 − αi )(σiσi
t + μiμi

t ) − μ̂i μ̂i
t (13)

σi = diag(Σi ) (14)

where {wi ,μi , σi } are the original UBM parameters and {ŵi , μ̂i , σ̂i } represent their adapta-
tion to the specific class. To assure that

∑
i wi = 1 a weighting parameter ξ is introduced.

The α parameter is a data-dependent adaptation coefficient. Formally it can be defined as:

αi = ni
r + ni

(15)

The relevance factor r weights the relative importance of the original values and the new
sufficient statistics.

4.1.4 The composite model structure and update

Obtaining a meaningful stability-plasticity balance is a key issue in learning from non-
stationary environments. The human learning system has addressed this issue by reinforcing
existing knowledge that is still relevant, as well as forgetting what may no longer be relevant.
The forgetting curve supports the process of forgetting that occurs with the passage of time
(Schacter et al. 2011), which is exponential in nature. Inspired by human learning system,
a strategic combination of an ensemble of classifiers, that employs dynamically assigned
weights, is proposed inElwell andPolikar (2011).Herein,we applied a timeweighted strategy
that gives more credit to more recent knowledge. Inspired by the forgetting curve, weights are
chosen from theTaylor expansion of an exponential. The IDSMassociated to the j th class, h j

t ,
is stored in the j th ensemble, the so called Micro ensemble ME j

t . Contrasting to the classic
ensembles, a Micro ensemble includes models that are incrementally trained on incoming
batches of a specific class, not all the batches (potentially from multiple classes) in a given
timeslot. The composite model Ht is an ensemble of Micro ensembles ME j

t , j = 1, . . . , Kt ,
where Kt is the number of classes observed until time t . Each ME j

t includes models h j
t

that are trained on incoming batches of the j th class since its appearance until the current
time. The outputs of the individual models h j

t are combined in ME j
t using a weighted

majority voting, where the weights are dynamically updated with respect to the classifiers’
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Fig. 4 Anexample of composite structure.Once a newclass enters the scene (e.g. t=4) , a newmicro-ensemble
is added to the composite

time of design. The prediction outputted by the composite model ME j
t for a given frame

D
mi
t, f is

S (Ck |Dmi
t, f , ME j

t ) =
t∑

�=1

Wt
�S

j
� (CK |Dmi

t, f ),

where S j
� (.) is the score outputted by h j

�(.) (the model trained from batches of j th class at

TS �), and Wt
� denotes the weight assigned to model h j

� , adjusted for time t . The weights
are chosen from a Taylor expansion of an exponential (1, . . . , (1 − α)�) and are updated and
normalised at each time slot to give more credit to more recent knowledge.

Figure 4 shows an example of how the composite is updated in a simplified scenario (a
class is represented by a single stream). The IDSM associated to each class is trained and
stored in the corresponding micro ensemble. For example, classes 1, 2 and k are available in
the second timeslot. Hence three IDSM (h1t , h

2
t , h

k
t ) associated to these classes are stored at

ME1
2 , ME2

2 , and MEk
2 , respectively. Once a new class (k+1) appears at t = 4 (a new person

enters the scene), a new micro ensemble MEk+1
4 is built. In order to get a decision on a

frame (assign a score to the frame), the outputs of the models are combined using a weighted
strategy that gives more credit to the more recent knowledge. Note that these weights are
updated at every timeslot.

5 Experimental methodology

5.1 Datasets

We conducted our experiments on synthetic as well as real datasets. The synthetic data is
generated in the form of (X, y), where X is a 2-dimensional feature vector, drawn from a
Gaussian distribution N(μX , δX ), and y is the class label. Since in real applications visual
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Table 1 The datasets characteristics

Dataset No. of
streams

Range No.
classes

Imbalance
degree

No. of
cameras

Setting

Scenario I 8 (4 − 10 k) 5 1 − −
Scenario II 8 (4 − 10 k) 5 0.25 − −
Scenario III 6 (1 − 5 k) 3 0.4 − −
Scenario IV 15 (2.5 − 10 k) 7 0.23 − −
OneLeaveShopReenter1 3 (85 − 160) 2 0.28 2 Overlapped

OneLeaveShopReenter2 3 (63 − 347) 2 0.11 2 Overlapped

WalkByShop1front 6 (40 − 225) 4 0.22 2 Overlapped

EnterExitCrossingPaths1 6 (34 − 216) 4 0.23 2 Overlapped

OneStopEnter2 7 (51 − 657) 4 0.19 2 Overlapped

OneShopOneWait1 10 (36 − 605) 4 0.25 2 Overlapped

OneStopMoveEnter1 42 (10 − 555) 14 0.14 2 Overlapped

PETS2009 19 (85 − 576) 10 0.13 2 Overlapped

SAIVT-SOFTBIO 33 (21 − 211) 11 0.12 8 Overlpped,
nonoverlpped

Imbalance degree (Nguyen et al. 2009) is defined by the ratio of sample size of minority class to that of the
majority ones ; range is defined by the length of shortest and longest streams in a given dataset, respectively

Fig. 5 An example of diversity
in appearance

data may suffer from both gradual and abrupt drift, we tried to simulate both situations in
our streams by changing μX and δX in the parametric equations. In this experiment, we
generated 7 classes (C1,C2, . . . ,C7); for some (C5,C6) data changes gradually while others
also experience one (C1,C4,C7), or three (C2,C3) dramatic drifts. This process is similar
to the one used in Elwell and Polikar (2011). The dataset was organized in four different
scenarios with different levels of complexity, including streams with gradual drift, abrupt
drift, re-appearance of objects and non-stationary environments where we have gradual and
abrupt concept drift as well as class evolution:

– Scenario I: gradually drifting streams of five classes.
– Scenario II: streams with abrupt drifts of five classes.
– Scenario III : re-appearance of objects.
– Scenario IV: a non-stationary environment with class evolution as well as concept drift.

More information is available at Khoshrou et al. (2014b).
Besides synthetic datasets, we run our experiments on public indoor (CAVIAR Project

Consortium 2001), SAVIT-SOFTBIO (Bialkowski et al. 2012)] and outdoor (PETS) datasets.
Seven scenarios of CAVIAR (OneLeave ShopReenter1, Enter ExitCrossingPaths1, OneSho-
pOneWait1, OneStop Enter2, WalkBy Shop1front) have been used. Each clip was recorded

123

Author's personal copy



622 Mach Learn (2015) 100:609–633

from two different points of view: view of the corridor, and a frontal view of the scenario. Due
to the presence of different perspectives of the same person, streams are drifting in time (see
Fig. 5). Two views of scenario S2.L1 of PETS2009 have been applied in our experiments. We
carry out experiments on a subset the SAVIT-SOFTBIO, as well. This dataset consists of 11
people moving through a network of 8 cameras. Subjects move in an uncontrolled manner,
which provides a highly unconstrained environment reflecting real-world conditions. These
sequences present challenging situations with cluttered scenes, high rates of occlusion, dif-
ferent illumination conditions as well as different scales of the person being captured. We
employed an automatic tracking approach (Teixeira et al. 2012) to track objects in the scene
and generate streams of bounding boxes, which define the tracked objects’ positions. As the
tracking method fails to perfectly track the targets, a stream often includes frames of distinct
objects. We wrap up this section in Table 1, presenting a qualitative look at the character-
istics of the datasets applied in our work. Various factors have been considered in the table
including: imbalance degree (Nguyen et al. 2009) that is defined by the ratio of sample size
of minority class to that of the majority one; range in the length of streams that defines the
length of shortest and longest streams in a given dataset, respectively.

5.2 Image representation

The choice of visual features, or image representation, is a key choice in the design of any
classic image classification system (Chatfield et al. 2014). Seems fair to say that most of
improvement in such system performance can be associated to the introduction of improved
representation from the classic Bag of Visual Words (BoW) (Csurka et al. 2004) to the
Fisher Vector (FV) (Perronnin et al. 2010). In such approaches, local image features [herein,
SIFT (Lowe 1999)] are extracted. These features are encoded in a high dimensional image
representation.

In order to evaluate the stability of the framework, we study the impact of different rep-
resentations in the performance of NEVIL.ubm. We evaluate three encoding approaches:
hard quantization, soft quantization (hierarchical bag-of-visterms), and Fisher method. Clas-
sical BoW computes a spatial histogram (hard quantization) of visual words constituting the
baseline representation. Recent methods replace hard quantization with methods that retain
more information. This can be done in two ways: (1) soft quantization or in other words,
expressing the representation as combination of visual words (e.g. Teixeira and Corte-Real
2009), and (2) expressing the representation as the difference between the features and visual
words (e.g. FV) (Chatfield et al. 2011).

In order to extract the hard quantized representation, we used a dictionarywith 8000 visual
words in classic BoW that provides 96,000 features for each frame. Following the approach in
Teixeira and Corte-Real (2009), a hierarchical bag-of-vistermsmethod is applied to represent
the tracked objects, resulting in a descriptor vector of size 11,110 for each bounding box (soft
quantized representation). In Fisher encoding, visual words are represented by means of a
GMM, and the average first and second order differences of image descriptor and the visual
words are recorded as global representation.We use aGMMwith k=256, resulting in a vector
size of 327,680 for each bounding box. We used the implementation provided in Chatfield
et al. (2011) to extract hard quantized and Fisher Vector features.

To avoid the curse of dimensionality, Principle Component Analysis (PCA) is applied to
the full set of features as a pre-processing step. The number of features in each stream is
reduced to 85 features for hard quantization and 350 dimensions for both soft quantization
and FV.
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5.3 Baseline methods

We compared our proposed NEVIL.ubm framework with two groups of baseline approaches:
(1) unwise methods, in where the query is blindly requested. (2) wise approaches that select
queries meticulously.

Unwise strategy

In such methods (e.g. Random strategy), queries are blindly chosen. The Random strategy
(Zliobaite et al. 2014) labels the incoming batches randomly instead of wisely decidingwhich
batches are more informative. Constrained by budget, batches are sent for annotation.

Wise methods

To the best of our knowledge, there is no approach [except NEVIL (Khoshrou et al. 2014b)
and NEVIL.g (Khoshrou et al. 2014a)] that can be used in our learning setting. We stress that
the methods in the literature fail to classify uneven parallel streams.

NEVIL (Khoshrou et al. 2014b) trains a classifier (employing discriminative approaches)
per time slot. The classifiers are kept in an ensemble and participate in the final decision
using a weighted sum strategy. If the decision is not reliable enough, the batch will be sent
to an oracle for annotation.

NEVIL.g (Khoshrou et al. 2014a) employs a class-based ensemble of GMMs. A compu-
tational model is built for individual classes available in a given time slot. Unreliable batches
are chosen for manual labeling.

5.4 Evaluation criteria

Active learning aims to achieve high accuracy using as little annotation effort as possible.
Thus, a trade-off between accuracy and proportion of labelled data can be considered as one
of the most informative measures.

Accuracy

In a classical classification problem the disparity between real and predicted labels explains
how accurately the system works. However, in our scenario the labels do not carry any
semantic meaning (it is not a person recognition problem). The same person should have the
same label in different batches, whichever the label. One is just interested that, whatever label
is used to represent a person, it is correctly transported to the next batches. The labels are
therefore permutable and just define a partition of the set of all batches according to which
label was assigned to it. As such, when evaluating the performance of our framework we
are just comparing the partition of the set of batches as defined by the reference labelling
with the partition obtained by the NEVIL labelling. We adopted a generic partition-distance
method for assessing set partitions, initially proposed for assessing spatial segmentations of
images and videos (Cardoso and Corte-Real 2005; Kuhn 1955). Thus, the accuracy of the
system is formulated as:

Accuracy = N − Cost

N
(16)

where N denotes the total number of batches, and Cost refers to the cost, yielded by the
assignment problem.
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Annotation

Assume MLB and TB denote the manually labelled batches and all the batches available
during a period (includes one or more time slots), respectively. The Annotation Effort is
formulated as:

Annotation effort = #MLB

#TB
(17)

It is expected that the accuracy increases with the increase of the annotation effort.

Area under the learning curve (ALC)

ALC (Cawley 2011) is a standard metric in active learning research that combines accuracy
and annotation effort into a single measurement. The rationale behind the use of such metric
is that there is not a single budget level that everyone agrees is the reasonable cost for a
particular problem. Hence, ALC, which provides an average of accuracy over various budget
levels, seems to be amore informativemetric. Herein, the learning curve is the set of accuracy
plotted as a function of their respective annotation effort, a, Accuracy = f (a). The ALC is
obtained by:

ALC =
∫ 1

0
f (a)da (18)

6 Results

Firstly, multiple tests were run to determine the optimal batch size for each dataset to be
explored. The batch size was varied between 1 and 50% of the size of the shortest stream
available in each dataset. Experiments were repeated for 50 equally spaced values in that
range. The optimal batch size varies and is influenced by the characteristics of the streams
present in each dataset.Optimal batch sizes have been observed to range between25 and35 for
video streams. In order to explore the properties of the proposed framework, we evaluated
it on multiple datasets covering various possible scenarios in a multi-camera surveillance
system.

6.1 Results on synthetic data sets

Table 2 provides a summary of ALC of baseline approaches as well as NEVIL.ubm on
multiple synthetic datasets.Weplot the accuracy of a given strategy as a function of annotation
effort in Fig. 6. Results show that NEVIL.ubm outperforms all the other techniques, specially
in more complex scenarios: Scenario III and Scenario IV. All the experiments were repeated
ten times to smooth initialization variability. Results demonstrate that the new framework
(NEVIL.ubm) outperforms the baseline methods, providing over 90% accuracy with <10%
annotation for all the datasets.

6.2 Results on real video streams

We compared NEVIL.ubm against baseline methods on multiple real video data, where
various lengths and number of streams fromdifferent classes are present. Results are provided
inTable 3.Wenote that the results showed significant improvement in favour ofwise strategies
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Table 2 Assessment on
synthetic datasets

Datasets ALC

Random NEVIL NEVIL.g NEVIL.ubm

Scenario I 0.544 0.976 0.990 0.990

Scenario II 0.532 0.943 0.980 0.986

Scenario III 0.613 0.882 0.886 0.983

Scenario IV 0.523 0.883 0.972 0.973

Fig. 6 Performance of baseline methods as well as NEVIL.ubm on synthetic datasets (Accuracy against
Annotation effort). The signs red squre, green circle, black asterisk, blue dash denote the results of Random
sampling, NEVIL, NEVIL.g, and NEVIL.ubm, respectively. a Scenario I. b Scenario II. c Scenario III. d
Scenario IV (Color figure online)

inwhere queries are carefully chosen (Randomstrategy occupies the lowest place in the table).
We observe that NEVIL.g and NEVIL.ubm are both significantly better than NEVIL. NEVIL
was based on a discriminative learning of the models, being unable to detect novel classes.
Therefore, it requires more user input for the same performance. Moreover, the learning of a
multiclass classifier at each timeslot using only the subset of objects present in that timeslot
is likely to induce false high likelihoods for the more recent classes. NEVIL.ubm has the
highest ALC (except for “OneShopOneWait1” and “OneLeaveShopReenter2”) and the best
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Table 3 Comparison of NEVIL.ubm with baseline methods on real-world datasets

Methods Datasets Mean
rankReenter2 Reenter1 Wait1 Front Path1 Enter2 Enter1 PETS2009 SAIVT

Random
strategy

0.69 0.63 0.59 0.68 0.62 0.66 0.51 0.56 0.57 4

NEVIL 0.76 0.90 0.84 0.79 0.74 0.84 0.78 0.68 0.82 3

NEVIL.g 0.94 0.89 0.90 0.88 0.85 0.91 0.81 0.71 0.88 2

NEVIL.ubm 0.93 0.96 0.88 0.93 0.86 0.95 0.87 0.79 0.92 1

Fig. 7 Comparison of the performance of NEVIL, NEVIL.g, NEVIL.ubm on real-world datasets (Accu-
racy against Annotation effort). The signs red squre, green circle, black asterisk, blue dash denote the
results of Random sampling, NEVIL, NEVIL.g, and NEVIL.ubm, respectively. a OneLeaveShopReen-
ter2. b OneLeaveShopReenter1. c OneShopOneWait1. d WalkByShop1front. e EnterExitCrossingPaths1. f
OneStopEnter2. g OneStopMoveEnter1 h PETS2009 (i) SAIVT (Color figure online)

mean rank over all the experiments. Figure 7 depicts the accuracy of various methods against
the amount of queries placed on the operator.

Although there is not a single operating point in the Learning Curve suitable for all the
applications, similarly to Culver et al. (2006), we chose the point obtained by labelling
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20% of batches for a more detailed analysis. Given that budget, we obtain 100% for four
scenarios (OneLeaveShopReenter2, OneLeaveShopReenter1, OneStopEnter2, and Walk-
ByShop1front). For more complex scenarios, such as OneStopMoveEnter1 (in where 42
streams from 14 classes are available) 80% of batches are correctly classified, showing a
clear improvement over prior approaches. All the results are obtained using the most confi-
dent class as batch confidence measure and the median as the combination rule.

We presented multiple combination rules including sum, product and median and various
confidence measure in Sects. 4.1.1 and 4.1.2, respectively. Any of the rules and measures
can be applied in the framework. Table 4 provides a summary of the ALC measure for each
setting on all datasets alongwith themean of ALC rank averaged over all the experiments.We
omit the margin measure results as it has shown results almost equal to the modified margin.
The table shows that settings in where sum rule have been applied for combining the infor-
mation occupy the two of top three spots (first and third). It is not surprising, since sum rule
outperformed the product rule when complex data is present (Alexandre et al. 2001; Kittler
et al. 1998). The results indicate that the most confident class as batch confidence measure
selects more informative batches than modified margin, as settings employing the former
have better mean rank. Based on the average rank, we conclude that the arithmetic mean as
combination rule and the most confident as selection criterion represents the optimal design.

Timeline generation

Figure 8 shows an example of automatically labelled streams of “OneEnterExitCrossing-
Path1” and the respective ground truth (Fig. 8a). The framework assigns labels to the batches.
It is desirable to assign the same identifier to all the streams of an individual object, however
labels do not carry any semantic information (a name corresponds to a unique number in
results). Figure 8b shows the output of the framework when 7% of batches are labelled. The
framework fails to identify the second class. Figure 8c can be considered as a successful case,
since all objects are correctly identified. The main difference to the groundtruth is the miss
identification of a stream. As the second object made a brief appearance in the scene, and he
is heavily occluded, the stream experiences an abrupt drift.

6.3 Stability

In many classical object recognition problems, the representation plays an important role in
the performance of the system. Our scenario as a pseudo object classification is not an excep-
tion. In here we analyse the impact of the representation in the performance of NEVIL.ubm.
We compare the performance reached with the three descriptors introduced in Sect. 5.2.
Table 5 lists FV as the top rank representation, attaining the lowest mean rank. We observe
that the performance of NEVIL.ubm does not change much with the representation, present-
ing a good stability.

6.4 Memory

Decisions made by models inside ensembles are combined in respect to time (�). Models are
incrementally forgotten, to give emphasis to models built from more recent data.

To evaluate the impact of the forgetting factor (α), we kept batch size constant letting
α vary. Results are plotted in Fig. 9. We observe that based on the datasets characteristics,
exploiting previous models could have different impacts on the final results; for scenarios
in where data drifts abruptly and re-reappearance of classes is not present (e.g scenario2,
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Fig. 8 Streams of “OneEnterExitCrossingPath1”, groundtruth and timeline outputted by the framework using
different amount of labelling. a Groundtruth. b Output of the framework using 7% labelling. c Output of the
framework using 21% labelling

Table 5 The ALC obtained with multiple descriptors

Hard quantization Bag of vistream Fisher kernel

OneLeaveShopReenter2 0.97 (1) 0.95 (2) 0.95 (3)

OneLeaveShopReenter1 0.93 (3) 0.96 (2) 0.97 (1)

OneShopOneWait1 0.91 (2) 0.86 (3) 0.92 (1)

WalkByShop1front 0.79 (3) 0.93 (1) 0.89 (2)

EnterExitCrossingPaths1 0.81 (2) 0.86 (1) 0.76 (3)

OneStopEnter2 0.95 (2) 0.91 (3) 0.97 (1)

OneStopMoveEnter1 0.77 (3) 0.87 (1) 0.85 (2)

PETS2009 0.76 (3) 0.79 (1) 0.79 (2)

SAIVT 0.79 (3) 0.90 (2) 0.92 (1)

Mean rank 3 2 1

The rank of the descriptors in a given dataset is presented next to the ALC between parentheses

123

Author's personal copy



630 Mach Learn (2015) 100:609–633

Fig. 9 Effect of forgetting factor (α) in ALC for various synthetic as well as real-world datasets. a Synthetic
datasets. b Multiple video clips

OneShopReenter2), keeping the last model is enough. However, in a real world surveillance
system, people may re-enter the scene after a while (which is the case for all our video clips
except OneShopReenter2). Furthermore, the appearance of objects may (it is very likely)
drift in time, but the drift is not strictly abrupt (which is the case in scenario II , in where
data is generated from a completely different distribution). In such scenarios, the framework
definitely gets advantage from proper choice of α. Through this proper range the choice of
α is not critical (see Fig. 9b, when α ∈ [0.4, 0.8]).
6.5 Time efficiency

Since NEVIL.ubm was developed in MATLAB without any efficiency concerns, a straight-
forward assessment of the time efficiency is not adequate. Nevertheless, some comments on
the running time are in order. The analysis time grows naturally with the complexity of the
dataset; the OneStopMoveEnter1 dataset was therefore the slowest to process. Although the
time to process a batch grows with the batch size, since the time spanned by the batch also
grows, the overall processing rate is not much affected by the batch size. Finally, ignoring the
time to build the UBM model (done before the deployment of the system) the NEVIL.ubm
framework was able to process in between real time and twice as fast the video streams, for
a framerate of 25 fps (running in an Intel Core i7 at 3.2GHz).

7 Conclusion

The typical learning settings already studied in the literature are not necessarily the most
interesting for practical applications, since they may not represent well the information that
is available.

In this paper, we present a learning setting yet unexplored in the literature but with wide
relevance, especially in video surveillance. After formalizing the learning problem, we pro-
pose a class-based ensemble framework for the classification of parallel visual data streams.
NEVIL.ubm framework is intended to learn from uneven parallel streams in non-stationary
environments in where both concept drift and concept evolution are available.

The framework receives directly the tracked sequences outputted by the tracking system
and maintains a global object identity common to all the cameras in the system. It adopts
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a UBM-normalized strategy in a class-based ensemble, where an individual ensemble (so
called micro-ensemble) is trained for every single class. The outputs of the individual models
are combined in individual ME using a weighted voting, where the weights are dynamically
updated with respect to the classifiers’ time of design. Since accumulating the labelling
error can severely damage this kind of on-line learning approach, we allow the system to
interact wisely with an operator, to help it stay on track. The framework has shown promising
performance with a fairly little human collaboration and can be applied in an on-line process.

There is still roomfor improvement in this framework: exploitingvideo specificdescriptors
(e.g. Bak et al. 2012;Wang et al. 2011), controlling the complexity of the ensemble, exploiting
smarter novelty detection approaches, and expanding the experimental work to a large scale
real-world dataset, all constitute our future work.
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