
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
C
A
V
*
Ar

tifact *

A
E
C

PVSio-web 2.0: Joining PVS to HCI

Paolo Masci1?, Patrick Oladimeji3, Yi Zhang2,
Paul Jones2, Paul Curzon1, and Harold Thimbleby3

1 Queen Mary University of London, United Kingdom
{p.m.masci,p.curzon}@qmul.ac.uk

2 U.S. Food and Drug Administration, Silver Spring, Maryland, USA
{yi.zhang2,paul.jones}@fda.hhs.gov

3 Swansea University, United Kingdom
{p.oladimeji,h.thimbleby}@swansea.ac.uk

Abstract. PVSio-web is a graphical environment for facilitating the
design and evaluation of interactive (human-computer) systems. Using
PVSio-web, one can generate and evaluate realistic interactive prototypes
from formal models. PVSio-web has been successfully used over the last
two years for analyzing commercial, safety-critical medical devices. It has
been used to create training material for device developers and device
users. It has also been used for medical device design, by both formal
methods experts and non-technical end users.

This paper presents the latest release of PVSio-web 2.0, which will be
part of the next PVS distribution. The new tool architecture is discussed,
and the rationale behind its design choices are presented.

PVSio-web tool: http://www.pvsioweb.org

Keywords: Prototyping; User Interface Analysis; Practical Formal Tools.

1 Introduction

Inadequate user interface design is repeatedly reported as a root cause of many
incidents in healthcare [1, 2], avionics [3], and other safety-critical domains [4].
Design and analysis of user interfaces often requires a multidisciplinary team
of human factors specialists, engineers, and end users to validate requirements,
specifications, and implementation details. Rigorous formal methods tools can
enable early identification of potential design issues. State-of-the-art verification
tools like PVS [5], however, generally have minimal front-ends that create bar-
riers when formal methods experts need to work in a multidisciplinary team
and engage with non-experts of formal methods technologies — e.g., to validate
hypotheses included in the formal models, or to discuss formal analysis results.

The tool presented in this paper, PVSio-web, significantly reduces these bar-
riers. PVSio-web is a web-based environment for modeling and prototyping in-
teractive (human-computer) systems in PVS, and is particularly suitable for:
validating hypotheses included in formal models and formal properties before

? Corresponding author.

http://www.pvsioweb.org


2 PVSio-web 2.0: Joining PVS to Human-Computer Interaction

(a) Prototype Builder. (b) Emucharts Editor and example diagram.

(c) Model Editor and a model snippet generated from the diagram in Figure 1(b).

Fig. 1. Screenshots of the main tools provided by the PVSio-web environment.

starting the verification process; demonstrating formal analysis results to engi-
neers and domain specialists in a way that is easy to comprehend; and enabling
lightweight formal analysis of user interfaces based on user-centred design meth-
ods, such as user testing and expert walkthroughs of prototypes. PVSio-web can
be freely downloaded with the latest version of PVS [6] or from our repository [7].

Related work. SCR [8] is a toolset for the analysis of system requirements and
specifications. Using SCR, one can formally specify the behavior of a system, use
visual front-ends for demonstrating the system behavior based on the specifica-
tions, and use a group of formal methods tools (including PVS) for the analysis
of system properties. In contrast to our tool, SCR lacks specialized functional-
ities needed for the analysis of user interfaces, such as rapid generation of user
interface prototypes, deployment of prototypes on mobile devices, and logging
of user interactions. Simulink [9] is a de-facto standard environment for model-
based design and analysis of dynamic systems. It provides a graphical model
editor based on Statecharts, and functions for rapid generation of realistic pro-
totypes. Unlike our tool, Simulink offers very limited functions for prototyping
user interface designs. More importantly, its architecture is not open, preventing
it from being used with PVS or other formal analysis tools. In [10], an approach
to develop realistic device prototypes using graph models and interactive pictures
is presented, but the approach is not supported by a development environment,
and the prototypes are manually crafted. PetShop [11], IVY [12] and similar
verification tools for formal analysis of user interfaces lack functions for rapid
generation of realistic prototypes. Other verification tools like Bandera [13] and
PVSioChecker [14] are not specialized for user interface analysis, and features
such as rapid prototyping are out of their intended functionalities.



PVSio-web 2.0: Joining PVS to Human-Computer Interaction 3

2 PVSio-web: System Overview and Applications

PVSio-web provides a formal methods based, sophisticated graphical front-end
for modeling and prototyping interactive (human-computer) systems. It trans-
forms the animation capabilities of PVS, and enables the user to rapidly generate
realistic prototypes in two steps: first, a picture of the user interface is loaded
into the tool; second, programmable areas are created over the picture and linked
to the formal model specifying the human-system interaction. Programmable ar-
eas for input widgets (e.g., buttons) over the user interface picture define how
user actions are translated into PVS expressions that can be animated within
PVSio [15], the native animation environment of PVS. Programmable areas for
output widgets (e.g., displays), on the other hand, define how results returned
by PVSio are rendered into visual elements of the prototype, so the visual ap-
pearance of the prototype can closely resemble the appearance of the real system
in the corresponding state.

Figure 1(a) is a screenshot of PVSio-web generating a prototype, where
framed boxes are programmable overlay areas: thus, our tool embeds a script in
the area over button “0” that translates click actions over the button into a PVS
expression click 0(st), and evaluates this expression in PVSio. The function
click 0 is defined in the PVS model of the system, st being the current model
state. Our tool automatically keeps track of model states during interaction with
the prototype, and seamlessly replaces st with the current model state. The
overlay over the display region renders the value of PVS expressions returned by
PVSio (here, as numbers).

Applications. PVSio-web has been applied successfully in the analysis of com-
mercial medical devices. Using PVSio-web, we have:
– demonstrated previously undetected design issues in medical devices [16,17],
– validated requirements for medical devices [18–21], and
– created training material [22] for device developers and users.

For example, the prototype shown in Figure 1(a) is one of many that have been
used to analyze real medical devices, here a drug infusion pump. Our analysis
focused on the data entry defining how the infusion pump responds when the
user enters configuration parameters, such as therapy data or patient data. The
PVS model of the infusion pump’s user interface was obtained by translating
the source-code implementation of its user interface software into a PVS theory.
Using PVSio-web, we generated a realistic prototype based on the formal model,
and used it to perform quick exploratory analyses of the model to understand
how to best formalize human factors principles as PVS theorems. An example
human factors principle is consistency, asserting that the same user actions
should produce the same results in logically equivalent situations. We formalized
this principle as a PVS theorem that checks whether the data entry interaction of
the device consistently registered button clicks in all states. This theorem allowed
us to discover previously undetected issues with the decimal point (full details
of the analysis are in [16]). The same prototype was also used to demonstrate
the identified design issues to regulators and real device users (nurses, doctors,



4 PVSio-web 2.0: Joining PVS to Human-Computer Interaction

Fig. 2. PVSio-web architecture. Rectangular boxes represent the main modules of the
tool; arrows between boxes represent use relationships between modules.

medical device trainers), resulting in the recognition of the safety implications of
these issues. This and other prototypes generated using PVSio-web are currently
used in training material for hospitals [23], device manufacturers, and regulators
to raise awareness about general user interface software issues [22].

3 The PVSio-web Architecture

The architecture of the latest release of PVSio-web is shown in Figure 2. It fol-
lows the Model-View-Controller design pattern [24], creating a clear separation
between modules responsible for the behavior of the prototype and those for its
visual appearance. In particular, the behavior of a prototype is entirely specified
using PVS executable models animated within PVSio. PVSio is used as is, with-
out any modification that might compromise its correctness or sound integration
with PVS.

PVSio-web provides multiple facets; that is, it combines different develop-
ment environments specifically designed for different target users. One facet,
Simulator View, is designed for domain specialists and end users: it includes
only elements and functionalities for exploring the behavior of prototypes gen-
erated with PVSio-web. The other facets are designed for developers and formal
methods specialists. They provide tools for creating the visual appearance of
the prototype (Prototype Builder), and for editing the PVS model. Advanced
PVS users can use the Model Editor for editing and type-checking PVS models;
developers who are novice PVS users can use a visual model editor (Emucharts
Editor) for developing formal models using a graphical notation based on Stat-
echarts [25]. The facets work well together, allowing people with different back-
ground and expertise to work together with the same underlying formal models.

I The Simulator View handles the execution of prototypes developed
within PVSio-web, and logs user interactions with the prototype. This mod-
ule renders the visual elements of the prototype, and implements functions for
detecting and logging user actions over input widgets. It also translates user
actions performed on the input widgets into PVS expressions; triggers the eval-
uation of PVS expressions in PVSio; and renders PVS expressions returned by
PVSio into visual elements of the prototype. Translation of user actions into
PVS expressions, and rendering of PVS expressions into visual elements are
performed in real time using template scripts created with Prototype Builder.
Example prototypes executed within Simulator View are illustrated in [17,22].



PVSio-web 2.0: Joining PVS to Human-Computer Interaction 5

I The Prototype Builder automates the generation of a prototype, pro-
viding a graphical environment with functions for defining the visual aspect of
the prototype (typically, a picture) and for creating programmable overlay areas
that enable interaction with the prototype. Overlay areas corresponding to in-
put widgets define which user actions are recognized (e.g., press, release, click)
and how these actions are translated into PVS expressions. The translation is
performed using templates that map user actions to PVS functions on the basis
of naming conventions. An example template is click <btn>(<st>), which
translates clicks performed by the user over a button <btn> into a PVS func-
tion that takes one parameter <st>, representing the current model state. Areas
corresponding to output widgets use string filters to extract the actual value of
the widget from PVS expressions returned by PVSio.

I The EmuCharts Editor implements a visual editor and code generators
for creating executable formal models. With this module, developers can: define
states by drawing labelled boxes; define transitions by drawing labelled arrows;
define variables representing relevant characteristics of the system; and generate
executable models from the visual diagram. Model generators employ constructs
from languages supported by popular analysis tools and programming languages:
state labels are translated into enumerated type constants; state variables are
translated into fields of a record type defining the system state; state transitions
are translated into transition functions over system states. Language constructs
for checking well-formedness of the model are automatically embedded in the
generated models. For example, the PVS model generator introduces subtyp-
ing [26] relations so that consistency and coverage of conditions can be checked
with the PVS type-checker (e.g., see the PVS model snippet in Figure 1(c)).

I The Model Editor is a text editor for editing formal models, providing
the typical functionalities of modern IDEs (syntax highlighting, autocomplete,
search, etc) as well as a file browser to perform operations on the file system.

I The PVSio Wrapper spawns PVSio processes needed for model anima-
tion, and hides the native read-eval-print loop of PVSio behind an API imple-
menting a standard observer pattern [27], with functions for sending commands
to PVSio, and for receiving call-backs when PVSio returns a result. This module
implements mechanisms to disable inappropriate configurations of our tool, e.g.,
it disallows spawning multiple concurrent instances of PVSio for demonstrating
concurrent systems (the demonstration of such systems must be based on a PVS
model that explicitly defines the concurrent behavior).

I The Co-Simulator creates a communication infrastructure that enables
exchange of simulation events and data between PVS models animated within
PVSio and models animated within other simulation environments. This module
is particularly useful for the development and evaluation of complex systems. In
particular, a development team can employ different modeling and analysis tools
for different parts of a complex system, while using the Co-Simulator to verify
system properties in a coordinated simulation environment. Example prototypes
using this module to perform co-simulation of PVS models and Simulink models
are described in [28,29].



6 PVSio-web 2.0: Joining PVS to Human-Computer Interaction

4 Implementation

The core modules of PVSio-web are entirely implemented in JavaScript, which
eases the deployment of PVSio-web to mobile devices (tablets, smartphones, etc)
allowing demonstrations to be given conveniently to domain experts. A client-
server architecture is used, in which the server builds on NodeJS [30] and the
client relies on the JavaScript engine of web browsers. Jison [31] is employed to
automatically generate language parsers from production rules. Model generators
use Handlebars [32] for generating formal specifications from model templates.
PVSio-web 2.0 includes model generators for PVS, MAL [12], PIM [33], and
VDM-SL [34]. PVSio-web text editors build on CodeMirror [35]. PVSio-web
visual editors build on D3.js [36].

PVSio-web was first released in early 2013 [37]. The tool has been contin-
uously extended with new features, and re-engineered to improve modularity
and the overall code quality. JSLint [38] and Jasmine [39] are routinely used to
ensure that our implementation is compliant with established coding standards
and that the code is well-formed. The latest version of PVSio-web consists of
18,000 lines of JavaScript code.

5 Conclusions and future directions

PVSio-web shows it is possible and productive to make realistic user interfaces,
with all the benefits of web access (mobility, platform independence), connected
closely to formal methods tools. PVSio-web makes professional formal methods
accessible to end users and others, as is required in best practice for user interface
design. We believe that our tool has the potential to improve the development of
safe and dependable device user interfaces, as it facilitates using formal methods
practices in an area of product design that has typically not made use of this
technology. The tool is gaining popularity: it was downloaded over 1,600 times in
2014 [40]; research groups are exploring applications of the tool to the analysis of
commercial products in other application domains (e.g., Honeywell is using it to
analyze flight decks [41]). PVSio-web has been successfully used in tutorials [42,
43] to explain the structure of PVS models, and the meaning of PVS theorems
to researchers and students that were not familiar with formal methods. Other
universities [44–47] are also using our tool as a basis for projects and student
theses. Current and future development directions include improved support
for advanced formal verification techniques. For example, we are developing a
new visual front-end, Proof Explorer [48], to ease the demonstration of formal
proofs, the generation of test cases from verification results, and the development
of proof strategies specialized for the analysis of user interface software (example
strategies are informally described in [21]). We are additionally developing model
generators and co-simulators to link our tool with other popular formal methods
tools, including SAL [49], KeYmaera [50], and Uppaal [51]. We are also regularly
adding new case studies in medical and other domains, e.g., for avionics and
aerospace.



PVSio-web 2.0: Joining PVS to Human-Computer Interaction 7

Acknowledgements. This work is part of CHI+MED (EPSRC grant [EP/G059063/1]).

The authors would like to thank SRI International, in particular John Rushby, Sam

Owre and Natarajan Shankar for supporting the development of our tool.

Disclaimer. The mention of commercial products, their sources, or their use in con-

nection with material reported herein is not to be construed as either an actual or

implied endorsement of such products by the U.S. Department of Health and Human

Services.

References

1. L. Simone, “Software-related recalls: An analysis of records,” Biomedical Instru-
mentation & Technology, vol. 47, no. 6, pp. 514–522, 2013.

2. US Food and Drug Administration (FDA), “Manufacturer and User Facility Device
Experience Database (MAUDE).” http://www.fda.gov/MedicalDevices/
DeviceRegulationandGuidance/PostmarketRequirements/
ReportingAdverseEvents/ucm127891.htm.

3. G. Gelman, K. Feigh, and J. Rushby, “Example of a complementary use of model
checking and human-performance simulation,” IEEE Transactions on Human-
Machine Systems, vol. 44, no. 5, pp. 576–590, 2014.

4. L. Millett, M. Thomas, D. Jackson, et al., Software for Dependable Systems:: Suf-
ficient Evidence? National Academies Press, 2007.

5. S. Owre, J. Rushby, and N. Shankar, “PVS: A Prototype Verification System,”
in 11th International Conference on Automated Deduction (CADE), vol. 607 of
Lecture Notes in Artificial Intelligence, pp. 748–752, 1992.

6. “PVS Specification and Verification System — GitHub repository.” https://
github.com/samowre/PVS.

7. “PVSio-web – Interactive human-computer systems modelling and prototyping
tool.” http://www.pvsioweb.org.

8. C. Heitmeyer, J. Kirby, B. Labaw, and R. Bharadwaj, “SCR: A toolset for specify-
ing and analyzing software requirements,” in Computer Aided Verification, pp. 526–
531, Springer, 1998.

9. “Mathworks Simulink.” http://www.mathworks.com/products/simulink.

10. H. Thimbleby and J. Gow, “Applying graph theory to interaction design,” in En-
gineering Interactive Systems, pp. 501–519, Springer, 2008.

11. P. Palanque, J. Ladry, D. Navarre, and E. Barboni, “High-fidelity prototyping
of interactive systems can be formal too,” in Human-Computer Interaction. New
Trends, pp. 667–676, Springer, 2009.

12. J. Campos and M. Harrison, “Interaction engineering using the IVY tool,” in Pro-
ceedings of the ACM SIGCHI Symposium on Engineering Interactive Computing
Systems (EICS09), pp. 35–44, ACM, 2009.

13. J. Hatcliff, M. B. Dwyer, C. Păsăreanu, et al., “Foundations of the bandera ab-
straction tools,” in The Essence of Computation, pp. 172–203, Springer, 2002.

14. A. Dutle, C. Muñoz, A. Narkawicz, and R. Butler, “Software validation via model
animation,” in 9th International Conference on Tests and Proofs (TAP2015),
Springer, 2015.

15. C. Muñoz, “Rapid prototyping in PVS,” Tech. Rep. NIA Report No. 2003-03,
NASA/CR-2003-212418, National Institute of Aerospace, 2003.

http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/PostmarketRequirements/ReportingAdverseEvents/ucm127891.htm
http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/PostmarketRequirements/ReportingAdverseEvents/ucm127891.htm
http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/PostmarketRequirements/ReportingAdverseEvents/ucm127891.htm
https://github.com/samowre/PVS
https://github.com/samowre/PVS
http://www.pvsioweb.org
http://www.mathworks.com/products/simulink


8 PVSio-web 2.0: Joining PVS to Human-Computer Interaction

16. P. Masci, Y. Zhang, P. Jones, P. Curzon, and H. Thimbleby, “Formal Verification of
Medical Device User Interfaces Using PVS,” in 17th International Conference on
Fundamental Approaches to Software Engineering (ETAPS/FASE2014), (Berlin,
Heidelberg), Springer-Verlag, 2014.

17. P. Masci, P. Oladimeji, P. Curzon, and H. Thimbleby, “Tool demo: Using PVSio-
web to demonstrate software issues in medical user interfaces,” in 4th Intl.
Symposium on Foundations of Healthcare Information Engineering and Systems
(FHIES2014), 2014.

18. P. Masci, A. Ayoub, P. Curzon, M. Harrison, I. Lee, and H. Thimbleby, “Verifi-
cation of interactive software for medical devices: PCA infusion pumps and FDA
regulation as an example,” in EICS2013, 5th ACM SIGCHI Symposium on Engi-
neering Interactive Computing Systems, ACM Digital Library, 2013.

19. P. Masci, A. Ayoub, P. Curzon, I. Lee, O. Sokolsky, and H. Thimbleby, “Model-
based development of the generic PCA infusion pump user interface prototype in
PVS,” in Computer Safety, Reliability, and Security (SafeComp2013), vol. 8153 of
Lecture Notes in Computer Science, pp. 228–240, Springer Berlin Heidelberg, 2013.

20. P. Masci, R. Rukšėnas, P. Oladimeji, P. Cauchi, A. Gimblett, Y. Li, P. Curzon,
and H. Thimbleby, “The benefits of formalising design guidelines: A case study on
the predictability of drug infusion pumps,” Innovations in Systems and Software
Engineering, Springer-Verlag London, 2013.

21. M. Harrison, P. Masci, J. Campos, and P. Curzon, “Demonstrating that medical
devices satisfy user related safety requirements,” in 4th Intl. Symposium on Foun-
dations of Healthcare Information Engineering and Systems (FHIES2014), 2014.

22. P. Masci, “Design issues in medical user interfaces.” https://www.youtube.
com/watch?v=T0QmUe0bwL8.

23. P. Masci, “Data entry issues in medical devices.” Seminar given within the Wash-
ington Adventist Hospital’s Continuing Medical Education (CME) Program, 2014.

24. G. Krasner and S. Pope, “A description of the Model-View-Controller user interface
paradigm in the Smalltalk-80 system,” Journal of object oriented programming,
vol. 1, no. 3, pp. 26–49, 1988.

25. D. Harel, “Statecharts: A visual formalism for complex systems,” Science of Com-
puter Programming, vol. 8, pp. 231–274, June 1987.

26. N. Shankar and S. Owre, “Principles and pragmatics of subtyping in PVS,” in
Proc. of WADT ’99, vol. 1827 of Lecture Notes in Computer Science, pp. 37–52,
Springer-Verlag, 1999.

27. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns: elements of
reusable object-oriented software. Pearson Education, 1994.

28. P. Masci, Y. Zhang, P. Jones, P. Oladimeji, E. D’Urso, C. Bernardeschi, P. Curzon,
and H. Thimbleby, “Combining PVSio with Stateflow,” in Proceedings of the 6th
NASA Formal Methods Symposium (NFM2014), (Berlin, Heidelberg), Springer-
Verlag, April-May 2014.

29. C. Bernardeschi, A. Domenici, and P. Masci, “Integrated simulation of implantable
cardiac pacemaker software and heart models,” in 2nd International Conference
on Cardiovascular Technologies (CARDIOTECHNIX2014), ScitePress Digital Li-
brary (http://www.scitepress.org), 2014.

30. “Node.js.” http://nodejs.org.
31. “Jison – JavaScript Parser Generator.” http://jison.org.
32. “Handlebars Semantic Templates.” http://handlebarsjs.com.
33. J. Bowen and S. Reeves, “Modelling safety properties of interactive medical sys-

tems,” in Proceedings of the 5th ACM SIGCHI Symposium on Engineering Inter-
active Computing Systems, EICS13, pp. 91–100, ACM, 2013.

https://www.youtube.com/watch?v=T0QmUe0bwL8
https://www.youtube.com/watch?v=T0QmUe0bwL8
http://nodejs.org
http://jison.org
http://handlebarsjs.com


PVSio-web 2.0: Joining PVS to Human-Computer Interaction 9

34. P. Masci, L. Couto, P. Larsen, and P. Curzon, “Integrating the PVSio-web mod-
elling and prototyping environment with Overture,” in 13th Overture Workshop,
satellite event of FM2015, 2015.

35. “CodeMirror text editor for web browsers.” http://codemirror.net.
36. “D3.js JavaScript library for dynamic creation and control of graphical elements.”

http://d3js.org.
37. P. Oladimeji, P. Masci, P. Curzon, and H. Thimbleby, “PVSio-web: A tool for

rapid prototyping device user interfaces in PVS,” in 5th International Workshop on
Formal Methods for Interactive Systems (FMIS2013), 2013. Tool and application
examples available at http://www.pvsioweb.org.

38. “JSLint – JavaScript Code Quality Tool.” http://www.jslint.com.
39. “Jasmine – JavaScript Testing Tool.” http://jasmine.github.io.
40. “Download statistics for package pvsio-web.” http://npm-stat.com/charts.

html?package=pvsio-web.
41. B. Hall and D. Bhatt, “Formal Specification And Verification of Human Interactive

Interfaces Incorporating Voice Control.” Project Proposal, Honeywell, 2013.
42. “Medical devices and HCI.” Full day tutorial at NordiCHI, 2014, http://cs.

swan.ac.uk/˜cspo/2014/nordichi/.
43. P. Masci, “Design and analysis of software for interactive medical devices.” PhD

module at University of Pisa, 2014, http://phd.dii.unipi.it/formazione/
item/85-dr-paolo-masci.

44. N. Robb, “Exploring Aspects of Automated Test Generation on Models.” Honour
project, Waikato University, New Zealand, 2015.

45. I. Pascoe, “Usability study of a system that models interactive systems.” Honour
project, Waikato University, New Zealand, 2015.

46. E. D’Urso, “Emulink: a graphical modelling environment for PVS,” Master’s thesis,
University of Pisa, Italy, 2014.

47. C. Faria, “Web-base user interface prototyping and simulation,” Master’s thesis,
University of Minho, Portugal, 2014.

48. “Proof Explorer.” https://github.com/thehogfather/ProofExplorer.
49. L. De Moura, S. Owre, H. Rueß, J. Rushby, N. Shankar, M. Sorea, and A. Tiwari,

“SAL 2,” in Computer Aided Verification, pp. 496–500, Springer, 2004.
50. A. Platzer and J. Quesel, “KeYmaera: A hybrid theorem prover for hybrid sys-

tems,” in Automated Reasoning, pp. 171–178, Springer, 2008.
51. G. Behrmann, A. David, K. Larsen, J. Hakansson, P. Petterson, W. Yi, and M. Hen-

driks, “Uppaal 4.0,” in Quantitative Evaluation of Systems, 2006. QEST 2006.
Third International Conference on, pp. 125–126, IEEE, 2006.

http://codemirror.net
http://d3js.org
http://www.pvsioweb.org
http://www.jslint.com
http://jasmine.github.io
http://npm-stat.com/charts.html?package=pvsio-web
http://npm-stat.com/charts.html?package=pvsio-web
http://cs.swan.ac.uk/~cspo/2014/nordichi/
http://cs.swan.ac.uk/~cspo/2014/nordichi/
http://phd.dii.unipi.it/formazione/item/85-dr-paolo-masci
http://phd.dii.unipi.it/formazione/item/85-dr-paolo-masci
https://github.com/thehogfather/ProofExplorer

	PVSio-web 2.0: Joining PVS to HCI
	Introduction
	PVSio-web: System Overview and Applications
	The PVSio-web Architecture
	Implementation
	Conclusions and future directions


