
IEEE TRANSACTIONS ON SECURE AND DEPENDABLE COMPUTING, VOL. XX, NO. X, XXX 2020 1

Boolean Searchable Symmetric Encryption with
Filters on Trusted Hardware

Bernardo Ferreira, Bernardo Portela, Tiago Oliveira, Guilherme Borges, Henrique Domingos,
and João Leitão

Abstract—The prevalence and availability of cloud infrastructures has made them the de facto solution for storing and archiving data,
both for organizations and individual users. Nonetheless, the cloud’s wide spread adoption is still hindered by dependability and
security concerns, particularly in applications with large data collections where efficient search and retrieval services are also major
requirements. This leads to an increased tension between security, efficiency, and search expressiveness. In this paper we tackle this
tension by proposing BISEN, a new provably-secure boolean searchable symmetric encryption scheme that improves these three
complementary dimensions by exploring the design space of isolation guarantees offered by novel commodity hardware such as Intel
SGX, abstracted as Isolated Execution Environments (IEEs). BISEN is the first scheme to support multiple users and enable highly
expressive and arbitrarily complex boolean queries, with minimal information leakage regarding performed queries and accessed data,
and verifiability regarding fully malicious adversaries. Furthermore, BISEN extends the traditional SSE model to support filter functions
on search results based on generic metadata created by the users. Experimental validation and comparison with the state of art shows
that BISEN provides better performance with enriched search semantics and security properties.

Index Terms—Searchable Encryption, Intel SGX, Secure Databases, Provable Security, Distributed Systems

F

1 INTRODUCTION

C LOUD computing has had a profound impact on the way
that we design and operate systems and applications. In

particular, data storage and archiving is now commonly delegated
to cloud infrastructures, both by companies and individual users.
Companies typically want to archive large volumes of data, such
as e-mails or historical documents, overcome limitations or lower
costs of their on-premise infrastructures [2], while individual users
benefit from having easily accessible documents and reduced
storage overhead on their mobile devices [16].

However, data being outsourced to the cloud is often sen-
sitive and should be protected accordingly. Private information
incidents are constant reminders of the growing importance of
these issues: governmental agencies impose increasing pressure
on cloud companies to disclose users’ data and deploy backdoors
[27]; cloud providers are responsible, maliciously or accidentally,
for critical data disclosures [24]; and even external hackers have
gained remote access to users data for limited time windows [31].
Cloud outsourcing services are thus highly incentivized to address
these dependability and security requirements. In particular, when
storing and updating large volumes of data in the cloud, it is
essential to offer efficient, secure, and precise mechanisms to
search and retrieve relevant data objects from the archive. This

• B. Ferreira is with the LASIGE Research Center and the department of
Computer Science, Faculdade de Ciências, Universidade de Lisboa.
E-mail: blferreira@ciencias.ulisboa.pt

• B. Portela is with the NOVA LINCS Research Center and the Department of
Computer Science and Computers, Faculdade de Ciências, Universidade
do Porto.

• T. Oliveira is with the INESC-TEC Research Center and the Department of
Computer Science and Computers, Faculdade de Ciências, Universidade
do Porto.

• G. Borges, H. Domingos, and J. Leitão are with the NOVA LINCS Research
Center and the Department of Computer Science, Faculdade de Ciências
e Tecnologia, Universidade Nova de Lisboa

Manuscript received ...

highlights the need for cloud-based systems to balance security,
efficiency, and query expressiveness.

To address this tension, Searchable Symmetric Encryption
(SSE) [7] has emerged as an important research topic in recent
years, allowing one to efficiently search and update an encrypted
database within an untrusted cloud server with security guarantees.
Efficiency in SSE is achieved by building an encrypted index
of the database and storing it in the cloud [18]. At search time,
a cryptographic token specific to the query is built and used
to access the index, and retrieved index entries are decrypted
and processed. To minimize communication overhead, most SSE
schemes delegate the execution of cryptographic computations
to the cloud, as multiple index entries would otherwise have to
be requested and downloaded to the client. However, performing
sensitive operations in the cloud also leads to significant infor-
mation leakage, including the leakage of document identifiers
matching a query, the repetition of queries, and the compromise
of forward and backward privacy [40] (respectively, if new update
operations match contents with previously issued queries, and if
queries return previously deleted documents). These are common,
yet severe, flavors of information leakage that pave the way
for strong attacks on SSE, including devastating file-injection
attacks [45]. Another relevant limitation of SSE schemes is query
expressiveness, as most solutions only support single keyword
match [14] or limited boolean queries (e.g., forcing queries to be
in Conjunctive Normal Form and not supporting negations) [28].
This hinders system usability and may force users to perform
multiple queries in order to retrieve relevant results, leading to
extra communication steps and additional information leakage.

In this paper we address these limitations by presenting
BISEN (Boolean Isolated Searchable symmetric ENcryption), a
new provably-secure boolean SSE scheme that improves query
expressiveness by supporting arbitrarily complex boolean queries
with combinations of conjunctions, disjunctions, and negations.

IEEE TRANSACTIONS ON SECURE AND DEPENDABLE COMPUTING, VOL. XX, NO. X, XXX 2020 2

This is a significant improvement over the current state of the art,
since supporting boolean queries is fundamentally more challeng-
ing than single-keyword queries and addressing negations is a non
trivial task. Furthermore, BISEN also supports multiple users with
access control features and boosts performance by minimizing the
number of communication steps and amount of data transferred
between clients and cloud servers. A central insight in the design
of BISEN is the fact that we can securely delegate critical
computations to the cloud by leveraging on a hybrid solution
that combines standard symmetric-key cryptographic primitives
(e.g., Pseudo-Random Functions and Block-Ciphers [29]) with
remote attestation capabilities offered by modern trusted hardware,
formally captured by an abstraction called Isolated Execution
Environments (IEEs) [5].

An IEE is an environment that allows applications to execute
in isolation from all external interference (including co-located
software and even a potentially malicious Hypervisor/OS) and that
provides a mechanism for the remote attestation of computed out-
puts. Until recently, such an abstraction could only be built through
hardware that was unfeasible to deploy in cloud infrastructures,
however recent advances in trusted computing have made IEEs
available in commodity hardware. Prominent examples include
Intel SGX [17] and ARM TrustZone [1], which are being deployed
in current desktop and mobile processors and will soon become
available as part of many cloud infrastructures [37].

A main advantage of designing our system to leverage the
IEE abstraction lies in its portability, as our solution can be
easily instantiated using different existing (or future) IEE-enabling
technologies as they become available in cloud platforms, while
preserving security guarantees. This is also relevant considering
recent attacks on trusted hardware [42], [43]. To further increase
this portability, we extend the IEE formalization to support very
lightweight hardware technologies (such as Intel SGX, with its
limited Enclave Page Cache size of 128MB), complemented with
SSE techniques and cryptographically protected accesses to more
abundant untrusted resources in the machine hosting the IEE or
in other external cloud storage services. This approach has mutual
benefits: SSE techniques allow extending IEE trusted resources
beyond hardware limitations in a secure way, minimizing assump-
tions regarding the underlying technology; and IEEs enable better
performance, scalability, and security for SSE schemes.

The work presented in this paper was first introduced in [22].
In this version, we additionally propose to extend the traditional
SSE model to support filter functions on conjunctive and disjunc-
tive queries based on metadata created by the users. This extension
allows users to further expand the expressiveness and usability of
their queries in a secure way. Example uses include application-
agnostic filters such as ranked queries based on keyword frequen-
cies, and application-specific filters such as condition severity in
personal health records and header fields in emails. We extend
BISEN to support this new model, and implement specific filters
and metadata for supporting ranked queries. We then evaluate the
impact of the implemented filters on the performance of BISEN.
A final addition to this version is a performance measurement
of using BISEN with different remote storage solutions, namely
REDIS and Cassandra. Our contributions are as follows:
• We propose and formalize an approach for extending trusted

hardware resources, integrating it in the IEE abstraction of
Barbosa et al. [5]. This approach allows IEEs to support and
operate on very large databases, and may be of particular
interest for other applications;

• We propose and formalize an extension to the traditional SSE
model that gives support for metadata-based filters on search
results, allowing SSE schemes to further improving query
expressiveness in a secure and efficient way;

• We design BISEN, a new Boolean SSE scheme based on
the two previous formalizations. BISEN supports multiple
clients with access control features, provides verifiability
against fully malicious adversaries, supports dynamic updates
with forward and backward privacy, and supports arbitrarily
complex boolean queries with filters that only reveal which
encrypted index entries are accessed. Moreover, by leverag-
ing IEEs as remote trust anchors, BISEN is able to move most
client-side computations to the server, reducing computation,
storage, and communication overheads;

• We implement a prototype of BISEN based on Intel SGX,
which we run on real world datasets to experimentally val-
idate its efficiency properties. Our prototype is open-source
and available at https://github.com/bernymac/BISEN.

2 BACKGROUND AND RELATED WORK

Isolated Execution Environments (IEEs) As defined by Barbosa
et al. [5], an IEE is an idealized random access machine, running
a fixed program, and whose behaviour can only be influenced
by a well-specified interface that allows input/output interactions
with the program. Isolation guarantees in IEEs follow from the
requirements that: the I/O behaviour of programs running within
them can only depend on themselves, on the semantics of their
language, and on inputs received; and that the only information
revealed about these programs must be contained in their I/O
behaviour. This abstraction allows for the formal treatment of
remote attestation mechanisms offered by technologies such as
SGX and TrustZone, which were shown in [5] to be sufficient for
the deployment of Outsourced Computation protocols.

Building on these definitions, Bahmani et al. [3] demonstrated
how to refine the IEE attestation mechanism to enable for the
deployment of general multiparty computation. Their design fol-
lows two main stages. First, clients leverage remote attestation
mechanisms to perform a key exchange agreement with the IEE
and establish a secure communication channel. Afterwards, clients
use these channels to interact with a reactive functionality on the
IEE, exchanging encrypted inputs and outputs with confidentiality
and integrity guarantees. The usage of sequence numbers in
communications made through these channels also prevents a
malicious server from repeating requests. In this work we will
leverage on the IEE abstraction and this protocol, further extending
it by allowing the IEE to interact with untrusted storage resources
with privacy, integrity, and verifiability guarantees.

Searchable Symmetric Encryption (SSE) SSE deals with the
problem of how to efficiently search and update an encrypted
database [18]. To achieve this goal, SSE schemes usually build an
encrypted index of the database (e.g. an inverted list index [34]),
hence reducing the previous problem to the easier one of searching
and updating an encrypted index. This approach has additional
advantages, as the index allows search performance to be sub-
linear on the database size, and the data itself can eventually
be stored on a second storage system with different security
guarantees. In its most simple version, keys of this encrypted index
are keywords encoded with keyed hash functions, and values are
symmetrically encrypted versions of document identifiers.

IEEE TRANSACTIONS ON SECURE AND DEPENDABLE COMPUTING, VOL. XX, NO. X, XXX 2020 3

To search the encrypted index, the client transforms his query
into a cryptographic token (usually composed of a pair of cryp-
tographic keys), which is used by the server to find and decrypt
relevant index entries. This approach allows the encrypted index
to leak no information while it remains in storage, however some
information patterns must be leaked when it is updated or queried,
as a necessary trade-off for achieving practical performance (en-
suring zero leakage during computation would require expensive
techniques such as Oblivious-RAM [26]). Information leaked by
SSE schemes includes search patterns (if a query has occurred
in the past and when) and access patterns (which index entries
are accessed by the query). Query-recovery attacks have been
demonstrated based on both patterns [13], [33], although requiring
large a-priori database knowledge (around 90%) or the adversarial
ability to inject files [45].

Forward and backward privacy are also important security
definitions in SSE [40]. Forward privacy enforces that update op-
erations should not reveal anything regarding updated keywords,
even if combined with previously issued query tokens [8], and
helps partially mitigating file-injection attacks. Backward privacy
requires that search operations only reflect the current database
state, and should reveal nothing regarding deleted keywords [9].

SSE schemes usually only support single keyword queries, as
supporting boolean multi-keyword queries with similar security
guarantees and performance is a fundamentally more difficult
problem [15]. Even the most recent Boolean SSE scheme to
date [28] still provides: limited usability, as it does not support
negations and queries must be in Conjunctive Normal Form
(CNF), possibly forcing users to rewrite their queries; limited
performance, requiring quadratic server storage in the number of
unique keywords in the database and exhibiting quadratic search
performance in the query size; and limited security, as queries
leak the search and access patterns of some of their individual
keywords and of the resulting conjunctions/disjunctions. This
is due to the difficulty of managing complex multi-map data-
structures required by the authors for supporting boolean queries,
which we show in this work to be avoidable when relying on
remote trust anchors expanded with cryptographically secured
accesses to a large untrusted storage service.

Recent works [4], [12], [20] have also expanded query expres-
siveness and usability by ranking search results, returning to the
users a list of results sorted by relevance to the query. However,
offering these functionalities without sacrificing security and per-
formance is still challenging. Moreover, the solutions presented so
far follow ad-hoc approaches to solve their specific problems. In
this paper we present a new approach, based on generic metadata
and filter functions, that allows adding new functionalities to SSE
schemes in a modular, provably secure, and efficient way.

Cryptographic Protocols based on Trusted Hardware Recent
works have demonstrated the benefits that trusted hardware like
Intel SGX can bring to the design of cryptographic protocols. Iron
[23] used Intel SGX to develop a practical Functional Encryption
(FE) scheme [23]. SSE, as most schemes for privacy-preserving
computations, can be seen as specialization of FE, meaning that
the approach proposed by the authors could also be employed to
solve the problems we address in this work. However, our ap-
proach is specifically tailored for solving the challenges posed by
searching encrypted data, optimizing performance and efficiency
as no general purpose approach traditionally can.

ZeroTrace [38] provided a more efficient protocol for

Client 1

Untrusted
Resources

Trusted
Resources

Isolated
Execution

Environment
(IEE)

(IEE.{Setup,Send,Receive} calls)

IEE-Client
Secure Channel

IEE-Storage
Secure Channel

(IEE.{uInit,uPut,uGet} calls)

Proxy
Server

Cloud
Storage
Service

Client 2
…

Client n

Certificate
Authority

Fig. 1: Overview of the proposed approach.

Oblivious-RAM based on SGX. Their techniques can be used to
complement our approach, as a way to further reduce information
leakage and provide further resilience to side-channel attacks [43].
HardIDX [25] used SGX for efficiently supporting range queries in
SSE. Their approach has similarities with ours, but its focus is on
a fundamentally different problem (range queries). Additionally, it
only supported static databases and required the client to build
the encrypted index. In contrast, our work supports dynamic
updates with minimal leakage and moves most computations to
the cloud in a secure way, both considered essential for practical
applications.

3 TECHNICAL OVERVIEW

The main idea of BISEN is for clients to leverage IEEs as
remote trust anchors within the cloud, supporting efficient update
and search operations on their cloud-stored encrypted databases.
However, it would be unfeasible to maintain a whole database
index within a resource-restricted IEE. As such, our proposal
is to leverage a highly efficient environment for computations
(the IEE) and a virtually infinite source for external storage (the
cloud). BISEN combines these tools in the IEE side of the code,
processing queries within its isolated memory, and relying on a
cloud service for storing encrypted data.

Figure 1 provides an overview of BISEN’s architecture and its
components. BISEN starts with a bootstrapping phase, where a
client contacts a cloud server to initiate the IEE with BISEN’s
code. We call this server the Proxy Server, as it operates the
IEE, manages all of its communications, and orders concurrent
accesses. When started, the IEE initiates its state and asks a Cloud
Storage Service to create BISEN’s (initially empty) encrypted
index. This storage service will basically be responsible for large-
scale storage, and can even be instantiated through pure storage
solutions (e.g., AWS S3), as it only needs to support put/get
operations. Hardcoded in BISEN’s code is the public key of a
trusted Certificate Authority, allowing the IEE to only accept
messages from clients that present a valid signed certificate.

After the bootstrap stage, clients can contact the proxy server
to remotely attest it created an IEE with BISEN’s code and to
establish secure communication channels with it. Secure channels
are established through a key-exchange algorithm based on remote
attestation and the clients’ public keys, as in [3]. Through these
channels, clients can issue update and search operations to the IEE,

IEEE TRANSACTIONS ON SECURE AND DEPENDABLE COMPUTING, VOL. XX, NO. X, XXX 2020 4

which it processes by contacting the storage service and accessing
BISEN’s index.

Updates allow both adding and removing keywords to/from
documents. In either case, a new encrypted entry is added to
BISEN’s index, where its key is composed of a deterministic
cryptographic token uniquely combining the keyword and doc-
ument, and its value is an encrypted message that includes the
document id, a flag indicating if the operation is an addition or
removal, and any metadata that the client wishes to associate with
this update. This approach guarantees that both operations are
indistinguishable, a necessary condition for preserving forward
and backward privacy, and that arbitrary filter functions can be
applied when processing queries.

Search operations take a boolean query as input and a set
of filter functions. The IEE processes the query, retrieves and
decrypts relevant index entries from the storage service, applies
the filter functions, and calculates the resulting set of document
ids. Finally, it returns this set to the client.

Adversary Model. The clients, the IEE, and the Certificate
Authority are the only trusted participants in BISEN. The Proxy
Server and Storage Service are considered fully malicious, i.e.,
they may attempt to break data privacy, integrity, or computation
correctness. Networking channels are also considered untrusted.
Denial of service is considered out of scope for this work, as the
cloud controls the whole infrastructure, but may be addressed in
future works through cross-cloud replication.

Application Scenario. An interesting application scenario for
BISEN is that of encrypted archival of email in the cloud. In such a
scenario, users would be able to securely outsource the storage and
management of their emails to a third-party cloud provider, while
still being able to have rich search features that are commonly
found in todays unsecured email cloud archival services. As
studied by Zheng et al. [45], cloud email is an example scenario
that can be easily targeted by file-injection attacks, hence this
application enforces the need to improve the security of SSE
schemes to withstand fully malicious adversaries. Furthermore,
preserving forward privacy is known to help mitigate such attacks
[45], and backward privacy may have important implications in
future attacks as well [9]. Overall, minimizing information leakage
should be a top priority when deploying SSE schemes in practical
scenarios.

4 BISEN
In this section we present BISEN’s full details. We start with some
required notations and definitions (§ 4.1), then we present BISEN’s
protocols (§ 4.2), and finally we analyse its security (§ 4.3).

4.1 Notations and Definitions

General Notations. In this paper we denote by λ the security
parameter and µ(λ) a negligible function in it. We will use the
standard security notions of variable-input-length Pseudo-Random
Functions (PRF, instantiated as an HMAC in our implementa-
tion) [6] and authenticated encryption schemes ensuring indistin-
guishability under chosen-ciphertext attacks (IND-CCA) [29]. We
consider adversaries to be probabilistic algorithms, running in time
polynomial on parameter λ.

Extended IEE Notations. IEE interactions with clients are ab-
stracted as IEE = (Setup,Send,Receive), as follows:

• IEE.Setup(1λ) corresponds to IEE bootstrapping (if it hasn’t
been initialized yet) and secure channel establishment. Setup
takes security parameter 1λ as input, and produces state stIEE
with the exchanged key.

• IEE.Send(stIEE,m) can be used by the client or IEE, and
uses the secure channel established by Setup to encrypt m
with the key in stIEE. This outputs ciphertext cph.

• IEE.Receive(stIEE, cph) uses the channel to retrieve en-
crypted message cph using the key in stIEE. This outputs
the original message m.

These operations correspond to protocols for initializing and
establishing a secure channel between a client and IEE, originally
formalized in [5] and common practice for implementations using
IEE-enabling hardware. Additionally, and extending the IEEs
original specification for secure computation [3], we consider
IEEs to rely not only on trusted state, which is assumed to be
incorruptible by the underlying system, but also on untrusted state
(represented in BISEN through the Storage Service), which has
to be explicitly protected through cryptographic algorithms. To
establish interactions with this untrusted state, and following a
dictionary-like notation, we define three new calls in the IEE
abstraction:
• uInit() initializes an empty data-structure D in untrusted

storage outside the IEE. It outputs D, making it available
for future uPut and uGet operations.

• uPut(D, l, v) accesses untrusted storage and stores an entry
(l, v) in data-structure D.

• uGet(D, l) accesses untrusted storage and outputs value v,
stored in position l of data-structure D.

Formally, we consider uInit and uPut to additionally produce
an execution trace, containing the operation, its input, and the
output. In the security experiment this trace is given directly to
the adversary, capturing the notion that all data stored through this
mechanism is considered leakage. Since we are modelling against
a fully malicious adversary, all values returned by uGet can be
selected by the adversary.

Extended SSE Notations Let id denote a document in our
database, w a keyword, and md metadata associated with a
keyword/document occurrence. n is the total number of docu-
ments. Our system is composed by two main structures: i.) an
encrypted database DB, which is modelled as a key-value store
from documents to keywords and associated metadata; and ii.) an
encrypted index I, which is a dictionary structure mapping each
unique keyword w to a list of matching documents and metadata
({id0,md0}, .., {id(n−1),md(n−1)}). I is a representation of DB
that allows searches to be performed in time sub-linear in n.
Hence, and as is usual in SSE schemes [28], in this work we
focus on operations over I.

To perform boolean queries and apply transformations to
results, we denote four main operations:
• retrieve(I, k, w̄) receives I, a key k, and a set of keywords w̄.

Produces a list of documents D = [(id, w,md)] matching
these keywords.

• φ(w̄,D) is a boolean query composed of a set of keywords
w̄. It receives a list D = [(id, w,md)] and filters the
documents that do not satisfy φ.

• docs(D) takes a list D = [(id, w,md)] and retrieves the
documents in the list, removing duplicates [id].

• F(D) is a transformation function that receives D =
[(id, w,md)] and produces D′ = [(id, w,md)].

IEEE TRANSACTIONS ON SECURE AND DEPENDABLE COMPUTING, VOL. XX, NO. X, XXX 2020 5

If we strip metadata from these definitions, the first three opera-
tions are standard in boolean searchable encryption schemes. The
first retrieves a set of documents associated with keywords w̄,
using k to decrypt values. The second parses over the obtained
structure, applying formula φ and filtering entries that match the
query. The third removes duplicates ids, returning the results.

The fourth operation is a composable transformation that
extends the standard SSE definition to allow arbitrary filtering
and sorting of query results. Using this notation, a query can be
represented as follows:

docs · Fn · . . . · F1 · φ(w̄) · retrieve(I, k, w̄) (1)

This allows for pre-defined filters F1, . . . , Fn to be used for
processing over system metadata, e.g., if the metadata includes
information of keyword frequency in a document, we can define
F1 to filter for documents under a certain frequency threshold and
F2 to order documents over their frequency score. Since these
transformation functions are composable, we can allow for any
combination of transformations to be applied to query results, by
paremetrising the search function with commands.

Using the previous notations, a multi-client dynamic boolean
searchable symmetric encryption scheme with filters

∏
=

(Setup,Search,Update) consists of three protocols between a
client and a server:

•
∏
.Setup (1λ) starts the scheme, with inputs security pa-

rameter 1λ. At the end of the protocol the client has secret
parameter k and, if the scheme hadn’t been initialized yet by
another client, the server has the (initially empty) encrypted
index I.

•
∏
.Update (op, w, id,md) updates the database with inputs

operation op = {add, del} (i.e., an addition or deletion of a
keyword), keyword w, document identifier id, and metadata
md. The server updates (id, w,md) on index I.

•
∏
.Search (φ(w̄), cmd) queries the database with inputs

boolean query φ(w̄) and filters cmd = {F1, . . . , Fn}. The
output is a set of document ids [id], as described in (1).

4.2 The Scheme

The intuition for our scheme is as follows. The IEE will have
access to an external untrusted storage I. This will be a mapping
to store encrypted index data: document identifiers, keywords and
metadata (id, w,md). To rely on this structure, the IEE must
generate labels l → (id, w,md) for I (i.e., the index keys), that
maintain confidentiality of the information stored, but that can also
be efficiently retrieved for processing queries. One way to do this
would be to have the label be the output of a keyed pseudo-random
function PRF over the keyword: l ← PRF(k, w). This would
ensure that a server without access to k would not be able to invert
l. However, the determinism of the PRF entails that keyword w
will always have the same label, preventing the same keyword to
be associated with different documents.

To circumvent this issue, we store a small structure W on
the IEE-side, which maps keywords to counters w → c. Every
time a keyword is to be added to the index, its label will be the
output of PRF(k, w ‖ c), and we increment its counter on W[w].
This will ensure that i.) labels are confidential, in the sense that
an external observer cannot invert the outputs of PRF without k;
and ii.) labels can be retrieved: if we want to retrieve all instances
of keyword w for a query, we can lookup W[w] to know the

maximum counter, and thus know that the labels in I for this query
are PRF(k, w ‖ 0), . . . ,PRF(k, w ‖W[w]).

It remains to show that labels are unique, i.e., that there are no
equal valuesw ‖ c for all possible different keywords and counters,
otherwise we can incorrectly overwrite values in I. As is, the
variable size of the keyword makes this trivially not the case, e.g.,
consider keyword w1 and counter 1 and keyword w and counter
11. To solve this issue, we have the client mask the keywords
using a cryptographic hash function H, which effectively pads to
a fixed size. As such, we have PRF(k,H(w) ‖ c), only producing
the same label if both components H(w) and c are the same, which
are unique by construction.

In this setting, the process of resolving a boolean query can be
described in light of set operations. Searching for a keyword re-
sults in a set of document identifiers. When two or more keywords
are queried, their sets can be unionized or intersected, depending
if φ specifies disjunctions or conjunctions between them, respec-
tively. For queries of three or more keywords, parentheses can
also be used to specify precedence between boolean operands.
Performing negations is somewhat more complicated however,
since inverting sets implies having knowledge of the range of all
possible values (in this case, all document ids). To circumvent this
issue we define that documents are identified by the incremental
values of counter nDocs, starting at zero. Additionally, correctness
of document identifiers is assured by enforcing that the ids inputed
on Update belong to the range [0..nDocs]. Using this approach,
the system can easily filter results for all existing documents, and
thus efficiently support negations by searching for a keyword and
inverting its document set1.

Figure 2 details the behavior of BISEN in more detail. The
Setup protocol initializes two components: the secure channel
between the IEE and the client, and the BISEN structures. The
first is a common algorithm for IEE-enabled systems, where client
and IEE perform a key-exchange protocol, establishing a secure
channel. We abstract this procedure as IEE.Setup, which produces
state stIEE, containing the cryptographic material for using this
channel. Then, BISEN initializes: external index I, secure map W,
PRF key kp and encryption key ke.

In the Update protocol, the client calls hash function H
on the keyword added, and uses the secure channel to send
(op,H(w),md) to the IEE. The IEE consults W[H(w)] to retrieve
the counter, and computes the label l using PRF. It then stores in
I an encryption of (l, op, id,md) associated with label l.

The Search protocol follows Equation 1:

docs · Fn · . . . · F1 · φ(w̄) · retrieve(I, k, w̄)

The processing of retrieve takes care of all cryptographic work,
and is described from lines 1 to 20. For every keyword w̄, the
client will apply H(w) and send the results, alongside the boolean
formula φ and filters cmd. The server must now prepare a list
[id,H(w),md] to provide to φ. This is done as follows:
• For every keyword H(w), lookup W[H(w)] for the counter,

and compute a set of labels l as:

PRF(k, w ‖ 0), . . . ,PRF(k, w ‖W[w]).

Prepare a list L = [(h(w), l)] associating keywords with
(possibly many) respective labels (Lines 9 to 13).

1. We assume that ids are never effectively removed, i.e., even if a document
has all of its keywords deleted, its id will still exist and will represent an empty
document. This approach has other benefits as well, including the possibility
of recycling document ids.

IEEE TRANSACTIONS ON SECURE AND DEPENDABLE COMPUTING, VOL. XX, NO. X, XXX 2020 6

Setup(1λ)

Client:
1: stIEE←$ IEE.Setup(1λ)

Server:
2: IEE.Setup(1λ)

IEE:
3: stIEE←$ IEE.Setup(1λ)
4: I← uInit()
5: W← []
6: kp←$ {0, 1}l
7: ke←$ Θ.Gen(1λ)
8: nDocs← 0

Update(op, w, id,md)

Client:
1: hw ← H(w)
2: m←$ IEE.Send(stIEE, (op, hw, id,md))
3: Send m to Server.

Server:
4: Send m to IEE.

IEE:
5: (op, hw, id,md)← IEE.Receive(stIEE,m)
6: c←W[hw]
7: if c = ⊥ then:
8: c← 0
9: else:

10: c← c+ 1
11: W[hw]← c
12: l← PRF(kp, hw ‖ c)
13: cph←$ Θ.Enc(ke, (l, op, id,md))
14: uPut(I, l, cph)
15: if id > nDocs then
16: nDocs++

Search(φ(w̄), cmd)

Client:
1: Hw̄ ← []
2: for all w ∈ w̄ do
3: hw ← H(w); Hw̄ ← hw : Hw̄

4: m1←$ IEE.Send(stIEE, (Hw̄, φ, cmd))
5: Send m1 to Server.

Server:
6: Send m1 to IEE.

IEE:
7: (Hw̄, φ, cmd)← IEE.Receive(stIEE,m1)
8: L← []; L′ ← []; D ← []
9: for all hw ∈ Hw̄ do

10: c←W[hw];
11: for all k ∈ [0 . . . c] do
12: l← PRF(kp, hw ‖ k)
13: L← (hw, l) : L

14: Π←$ Perm(); L← Π(L)
15: for all (hw, l) ∈ L: do
16: cph← uGet(I, l)
17: (l′, op, id,md)← Θ.Dec(ke, cph)
18: If l 6= l′ abort
19: L′ ← (id, hw, op,md) : L′

20: D ← FilterRem(L′)
21: Fn, . . . , F1 ← cmd
22: r ← docs · Fn · . . . · F1 · φ(w̄,D)
23: r ← Neg(nDocs, r)
24: m2←$ IEE.Send(stIEE, r)
25: Send m2 to Server.

Server:
26: Send m2 to Client.

Client:
27: r ← IEE.Receive(stIEE,m2)

Fig. 2: Our BISEN scheme based on IEE, pseudo-random function PRF, authenticated encryption scheme Θ, and hash function H.

• Apply a random permutation to L (Line 14).
• Retrieve every encryption of (l, op, id,md) associated with
l, verifying its integrity. Replace their respected labels in L
to obtain list L′ = [(id,H(w), op,md)] (Lines 15 to 19).

• Parse the list to remove (id,H(w)) that have been removed
(op = del). Obtain list D = [(id,H(w),md)] (Line 20).

List D exactly matches the input of φ, so we can sequentially
apply the boolean formula, as well as subsequent filters. Finally,
if resolving a negation query, we can take nDocs to invert the re-
sulting document identifiers, which we denote as Neg(nDocs, r).

Security considerations There are several security-related design
decisions in BISEN. A malicious adversary without access to
ke is not able to forge ciphertexts, but can try to trick the IEE
by responding to I[l] with another legitimate encryption in I.
Including label l in the encryption of Update allows us to verify
if the encryption on Search matches the ciphertext associated with
unique l, excluding that malicious behavior.

Processing additions and deletions in similar fashion allows
both operations to be indistinguishable, although at the cost of
increased storage. This extra storage can be reduced through
periodic re-encryption.

Functionally, the computation of H(w) could also be off-
loaded to the IEE for efficiency, however that would mean that the

client would have to send variable-sized keywords over the secure
channel. Since the secure channel leaks message sizes, computing
H in the client-side is a straightforward reduction of said leakage,
as it pads each keyword to a fixed size. To hide any possible
patterns in the query structure, the IEE also randomly permutes
structure L.

Optimizations and Extensions. An important goal in BISEN
is being able to support lightweight IEE technologies, such as
Intel SGX with its restricted EPC size of 128MB. The proposal
to extend IEE storage with cryptographically secured accesses
to untrusted storage partially supports this goal. However, when
performing a search in very large databases, intermediary data that
the IEE needs to process, i.e. our structure W mapping keywords
to counters, may still be too large for such hardware restrictions.
Our system can easily be adapted to these requirements either by
off-loading this structure to the client-side, with low performance
overhead, or by relying on oblivious RAM [41] to store an
encrypted version of this structure.

Increasing the number of IEEs is also a useful extension,
allowing BISEN to scale regarding both database size and client
concurrency. The best way to achieve this is to make IEEs state-
less: clients could generate keys ke and kp and share them with
new IEEs (which would also help with possible IEE termination

IEEE TRANSACTIONS ON SECURE AND DEPENDABLE COMPUTING, VOL. XX, NO. X, XXX 2020 7

issues by the proxy server), while remaining state could encrypted
to the external storage service using oblivious RAM with a
concurrency control mechanism. Encrypted index I is already
monotonically crescent, hence avoiding concurrency issues.

Another design choice is how to perform delete operations. In
previous SSE schemes [14], delete tokens are stored in a separate
index D, indexed by a PRF over both the deleted keyword and
document id. This approach has the advantage of only storing one
index entry per keyword/document deletion, while BISEN stores
a new entry for each deletion submitted by the client (even if
repeated). However it makes keyword deletions distinguishable
from additions, and requires contacting the server twice, first for
accessing index I and then for accessing D.

Finally, an important nuance of BISEN’s current design is that
we can not perform negations and filters based on metadata at the
same time. Either a query uses one feature or the other. This is
due to the efficient way that negations are performed, since when
performing a negation we are not actually retrieving the negated
documents from I, and hence retrieving the associated metadata
would require additional computation and communication steps.

4.3 Security Analysis
In BISEN our goal is for Update operations to have no leakage
and Search operations to only reveal message lengths and which
encrypted index entries are accessed (i.e., their labels). This is
similar to the access pattern of previous SSE schemes, however
it captures a stronger security notion since document identifiers
are protected at all times. Moreover, executing Search for two
distinct queries can leak the same label set, thus reducing the
adversarial ability to distinguish between queries. For instance,
boolean formulas φ1 = w1 ∨ w2 and φ2 = w1 ∧ w2, although
representing different queries, access the same label set.

Formally, BISEN’s security is parametrized by three leakage
functions (LSetup,LUpdate,LSearch). From these, only LSearch

produces leakage, detailed as follows:

LSearch(q) = ((|φ|+N + |cmd|), |r|, L)

where the first part corresponds to the length of the input message,
with |φ| being the length of the boolean formula of the query, N
the number of distinct keywords in it, and |cmd| the number of
functions to apply. The second part is the length of the query
response, which we succinctly describe as query(cmd, φ, w̄,D)
to represent the correct output of the filtered query response, and
L is the set of labels relevant for the resolution of the query.

The Update protocol has no leakage as all input and output
messages are of equal length and cryptographic operations are
performed inside the IEE. Having updates with zero leakage
also ensures forward privacy [8]. Backward privacy (specifically,
backward privacy with update pattern [9]) is ensured by storing
additions and deletions in an indistinguishable fashion and filtering
results in the IEE.

Moreover, the employed cryptographic mechanisms ensure
security as follows: prf-security and uniqueness in keywords and
counters ensures indistinguishability of labels from outputs from a
random function applied to a unique counter; unforgeability of Θ
ensures that adversaries cannot produce a ciphertext that does not
exactly match the stored data for said keyword/counter pair on the
corresponding update request; the security of the IEE channel and
the sequence numbers used prevent adversaries from emulating a
fake BISEN execution, forging client requests, altering the order
of messages exchanged, or performing replay attacks.

In the companion technical report to the first version of
BISEN [21], we provide a full security proof of these statements
in the real/ideal standard cryptographic model [29]. The proof of
this design is very similar, which we omit to avoid redundancy.
Regarding security analysis, the only difference is in the leakage
of number of filters |cmd| and length of filtered queries |r|,
which can both be trivially simulated. The additional computations
are done on the IEE side, requiring no additional effort on the
simulator behalf.

5 IMPLEMENTATION

We implemented a prototype of BISEN in C/C++, with around
6200 lines of code. Our prototype is based on Intel SGX [17],
using its remote-attestation and enclave management primitives to
provide the IEE functionalities required by BISEN. To bootstrap
the IEE and establish secure Client-IEE channels, we leveraged the
mbed TLS library [35] and its SGX-compatible port [36], creating
full-fledged TLS 1.2 tunnels between the IEE and BISEN’s clients.
For other cryptographic operations inside the IEE we used Lib-
Sodium [32], which is a constant-time cryptographic library partly
based on Intel AES-NI. Constant-time cryptographic algorithms
based on hardware implementations and oblivious primitives allow
us to prevent side-channel leakage of the SGX enclave, including
page and cache level leakage.2

We instantiate PRF with LibSodium’s SHA256-HMAC im-
plementation, H with SHA256, and Θ with its authenticated en-
cryption algorithm, XSalsa20 stream cipher with Poly1305 MACs.
Since LibSodium is not ready for SGX deployment, we prepared
an SGX-compatible version by (among other steps) removing all
unsupported functions in SGX and replacing randomness func-
tions with their equivalents from Intel’s RNG library.

Regarding attestation, the employed mechanism follows the
design originally proposed in [5], where each program running
on an IEE must produce a signature of its code and I/O trace
thus far. For Intel SGX, this relies on the Quoting enclave, which
uses the EPID group signature scheme [11] to produce a signature
(quote) binding the enclave execution trace with the code that
produced such trace. Verification of quotes is performed by the
client through Intel’s Attestation Service.

For the IEE to interact with the encrypted index I, we leveraged
on SGX ocalls. Additionally, concurrent accesses are managed
by leveraging enclave multi-threading and by using lock-free
concurrent data structures. Our implementation is open-source and
available at: https://github.com/bernymac/BISEN.

To demonstrate the use of metadata and filters, we imple-
mented specific functions for supporting ranked queries. Index
entries store frequency information as metadata (i.e., how many
times a keyword appears in a document), and in the search protocol
this information is combined with other repository-wide statistics
that were already known by the IEE, including the total number of
documents and document frequency (i.e., in how many documents
does a keyword appear). This combination is done in a filter
function, which we call scoring, that calculates a relevance score
for each document and orders results accordingly. For scoring we
use the popular TF-IDF [34] function. Additionally, users can also
provide an upper bound k to the query size, meaning that the

2. Note that these countermeasures are not sufficient to protect from dev-
astating attacks such as [42]. This is where BISEN benefits from relying on
the IEE abstraction, as one can instead implement it on hardware resilient to
speculative execution attacks if this is a realistic concern, e.g., MI6 [10].

IEEE TRANSACTIONS ON SECURE AND DEPENDABLE COMPUTING, VOL. XX, NO. X, XXX 2020 8

IEE will only return the top k results for each query. Besides
usability, this has other benefits, including reduced network costs
and reduced leakage, as all query responses will now be of equal
length.

6 EXPERIMENTAL EVALUATION

We now experimentally evaluate BISEN, using the prototype
implementation described in the previous section.

Experimental Test-Bench. We present performance results for
BISEN and its Search and Update protocols. As IEE and proxy
server, we used an Intel NUC i3-7100U with built-in SGX support,
2.4GHz of CPU frequency, 8GB of RAM, 256GB of SSD storage,
running Ubuntu Server 18.04.1. As storage service we used a
server with an AMD Opteron 6272 CPU with 64GB of RAM.
Both machines were deployed on a one gigabit ethernet network.
To evaluate the impact of remote communications, and since we
already had the previous hardware available, we leveraged the
cloud to deploy the client instead, using an AWS EC3 t3.large
instance. The round-trip time between client and proxy server was
41.377ms and the max transmission rate was 50Mb/s. As dataset,
we used an English Wikipedia dump of August 2018 [44] with
around 60GB of uncompressed text data, 5.5 million documents,
and 464 million keyword/document pairs. Measurements are based
on an average of 50 independent executions.

Experimental Evaluation Roadmap. The goal of our experi-
mental work is to answer the following questions: i.) what are
the storage costs of BISEN; ii.) what is the performance cost
(i.e., total time consumed) to process and store a whole dataset
through a batch of Update protocol invocations, and how does this
performance evolve as we scale the dataset’s size; iii.) what is the
performance cost of executing different types of Search queries,
including queries with multiple conjunctions, disjunctions, and
negations, considering different database sizes, the selectivity of
queried keywords (i.e., the size of returned results) and the query
size; iv.) how does BISEN’s performance compare with the state
of art in boolean SSE, namely the recent IEX-2LEV scheme [28];
v.) what is the impact of adding filter functions and metadata for
supporting ranked queries; vi.) and finally what is the impact of
using different storage solutions for storing BISEN’s index.

6.1 Storage Costs

In BISEN, clients only store one cryptographic key (32 bytes),
which is used for secure communication with the IEE. The IEE
also stores this key, plus kp and ke (3 ∗ 32 = 96 bytes).
Additionally it stores dictionary of counters W, which keeps a
counter (4 bytes) and a hash (32 bytes) per entry, with one entry
per unique keyword in the database. For the English Oxford
dictionary containing 616500 unique word-forms, this results in
an upper bound of around 20MB IEE storage, while e-mail date
searches for individual days over 200 years could correspond
to around 3MB IEE storage. Nonetheless, if specific application
requirements demand it, our scheme can be trivially adapted to
have this structure and its respective computations moved to client-
side without loss of security. The storage service stores index
I, which can grow due to the security guarantees provided (83
bytes per entry), nonetheless with cloud storage this can be more
seamlessly scaled.

 0
 2000
 4000
 6000
 8000

 10000
 12000

 0 1x108 2x108 3x108 4x108 5x108

La
te
nc
y
(s
)

Batch Update Size (Nr. of Word/Doc ID Pairs)

Client
IEE

Storage

Networking
Total

Fig. 3: Performance of the Update protocol.

6.2 Update Performance

Figure 3 reports the performance results for the Update proto-
col of BISEN. The y-axis represents time elapsed (in seconds),
while the x-axis represents the update size in terms of keyword-
document pairs (i.e., how many entries are being added to index I
at once, with a single batch of multiple Update protocol invoca-
tions). Results were measured at different batch update sizes (up
to 464 million pairs) and are reported for networking and for the
three main protocol executors in separate, namely the client, IEE,
and storage service. Proxy performance is omitted for simplicity,
as it only forwards messages and its execution is highly efficient.
Total results are also reported for convenience of the reader.

Analysing the obtained results, one can conclude that BISEN’s
performance scales linearly with the size of the batch update
(Total line in Figure 3). An update for a single document with
640 keywords takes 29ms, while a batch update of multiple
documents totaling 464 million keywords takes 11239 seconds
(around 3 hours). This means that performance of single Update
invocations is mostly unaffected by the current database size.
This is a natural observation, since this protocol does not de-
pend on previous operations. These results also reflect the good
performance properties of modern trusted hardware technologies,
namely Intel SGX. The results for network performance basically
show the cost of uploading data to the cloud, as BISEN adds
very little cryptographic expansion: communications are encrypted
with standard symmetric-key cryptography, and keywords are only
hashed.

Regarding the performance of each protocol participant in
separate, we can observe that time spent in the IEE and Storage
Service is roughly similar, with a tendency for the Storage to
become a bottleneck for larger operations. While we consider
a single storage server, distributing this service across multiple
machines might mitigate its weight in the operation. In turn,
the IEE is responsible for simple cryptographic computations,
entering enclave mode in SGX, and exiting this mode to store data
through SGX ocalls, which is reflected in the latency for the max-
imum update (1300 seconds for 464 million keyword/document
pairs). The largest slice of processing is on the client, which
seems contradictory as from BISEN’s specification (Figure 2),
the client performs very few computations. From our analysis,
we argue that these results are due to necessary pre-processing:
the client has to process the whole dataset from disk, parsing
its keywords, stemming them and filtering stop-words [34]. In
applications where documents are created and edited online for
instance, this overhead would be greatly reduced.

IEEE TRANSACTIONS ON SECURE AND DEPENDABLE COMPUTING, VOL. XX, NO. X, XXX 2020 9

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0 1x108 2x108 3x108 4x108 5x108

La
te
nc
y
(s
)

Database Size (Nr. of Word/Doc ID Pairs)

Client
IEE

Storage

Networking
Total

Fig. 4: Performance of each participant in the Search protocol, for an example
conjunctive query of five keywords.

 20
 40
 60
 80

 100
 120

 0 1x108 2x108 3x108 4x108 5x108

La
te
nc
y
(s
)

Database Size (Nr. of Word/Doc ID Pairs)

1 Disj.
1 Conj.
3 Disj.

3 Conj.
5 Disj.
5 Conj.

Fig. 5: Impact of the boolean formula and query size on the performance of
the Search protocol.

6.3 Search Performance

To analyse the performance of the Search protocol, we conducted
experiments with different types of queries, measuring in all
cases how performance scaled with the increase in database size.
For transparency in evaluation, in the following experiments we
used the most popular keywords in the english language, i.e., the
keywords that appear in more documents (also known as having
high selectivity). From first to twelve, these are: time, person, year,
way, day, thing, man, world, life, hand, part, and child.

Performance of each Participant. We start by analysing the
performance of networking and of each protocol participant in
separate when executing the Search protocol. For this analysis
we used an example conjunctive query with the five most popular
keywords in the database, measuring performance at increasing
database sizes. Figure 4 presents the results. In contrast with the
previous results for Update, client processing in Search is very
efficient. This performance cost is mostly dependent on the query
size, nonetheless even for a query of five keywords it is almost
close to zero (an average of 80µs). Networking also exhibits
similar results.

The remaining performance cost is divided between the stor-
age service and the IEE, with the IEE being the least efficient of
the three components. This is due to most computations in Search
being performed by the IEE. This aspect can potentially be im-
proved by exploring parallelism in our prototype implementation
based on SGX.

Boolean Formulas and Query Size. With this test (Figure 5)
we wanted to assess the impact of both the type of operators and

 0
 2
 4
 6
 8

 10
 12
 14
 16

 0 0.05 0.1 0.15 0.2 0.25

La
te
nc
y
(s
)

Query Selectivity (% of Total Docs Returned)

80M
180M

290M
330M

370M
460M

Fig. 6: Impact of query selectivity on the performance of the Search protocol.

the length of the query on overall latency. We used queries in
both Conjunctive (CNF) and Disjunctive (DNF) Normal Forms,
with one, three and five conjunctions and disjunctions. These
correspond, for example, to queries of the form (A∨B)∧(C∨D)
(one conjunction) or (A ∨B) ∧ (C ∨D) ∧ (E ∨ F) ∧ (G ∨H)
(three conjunctions) for CNF; the same logic applies to the DNF.

Analysing the results, we can conclude that BISEN supports
queries in any boolean formula with equal performance. For
this experiment, the determining factors in performance were the
database and query sizes. Increasing the database size leads to a
linear increase in the time required for resolving queries, as was
already noted in the previous experiment. Moreover, increasing the
query size (from one to three and five conjunctions/disjunctions)
also increases search latency, but by a smaller fraction. This means
performance costs tend to amortize when increasing query sizes.

Query Selectivity. Next we study the impact of query selectivity
(i.e., the size of search results) on Search performance. In these
experiments, we performed single-keyword queries with different
selectivity levels, by choosing query keywords based on their
database popularity. Figure 6 shows the results for queries return-
ing from 0.2% to 25% of the database. As expected, query selectiv-
ity has a high impact on Search performance. Just by searching a
different, more popular keyword, Search performance can go from
1 to 16 seconds. This is not surprising, as more popular keywords
appear in more documents, and hence the IEE will have to request,
decrypt, and verify additional index entries. Nonetheless, results
seem to amortize towards larger databases. These results are also
consistent with the performance measurements of Figure 5, whose
keyword searches have very high selectivity.

Negations. In Table 1 we present the impact of negations for
queries of fixed size (10 keywords), varying the number of negated
keywords – one, five and ten; then a fully negated query – of
the form ¬(A ∧ B). Our objective was to assess the impact
performance of the negation operation across different types of
queries and numbers of negations. Results show that the number
of negation operations performed has minimal impact, even for
larger database sizes, which can be explained by the low overhead
of Boolean processing. Since all queries require the same number
of entries to be fetched from Storage Service, which is where the
main bottleneck lies, their latency is therefore similar.

6.4 Comparison with IEX-2LEV

We now compare the performance of BISEN with the state of the
art in Boolean SSE, in particular the recent IEX-2LEV scheme

IEEE TRANSACTIONS ON SECURE AND DEPENDABLE COMPUTING, VOL. XX, NO. X, XXX 2020 10

DB Size 1 Neg. 5 Neg. 10 Neg. Fully Neg.

35 996 207 4.286 4.498 3.052 4.319
76 672 004 9.335 9.241 9.610 7.185
156 143 147 18.653 18.092 21.095 16.589
333 784 724 52.265 58.227 50.850 51.996
464 054 543 86.057 82.289 85.041 86.938

TABLE 1: Performance (in seconds) of negations in the Search protocol.

[28]. To this end, we used the author’s open-source implemen-
tation [19] (with a filtering parameter of 0.2, as reported in
their evaluation [28]), and conducted experiments with the Enron
database [30], an email archive with 2.6GB of text data used by
the authors.

Since IEX-2LEV requires large volatile storage and was orig-
inally evaluated on a machine with 60 GB of RAM and a 60-
core CPU, we followed a similar test-bench and deployed IEX-
2LEV in our AMD Opteron 6272 CPU with 64 cores and 64GB
of RAM. For experimental comparison we deployed BISEN on
the same machine, executing IEE computations in SGX simulated
mode. Table 2 presents the results obtained for BISEN and
IEX-2LEV, considering increasing database sizes (up to 56238
keyword-document pairs, as we were unable to execute IEX-2LEV
with higher database sizes), and different operations: Update
(performed as Setup in IEX-2LEV), and Search with queries with
eight keywords, selected at random from the Enron database, in
both CNF and DNF.

Analysing the results we can conclude that BISEN is much
more efficient than the state of the art in Boolean SSE. This
phenomenon can be observed both for the Update operation, where
IEX-2LEV requires eight hours to index a database with 56 238
pairs while BISEN only requires 0.151 seconds; and the Search
operation, where IEX-2LEV is more efficient but still requires
216 seconds to search the largest database with a CNF boolean
query while BISEN performs the same query in 0.061 seconds.
Furthermore, the improvement in storage performance is also
evident from these results, since BISEN could process and index
large databases with 10 million pairs in a machine with only 8
GB of RAM and IEX-2LEV could only support little more than
56 thousand pairs in a machine with 64 GB. These results can be
explained by the difficulty of managing complex multi-map data-
structures that IEX-2LEV needs to employ in order to achieve its
security guarantees. In BISEN, by leveraging the natural synergy
between standard cryptographic primitives and IEEs deployed as
remote trust anchors, we are able to improve performance and
scalability by a large fraction, while further improving security
and minimizing leakage.

6.5 The Cost of Filtering for Ranked Queries
In the previous evaluations, we did not store any metadata in I,
nor used filtering functions. Hence in this section we measure the
impact of adding frequency metadata and filtering functions to
support ranked queries. Figure 7 shows the results obtained, com-
paring IEE processing for the Search protocol with and without
scoring (ranked and exact-match in the figure, respectively). For
this experiment, we fixed the database size at two million articles,
and executed queries with different selectivity. We found scoring
time to be determined by selectivity, i.e., the number of documents
that need to be scored and sorted.

Our results show that IEE processing in the exact-match
version of BISEN grows linearly, and does not exceed 10 seconds

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1000 10000 100000 1x106 1x107La
te
nc
y
of

 IE
E

 P
ro
ce
ss
in
g
(s
)

Nr. of Original Docs to Score

Exact-Match Ranked

Fig. 7: Impact of using metadata and filters for ranked searching, in the Search
protocol. Logarithmic scale.

for the processing of the two million documents. In the ranked
version, the impact of scoring is particularly evident for docu-
ment sets with larger cardinality. For two million documents, for
instance, processing time increases three orders of magnitude in
contrast to the unranked version. In fact, the sorting algorithm
used, quicksort, has O(n log n) time complexity, which explains
the approximately linear behaviour of our results. However, it still
prohibitively impacts Search performance, taking about 85% of
processing time, which indicates the need for further optimisation
and research on alternative, more efficient, approaches for the
problem of scoring and sorting documents in the IEE.

A possible solution to mitigate this problem would be to
pre-calculate and sort scoring results, keeping in memory only
the top ranking results (up to a threshold score k). The full
index would still be kept in disk, but for most queries the top
k results stored in memory would suffice to calculate final search
results, and performance would be greatly improved as the final
number of index entries that needs to be sorted would be much
smaller. An issue of this approach, however, is how to manage
consistency between the in-memory and disk indexes between
updates, nonetheless we believe the in-depth study of these trade-
offs is a worthy task for future works.

6.6 Comparison of Different Storage Solutions

Our main implementation for the Storage Service uses Sparsepp
[39], an in-memory map optimisation of the unordered map from
the C++ standard library. However, as it might present itself as
an ad-hoc solution with no support for persistency and fault tol-
erance, we implemented drivers for two currently popular NoSQL
databases - Redis and Cassandra. In Figure 8, we compare these
two NoSQL solutions (in single-node clusters) with Sparsepp,
using a fixed database size of 156M pairs (two million documents)
and accounting for the latency of both IEE and Storage Service in
the protocols. Results are presented as function of the number of
accessed labels.

Update and search operations displayed similar results, so we
show average results for simplification. The figure shows that
the Redis approach incurs in a performance penalty of an order
of magnitude above Sparsepp, and Cassandra a further order of
magnitude above. While Cassandra uses disk storage, which we
expected to be a meaningful hindrance on performance, Redis is
an in-memory store, and thus we assumed its performance would
be similar to that of Sparsepp. Although Storage Service latency
remains linear to the number of accessed labels – thus presenting

IEEE TRANSACTIONS ON SECURE AND DEPENDABLE COMPUTING, VOL. XX, NO. X, XXX 2020 11

Database Size Update Search CNF Search DNF
(Nr of pairs w/id) BISEN IEX-2LEV BISEN IEX-2LEV BISEN IEX-2LEV

9 793 0.151 5143 0.004 12 0.004 15
27 446 0.423 15568 0.021 173 0.012 249
56 238 0.862 29274 0.061 216 0.034 427

TABLE 2: Performance comparison between BISEN and IEX-2LEV [28]. All times are in seconds. Queries composed of eight keywords.

 0.1

 1

 10

 100

 1000

 10000

 0 500000 1x106 1.5x106 2x106 2.5x106

La
te
nc
y
(s
)

Nr. of Accessed Labels in Storage

Sparsepp
Redis

Cassandra

Fig. 8: Impact of using different storage solutions to implement the Storage
Service. Logarithmic scale.

NoSQL approaches as viable, at least in a scalability perspective
– the overall impact is still larger than expected in our tests. We
believe this may be due to Redis being mostly single-threaded and
offering additional features and a higher abstraction level, while
Sparsepp is a simple and optimized data-structure that offers the
basic storage functionality needed for BISEN, but nothing else.

Clustering is one of such features offered by NoSQL databases
that could further improve their performance and scalability in
comparison with Sparsepp. We leave clustering tests as future
work, however given that Intel CPUs with SGX are limited to
eight cores as of 2019, performance improvements might then be
bottlenecked on the IEE side.

7 CONCLUSIONS

In this paper, we have identified and addressed one of the funda-
mental security issues in Searchable Symmetric Encryption (SSE)
schemes, which is the outsourcing of critical cryptographic com-
putations to the untrusted server. This was achieved by proposing
a new hybrid approach to SSE that combines standard symmetric-
key cryptographic primitives with modern attestation-based trusted
hardware. In our approach we minimize assumptions and re-
quirements on the employed hardware technology, in particular
regarding its trusted storage capacity. Instead, trusted hardware
is used as a limited-capacity Isolated Execution Environment ab-
straction, extending its resources through standard cryptographic
primitives over more abundant (local, or even remote) untrusted
resources. Additionally we proposed to extend the traditional
SSE querying model, supporting filter functions on search results
based on generic metadata created by the users. Based on these
approaches we proposed BISEN, a new dynamic boolean SSE
scheme that supports multiple clients, preserves both forward
and backward privacy, displays minimal leakage, and optimizes
computation, storage, and communication overheads. BISEN is
shown to be provably secure against active adversaries under
the standard security model. Experimental results obtained trough
real-world datasets and an open-source implementation of BISEN
demonstrate its optimal performance and efficiency properties.

ACKNOWLEDGMENTS

This work was supported by FCT/MCTES through project
HADES (PTDC/CCI-INF/31698/2017) and the NOVA
LINCS (UIDB/04516/2020) and LASIGE Research Units
(UIDB/00408/2020 & UIDP/00408/2020), and the EU through
project LightKone (grant agreement no 732505).

REFERENCES

[1] T. Alves and D. Felton. TrustZone: Integrated hardware and software
security. ARM white paper, 3(4):18–24, 2004.

[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. A view of
cloud computing. Communications of the ACM, 53(4):50–58, 2010.

[3] R. Bahmani, M. Barbosa, F. Brasser, B. Portela, A.-R. Sadeghi, G. Scerri,
and B. Warinschi. Secure multiparty computation from SGX. In
Financial Cryptography and Data Security - FC’17, 2017.

[4] F. Baldimtsi and O. Ohrimenko. Sorting and Searching Behind the
Curtain. In Proceedings of the 9th International Conference on Financial
Cryptography and Data Security, 2015.

[5] M. Barbosa, B. Portela, G. Scerri, and B. Warinschi. Foundations of
hardware-based attested computation and application to SGX. In EURO
S&P’16, pages 245–260, 2016.

[6] M. Bellare and P. Rogaway. Introduction to modern cryptography. Ucsd
Cse, 207:207, 2005.

[7] C. Bösch, P. Hartel, W. Jonker, and A. Peter. A Survey of Provably
Secure Searchable Encryption. ACM CSUR, 47(2):18:1—-18:51, 2015.

[8] R. Bost. Sophos - Forward Secure Searchable Encryption. In CCS’16.
ACM, 2016.

[9] R. Bost, B. Minaud, and O. Ohrimenko. Forward and Backward Private
Searchable Encryption from Constrained Cryptographic Primitives. In
CCS’17. ACM, 2017.

[10] T. Bourgeat, I. Lebedev, A. Wright, S. Zhang, S. Devadas, et al. Mi6:
Secure enclaves in a speculative out-of-order processor. arXiv preprint
arXiv:1812.09822, 2018.

[11] E. Brickell and J. Li. Enhanced privacy id from bilinear pairing
for hardware authentication and attestation. International Journal of
Information Privacy, Security and Integrity 2, 1(1):3–33, 2011.

[12] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou. Privacy-Preserving Multi-
Keyword Ranked Search over Encrypted Cloud Data. IEEE Transactions
on Parallel and Distribibuted Systems, 25(1):222–233, 2014.

[13] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart. Leakage-Abuse Attacks
Against Searchable Encryption. In CCS’15, pages 668–679. ACM, 2015.

[14] D. Cash, J. Jaeger, S. Jarecki, C. Jutla, H. Krawczyk, M. Rosu, and
M. Steiner. Dynamic searchable encryption in very-large databases: Data
structures and implementation. In NDSS’14, volume 14, 2014.

[15] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M.-C. Rosu, and M. Steiner.
Highly-Scalable Searchable Symmetric Encryption with Support for
Boolean Queries. In CRYPTO’13, pages 353–373. Springer, 2013.

[16] ComScore. The 2017 U.S. Mobile App Report. http://tinyurl.com/
ya8kkxan, 2017.

[17] V. Costan and S. Devadas. Intel sgx explained. Techni-
cal report, Cryptology ePrint Archive, Report 2016/086, 2016.
https://eprint.iacr.org/2016/086, 2016.

[18] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky. Searchable Sym-
metric Encryption: Improved Definitions and Efficient Constructions. In
CCS’06, pages 79–88, 2006.

[19] Encrypted Systems Lab, Brown University. The clusion library.
https://github.com/encryptedsystems/Clusion, 2018.

[20] B. Ferreira, J. Leitão, and H. Domingos. MuSE: Multimodal Searchable
Encryption for Cloud Applications. In 37th IEEE International Sympo-
sium on Reliable Distributed Systems, 2018.

[21] B. Ferreira, B. Portela, T. Oliveira, G. Borges, J. Leitão, and H. Domin-
gos. BISEN: Efficient Boolean Searchable Symmetric Encryption with
Verifiability and Minimal Leakage (Extended Version). Cryptology
ePrint Archive, Report 2018/588, 2018. https://eprint.iacr.org/2018/588.

IEEE TRANSACTIONS ON SECURE AND DEPENDABLE COMPUTING, VOL. XX, NO. X, XXX 2020 12

[22] B. Ferreira, B. Portela, T. Oliveira, G. Borges, J. Leitão, and H. Domin-
gos. BISEN: Efficient Boolean Searchable Symmetric Encryption with
Verifiability and Minimal Leakage. In Proceedings of the 38th Inter-
national Symposium on Reliable Distributed Systems - SRDS’19. IEEE,
2019.

[23] B. A. Fisch, D. Vinayagamurthy, D. Boneh, and S. Gorbunov. Iron:
Functional encryption using intel sgx. In CCS’17. ACM, 2017.

[24] T. Frieden. VA will pay $20 million to settle lawsuit over stolen laptop’s
data. CNN. http://tinyurl.com/lg4os9m, 2009.

[25] B. Fuhry, R. Bahmani, F. Brasser, F. Hahn, F. Kerschbaum, and A.-R.
Sadeghi. Hardidx: practical and secure index with sgx. In IFIP DBSec,
pages 386–408. Springer, 2017.

[26] S. Garg, P. Mohassel, and C. Papamanthou. TWORAM: efficient
oblivious RAM in two rounds with applications to searchable encryption.
In Crypto’16, pages 563–592. Springer, 2016.

[27] G. Greenwald and E. MacAskill. NSA Prism program taps in to user data
of Apple, Google and others. The Guardian. http://tinyurl.com/oea3g8t,
2013.

[28] S. Kamara and T. Moataz. Boolean Searchable Symmetric Encryption
with Worst-Case Sub-Linear Complexity. In EUROCRYPT’17. IACR,
2017.

[29] J. Katz and Y. Lindell. Introduction to Modern Cryptography. CRC
PRESS, 2007.

[30] B. Klimt and Y. Yang. Introducing the Enron Corpus. In CEAS, 2004.
[31] D. Lewis. iCloud Data Breach: Hacking And Celebrity Photos. Forbes.

https://tinyurl.com/nohznmr, 2014.
[32] libsodium Deveplopment Team. The sodium crypto library (libsodium).

https://libsodium.org, 2018.
[33] C. Liu, L. Zhu, M. Wang, and Y.-A. Tan. Search pattern leakage

in searchable encryption: Attacks and new construction. Information
Sciences, 265:176–188, 2014.

[34] C. D. Manning, P. Raghavan, and H. Schütze. An Introduction to
Information Retrieval, volume 1. Cambridge University Press, 2009.

[35] mbed TLS Deveplopment Team. mbed tls. https://tls.mbed.org, 2018.
[36] mbed TLS SGX Deveplopment Team. mbedtls-sgx: a sgx-friendly tls

stack (ported from mbedtls). https://github.com/bl4ck5un/mbedtls-SGX,
2018.

[37] M. Russinovich. Introducing Azure confidential computing.
https://tinyurl.com/y3qqwguk, 2017.

[38] S. Sasy, S. Gorbunov, and C. W. Fletcher. Zerotrace: Oblivious memory
primitives from intel sgx. In NDSS’18, 2018.

[39] Sparsepp Deveplopment Team. Sparsepp: A fast, memory efficient hash
map for c++. https://github.com/greg7mdp/sparsepp, 2018.

[40] E. Stefanov, C. Papamanthou, and E. Shi. Practical Dynamic Searchable
Encryption with Small Leakage. In NDSS’14, 2014.

[41] E. Stefanov, M. Van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu, S. Devadas,
M. V. Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu, and S. Devadas. Path
oram: An extremely simple oblivious ram protocol. In Proceedings of
the 20th ACM Conference on Computer and Communications Security -
CCS’13, pages 299–310. ACM, 2013.

[42] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx. Foreshadow:
Extracting the keys to the intel sgx kingdom with transient out-of-order
execution. In Security’18. Usenix, 2018.

[43] W. Wang, G. Chen, X. Pan, Y. Zhang, X. Wang, V. Bindschaedler,
H. Tang, and C. A. Gunter. Leaky cauldron on the dark land: Under-
standing memory side-channel hazards in sgx. In CCS’17, 2017.

[44] I. Wikimedia Foundation. Wikipedia:Database download. https://en.
wikipedia.org/wiki/Wikipedia:Database download, 2018.

[45] Y. Zhang, J. Katz, and C. Papamanthou. All Your Queries Are Belong
to Us: The Power of File-Injection Attacks on Searchable Encryption. In
Security’16. USENIX Association, 2016.

Bernardo Ferreira received the BSc, MSc, and
PhD degrees in Computer Science from the Fac-
uldade de Ciências e Tecnologia, Universidade
Nova de Lisboa in 2008, 2010, and 2016, re-
spectively. He is currently an Assistant Profes-
sor at the Faculdade de Ciências, Universidade
de Lisboa, and an integrated researcher with
the LASIGE laboratory. His research interests
include distributed systems security and privacy,
with special focus on secure outsourced compu-
tation, cloud computing, and edge networks.

Bernardo Portela graduated in Informatics En-
gineering from Universidade do Minho in 2013,
and obtained its his Ph.D. in Computer Sciences
under the MAPi doctoral programme in 2018.
Currently, he is a member of the NOVA-LINCS
research laboratory, designing hardware-backed
decentralized secure solutions for project P2020
HADES. His research interests include the de-
sign and security analysis of privacy-preserving
protocols.

Tiago Oliveira received the MSc degree in Infor-
matics Engineering from Universidade do Minho
in 2012, and is currently a PhD student at Fac-
uldade de Ciências da Universidade do Porto.
His current research interests are cryptographic
primitives and protocol implementations, opti-
mization and their formal verification.

Guilherme Borges received the MSc degree
in Computer Science from the Faculdade de
Ciências e Tecnologia, Universidade Nova de
Lisboa (FCT/UNL) in 2018. He is currently a
PhD student at the Faculdade de Ciências
e Tecnologia, Universidade Nova de Lisboa
(FCT/UNL), and an student researcher with the
NOVA LINCS Laboratory. His research interests
include anonymity and privacy preservation.

Henrique Domingos received the PhD degree
in computer science from NOVA Lisbon Univer-
sity (UNL), in 2000. He was an assistant pro-
fessor with FCT/UNL, from 1994 to 2004, and
has been a tenured assistant professor with
FCT/UNL, since 2004. He is also a research
member of the NOVA LINCS Research Center.
His current research focuses on cloud security
and privacy, mobile computing usability, security
and privacy, dependable distributed computing,
and pervasive distributed systems security.

João Leitão received the MSc and PhD degrees
in computer engineering from, respectively, the
Faculdade de Ciências, Universidade de Lisboa,
in 2007, and the Instituto Superior Técnico, in
2012. He is an assistant professor in the Fac-
uldade de Ciências e Tecnologia, Universidade
Nova de Lisboa, and an integrated researcher
with the NOVA LINCS Laboratory. His research
interests focus on multiple aspects of distributed
systems, including scalability, availability, fault-
tolerance, and security.

