
Specifying a programming exercises evaluation service
on the e-Framework

José Paulo Leal
1

, Ricardo Queirós2 and Duarte Ferreira3

1,3CRACS/INESC-Porto & DCC/FCUP, University of Porto, Portugal

zp@dcc.fc.up.pt, c0216010@alunos.dcc.fc.up.pt

 2CRACS/INESC-Porto & DI/ESEIG/IPP, Porto, Portugal
ricardo.queiros@eu.ipp.pt

Abstract. The e-Framework is arguably the most prominent e-learning
framework currently in use. For this reason it was selected as basis for
modelling a programming exercises evaluation service. The purpose of
this type of evaluator is to mark and grade exercises in computer
programming courses and in programming contests. By exposing its
functions as services a programming exercise evaluator is able to
participate in business processes integrating different system types,
such as Programming Contest Management Systems, Learning
Management Systems, Integrated Development Environments and
Learning Object Repositories. This paper formalizes the approaches to
be used in the implementation of a programming exercise evaluator as a
service on the e-Framework.

Keywords: SOA, interoperability, e-learning.

1 Introduction

In recent years several initiatives brought service orientation to e-learning. These
initiatives, usually called e-learning frameworks, support the creation of flexible e-
learning systems using service oriented approaches. Based on a previous survey [1]
we identified the e-Framework as one of the most prominent e-learning framework
initiatives. The e-Framework1 success results from a strong and active community of
practice contributing with service definitions. Potential submitters are encouraged to
use the collaborative tools provided by the e-Framework to share their contributions
and obtain feedback from the community.

 In the research presented in this paper the e-Framework was used as basis for the
definition of service for marking and grading computer programs. The computer
programs processed by this service are submitted either by students in computer

1 Official website http://www.e-framework.org

programming courses, or by teams and contestants in programming contests. The
proposed model reflects the experience gained by the authors with Mooshak and
EduJudge projects. Mooshak [2] is a contest management system for ICPC contests
that is being used since 2002 also as an e-Learning tool in computer programming
courses. EduJudge [3] is a system developed for enabling the use by Learning
Management Systems (LMS) of the collection of programming exercises of the UVA
on-line judge2. Both systems have automatic evaluation components that if recast as
services could provide their functions to different types of e-Learning systems.

An implementation of the proposed service type evaluates an attempt to solve a
programming exercise and produces a detailed report. This evaluation report includes
information to support exercise assessment, grading and/or ranking by client systems.
The report itself is not an assessment, does not include a grade and does not compare
students. This kind of evaluation differs significantly from evaluations supported by
most LMS, encoded in the IMS Question & Test Interoperability (QTI) specification.
The data model of QTI was designed for questions with a set of pre-defined answers
and cannot handle evaluation domains with specialized requirements, such as
programming exercise evaluation. For instance, programming exercises evaluations
requires tests cases, program solutions, compilation lines and other specific type of
metadata that cannot be encoded in QTI. To cope with this problem the authors have
already extended IMS Content Packaging (CP) definition of learning objects [4].

The remainder of this paper is organized as follows: section 2 details the evolution
of e-learning towards the e-learning frameworks. The following section introduces the
e-Framework and its technical model. Section 3 formalizes the approaches to be used
in the implementation of the programming exercise evaluator, as requires by the e-
Framework. As a contribution to the e-Framework, this work is a model of an
evaluation service rather than report on its implementation. Nevertheless, we are
planning the implementation of an evaluation service following this model using
virtualization, as explained in the final section.

2 Current trends in e-learning

The evolution of e-learning systems in the last two decades was impressive. In their
first generation, e-learning systems were developed for a specific learning domain and
had a monolithic architecture [5]. Gradually, these systems evolved and became
domain-independent, featuring reusable tools that can be effectively used virtually in
any e-learning course. The systems that reach this level of maturity usually follow a
component-oriented architecture in order to facilitate tool integration. An example of
this type of system is the LMS that integrates several types of tools for delivering
content and for recreating a learning context (e.g. Moodle, Sakai).

The present generation values the interchange of learning objects and learners'
information through the adoption of new standards that brought content sharing and
interoperability to e-learning. In this context, several organizations have developed
specifications and standards in the last years. These specifications define, among

2 Official Web Site, http://uva.onlinejudge.org/

many others, standards for e-learning content [6, 7] and interoperability [8]. In spite
of its adoption they have also been target of criticism. These systems based around
pluggable and interchangeable components, led to oversized systems that are difficult
to reconvert to changing roles and new demands such as the integration of
heterogeneous services based on semantic information and the automatic adaptation
of services to users (both learners and teachers). These issues triggered a new
generation of e-learning platforms based on services that can be integrated in different
scenarios. This new approach provides the basis for Service-oriented architecture
(SOA). In the last few years there have been initiatives [9, 10] to adapt SOA to e-
learning. These initiatives, commonly named e-learning frameworks, had the same
goal: to provide flexible learning environments for learners worldwide. Usually they
are characterized by providing a set of open interfaces to numerous reusable services
organized in genres or layers and combined in service usage models. These initiatives
use intensively the standards [6, 7] for e-learning content sharing and interoperability
developed in the last years by several organizations (e.g. ADL, IMS GLC, IEEE).

Based on a previous survey [1], we conclude that e-Framework and Schools
Interoperability Framework (SIF) to be the most promising e-learning frameworks
since they are the most active projects, both with a large number of implementations
worldwide. In the e-Framework we can contribute by proposing new service genres,
service expressions and service usage models. On SIF we cannot make this type of
contribution to the abstract framework. However, we can contribute with new agents,
such as learning objects repositories.

3 The e-Framework

The e-Framework is an e-learning framework aiming to facilitate technical
interoperability within and across higher education and research through improved
strategic planning and implementation processes. The e-Framework is an initiative
that was initially established by the UK's Joint Information Systems Committee
(JISC) and Australia's Department of Education, Employment and Workplace
Relations (DEEWR). In 2007, the two founding partners were joined by the New
Zealand Ministry of Education (NZ MoE) and The Netherlands SURF Foundation
(SURF).

The e-Framework has a knowledge base to support its technical model. A proposal
for a new component must use the internal components of the technical model. This
proposal might emerge from a technical project where many people with different
skills are connected such as vendors, developers, technical people, IT Managers,
institutions, hardware and software specialists. Hence, it’s crucial to the community
have a basic understanding about the e-Framework Technical Model before
contributing

The technical model of the e-Framework aims to facilitate system interoperability
via a service-oriented approach [11]. The model provides a set of technical
components enumerated in Table 1.

A service genre describes a generic or abstract service expressed in terms of
behaviours (e.g. authenticate, harvest, search). A service genre specifies what a

service should do without specifying how it should work. This type of component is
usually described by IT Managers without any technical knowledge.

A service expression is a realisation of a single service genre by specification of
exact interfaces and standards used. Since this component covers various technical
aspects is more suitable for programmers.

A service usage model (SUM) describes a model of the needs, requirements,
workflows, management policies and processes within a domain. Hence, the expected
candidates to formally describe SUMs are those with the domains’ knowledge. A
SUM is composed of either service genres or service expressions, but not a mixture.

Table 1. Technical Model.

Components Description User role
Service
Genre

A collection of related behaviours that
describe an abstract capability.

No technical expert
(e.g. IT Manager)

Service
Expression

A specific way to realise a service genre with
particular interfaces and standards.

Technical expert
(e.g. Developer)

Service Usage
Model

The relationships among technical components
(services) used for software applications.

Domain expert
(e.g. Business Analyst)

Service genres are technology-neutral descriptions of the behaviours of services.

They can be bound to specific technologies by one or more service expressions.
Service genres can also be abstracted from service expressions. Service expressions
can be implemented in more than one way as service implementations, and these
implementations can be deployed in more than one place as service instances.
Standards provide the interoperability of the data and messages used in the services.
Service implementations and instances may be referenced by the e-Framework
through the technical model but are not part of the e-Framework Technical Model.

Other components such as specifications and standards (e.g. IMS Metadata, LOM)
are used by service expressions but are not also defined by the e-Framework.

4 The Evaluate - Programming Exercise service expression

In the e-Framework a service expression is a specialization of a service genre
specifying the particular implementation approaches to be used. In this section we
define a new service expression, called Evaluate - Programming Exercise, that
specializes the Evaluate service genre3, modelling the evaluation of an attempt to
solve an exercise defined as a learning object. Examples of this kind of exercise can
be drawn from different domains; in this service expression we focus on the automatic
evaluation of programming exercises.

The e-Framework model contains 20 distinct elements to describe a service
expression, 9 of which are required elements, and the remaining either recommended
or optional. For the sake of terseness the remainder of this section concentrates on the
most significant of those elements.

3 We completed the definition of this service genre and we expect to publish it shortly.

4.1 Behaviours & Requests

The Behaviours & Requests element details technical information about the
functions and operations of the service expression. The three types of request handled
by this service expression are:

• ListCapabilities: provides the client systems with the capabilities of a
particular evaluator;

• EvaluateSubmission: allows the request of an evaluation for a specific
programming exercise;

• GetReport: allows a requester to get a report for a specific evaluation using
a ticket.

The ListCapabilities function provides the client systems with the capabilities of
a particular evaluator. Capabilities depend strongly on the evaluation domain. In a
programming exercise the evaluator capabilities are related to the supported
programming language compilers or interpreters. Each capability is described by a set
of features; for a programming language they may be the language name (e.g. Java),
its version (e.g. 1.5) and vendor (e.g. JDK).

The EvaluateSubmission function requests the evaluation of a program. The
request of an evaluation is based on three parameters: a reference for a programming
exercise described as a learning object, an attempt to solve the exercise and a specific
capability to be used in evaluation (e.g. compile and execute as a Java program). The
evaluator returns a report on the evaluation, if it is completed within a predefined time
frame. In any case the response will include a ticket to recover the report on a later
date.

The GetReport function returns a report for a specific evaluation using a ticket.
The report contains detailed information on the evaluation but should not be view as
an assessment, since it neither declares the attempt as acceptable, nor does it include a
grade. The report sent to the client can be used as input for other systems (e.g.
classification systems, feedback systems). The report included in this response may be
transformed in the client side based on a XML stylesheet. This way the client will be
able to filter out parts of the report and to calculate a classification based on its data.

4.2 Use & Interactions

The Use & Interactions element illustrates how the functions defined in the Requests
& Behaviours section are combined to produce a workflow. An interaction involving
the evaluator and two other service types, using the three main functions of the
evaluator, is depicted schematically in Fig. 4 as an UML sequence diagram. The
diagram includes three objects representing:

• Learning Management System - to manage the exercises suitable to specific
learner’s profiles;

• Evaluation Engine - to automatically evaluate and grade the students'
attempts to solve the exercises;

• Learning Objects Repository - to store programming exercises and to retrieve
those suited to a particular learner profile.

Fig. 1. Interacting with the evaluator.

The workflow presented in Fig. 1 starts with the configuration of an evaluation
activity in an LMS (e.g. Moodle with an evaluation plugin). The configuration
involves the selection of programming exercises and programming languages and will
be carried out by a teacher. To select relevant programming exercises the LMS
forwards the searches to a repository. To select programming language the LMS uses
the ListCapabilities function of the evaluator.

During the evaluation activity itself the LMS iterates on the evaluation of all
submissions. In general each student is able to make several submissions for the same
exercise and an activity may include several exercises. Each evaluation starts with an
EvaluateSubmission request from the LMS to the evaluator, sending a program and
referring an exercise and a programming language. The evaluator retrieves the LO
from the repository to have access to test cases, special correctors and other metadata.
The response to of this function returns a ticket and an evaluation report, if the
evaluation is completed within a certain time frame. The LMS may retrieve the
evaluation report using the GetReport function with the ticket as argument.

4.3 Applicable Standards

The Applicable Standards element enumerates the names and versions of all the
domain and technical standards, specifications and application profiles needed to
provide the functionality of the service expression.

The pertinent e-learning content standards for this service expression are the IMS
Content Packaging (IMS CP) [12] v1.1.4 final specification and the IEEE Learning
Object Metadata (LOM). We introduce also a specification from a previous work [4]
where we defined programming exercises as learning objects based on the IMS CP.

An IMS CP learning object assembles resources and meta-data into a distribution
medium, typically a file archive in zip format, with its content described in a file
named imsmanifest.xml at the root level. The manifest contains four sections: meta-
data, organizations, resources and sub-manifests. The main sections are meta-data,
which includes a description of the package, and resources, containing a list of
references to other files in the archive (resources) and dependency between them.

This standard was defined for LO in general, not specifically for programming
problems. In particular, the IMS CP schemata (including the IEEE LOM) lack
features for describing all the resources required to perform the automatic evaluation
of programming problems. For instance, there is no way to assert the role of specific
resources, such as test cases or solutions. Fortunately, IMS CP was designed to be
straightforward to extend it and thus we were able to use this standard for our purpose
of defining programming problems as learning objects.

Meta-data information in the manifest file usually follows the IEEE LOM schema,
although other schemata can be used. Since the meta-data related to the automatic
evaluation cannot be conveniently represented using the IEEE LOM, it is encoded in
elements of a new schema - the EduJudge Meta-data Specification (EJ MD).

The only e-learning interoperability standard relevant to this service expression is
the IMS DRI specification [8]. It was created by the IMS Global Learning
Consortium (IMS GLC) and provides a functional architecture and reference model
for repository interoperability. The IMS DRI provides recommendations for common
repository functions, namely the submission, search and download of LO. The IMS-
DRI must be used by the evaluator with the LO repository.

There are no e-learning standards for interoperability with evaluators thus we
focus on general communication standards such as those related with web service
communication. There are two main web services flavours: Simple Object Access
Protocol (SOAP) [13] and Representational State Transfer (REST) [14]. We propose
that the service expression supports both flavours.

SOAP web services are usually action oriented, especially when used in Remote
Procedure Call (RPC) mode and implemented by an off-the-shelf SOAP engine such
as Axis [15]. REST web services are object (resource) oriented and implemented
directly over the HTTP protocol, mostly to put and get resources. The reason to
provide two distinct web service flavours is to encourage the use of the evaluator by
developers with different interoperability requirements. A system requiring a formal
an explicit definition of the API in Web Services Description Language (WSDL) [13],
to use automated tools to create stubs, will select the SOAP flavour. A lightweight
system seeking a small memory footprint at the expense of a less formal definition of
the API will select the REST flavour.

4.4 Interface Definition

The Interface Definition element formalizes the interfaces of the service expression,
namely the syntax of requests and responses of its functions. This particular service
expression exposes its functions as SOAP and REST web services. The syntax of
function requests in both flavours is summarized in Table 2.

Table 2. Service Expression function requests in SOAP and REST.

Function Web
Service

Syntax

ListCapabilities
SOAP ERL ListCapabilities()

REST GET /evaluate/ > ERL

EvaluateSubmission
SOAP ERL Evaluate (Problem, Attempt ,Capability)

REST POST /evaluate/$CID?id=LOID < PROGRAM > ERL

GetReport
SOAP ERL GetReport(Ticket)

REST GET $Ticket > ERL

The remainder of this sub-section describes these functions in detail. All these

functions respond with an XML document complying with the Evaluation Response
Language (ERL). The ERL is formalised in XML Schema and covers the definition of
the response messages for the three evaluator functions. The diagram depicted in the
Fig. 2 includes two main elements: request and reply. The former echoes the
request function and its parameters as received by the evaluation service and the later
contains the output to that request.

Fig. 2. The ERL schema.

The request element contains a different sub-element according to the function
type. The reply element includes two sub-elements representing the possible
responses of the service, more precisely, the capabilities and report elements.
The capabilities element is used in a ListCapabilities response. This element has
several capability sub-elements each with several feature elements to describe it.
The ticket attribute holds a ticket to recover a report on a later date.

4.5 Usage Scenarios

The Usage Scenarios element characterizes the types of workflows in which the
service expression is used. In our case these workflow types can be classified as
curricular and competitive learning. In this sub-section we detail the requirements of
these different scenarios.

Curricular learning in computer programming requires the evaluation of
exercises in several moments such as practical classes, assignments and examinations.
A programming evaluation service can be used in all three cases. Its usefulness in
practical classes results from the instant feedback it provides to students, identifying
the failed test cases and providing hints to resolve them. In programming assignments
combining automatic and human evaluation both feedback and grading are relevant.
In this scenario the student may submit multiple times, until a number of tests is
passed, and receive automated feedback in the process. In examinations grading is the
most relevant part and different grading policies can be implemented by the client
based on the tests cases that were successfully completed.

Competitive learning relies on the competitiveness of students to increase their
programming skills. This is the common goal of several programming contests where
students at different levels compete such as: the International Olympiad in Informatics
(IOI)4, for secondary school students; the ACM International Collegiate Programming
Contests (ICPC)5, for university students; and the IEEExtreme6, for IEEE student
members. Each programming contest type has its own set of rules. In some cases
students participate individually (as in IOI and IEEExtreme) in other cases they
participate as a team (as in ICPC). Moreover, each contest has its own policy for
grading and ranking submissions. For instance, IO assigns points to tests and ICPC
just accepts a submission if it passes all tests, and gives a penalty for failed
submissions when an exercise is accepted.

An implementation of the proposed service expression meets the evaluation
requirements of this wide range of scenarios, from curricular and competitive
learning. The evaluation report does not compute a grade, points or classification, nor
produces a feedback for any particular scenario. However, all these can be easily
computed by clients using a XSL transformation on the XML formatted report.

5 Conclusion and ongoing work

This paper presents a contribution to the e-Framework consisting of an evaluation
service for programming exercises. More precisely, we add a new service expression
specializing an existing service genre refining its behaviours and requests, and
specified implementation approaches such as applicable standards and interface
definitions.

4 IOI Official Web Site, www.ioinformatics.org
5 Official Web Site, http://icpc.baylor.edu/
6 IEEExtreme Official Web Site, http://ieeextreme.org/

We are currently developing an evaluation engine based on this service
expression. This implementation is based on Virtual Machines (VM) to execute the
programs on a safe and controlled environment and is divided into five components,
two controlling the evaluation service and other three supporting the execution of the
programs on the VM. The five independent components give the evaluation engine a
higher scalability. The use of VM allows us to manage a high number of capabilities
such as languages and programming environments from different operating systems,
including obsolete versions.

References

1. Leal, J.P. and Queirós, R.: eLearning Frameworks: a survey. Proceedings of International
Technology, Education and Development Conference 2010, Valencia, Spain, (2010)

2. Leal, J.P and Silva, F.: Mooshak: a Web-based multi-site programming contest system
Software, Practice & Experience, Volume 33 , Issue 6 (May 2003), Pages: 567 - 581,
2003, ISSN:0038-0644

3. Leal J.P and Queirós, R.: CrimsonHex: a Service Oriented Repository of Specialised
Learning Objects, in Joaquim Filipe and José Cordeiro (Eds.) Proceedings of ICEIS'09:
11th International Conference on Enterprise Information Systems, pages 102-113, Milan,
Italy, May 2009, ISBN: 978-3-642-01346-1.

4. Leal, J.P., Queirós, R.: Defining Programming Problems as Learning Objects - ICCEIT
2009 - International Conference on Computer Education and Instructional Technology,
Venice, Italy, (2009)

5. Dagger, D., O'Connor, A., Lawless, S., Walsh, E., Wade, V.: Service Oriented eLearning
Platforms: From Monolithic Systems to Flexible Services (2007)

6. IMS CC Specification, Version 1.0 Final Specification,
http://www.imsglobal.org/cc/index.html

7. Bohl, O., Scheuhase, J., Sengler, R. and Winand, U.: The shareable content object
reference model (SCORM)-a critical review, Proceedings of the International Conference
on Computers in Education, 2002, pages 950-951

8. IMS DRI - IMS Digital Repositories Interoperability, 2003. Core Functions Information
Model, http://www.imsglobal.org/digitalrepositories

9. C. Smythe: IMS Abstract Framework - A review, IMS Global Learning Consortium, Inc.
(2003)

10. Wilson, S., Blinco, K. , Rehak, D. : An e-Learning Framework - Paper prepared on behalf
of DEST (Australia), JISC-CETIS (UK), and Industry Canada, (2004)

11. e-Framework Technical Walk-through, http://www.e-framework.org/Portals/9/docs/e-
Framework%20technical%20walk-through%20v1.1.pdf

12. IMS-CP – IMS Content Packaging, Information Model, Best Practice and Implementation
Guide, Version 1.1.4 Final Specification IMS Global Learning Consortium Inc.,
http://www.imsglobal.org/content/packaging/#version1.1.4

13. Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N. and Weerawarana, S.,
Unraveling the Web services web: an introduction to SOAP, WSDL, and UDDI, IEEE
Internet computing, 2002, Volume 6, Issue 2, Pages: 86-93

14. Fielding, R.T. and Taylor, R.N. (2002-05), Principled Design of the Modern Web
Architecture, ACM Transactions on Internet Technology (TOIT) (New York: Association
for Computing Machinery) 2 (2): pages: 115–150, doi:10.1145/514183.514185, ISSN
1533-5399

15. Clark, D., Next-generation web services, IEEE Internet Computing, 2002, Volume 6, Issue
2, Pages: 12-14

