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Abstract Geostatistics has been successfully used to
analyse and characterize the spatial variability of
environmental properties. Besides providing estimated
values at unsampled locations, geostatistics measures the
accuracy of the estimate, which is a significant advantage
over traditional methods used to assess pollution. This
work uses universal block kriging to model and map the
spatial distribution of salinity measurements gathered by
an Autonomous Underwater Vehicle in a sea outfall
monitoring campaign. The aim is to distinguish the
effluent plume from the receiving waters, characterizing
its spatial variability in the vicinity of the discharge and
estimating dilution. The results demonstrate that
geostatistical methodology can provide good estimates of
the dispersion of effluents, which are valuable in
assessing the environmental impact and managing sea
outfalls. Moreover, since accurate measurements of the
plume’s dilution are rare, these studies may be very
helpful in the future to validate dispersion models.
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1. Introduction

The physical and biological coastal processes that
determine the values of environmental variables are
complex and still poorly understood. Usually the
observations are so unpredictable that the spatial
distribution of these variables appears to be random. This
randomness makes deterministic solutions adequate to
describe the simplest [1]. The
measurements of environmental variables are usually
obtained in very restricted areas and constitute a sample
from a continuum that cannot be recorded everywhere.
However, people aim to predict the spatial distribution of
these variables from a more or less sparse data set. The
maps made using the classical methods of spatial
interpolation usually display the spatial variation poorly
[1]. The interpolators of these methods also fail to provide
any estimates of the error, which are desirable for
prediction. In this line of thought, geostatistical
prediction is the logical solution in the sense that it
provides a description of how the
environmental variable differs spatially and a prediction
for the places that have not been sampled. Additionally,
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geostatistics also provides estimates of the errors in these
predictions and therefore it is possible to judge how
confident we can be about them [1, 2].

Typically, the behaviour of a sea outfall discharge is a
process that can be described as follows. The wastewater
is usually ejected as an array of turbulent buoyant jets
from ports spaced along the outfall diffuser. These
turbulent buoyant jets mix with the ambient seawater,
usually resulting in rapid reductions of contaminant
concentrations. The seawater around coastal outfalls is
often density-stratified with density increasing with
depth. The discharge, whose density is close to fresh
water, is lighter than the surrounding ambient seawater
and the plumes rise due to buoyant forces until they
reach a level of neutral buoyancy where the effluent
spreads laterally, creating a horizontal spreading layer.
Depending on the strength of seawater stratification,
currents and other variables, the horizontal spreading
layer may be submerged and will not be visible on the
water surface. If the receiving waters are homogeneous or
weakly stratified, the plumes will reach the surface and
spread horizontally away from the source [3]. Studying
the effluent mixing process in coastal waters in situ is still
a complex problem. Several monitoring campaigns using
natural tracers have been conducted to detect and map
sewage plumes under different oceanic conditions [4-6].
The results show, however, very complex and patchy
structures both in vertical and horizontal sections that are
difficult to identify with the classic picture of the buoyant
plume. As advanced by several investigations, the
observed plume patchiness can occur due to one or a
combination of factors which include: (1) variations in
currents and stratification during time intervals (which
can be hours in some cases), separating the beginning and
the end of the field tests and resulting in different
equilibrium depths or even distinct plume behaviours, (2)
internal tides that can result in a given effluent
concentration surface undergoing significant vertical
excursions as it advects from the outfall and (3)
limitations of sampling in terms of time resolution of time
and space scales; in reality, field measurements are not
truly synoptic - a transverse of several kilometres can last
a couple of hours. Because of their extensive preparation
and potentially negative impacts on the environment,
detection methods using introduced tracer substances,
either at the treatment plant or at the level of the diffusers
in the waters, are not practical for routine monitoring of
sewage effluents. However, this technique is still the most
effective because it makes plume detection easier and
usually allows for a quantitative estimation of dilution far
away from the diffuser [7-8]. Rapid sampling is expected
to reduce time and space variability during and between
transects. Because of their easier field logistics, reduced
cost per study, increased spatial resolution, reduced
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spatial aliasing effects and adaptive sampling capabilities,
Autonomous Underwater Vehicles (AUVs) are especially
valuable in detecting and mapping sewage plumes [9-13].

2. Geostatistical Prediction

If a stochastic approach is used for the spatial prediction
problem, then z(X), which is a regionalized variable, is
seen as a realization of a continuous random function
(RF) Z(x) (i.e., an infinite family of continuous random
variables, usually dependent, constructed at all points X
of a given domain D one, two or three-dimensional). The
set of measured values {Z(Xi), i= 1,...,n} is viewed as a
collection of several values of z(X). Each one of these
values z(X;), measured at location X,, is called a
regionalized value. To model the spatial variation of
domain D, it is necessary to characterize the RF Z(X)
probabilistically. However, there is little data from one or
several realizations of Z(X) and it would be impossible
to infer all the uni- and multivariate distribution
functions (for any set of points), unless some assumptions
are made. These assumptions are given by the idea of
stationarity [1, 14-16].

2.1 Spatial Correlation

The relationship between two variables (characteristics)
can be evaluated using their covariance. For n pairs of
observations (214,254) 1=1,..n of two variables z, and
z, , the covariance is given by [1]:

n

lZ{(Zl,i _21)(22,1 —22)}, (1)

Cpp= n=
where Zz, and Zz, are the means of z, and z,,
respectively. It is possible to extend this definition to
relate any two random variables Z(x;) and Z(X].) from a
RF Z(x) (where Z(x,) and Z(Xj) are sets of values of
the property Z at the two places X; and X].) and their
covariance is [1]:

cov(Xi/Xj) = E[{Z(Xi) - ,U(Xi)}{Z(Xj) —y(xj)}] 2)

where x(x;) and /J(Xj) are the means of Z at X; and
X, respectively. Since it is not possible to know the
means u(X;) and y(xj), the covariance cannot be
computed unless some assumptions of stationarity are
made. If we assume that: (1) the mean function of the RF
is constant for all locations, i.e., [2, 15]:

E[Z(X)|=u forall xeD, (3)

and that (2) the covariance of Z between any two
locations X, and X; depends only on their separation
h=x, - X;, and not on their absolute positions, equation
(2) is rewritten as [1]:
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cov(x,x+h)=E[Z(x)-Z(x + h) |- /* =C(h), (4

for all X, X +h eD, where the vector h is known as the
lag and C(h) as the covariance function. Equations (3)
and (4) are called the hypothesis of second-order
stationarity. For a second-order stationary RF, the
variance is constant for all x e D and equal to C(0), the
covariance at lag 0. In many cases, second-order
stationarity is found to be too strong. In some cases, the
variance (or dispersion) may be unlimited [16]. For this
reason, in [17] Matheron proposed a solution where
although in general the mean may not be constant, it
would be for small ‘h‘ so that the expected differences
would be zero:

E[Z(x)-Z(x +h)]=0. (5)

Furthermore, the author replaced the covariances with
the wvariances of differences such as spatial
characterization = measurements, which, like the
covariance, depend on the lag and not on the absolute
position [17]:

var[ Z(x)-Z(x + h) | = E[{Z(X) -Z(x + h)}z} =2y(h), (6)

for all x, x+heD. Equations (5) and (6) are known as
the Matheron’s intrinsic hypothesis. The quantity y(h) is
called semi-variance (half the variance) at lag A and, as a
function of A, it is called a semi-variogram or simply a
variogram. For
variogram can be computed from the covariance function
using the formula [2, 14]:

second-order stationary RFs, the

y(h)=C(0)-C(h). @)

Under the intrinsic hypothesis the reverse is not true
because the covariance function does not exist. The
validity of the variogram in a wider range of applications
(due to the weaker form of stationarity required for its
existence) allow it to be more widely used in geostatistics
than the covariance function. However, it has been
demonstrated that in practice this is often of no relevance
[16]. For a data set {Z(Xi),izl,...,n}, it is possible to
estimate the semi-variance y(h) by [1]:

1 N

> [20%) - 2(x; + )T, ®)

=Nk &

where N(h) is the number of pairs of data points
separated by the particular lag vector h . The set of semi-
variances obtained by sequentially
constitute the experimental (or sample) variogram. The
experimental variogram can be estimated for different
directions to enable the identification of directional
variation (anisotropy). As well as being a mean to
characterize spatial structure, the variogram is also used

increasing h
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in the kriging prediction process to obtain semi-variances
at particular lags. Therefore, a continuous function must
be fitted to the experimental variogram. That function
must be such that it will not originate negative variances
of random variable combinations. This is guaranteed by
ensuring that the covariance function is positive semi-
definite and/or the variogram is conditional negative
semi-definite (CNSD) [1]. There are two main classes of
CNSD functions: bounded models and unbounded
models. In bounded models the variance has a maximum,
known as a sill. The variogram may reach its sill at a
finite lag distance called the range. Alternatively, the
variogram may approach its sill asymptotically (in this
cases the range is usually taken as the lag at which semi-
variance is 0.95 of the sill) or reach a maximum, decrease
and perhaps fluctuate about the sill [1]. These variograms
are indicative of second-order stationarity and therefore
they have equivalent covariance functions. Only pairs of
values closer than the range are spatially dependent [16].
In practice, the value at which the model fitted to the
variogram crosses the intercept is usually a positive value
known as the nugget variance. In most contexts, the
nugget effect arises from a spatial variation that has not
been resolved due to measurement errors or random
variation at lags shorter than the smallest sampling
interval [16]. The most common bounded models are
spherical, exponential, Gaussian and the Matérn family
[1]. Unbounded models do not reach a sill and meet the
requirements of intrinsic stationarity only [16]. The
simplest and most common models for unbounded
variation are the power functions (where the power
varies between zero and two) [1]. There are several
approaches to fit the models to experimental variograms,
but the weighted least squares is the most common
method [1]. Kriging is known by the acronym BLUP,
which stands for best linear unbiased predictor. The
method is best in that it aims to minimize the error
variance. It is linear because predictions made using
kriging are weighted linear combinations of the sample
data available. It is unbiased as it attempts to have a
mean residual error equal to zero [16]. All approaches to
kriging aim to find the optimal weights A to assign to n
available data z(Xx;) to predict the unknown value at the
location X . The kriging prediction Z(X,) is expressed as
[15, 16]:

Q(XO) = iﬂlz(xl) (9)

i=1

Usually, the n observations used in prediction are at a
distance from X, that is smaller than the range. Point (or
punctual) kriging makes predictions on the same support
as the sample observations. Block kriging is used when
the intention is to obtain predictions (averages) over a
larger support. Block kriging produces smoother maps
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than point kriging, as variability is averaged across the
larger support [16].

2.2 Ordinary Kriging

Ordinary kriging (OK) is by far the most common type of
kriging used in practice. It is based on the assumption
that the unknown mean x is constant across the region
of interest, or within the local neighbourhood of the
prediction location (which is usually the case) [1, 16].

The predictor must be unbiased and thus the prediction
error must have an expected value of zero [15]:

E[Z(xo)—Z(xo)]=0 = iﬂ, =1. (10)

i
i=1

The kriging (or prediction) variance can be computed in
terms of the variogram if condition (10) is used. After
some algebra, it is possible to obtain [15]
~ 2 n n n
E{(Z(XO)—Z(XO)) }: 23 A%, - Xo) -2 D Ay (x; - x,). (11)
i=1

i=1 i=1j=1

The values of 4,,...,4

., that minimize expression (11)

while satisfying constraint (10) are obtained using the
Lagrange multipliers method. The conditions for the
minimization are given by the OK system of n+1
equations with n+1 unknowns [1, 15, 16]:

DAY =X)+y =X~ X;), i=1..n
= (12)

ﬁj =1
j=1
where y is the Lagrange multiplier. Its solution provides
the weights 4,...,4, and y is the kriging variance given
by [1, 15, 16]:

O, = DAV = Xg) +y. (13)
i=1

In matrix notation the OK system is written as Ax=b,
where A is the n+1 by n+1 matrix of semi-variances
[1, 15, 16]:

7(X;—X) rix;—x,) 1
g =x) e p(x,-x,) 1
1 1 0

x are the OK weights and b are semi-variances for the
observations for the prediction location:

A 7(X; = X,)

b= ' .
A 7(X, —X,)
1
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The OK weights are obtained by x=A"'b and the
kriging variance is given by 0)2(0 =b"x. It is easy to see
that point kriging is an exact interpolator [1]. A
consideration in many environmental applications has
been that ordinary kriging usually exhibits large
prediction errors [18]. This is due to a larger variability in
the observations. When predicting averages over larger
areas, that is within blocks, much of the variability
averages out and consequently block mean values present
lower prediction errors. If the blocks are not too large the
spatial patterns do not disappear. The block kriging
system is similar to the point kriging system given by
(12). The matrix A is the same since it is independent of
the location at which the block estimate is required. The
semi-variances for vector b are point-to-block semi-
variances. Supposing that the mean value over block B is
approximated by the arithmetic average of the N point
variables contained within that block ([1, 14]), i.e.,

A 1N
Z(B)~ NZZ(Xj), (14)
=1
then vector b is
7(x,,B)
b=|_
7(x,,B)
1

where y(Xx;,B),i=1,...,n is the average semi-variance
between the ith sampling point and block B, which can
be estimated by:

_ 13
7(%,B) = 2.7(%; ~ X). (15)
=1
The block kriging variance is given by:

o5 =b'x-7(B,B), (16)

where y(B,B) is the average semi-variance between pairs
of points within B estimated by [1, 14]:

_ 1 N N
7(B1B):72227(x1_xj)- (17)

N5
An equivalent procedure, which can be more

computationally expensive than block kriging, is
obtaining the block estimate by averaging the N kriged
point estimates within the block [1, 14].

2.3 Kriging in the Presence of Trend

If the variogram increases faster than ‘h‘z for large lags,
then the RF is non-stationary [1, 16]. In such cases, the
variation in Z(X) can be modelled as:
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Z(x)=m(X)+R(x) (18)

where R(X), which is called the residual, is an RF with
zero mean and m(X) is a deterministic function of the
coordinates usually expressed as [15]:

K
m(x) =Y A f(X) (19)
k=0

in which g are unknown coefficients and f (Xx) are
known functions of the coordinates. Typically the trend
m(X) can be modelled as a low-order polynomial in the
spatial coordinates. If K=0 the model in (18)
stationary with unknown mean f,, since conventionally
f,(x)=1, with the usual variogram and it is therefore
possible to use OK. As in OK, the predictor is defined as
[1, 15, 16]:

(%) =Y. AZ(X,). (20)
i=1

The estimator is unbiased if:

D Af (X)) =f(x,), k=0,1,... K 1)

i=1

Assuming that R(X) has a known variogram y(h), the
kriging variance is given as [1, 15, 16]:

%, = 24706 =X) 2 D AAy(X = X;),  (22)

i=1 i=1j=1

where }/(Xi—xj) is the semi-variance of the residual
between the data points X; and X, and y(Xx,—X,) is
the semi-variance between the target point X, and the
data point X;. The weights 4,,...,A4, are determined

. Wg) and
solving the KT (kriging with a trend model or universal
kriging) system of n+K+1 equations with n+K+1
unknowns:

using K+1 Lagrange multipliers (v,,v,.

n K
247X = X;) Z_:y/kf(x y(X,-X,), i=1...,n

=1

o

I
il

A1 23)

Z/llfk(xi) =f(x,), k=0,1,...,K

i=1

Once the weights and the Lagrange multipliers are
known, the kriging variance is given by [1, 15, 16]:

K n
Ox, = zl/lkfk(xo)"'zil?/(xi - X,). (24)
k=0 i=1

www.intechopen.com

In matrix notation, the KT system is written as Ax=b,

where
7;/(X1—X1) 7(X1 x,) 1 f1(x1) fK(X1)7
y(xn_xl) 7(xn_xn) 1 f](xn) fK(xn)
A= 1 1 0 0 0 ,
£,(x;) fi(x,) 0 0 - 0
£ (X) f(x,) 0 0 0 |
_/71 ] _7(X1_X0)_
ﬂ“n }’(Xn _XO)
X=|y, and b= 1
41 f](xo)
R4 | f (%)

The KT weights are obtained by x=A"'b and the
kriging variance is given by o2 =b'x. The equations of
block kriging with a trend model (BKT) can be obtained
similarly to the ones in block ordinary kriging (BOK). The
deterministic component m(X) may also be a linear
expression of one or several variables related to Z . By
knowing the values of this (these) variable(s) at data
locations, as well as at all locations for which predictions
are desired, the form of the equations is the same as for
universal kriging. This type of kriging is usually called
kriging with external drift (KED).

2.4 Cross Validation

Cross-validation is a procedure used to compare the
performance of several competing models. It starts by
splitting the data set into two sets: a modelling set and a
validation set. Then, the modelling set is used for
variogram modelling and kriging in the locations of the
validation set. Finally, the measurements of the validation
set are compared with their predictions [18]. If the
average of the cross-validation errors (or Mean Error,
ME) is close to 0

18
:Eé[z(xi)—z(xi)]. (25)

one may say that apparently the estimates are
unbiased (z(x;) and 2(x;) are, respectively, the
measurement and estimate at point X; and m is the
number of measurements in the validation set). A
significant negative (positive) mean error represents
systematic underestimations (overestimations). The
magnitude of the Root Mean Squared Error (RMSE) is
particularly interesting for comparing different models

[1]:
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1&. 2
RMSE = \/mg[z(xi) —z(x) ] . (26)

The RMSE value should be as small as possible,
indicating that estimates are close to measurements. The
kriging standard deviation represents the error predicted
by the estimation method. Dividing the cross-validation
error by the corresponding kriging standard deviation
makes it possible to compare the magnitudes of both the
actual and predicted error [1]. Therefore, the average of
the standardized squared cross-validation errors (or
Mean Standardized Squared Error, MSSE)

o 2
MSSE:iZM.

A2
i=1 X,
i

(27)

should be approximately one, indicating that the model is
accurate. A scatterplot of true versus predicted values
provides additional evidence on how well an estimation
method has performed. Typically the intention is for the
set of points to come as close as possible to the line y =x,
a 45-degree line passing through the origin of the
scatterplot. The coefficient of determination R? is a good
index for summarizing how close the points on the
scatterplot come to falling on the 45-degree line passing
through the origin [2]. R? should be close to one.

3. MARES AUV

MARES (Modular Autonomous Robot for Environment
Sampling) AUV has been successfully used to monitor
sea outfall discharges (see Figure 1).

Figure 1. AUV MARES.

MARES is 1.5m long, it has an 8-inch diameter and
weighs about 40kg in air [12, 13]. It features a plastic hull
with a dry mid body (for electronics and batteries) and
additional rings to accommodate sensors and actuators.
Its  modular simplifies  the
development (the case of adding sensors, for example). It
is propelled by two horizontal thrusters located at the
rear and two vertical thrusters, one in the front and the
other in the rear. This configuration allows for small
operational speeds and high manoeuvrability, including
pure vertical equipped with an
omnidirectional acoustic transducer and an electronic

structure system’s

motions. It is
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system that allows for long baseline navigation. The
vehicle can be programmed to follow predefined
trajectories while collecting relevant data using the on-
board sensors. A Sea-Bird Electronics 49 FastCAT CTD had
already been installed on-board the MARES AUV to
measure conductivity, temperature and depth. MARES’s
missions for environmental monitoring of wastewater
discharges are conducted using GUI software that fully
automates the operational procedures of the campaign. By
providing visual and audio information, this software
guides the user through a series of steps which include: (1)
real time data acquisition from CTD and ADCP sensors, (2)
effluent plume parameter modelling using the CTD and
ADCP data collected, (3) automatic path creation using the
plume model parameters, (4) acoustic buoys and vehicle
deployment, (5) automatic acoustic network setup and (6)
real time tracking of the AUV mission [13].

4. Results
4.1 Study Site

The study site is shown in Figure 2. The S. Jacinto outfall
is located off the Portuguese west coast near the Aveiro
estuary [9, 10]. The total length of the outfall, including
the diffuser, is 3378m (the first 3135m section has a
diameter of 1600mm and the last 243m section has a
diameter of 1200mm). The diffuser, which consists of 72
ports alternating on each side, nominally 0.175m in
diameter, is 332.5m long. Currently, only the last 20 of the
72 ports are working on a length of 98.2m. The ports are
discharging upwards at an angle of 30° to the horizontal
axis; the port height is about 1.3m. The outfall has a true
bearing direction of 290° and is discharging at a depth
varying between approximately 14 and 17m. The sea
floor near the diffuser is moderately sloped, with a sandy
bottom and isobaths that are parallel to the coastline. In
that area the coastline itself runs at about a 200° angle
with regard to true north. Flow variation through the
outfall in question is not typical of WWTPs since the
effluent is mainly of industrial origin. Effluent flow rate
ranges most frequently between 0.6 and 0.8m?/s. During
the campaign, the discharge remained fairly constant
with an average flow rate of ~0.61 m?/s. Figures 2 and 3
show a plan view of the AUV’s position estimate during
the plume tracking survey. A rectangular area of
approximately 200x100m? was covered starting 20m
downstream from the middle point of the outfall diffuser.
Salinity measurements were obtained at 2 and 4m depths
the effluent plume was predicted to be
horizontally dispersing. In each horizontal trajectory, the
vehicle described six parallel transects that were
perpendicular to the direction of the current, 200m in
length and at 20m intervals. When performing horizontal
trajectories, vertical oscillations of the AUV were less
than Im (up and down) in the 2m survey and less than
1m down and less than 1.5m up in the 4m survey. In the

where
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2m trajectory, the average depth of the AUV was
2.0m with a standard deviation of 0.20m. In the 4m
trajectory, the average depth was 4.0m with a standard
deviation of 0.33m. During the mission the vehicle moved
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at a fairly constant velocity of 1m/s (2 knots). Salinity data
were recorded at a rate of 2.4Hz. The geostatistical
analysis was conducted using R statistical software and
the Gstat package of R [19, 20].

Aveiro Estuary System
(1"phase)

Barinha de Esmoriz System
Paramos Lagoon (2”phase)
— Severlnterceptor

~= Sea Outtall

| wwre
Wiasimstr Trastmant Pint
@ Municipality center

,---Ofiveira
do Bairro

Figure 3. Plan view of the AUV’s position estimate together with the salinity measurements at 2m (left) and 4m (right) depths.
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4.2 Exploratory Analysis

A statistical analysis was conducted in order to obtain
elementary knowledge on the conventional salinity data
sets (see Table 1 and Figure 4). At a 2m depth the salinity
ranged only from 35.152psu to 35.607psu. The mean
value of the data set was 35.453psu, which was very close
to the median value, which was 35.464psu. The skewness
coefficient is relatively low (-0.57), indicating that the
distribution is approximately symmetric. The very low
value of the variation coefficient (0.0019) reflects the fact
that the histogram does not have a tail of high values. At
a 4m depth the salinity ranged from 35.097psu to
35.712psu. The mean value of the data set was 35.569psu,
which was almost equal to the median value, which was
35.571psu. The skewness coefficient is not very high (-
1.32), indicating that the histogram is only slightly
asymmetric. The variation coefficient is quite low
(0.0015).

Summary Salinity (2m) Salinity (4m)
Samples 2426 2803
Minimum 35.152 psu 35.097 psu
Lower quartile 35.408 psu 35.538 psu
Mean 35.453 psu 35.569 psu
Upper quartile 35.499 psu 35.609 psu
Median 35.464 psu 35.571 psu
Maximum 35.607 psu 35.712 psu
Skewness coefficient -0.57 -1.32
Variation coefficient 0.0019 0.0015
Variance 0.00444 psu? 0.00274 psu?
Standard deviation 0.0666 psu 0.0523 psu

Table 1. Summary statistics of salinity measured at 2 and 4m
depths.

The kriging methods work better if the distribution of the
data values is close to a normal distribution. Therefore, it
is interesting to see how close the distribution of the data
values comes to being normal. Figure 4 shows the plots of
the normal distribution adjusted to the histograms of the
salinity measured at 2 and 4m depths. Apart from some
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erratic high values, it can be seen that the histograms are
reasonably close to the normal distribution. The scatter
map at a 2m depth (Figure 3) showed that there might be
a trend across the field. That trend is not so evident on the
scatter map at a 4m depth. To explore this, the relation
between salinity and the Euclidean distance (3D) to the
middle point of the diffuser was studied. Figure 5 shows
salinity versus the distance at 2 and 4m depths fitted by a
linear regression model. It can be seen that salinity
increases with the distance and that is more evident at the
2m depth. The Pearson correlation coefficient and the
Spearman correlation coefficient between the
variables at the 2m depth are 0.58 and 0.56, respectively.
At the 4m depth these coefficients are 0.26 and 0.22,
respectively. Therefore, it was decided to assume this
trend in subsequent analyses.

two

4.3 Variogram Modelling

For the purpose of the cross-validation analysis, the
salinity measurements were divided into a modelling set
(comprising 75% of the samples) and a validation set
(comprising 25% of the samples). Modelling and
validation sets were then compared in terms of their
salinity measurements using the Student's t-test. The aim
was to confirm that they provided unbiased sub-sets of
the original data. The experimental variograms of both
modelling sets (2 and 4m depth) computed using
Equation (8) are shown as the plotted points in Figure 6
(a) and Figure 7 (a). To explore the trend, experimental
variograms of the OLS residuals from the linear model of
the Euclidean distance (3D) to the middle point of the
diffuser were also computed (see the plotted points in
Figure 6 (b) and Figure 7 (b)). The estimation of semi-
variance was conducted using a lag distance of 2m and a
maximum distance of 120m. Anisotropy was investigated
by calculating directional variograms. However, no
anisotropy effect could be shown. All experimental
variograms were fitted by Matern models (for several
shape parameters) using the weighted least squares
(WLS) estimation. The parameters of the fitted models are
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presented in Table 2. At a 2m depth, accounting for the
distance to the diffuser has lowered the total variability
(as expected from the results of the linear modelling), but
it has also reduced the range of spatial dependence. The
residual variograms at a 2m depth clearly have a
substantially lowered sill and reduced range. At a 4m
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depth only the range has reduced slightly. All variograms
have low nugget values and low nugget/sill ratios. These
results indicate that local variations could be captured
due to the high sampling rate and the fact that the
variable under study has strong spatial dependence.
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Figure 6. Variograms of salinity at 2m depth fitted by Matern models: (a) experimental variogram computed from the raw data using
Equation (8); (b) experimental variogram of the OLS residuals from a linear trend of the distance to the middle point of the diffuser.
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Figure 7. Variograms of salinity at 4m depth fitted by Matern models: (a) experimental variogram computed from the raw data using
Equation (8); (b) experimental variogram of the OLS residuals from a linear trend of the distance to the middle point of the diffuser.

4.4 Cross-Validation

The block kriging method was preferred since it
produced smaller prediction errors and smoother maps in
comparison with the point kriging. Using the 75%
modelling sets of the two depths and the variograms of
the raw data, a two-dimensional Ordinary Block Kriging
(BOK), with 10x10 m? blocks, was applied to estimate
salinity at the locations of 25% of the validation sets.

www.intechopen.com

Using the 75% modelling sets of the two depths and the
variograms of the OLS residuals from a linear trend, a
two-dimensional Block Kriging with Trend (BKT) with
10x10m? blocks was applied to estimate salinity at the
locations of 25% of the validation sets. The measurements
of the validation sets were then compared to their
predictions. The cross-validation errors computed using
Equations 25-27 are shown in Table 3. For all shape
parameters studied, at a 2m depth the salinity was best
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estimated by the BKT, while at a 4m depth the salinity
was best estimated by the OBK. As expected, the BKT
performed better than the OBK where the trend was more
significant. At a 2m depth, for the best model (v =0.3),
the ME was -0.000997, the RMSE was 0.025023 and the

R? value was 0.8621. At a 4m depth, for the best model (
v=1.0), the ME was 0.000004, the RMSE was 0.024242

and the R? value was 0.7706. Both MSSE values are
relatively high, probably due to the smoothing effect of

the block kriging. Figure 8 shows the scatterplots of true
versus estimated values for the most satisfactory models.
These plots show once again that observed and predicted
values are highly positively correlated. Figure 8 shows
the scatterplots of true versus estimated values for the
most satisfactory models. These plots show once again
that observed and predicted values are highly positively
correlated.

Depth Variogram Parameter Nugget Sill Range Nugget/Sill
2m Raw data v=06 0.000354 | 0017791 | 204.64 0.019898
v=10 0.000406 | 0.008304 55.67 0.048892
v=15 0.000421 | 0.007022 34.70 0.059954
Lineartrend |y, — 03 0.000095 | 0.002195 | 3735 0.043280
v=1.0 0.000351 | 0.001624 10.90 0216133
v=15 0.000370 | 0.001574 8.29 0.235070
4m Raw data v=03 0.000368 | 0.002346 32.49 0.156863
v=10 0.000626 | 0.001608 7.20 0.389303
v=15 0.000595 | 0.001441 352 0.412908
Linear trend v=0.2 0.000036 | 0.002339 28.69 0.015391
v=1.0 0.000514 | 0.001387 3.56 0.370584
v=15 0.000517 | 0.001318 2.30 0392261
Table 2. Parameters of the fitted variogram models for salinity at 2 and 4m depths
Depth Prediction Parameter ME RMSE MSSE R?
2m BOK v=06 -0.001091 | 0025285 | 1823 0.8592
v=1.0 0.001276 | 0.025920 30.12 0.8520
v=15 -0.001468 | 0.026576 40.71 0.8444
BKT y=032 | -0.000997 | 0.025023 8.18 0.8621
v=1.0 -0.001049 | 0.025029 17.13 0.8620
v=15 0.001111 | 0.025237 21.52 0.8597
4m BOK v=03 0.000069 | 0.024852 6.51 0.7589
y=1.0a 0.000004 | 0.024242 9.15 0.7706
v=15 0.000198 | 0.024463 7.78 0.7664
BKT v=02 0000102 | 0025000 | 4.88 0.7561
v=1.0 0.000180 | 0.025189 6.73 0.7523
v=15 0.000294 | 0.026011 7.03 0.7359

2 The preferred model.

Table 3. Cross-validation results for the salinity measurements at 2 and 4m depths.
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Figure 8. Predicted versus observed salinities at 2m (left) and 4m (right) depths using the preferred models.
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Figure 9. Prediction map of salinity (psu) distribution at 2m depth.
4.5 Mapping

Figure 9 shows the prediction map of salinity distribution at
a 2m depth on a 2x2m? grid, using the BKT with the
preferred model. Figure 10 shows the prediction map of
salinity distribution at a 4m depth on a 2x2m? grid using the
BOK with the preferred model. In the 2m kriged map the
average value is 35.447psu and the standard deviation is
0.0610psu, which is in accordance with the salinity
measurements (the average value is 35.453psu and the
standard deviation is 0.0666psu). In the 4m kriged map the
average value is 35.565psu and the standard deviation is
0.0360psu, which is in accordance with the salinity
measurements (the average value is 35.569psu and the
standard deviation is 0.0523psu). Figure 11 shows the maps
of the kriging variance, that is 6,2(, at 2 and 4m depths. In
both maps the kriging variance is lower than 0.002 and
smaller close to the sampling points, that is, along the
trajectory of the vehicle. The kriging variances become large
only near the field boundary. In the vicinity of the diffuser,
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the water column was weakly stratified due to both low
temperatures and salinity variations. The total difference in
density over the water column was about 0.400 units. This
relatively weak stratification explains the plume spreading
near the surface, as predicted by a prediction model used in
the field to specify the AUV survey. Both maps show the
spatial variation of salinity in the area studied. From these
maps it is possible to identify the effluent plume and its
dispersion downstream in the direction of the current. It
appears as a region of lower salinity when compared to the
surrounding ocean waters at the same depth. When
considering maximum vertical oscillations of the AUV in
performing the horizontal trajectories, the range of
background salinity in the 2m map is 35.52 to 35.56psu and
the range of background salinity in the 4m map is 35.61 to
35.66psu. When taking the kriging variance into account, in
the 2m map the plume may be identified by the regions
where salinity is less than 35.48psu and in the 4m map by
the regions where salinity is less than 35.57psu. The plume
exhibits a considerably more complex structure than the
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compact shape of the classical picture of the buoyant plume
and is as patchy as in previous studies [4-6]. The small
plume-related anomalies in the local salinity of Figures 9 and
10 are evidence of the rapid mixing process. Due to the large
differences in density between the rising effluent plume and
ambient ocean waters, entrainment and mixing processes are
vigorous and the properties within the plume change
rapidly [4]. These results therefore confirm that large
gradients in background salinity and the small differences in
salinity between the effluent plume and the ambient waters
can easily obscure the signature of the plume.

4.6 Dilution Estimation

Environmental effects are all related to concentration C
of a particular contaminant X . Defining C, as the
background concentration of substance X in ambient
water and C; as the concentration of X in the effluent
discharge, the local dilution is as follows [21]:

CO — Ca

= (28)

a

In the case of the variability of the background
concentration of substance X in ambient water, the local
dilution is given by:

South - North (m)

-100

-120

-50 0

§=—0 —a0, (29)

where C_; is the background concentration of substance
X in ambient water at the discharge depth. This
expression  (29) can be arranged to @ give
C=C,+ (%)(Co -C,o) , which in simple terms means that
the increment of the concentration above background is
reduced by dilution factor S from the point of discharge to
the point of measurement of C . Using salinity distribution
at 2 and 4m depths, dilution was estimated using Equation
(29). The effluent salinity was measured on the day of the
campaign at the discharge chamber near the shore using a
24h-composed sample and the average value obtained was
2psu and as a result it was assumed that C, =2.0 psu. A
vertical profile of background salinity measured near the
discharge indicated 35.54psu at the 2m depth, 35.64psu at
the 4m depth and 35.70psu at the discharge depth. As a
result, it was assumed that C,; =35.70 psuand C_ =35.54 .
At 2 and 4m depths, the result was 35.64psu. The minimum
dilution estimated at the 2m depth was about 80:1 and at the
4m depth was about 140:1 (see Figure 12), which is in
accordance with the Portuguese legislation that suggests that
outfalls should be designed to assure a minimum dilution of
50:1 when the plume reaches surface [22].
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Figure 10. Prediction map of salinity (psu) distribution at 4m depth.
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Figure 11. Maps of kriging variance at 2m (left) and 4m (right) depths.

12 Int.j. adv. robot. syst., 2013, Vol. 10, 289:2013 www.intechopen.com



4. Conclusions

Through a geostatistical analysis of salinity obtained by an
AUV at 2 and 4m depths in an ocean outfall monitoring
campaign, it was possible to obtain kriged maps of the
sewage dispersion in the field. Experimental variograms of
the raw data and of the OLS residuals, from the linear
model of the Euclidean distance (3D) to the middle point of
diffuser for both depths, were computed and fitted by
Matern models for several parameter shapes. The
performance of each competing estimator/model was
compared using a split-sample approach. The block
kriging method was preferred since it produced smaller
prediction errors and smoother maps in comparison to

-20
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point kriging. For all shape parameters studied, at a 2m
depth the salinity was best estimated by the BKT, while at
a 4m depth the salinity was best estimated by the OBK.
As expected, the BKT performed better than the OBK
where the trend was more significant. Kriged maps at 2
and 4m depths show the spatial variation of salinity in
the area studied and it is possible ability to identify the
effluent plume that appears as a region of lower salinity
when compared to the surrounding waters. Using the
prediction maps of salinity distribution, it was possible to
assess the performance of the outfall diffuser by
estimating dilution, which in both depths was greater
than the minimum admissible value imposed by
Portuguese legislation.
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Figure 12. Dilution map at 2m (up) and 4m (down) depths.
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