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Abstract—This article revisits the inverted pendulum—in par-
ticular, analyses a simplified model of a Segway, with a view
to exploring its capabilities in Control Systems Engineering
education. The integration between the theoretic and practical
side is achieved through simulation, and in particular by using
MathWorks software. We also present a structure for the work
to be done in the Laboratory class and propose a solution for
the problem.

Index Terms—Cascade control, control systems engineering ed-
ucation, inverted-pendulum, PID control, root-locus, segway,
SIMO systems, stabilisation.

I. INTRODUCTION

The Segway personal transportation device is at its heart a two-
wheeled inverted pendulum, designed both to balance upright
and to translate the rider and device to a new position. The
pendulum is not directly actuated; it is free to swing around
its point of marginal stability in the vertical position. It can
only be controlled by exerting a force on the wheels, and
the reaction force is used to reposition the pendulum in the
vertical.

Due to the fame of this transportation device, two wheeled
inverted balancing robots have become popular projects for
students and hobbysts. Here we look at a simplified model, that
is a robot with two wheels connected by an axis that moves in a
straight line on a level surface, and with an inverted pendulum
mounted on the wheels’ axis. Despite its simplicity, this is still
a typical nonlinear system with an unstable equilibrium when
the rob is in the vertical position, whose principal control task
is to balance the pendulum in the upright position, and then
drive the robot in the x-axis direction.

The Segway is a SIMO system, where the motors’ torque is
the input and the angle of the pendulum, Θ2, and the angle
of the wheels as they turn, Θ1, are the outputs. See Fig. 1.

We find this to be a very good example to motivate students in
an introductory course, both in classical as well as in modern
control. Many times the subjects are taught in the classroom
as a sequence of tools without giving the students neither any
inside about the practical problems where the concepts could

be used nor a holistic approach, where theory is combined
with simulation and implementation, the praxis vindicated by
Aström and others [3], [6]. The simplified Segway is a very
good starting point to integrate these two concepts in the
classroom since it is a very popular gadget and also a very
rich problem from the control theory teaching point of view.

The problem is being revisited here, because we find it a
powerful case study to illustrate a course in control theory. It is
able to integrate (and cover) pretty much all the main topics
of classical control, such as modelling, model linearisation,
calculation of transfer functions, poles and zeros; stability,
design of controls; analysis of stability margins using Bode
diagrams and/or Nyquist plots; assess the impulse and step
response of a system; tracing root-locus and using it to design
a compensator [6], [13]. Last, but not least important, the
physical feasibility of the system should also be evaluated.
Furthermore, it is a useful problem to move from classical
control to a state-space approach, were we can study directly
the SIMO system and see that the notion of state feedback
is important, and sometimes even necessary, to control some
kind of systems.

Besides all of this, the Segway is still a fairly simple problem,
and a small system, that works autonomously and can be very
useful in developing intuition. Physical intuition should play
a major role in teaching and learning on Control Systems
Engineering (CSE) education. In view of this, theory and
practice should be both covered [6]. Ideally, this should be
done through Laboratory classes, whose main purpose should
be to provide the connection between the abstract theory
and the real world. These classes should also reinforce the
idea that analytical approaches, theoretical and numerical, are
useful in the sense that they can be accurately predictive.
Physical intuition should also be stimulated towards promoting
engineering judgement. Since many of the requirements of a
control Laboratory, listed by Balchen et al [10], are difficult
to fulfil, one solution could be to substitute expensive material
by computer simulation [6]. The use of Matlab as a tool for
solving and illustrate engineering problems has been advocated
by Rossiter et al [11]. In a study conducted by Reck more
recently is also clear the popularity of MathWorks software
[13]. Moreover, Segway is a very good problem to integrate
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the use of computers as a way to visualisation in CSE, so
advocated by S. Dormido et al [4], to promote intuition.
Furthermore, a simpler version of the Segway can be build
even by making the pieces in a 3D printer.

The inverted pendulum has been used in many instances, e.g.
[5], to explain/illustrate simple concepts in control education,
and also some research is still being conducted in this problem
due to its many applications [12], [15]. According to Boubaker,
it has been the most popular benchmark in CSE for more than
fifty years, and in her work, she gives detailed explanation
on how the inverted pendulum gives an effective and efficient
application for learning control theory [7]. Furthermore, this
has been used as a classical example to stabilise open-loop
systems [8] and a typical root-locus analysis example [9].
Some established trends in robotics have also been based on
the inverted pendulum stabilisation principle [7]. Kheir et al in
[6] report the inverted pendulum as a very popular experiment
in CSE education, and how it illustrates the difficulty to control
an inherently unstable system. A tool for interactive learning
based on this problem has been developed in [14].

In Section II, we linearise a model of the two-wheeled robot
and calculate its respective transfer functions. In Section III,
we analyse the system using techniques of classical control
and assess its impulse response. We control the system using
classical techniques. In Section IV, we propose a sequence of
protocols based on the simplified Segway that cover all the
course material of an introductory course in classical control
as a way to implement it in the classroom.

In Section V, we withdraw some conclusions and outline a
few directions that the work could be carried on.

II. SEGWAY SIMPLIFIED MODEL

The Segway considered in this work is a two-wheeled robot
with a long rod mounted on the middle point of the wheels’
axis; at the other extreme of the rod there is a mass. For
simplicity sake of the model, the two wheels will be treated
as a single unit and the robot travels along the x-axis. The rod
is seen as a point mass rotating about the axis of the wheels.
See Fig. 1. In order to have a model as simple as possible, we
need a few additional assumptions [1]:

• the wheels are always in contact with the floor, rolling
with no slip;

• the electrical and mechanical losses are considered to be
zero;

• the dynamics of the electrical system is neglected, since
the response of the electrical system is significantly faster
than the one of the mechanical system;

• because the motion of the robot is constrained to a straight
line, the system can be analysed as a 2-dimensional
system;

• all bodies are rigid;
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Fig. 1. The segway as an inverted pendulum in two-wheels.

• the angle of the tilt of the rod from the vertical should
be sufficiently small to allow linearisation of the system
(sin(θ2) ≈ θ2);

• to be able to neglect the centrifugal force, the angular
velocity of the tilt is approximately zero (θ̇2 ≈ 0);

Under these assumptions, we consider the following nonlinear
model without friction [2]:

τ(t)=H1θ̈1(t) +H2

(
cos(θ2(t))θ̈2(t)− sin(θ2(t))θ̇22(t)

)
, (1)

−τ(t)=H2 cos(θ2(t))θ̈1(t) +H3θ̈2(t)− a sin(θ2(t)). (2)

where:

H1 = (m1 +m2) r2 + I1, H2 = m2rL, (3)
H3 = m2L

2 + I2, a = m2gL. (4)

Also, τ(t) is the motor torque at every instant t, m1 is the
mass of the wheels, m2 is the mass of the pendulum, I1, I2
are the robot and pendulum rotational moments of inertia,
respectively, r is the radius of the wheels, θ1(t) is the angle
of the position of the wheels and θ2(t) is the rotation angle of
the rod that we want to keep in the vertical position, both at
every instant t. As the robot is meant to be kept in the vertical
position, we use the two last assumptions mentioned above
and the model is linearised. Also, we include in the model
the frictional losses within the motor, therefore including
in the torque its losses, i.e. τ(t) = τ(t) + τlosses(t) with
τlosses(t) = b

(
θ̇1(t)− θ̇2(t)

)
. We end up with the following

simpler model:

τ(t)− b
(
θ̇1(t)− θ̇2(t)

)
=H1θ̈1(t) +H2θ̈2(t), (5)

−τ(t) + b
(
θ̇1(t)− θ̇2(t)

)
=H2θ̈1(t) +H3θ̈2(t)− aθ2(t). (6)
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Fig. 2. Cascade feedback control of a SIMO system.

Defining H :=

[
H1 H2

H2 H3

]
, B :=

[
b −b
−b b

]
,

K : =

[
0 0
0 −a

]
, we have:

[
τ(t)
−τ(t)

]
= H

[
θ̈1(t)

θ̈2(t)

]
+ B

[
θ̇1(t)

θ̇2(t)

]
+K

[
θ1(t)
θ2(t)

]
(7)

and after applying the Laplace Transform it becomes:
[
τ(s)
−τ(s)

]
=

[
s2H1 + bs s2H2 − bs
s2H2 − bs s2H3 + bs− a

] [
Θ1(s)
Θ2(s)

]
. (8)

Furthermore, we define D := H1H3 − H2
2 and

F : = H2 + H3 to obtain the following transfer functions:

T̃1(s) =
Θ1(s)

τ(s)
=

(H2 +H3) s2 − a
Ds4 + bFs3 − aH1s2 − abs

, (9)

T2(s) =
Θ2(s)

τ(s)
=

− (H1 +H2) s

Ds3 + bFs2 − aH1s− ab
, (10)

T3(s) =
Θ1(s)

Θ2(s)
=
−(H2 +H3)s2 + a

(H1 +H2)s2
. (11)

We can also define ω(t) = θ̇1(t), and consequently obtain

T1(s) = sT̃1(s) =
Ω(s)

τ(s)
where Ω(s) = L (ω(t)) , since in

this way the pole at the origin of sT̃1(s) is cancelled.

III. ANALYSIS AND CONTROL OF THE SYSTEM

As the robot should be stopped and the pendulum kept
upright, the output is the velocity of the wheels and the tilt
of the angle of the rod. The control of the simplified Segway

τ(t)
θ2(t)

θ̇1(t)

Fig. 3. Black-box representation of the SIMO system.

is clearly a SIMO system. However as we would like to
resolve it using tools of classical control, which are clearly
used for SISO systems, we use a successive loop closure
approach (or cascade) in order to control the system. The
idea is to define a feedback loop inside other feedback loop;
the inner loop represents the control of the fast dynamics of
the system, θ2(t), while the outer loop represents the control
of the slower dynamics, θ1(t).

See Fig. 2. Therefore, we control θ2(t) and analyse the effect
of the controller on the robot position, i.e., on θ1(t).

Using the following values for the parameters: m1 = 2kg,
m2 = 4.5kg, I1 = 0.0032kgm2, I2 = 0.0065kgm2, L = 0.3m,
r = 0.35m, b = 0.001Nm/rad/s, transfer functions (9)–(11)
become:

T1(s) =
8.3619

(
s2 − 3.8692

)

(s+ 10.01)(s− 9.993)(s+ 0.001251)
,

T2(s) =
−12.032s

(s+ 10.01)(s− 9.993)(s+ 0.001251)
,

T3(s) =
−0.695

(
s2 − 3.8692

)

s2
.

Our first concern is to stabilise the system, which means to
stabilise the inner loop and at the same time obtain a feasible
response for the outer loop. Additionally, we can consider
other design criteria such as settling time or maximum over-
shoot.

To design controller C2(s), we start by plotting the root-
locus of T2(s), from which becomes clear that we need a
controller with negative gain to stabilise the system; with
C2 = K2,K2 > 0, a branch always exists on the right-half
plane.
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Fig. 4. T2(s) =
−12.032s

(s+ 10.01)(s− 9.993)(s+ 0.001251)
: direct and

inverse rlocus.

2018 13th APCA International Conference on Automatic Control and Soft Computing (CONTROLO)
June 4-6, 2018, Ponta Delgada, Azores, Portugal

45



A PID approach, although being a very easy to apply tech-
nique, is not intuitive and the empirical tuning methods—
e.g. Ziegler-Nichols, Chen-Coon—have been designed only
for stable systems. Therefore, what is left is an endless trial and
error search of parameters. This well illustrates the limitations
of the use of the proportional, integral and derivative actions
to the students. The students should look for other type of
compensators to stabilise T2(s). Paramount at this point is also
to use different techniques of classical control to assess the
response of the system for the different compensators obtained.

We tune the system from the root-locus of −T2(s). The root-
locus is a simple visual tool where the system “stability”
is reliably represented and the changes made on the system
by the controller are readily perceived. The drawback is the
necessary number of iterations to tune the system to the
required performance. Observing the lower plot of Fig. 4,
one sees that the most left and the centred branches always
remain within the left-half plane, but the the most right one
is a direct connection between the positive pole and the zero
at the origin, and thus never crosses the imaginary axis, that
is, the system remains unstable with C2 = K2,K2 < 0. To
force this branch to leave the real axis, another positive pole

is added: C2 =
−K2

s− 5
,K2 > 0. See the upper plot of Fig. 5.

However, although the root-locus branch leaves the real axis it
drifts away from the left-half plane. To attract it back, a zero

needs to be added: C2 =
−K2(s+ 1)

s− 5
,K2 > 0. See the lower

plot of Fig. 5.
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Fig. 5. Construction of C2 for the fast dynamics closed-loop system.

Although the branch has been deviated to the left, it was
not enough, and adding another zero is necessary. For the
resulting transfer function to remain a proper rational func-
tion, another pole is also included. That is, to shift the
root-locus of the bottom figure of Fig. 5 to the one of

Fig. 6, a lead compensator is added and we end up with

C2 =
−K2(s+ 1)(s+ 12)

(s+ 40)(s− 5)
,K2 > 0.

The upper plot of Fig. 6 shows the root-locus of C2T2, with
K2 = 80, and the resulting stability margins are shown in the
lower plot. Thus, we obtain a closed-loop stable system with
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Fig. 6. Root-locus and frequency analysis of C2T2 for the closed-loop fast

dynamics system with C2 =
−80(s+ 1)(s+ 12)

(s+ 40)(s− 5)
.

three real negatives poles, although one of them is very close
to the origin, and two complex poles with negative real part,

and a reasonably small damping, therefore
Θ2(s)

R2(s)
becomes:

962.53s(s+ 12)(s+ 1)

(s+ 20.45)(s+ 4.851)(s+ 0.0007934)(s2 + 9.704s+ 318)
.

The impulse response of the closed loop C2T2(s) system, and
the resulting impulse response of sT3(s) are both shown in
Fig. 7. The physical response of the latter is not feasible as
the wheels start to move backwards.

As we have not been able to design a controller C2(s) that
produces a satisfactory response for θ̇1(t), from the physical
point of view, our next task is to design a controller, C1, for
the outer loop to produce the desired behaviour. Although the
cancellation of poles and zeros is usually considered a poor
design due to drifting, in this situation we find it acceptable
since the losses are mainly drifting and viscous forces. There-
fore, we chose a controller with negative gain and that cancels

the positive zero of T3(s) : C1 =
−K1

s− 3.869
,K1 > 0. The

behaviour of the closed loop controlled system is described in
Fig. 8 and Fig. 9.
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on the root-locus

of sT3(s) =
−0.695

(
s2 − 3.8692

)

s2
.

IV. THE SEGWAY TAKEN TO THE CLASSROOM

In this section we propose a series of four protocols to integrate
the material of a course of classical control in the analysis and
control of the two-wheeled robot. By using Matlab to do the
simulations, we also integrate computing into the work [6].
The same analysis can be done also with Simulink.

In the protocol 1:

• To linearise model (1)–(2) and calculate the transfer
functions.
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Fig. 9. Impulse response of the slow dynamics closed-loop system with

C1 =
−1.5

s− 3.869
.

• To calculate the gain, poles and zeros of the transfer
functions, and understand its meaning in the real problem.

• To understand the meaning of impulse response and learn
how to simulate it.

• To distinguish between natural response, forced response
and free response. To learn how to simulate everyone of
these responses.

In the protocol 2:

• To distinguish between open-loop and close-loop re-
sponse.

• To understand the Segway as an intrinsically unstable
system.

• To understand block diagrams and use them to define the
control strategy.

• Analyse the limitations of a PID controller to stabilise
the system.

• To verify the physical feasibility of the whole system.

In the protocol 3:

• To learn how to sketch the root-locus, even with negative
gain.

• To design a compensator with the help of the root-locus
to stabilise the inner closed-loop system.

• To use frequency response tools to assess the performance
of the controlled system.

• To understand the meaning of step response and learn
how to simulate it.

• To analyse the resulting steady-state error.
• To design a compensator according to some other system

specification, for instance damping, using the second
order system approximation.

In the protocol 4:

• To analyse the response of the outer loop: θ̇1.
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• To design a controller to stabilise the outer loop system
of the diagram depicted in Fig. 2.

• To evaluate the feasibility of the whole system.
• To study the same problem with non zero initial condi-

tions for θ2(0).

V. CONCLUSION AND DIRECTIONS FOR FUTURE WORK

In this work, we analysed the use of a simplified Segway
model to integrate theory with practice in teaching/learning of
control, towards to the development of intuition and engineer-
ing judgment. This is a nonlinear SIMO system.

In view of the stabilisation of a SIMO system using techniques
of classical control, a cascade control strategy has been used,
where the inner feedback loop is first stabilised, followed by
the stabilisation of the slower dynamics of the system. The
control and analysis of the system is structured in a set of
four protocols, that are meant to be implement in the classroom
through Matlab simulation.

The outlined protocols comprise two different control prob-
lems: (i) a simpler one, that is to swing the pendulum from the
equilibrium position and then return it to the upright position.
(ii) a more general one, that is to return the pendulum from
any initial condition (θ2(0) = θ2) to the upright one and then
stabilise the robot in the desired position.

The problem under discussion in this work can be used to
illustrate every topic of a classic control theory course, and
also make the transition to the state-space techniques, where
the multi-variable controller can be calculated in a more direct
manner.

Also, we would like to point out that this is not a very
trivial problem and raises many relevant questions in learning
of control theory. However, whenever the problem might be
found too complex, it may substituted by a simpler version,
that is, in equations (5)–(6) the losses term of the motor
could be dropped. When the friction term is not included,
the analysis and control of the whole problem becomes much
easier.

In future work, we would like to propose to the students some
analysis of the same problem using Simulink, and considering
different specifications of the problem as for instance the robot
being not stopped (and with a constant speed). Furthermore, as
the design of the controller for the outer feedback loop is still
an open problem, we would like to study the same problem
using state-space control techniques. State-space techniques
can also be used to solve the linear optimal control problem
for unstable systems. The work of the Laboratory would follow
the same structure proposed here.

Therefore, although being a small problem, the simplified
Segway is a very fruitful one from the Control Systems
Engineering education point of view.
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