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Abstract
Exceptional preferences mining (EPM) is a crossover between two subfields of data mining:
local pattern mining and preference learning. EPM can be seen as a local pattern mining
task that finds subsets of observations where some preference relations between labels sig-
nificantly deviate from the norm. It is a variant of subgroup discovery, with rankings of
labels as the target concept. We employ several quality measures that highlight subgroups
featuring exceptional preferences, where the focus of what constitutes ‘exceptional’ varies
with the quality measure: two measures look for exceptional overall ranking behavior, one
measure indicates whether a particular label stands out from the rest, and a fourth measure
highlights subgroupswith unusual pairwise label ranking behavior.We explore a few datasets
and compare with existing techniques. The results confirm that the new task EPM can deliver
interesting knowledge.

Keywords Subgroup discovery · Exceptional model mining · Label ranking · Preference
learning · Distribution rules

1 Introduction

Consider a survey where detailed preferences of sushi types have been collected, along with
information about the respondents. For each example in the dataset, we have personal details
(age, gender, income, etc.) as well as a set of sushi types, ordered by preference (Kamishima
2003). By mapping the demographic attributes and unusual preferences, marketeers would
be able to target key demographics where specific sushi types have greater potential.

The study of preference data has been approached from a number of perspectives, grouped
under the name Preference Learning (PL) (e.g., as Label Ranking; de Sá et al. 2016; Cheng
et al. 2013; Vembu and Gärtner 2010) Typically, the aim is to build a global predictive model,
supported by preference mining methods (Fürnkranz and Hüllermeier 2010), such that the
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preferences can be predicted for newcases.However, in several areas, such asmarketing, there
is also great value in identifying subpopulations whose preferences deviate from the norm.
If the preference of some sushi type by a certain age group or in a certain region is markedly
different from the average population, then the vendor can develop specific strategies for
those groups. Finding coherent groups of customers to focus on is an invaluable part of
promotion strategies.

In this work, the term preference is not strictly interpreted as a literal preference, but
instead as an order relation object1 � object2. An order relation can represent several
phenomena: a person likes sushi1 more than sushi2 (Kamishima 2003); λ1 is more likely
to occur than λ2 (Hüllermeier et al. 2008); algori thm1 is better than algorithm algori thm2

(Brazdil et al. 2003). In this context, unusualness is the extent to which some groups show
different preferences from average behavior.

Arguably the most generic setting for discovering local, supervised deviations is that of
subgroup discovery (SD) (Lavrac et al. 2004). The aim of SD is to discover subgroups in the
data for which the target shows an unusual distribution, as compared to the overall population
(Klösgen and Zytkow 2002). SD is a generic task in the sense that the actual nature of the
target variable can be quite diverse. For example, SD approaches have been developed for
binary, nominal (Abudawood et al. 2009) and numeric target variables (Jorge et al. 2006; Jin
et al. 2014), as well as multiple targets (Duivesteijn et al. 2012; Umek and Zupan 2011).

We extend the work on exceptional preferences mining (EPM) (de Sá et al. 2016), which
focuses on the discovery ofmeaningful subgroupswith exceptional preference patterns.When
applying SD to a new context, the main task is to determine what constitutes an interesting
subgroup. In EPM, different quality measures determine the interestingness based on how
the preferences in the subgroup, differ from the preferences in the whole data. A set of
EPM quality measures reflect different facets of interestingness one might have about the
unusualness of a set of preferences.

In this work, we include a more comprehensive experimental setup and propose a new
quality measure. We employ EPM on several real-world datasets, using four distinct quality
measures. These measures define the type of exception that is identified to either encompass
the entire label space or focus on more local peculiarities. In particular, two of them look
for overall exceptional preferences; a third measure assesses if one particular label behaves
exceptionally; the remaining measure quantifies the exceptional behavior of a single pair of
labels.

Finally, to consolidate the previous work on EPM, we compare EPM with a subgroup
discovery approach known as Distribution Rules (DR) (Jorge et al. 2006).

We start by introducing Label Ranking in Sect. 2 and subgroup discovery in Sect. 3. Then,
in Sect. 4 we introduce exceptional preferences mining and analyze the results obtained in
Sect. 5. Finally, we conclude this paper in Sect. 6.

2 Label ranking

In Label Ranking, given an instance x from the instance space X, the goal is to predict the
ranking of the labelsL = {λ1, . . . , λk} associated with x (Hüllermeier et al. 2008). A ranking
can be represented as a strict total order over L, defined on the permutation space Ω .

The Label Ranking task is similar to the classification task, where instead of a class we
want to predict a ranking of the labels. As in classification, we do not assume the existence
of a deterministic X → Ω mapping. Instead, every instance is associated with a probability
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distribution over Ω (Cheng et al. 2009). This means that, for each x ∈ X, there exists a
probability distribution P(·|x) such that, for every π ∈ Ω , P(π |x) is the probability that π
is the ranking associated with x . The goal in Label Ranking is to learn the mapping X → Ω .
The training data is defined as D, which is a bag of n records of the form x = (a1, . . . , am, π),
where {a1, . . . , am} is set of values from m independent variables A1, . . . ,Am describing
instance x and π is the corresponding target ranking.

Rankings can be represented with total or partial orders and vice-versa.

Total orders A strict total order over L is defined as a binary relation, �, on a set L
(Chankong and Haimes 2008), which is:

1. Irreflexive: λa � λa
2. Transitive: λa � λb and λb � λc implies λa � λc
3. Asymmetric: if λa � λb then λb � λa

1

4. Connected: For any λa, λb in L, either λa � λb or λb � λa

A strict ranking (Vembu and Gärtner 2010), a complete ranking (Dembczynski et al. 2010),
or simply a ranking can be represented by a strict total order over L. A strict total order can
also be represented as a permutation π of the set {1, . . . , k}, such that π(a) is the position, or
rank, of λa in π . For example, the strict total order λ3 � λ1 � λ2 � λ4 can be represented
as π = (2, 3, 1, 4).

However, in real-world ranking data, we do not always have clear and unambiguous
preferences, i.e. strict total orders (Brandenburg et al. 2013). Hence, sometimes we have to
deal with indifference (Brinker and Hüllermeier 2007) and incomparability (Cheng et al.
2010). For illustration purposes, let us consider a survey where a set of n consumers rate k
sushi types. If a consumer feels that two sushi types have identical taste, then these can be
expressed as indifferent so they are assigned the same rank (i.e. a tie).

To represent ties, we need a more relaxed setting, called non-strict total orders, or simply
total orders, over L, by replacing the binary strict order relation, �, with the binary partial
order relation, � where the following properties hold (Chankong and Haimes 2008):

1. Reflexive: λa � λa
2. Transitive: λa � λb and λb � λc implies λa � λc
3. Antisymmetric: λa � λa and λb � λa implies λa = λb
4. Connected: For any λa, λb in L, either λa � λb, λb � λa or λb = λa

These non-strict total orders can represent partial rankings (rankings with ties) (Vembu and
Gärtner 2010). For example, the non-strict total order λ1 � λ2 = λ3 � λ4 can be represented
as π = (1, 2, 2, 3).

Additionally, real-world data may lack preference data regarding two or more labels,
which can be defined as incomparability (Chiclana et al. 2009). Continuing with the sushi
survey, if a consumer never tried one or two sushi types, λa and λb, it leads to incomparability,
λa ⊥ λb. In other words, the consumer cannot decide whether the sushi types are equivalent
or select one as the preferred, because he never tasted at least one of them. In this cases, we
can use partial orders.

Partial orders Similar to total orders, there are strict and non-strict partial orders. Let us
consider the non-strict partial orders (which can also be referred to as partial orders) where
the binary relation, �, over L is (Chankong and Haimes 2008):

1 Asymmetry can be derived from 1 and 2 (Chomicki 2003).
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1. Reflexive: λa � λa
2. Transitive: λa � λb and λb � λc implies λa � λc
3. Antisymmetric: λa � λa and λb � λa implies λa = λb

We can represent partial orders with subrankings (Henzgen and Hüllermeier 2014) or incom-
plete rankings (Cheng et al. 2010). For example, the partial order λ1 � λ2 � λ4 can be
represented as π = (1, 2, 0, 3), where 0 represents λ1, λ2, λ4 ⊥ λ3.

Several learning algorithms proposed for modeling Label Ranking data can be grouped as
decomposition-based or direct (de Sá et al. 2018). Decomposition methods divide the prob-
lem into several simpler problems (e.g., multiple binary problems). An example is ranking
Ranking by Pairwise Comparisons (RPC) (Fürnkranz and Hüllermeier 2003), which decom-
poses the LR problem into a set of binary classification problems. A learning method is
trained with all examples for which either a pairwise comparison (or pairwise preference)
λi � λ j or λ j � λi is known (Fürnkranz and Hüllermeier 2003). The resulting predictions
are then combined to predict a total or partial ranking (Cheng et al. 2013).Direct methods, on
the other hand, treat the rankings as target objects without any decomposition. Examples of
that include decision trees (Todorovski et al. 2002; Cheng et al. 2009), k-Nearest Neighbors
(Brazdil et al. 2003; Cheng et al. 2009) and the linear utility transformation (Har-Peled et al.
2002; Dekel et al. 2003).

Consensus ranking When dealing with sets of rankings, as permutations or total/partial
orders, it is often useful to define a consensus ranking. A consensus ranking can be seen
as an overall ranking that has the highest agreement with a given set of rankings (Cook
et al. 2007). Different methods to derive the consensus ranking can be found in the literature
(Sculley 2007; Svendová and Schimek 2017). For example, in Cook et al. (1996) a consensus
ranking for players is proposed as the ranking which deviates the least from the outcomes in
the tournament.

In the context of Label Ranking it is common to use the average ranking as the consensus
ranking (Brazdil et al. 2000). The average ranking is obtained by computing the average of
the ranks, where the label with the lowest values is ranked in first place, and so on.

3 Subgroup discovery and exceptional model mining

Subgroup discovery (SD) (Klösgen and Zytkow 2002) is a data mining framework that
seeks subsets of the dataset (satisfying certain user-specified constraints) where something
exceptional is going on. In SD,we assume a flat-table dataset D, which is a bag of n records of
the form x = (a1, . . . , am, t1, . . . , t�). We call {a1, . . . , am} the descriptors and {t1, . . . , t�}
the targets, and we denote the collective domain of the descriptors by A. We are interested
in finding interesting subsets, called subgroups, that can be formulated in a description
language D. In order to formally define subgroups, we first need to define the following
auxiliary concepts.

Definition 1 (Pattern and coverage) Given a description language D, a pattern p ∈ D is a
function p : A → {0, 1}. A pattern p covers a record x iff p(a1, . . . , am) = 1.

Patterns induce subgroups, and subgroups are associated with patterns, in the following
manner.

Definition 2 (Subgroup) A subgroup corresponding to a pattern p is the bag of records
Sp ⊆ D that p covers:

123



Machine Learning

Sp = {x ∈ D | p (a1, . . . , am) = 1}
The exact choice of the description language is left to the domain expert or analyst. A

typical choice is the use of conjunctions of conditions on attributes. Restricting the findings
of SD from all subsets to only subgroups that can be defined in such a way, yields results of
the following form:

Age ≥ 30 ∧ Likes = Salmon Roe is unusual

instead of the form:

S ⊆ D ⇒ interesting.

SD delivers subgroups in a form with which the dataset domain experts are familiar. In other
words, the focus of SD lies on delivering interpretable results.

Formally, the interestingness of a subgroup can be measured using any characteristics
available from its associated pattern. In practice, it depends on the task we are trying to solve.
Therefore, we should define one or more quality measures to assess the interestingness we
want to explore.

Definition 3 (Quality Measure) A quality measure is a function ϕ : D → R.

In the most common form of pattern mining, frequent itemset mining (Agrawal et al. 1996),
interestingness is measured by the frequency of the pattern. Subgroup discovery (Klösgen
and Zytkow 2002), on the other hand, measures interestingness in a supervised form. One
designated target variable t1 is identified in the dataset, and subgroup interestingness is
measured by an unusual distribution of that target. Hence, considering that a survey revealed
that the majority of Japanese people like Fatty tuna sushi, an interesting subgroup could refer
to a group of people for which the majority prefers Tuna roll:

Age ≥ 30 ∧ Lives in region = Hokkaido ⇒ Likes = Tuna roll

If instead of a single target, multiple targets t1, . . . , t� are available, and if we are not
interested in finding unusual target distributions, but unusual target interactions, we can
employExceptionalModelMining (EMM) (Duivesteijn 2013;Duivesteijn et al. 2016) instead
of SD. EMM is instantiated by selecting two things: a model class and a quality measure.
Typically, a model class is defined to represent the unusual interaction between multiple
targets we are interested in. A specific quality measure that employs concepts from that
model class must be defined to express exactly when an interaction is unusual and, therefore,
interesting. For example, suppose that there are two target attributes: a person’s height (t1),
and the average height of his/her grandparents (t2). We may be interested in the correlation
coefficient between t1 and t2. In this case, we would use EMM with the correlation model
class (Leman et al. 2008). Given a subgroup S ⊆ D, we can estimate the correlation between
the targets within this subset by the sample correlation coefficient.

For very small subgroups, one easily finds an unusual distribution of the target. Hence, to
favor larger subgroups, one defines the qualitymeasure such that it balances the exceptionality
of the target distribution with the size of the subgroup.

3.1 Search strategy

In the EMM process, we explore a large search space, guided by a user-defined quality
measure that expresses the type of exceptionality we seek. Typically, subgroups are found
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by a level-wise search through attribute space (Duivesteijn 2013). However, we consider the
exact search strategy to be a parameter of the algorithm.

EMM strives to find descriptions that satisfy certain user-specified constraints. Usually
these constraints include lower bounds on the quality of the description and size of the induced
subgroup. More constraints may be imposed as the question at hand requires; domain experts
may for instance request an upper bound on the complexity of the description.

Most SD algorithms traverse the search space of candidate descriptions in a general-to-
specific way: they treat the space as a lattice whose structure is defined by a refinement
operator η : D → 2D . This operator determines how descriptions can be extended into more
complex descriptions by atomic additions. Most applications (including ours) assume η to be
a specialization operator: every description q ∈ D that is an element of the set η(p), is more
specialized than the description p itself. The algorithm results in a ranked list of descriptions
(or the corresponding subgroups) that satisfy the user-defined constraints.

In this EMM setting, a greedy best-first search strategy is chosen. At each level, the
descriptions according to our quality measure ϕ are sorted, and refined to create the candidate
descriptions for the next level. We define constraints on single attributes and define the
corresponding subgroups as those records satisfying each one of those constraints. The search
is constrained by an upper bound on the complexity of the description (also known as the
search depth, d) and a lower bound on the support of the corresponding subgroup. Due to its
greediness, this search strategy provides no guarantee of optimality (Heusner et al. 2017).

3.1.1 Best-first search algorithm in EMM

In Algorithm 1, we outline the pseudo-code of the Best-first search algorithm for EMM.
In this code, we assume that there is a subroutine called satisfiesAll that tests whether a
candidate description satisfies all conditions in a given set (to allow, for instance, the domain
expert to express constraints on the resulting descriptions, such as a bounded complexity).
The PriorityQueue() is a queue, with unbounded length, where the elements are stored and
sorted with the corresponding quality; One elementary operation, insert_with_priority, is for
adding an element to the PriorityQueue.

The resultSet is a PriorityQueue maintaining the descriptions ordered by the quality mea-
sure. Nothing is ever explicitly removed from the resultSet. Hence, the resultSet maintains
the final result that we seek. When all candidates have been explored or the maximum time
is exceeded, the execution ends.

3.2 Distribution rules

Distribution Rules (DR) is a SDmethod that analyzes a single target variable. However, rather
than a representative value (e.g., the mean), DR identify unusual distributions of the target
(Jorge et al. 2006; Lucas et al. 2007). The approach finds subgroups, expressed as association
rules with a statistical distribution on the consequent. A DR may be formally defined as:

S → t = Distt |A
where S is a set of conditions corresponding to the antecedent part of a DR (a subgroup), t
is a property of interest (or target) and Distt |S is an empirical distribution of t when S is
observed. Distt |S is represented by a set of pairs 〈ti , f req (ti )〉, where ti is one particular
value of t found when S is observed and f req (ti ) is the frequency of ti when the items from
S are observed.
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Algorithm 1 Best-first Search for Exceptional Model Mining.
Input: Dataset D, QualityMeasure ϕ, RefinementOperator η,

Integer d, Constraints C
Output: resultSet
1 : candidateQueue ← new PriorityQueue();
2 : candidateQueue.enqueue({}); � Start with empty description
3 : resultSet ← new PriorityQueue();
4 : while (candidateQueue �= ∅) do
5 : seed ← candidateQueue.dequeue();
6 : set ← η(seed);
7 : for all (desc ∈ set) do
8 : quality ← ϕ(desc);
9 : if (desc.satisfiesAll(C)) then
10 : resultSet.insert_with_priority(desc,quality);
11 : candidateQueue.insert_with_priority(desc,quality);
12 : end if
13 : end for
14 : end while
15 : return resultSet;

4 Exceptional preferences mining

Exactly what constitutes an interesting deviation in preferences is governed by the employed
quality measure, and the target concept (binary, numeric, preferences, …). Thus, different
measures are required to evaluate different types of targets. SD approaches have been devel-
oped for binary, nominal (Abudawood et al. 2009) and numeric target variables (Jin et al.
2014; Jorge et al. 2006), for targets encompassingmultiple attributes (Umek and Zupan 2011)
and also distributions (Jorge et al. 2006) (Sect. 3.2). However, none of these approaches is
able to capture all the sets of preferences that can be derived from rankingswithin a SD frame-
work. For that we use, exceptional preferences mining (EPM) (de Sá et al. 2016), which is
the search for subgroups with deviating preferences.

In EPM, the target concept at hand consists of a single target t , which would make sense
in SD. However, that target object is a ranking of labels, π ∈ Ω (as defined in Sect. 2) which
can be represented as a set of pairwise comparisons. Hence it represents interactions between
multiple individual labels, which is more consistent with the EMM scenario.

Some other approaches to mine preferences and ranks can be found in the literature
(Henzgen andHüllermeier 2014; Van et al. 2014). However, these approaches tackle different
problems from the one we address in this paper. In Henzgen and Hüllermeier (2014), the
authors suggest an approach to mine the rankings with association rules that search for
subranking patterns Our approach goes beyond this as it relates the ranking patterns with
descriptors (otherwise referred to as independent variables). From a different perspective,
Van et al. (2014) suggests a ranked tiling approach to search for rank patterns, whereas we
are interested in the preference relations derived from the ranks.

In the Label Ranking context (Sect. 2), when the number of labels is large, the search for
preference patterns can be hard to analyze and visualize. A real-world example is the Sushi
dataset (Kamishima 2003), which represents the preferences of 5000 persons over 10 types
of sushi. Even this relatively modest number of sushi types can be ranked in a large number
of combinations. This may have a significant effect on the data, as it is shown in this dataset,
where more than 98% of the 5000 rankings present in this dataset are unique. This illustrates
why it can be more difficult to directly learn a ranker that associates a reliable complete
ranking for any subset in the instance space, X, when the number of labels is non-trivial.
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4.1 Preferencematrix

Before we discuss the approach in detail, we introduce an alternative representation of rank-
ings that can be useful to look for different categories of exceptionality. Let us define a
function, ω, assigning a numeric value to the pairwise comparison of the labels λi and λ j :

ω
(
λi , λ j

) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if λi � λ j (λi preferred to λ j )

−1 if λi ≺ λ j (λ j preferred to λi )

0 if λi ∼ λ j (λi indifferent to λ j )

n/a if λi ⊥ λ j (λi incomparable to λ j )

Note that, by definition, ω
(
λi , λ j

) = −ω
(
λ j , λi

)
.

4.1.1 Preference matrix of one ranking

We can use ω to represent a ranking π as a Preference Matrix (PM), Mπ :

Mπ (i, j) = ωπ

(
λi , λ j

)

Mπ is, by definition, an antisymmetric matrix with trace equal to zero, tr (Mπ ) = 0. PMs
can represent partial or incomplete orders but can also be aggregated to represent sets of
rankings from an entire dataset D or subgroup S.

If needed, one can also derive a ranking from a PM. How to do so is a non-trivial question,
which has received some attention in research fields with similar types of matrices (Hüller-
meier et al. 2008). The straightforward way is to sum the rows of the PM and then assign a
score to each corresponding label. Higher values correspond to a relatively more preferred
label.

In terms of the complexity of the generation of PMs, it is basically a pairwise decomposi-
tion problem. Therefore, the complexity isO (

k2
)
per matrix, where k is the number of labels

in the ranking. Even though any number of labels is theoretically permitted in label ranking,
in practice the number of labels is usually smaller than 20. Hence, the computational cost of
generating PMs should not be a problem.

4.1.2 Preference matrix of a set of rankings

To represent sets of rankings with a PM, for example a dataset D or subgroup S, the entries of
Mπ need to be aggregated. In this work we only consider aggregations with the mean or the
mode. In the presence of incomplete rankings, some Mπ will have entries with one or more
n/a. In that case, the entries are ignored. For example, let us consider a set of n rankings in
a dataset D and the mean as the aggregation metric. We define the aggregated MD as:

MD (i, j) = 1

nval

∑

π∈D
Mπ (i, j)

where Mπ is the PM of ranking π and 1 ≤ nval ≤ n is the number of entries which are not
n/a. In the extreme case where all the entries are n/a, MD (i, j) = n/a.

Alternatively, one can also aggregate MD or MS using the mode.2 That is, several modes
are used to represent the preferences of a population D or a subgroup S. In this case, MS

2 Unless mentioned otherwise, in this work we consider the mean as the default aggregation metric.
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Table 1 Example dataset D̂ A1 π Alternative π

λ1 λ2 λ3 λ4

0.1 4 3 1 2 λ3 � λ4 � λ2 � λ1

0.2 3 2 1 4 λ3 � λ2 � λ1 � λ4

0.3 1 4 2 3 λ1 � λ3 � λ4 � λ2

0.4 1 3 2 4 λ1 � λ3 � λ2 � λ4

The first column is the only descriptor. The subsequent four columns
represent the preferences among four labels, by providing their ranks.
An alternative representation is presented in the rightmost section of the
table

represents themost frequent occurring values contained in the entries of the set ofMπ , π ∈ S.
In cases where two or more modes per entry are obtained, the median is used.

For illustration, let us consider the PM of the example dataset D̂ (cf. Table 1):

MD̂ =

⎡

⎢⎢
⎣

0 0 0 0.5
0 0 −1 0
0 1 0 1

−0.5 0 −1 0

⎤

⎥⎥
⎦

This representation enables easy detection of partial order relations in a set. If entry
MD̂ (i, j) = 1 or MD̂ (i, j) = −1, then we can conclude that all rankings in D̂ agree
that λi � λ j or λi ≺ λ j , respectively. If row i has all the values very close to 1, then λi is
systematically preferred to the remaining labels in the corresponding dataset.

The records in the illustrative dataset D̂ contain distinct total orders (Table 1). But its
PM clearly shows that λ3 is always preferred to λ2 (MD̂ (3, 2) = 1). This information can
be easily obtained from the PM, but is hard to read directly from Table 1. Even though, if
we analyze carefully, λ3 is always preferred to λ2, this pattern is based on different ranks,
namely, 3 > 1, 2 > 1, 4 > 2 and 3 > 2. Thus, unless one is looking specifically for this
pattern, it would be quite hard to find. In real datasets, with more examples and labels, the
task would be even harder. Conversely, λ4 is never preferred to λ3, which is represented by
MD̂ (4, 3) = −1. In some cases, the overall trend is not as clear (e.g., λ1 is preferred to λ4
but not always) and in other cases, there is no trend at all (e.g., λ1 and λ2).

Representing a set of rankings as a PM has another advantage over the traditional permu-
tation representation. On a PM, we can naturally derive a varied set of metrics to search for
preference patterns in a set of rankings by characterizing parts of the matrix. For example,
it enables simple labelwise (by rows/columns of the PM) and pairwise (by single entries of
the PM) analysis of preferences (see Sect. 4.3).

On the other hand, PMs can also have limitations in comparison to the traditional repre-
sentations, like permutations. In particular, the choice of the aggregation metrics can hide
relevant information in the PMs. For example, when using the mean, if half of the rankings
have the opposite order of the other half (e.g., λ1 � λ2 � λ3 � λ4 and λ4 � λ3 � λ2 � λ1)
this results in a PMwith all entries equal to zero. Because the same happens when all rankings
are complete ties, there is no way for the method to detect this difference in the preferences.
Therefore, in an attempt to mitigate this, subgroups with a PM containing only zeros are
ignored. That is, only subgroups for which we can infer at least one pairwise preference can
be considered interesting in this exceptional preferences mining approach.
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Fig. 1 PM representation of the
set of rankings in D̂ (cf. Table 1).
Dark green tiles represent 1 and
dark red tiles represent −1
(Color figure online)

Finally, to aid in the interpretation of ranking trends within subgroups we use a visual
representation of the PMs that is a set of colored tiles (Fig. 1). Each tile represents an entry
of the PM. The entries of a PM can vary from −1 to 1. The negative entries of the matrix
are represented with red tiles, the positive with green tiles, and 0 is represented in white. The
colored tiles fade out as they get closer to 0.

4.2 Characterizing ranking exceptionality

In EPM, we want to search for exceptional preference (or ranking) behavior. Because pref-
erences are represented with rankings, we can distinguish three categories of exceptionality
concerning rankings: rankingwise, labelwise and pairwise.

Measures that fall into the first category, rankingwise, will use all the entries of the PM,
and therefore, benefit subgroups with exceptional complete rankings. This is, if the average
ranking of the population is λ1 � λ2 � λ3 � λ4, subgroups with an average ranking of
λ4 � λ3 � λ2 � λ1 will be deemed the most interesting. However, finding a reasonable set
of rankingwise exceptional preferences can be challenging in some cases. Considering the
example of the Sushi dataset mentioned before, with more than 98% of unique rankings, it
will be difficult to observe unusual complete rankings that occur very frequently, due to the
low number of ranking repetitions.

Labelwisemeasures, are less restrictive and focus on rows/columns of the PMs. Therefore,
they look for subgroups where at least one label is unusually ranked higher (or lower) in
comparison to the whole population. The preferences of these subgroups can be represented
as incomplete rankings. Considering a population where we observe that λ1, λ2, λ3 � λ4,
therefore, subgroups where λ4 � λ1, λ2, λ3 will be interesting. Note that, the following list
of complete rankings agree with λ4 � λ1, λ2, λ3 : λ4 � λ3 � λ2 � λ1, λ4 � λ2 � λ3 � λ1,
λ4 � λ3 � λ1 � λ2, λ4 � λ1 � λ2 � λ3 and λ4 � λ1 � λ3 � λ2. As an example, if
a subgroup ranks tekka − maki consistently in the top 3 while the majority in the dataset
ranks it in the last 3, this type of measures will find it to be very interesting.

Finally, pairwise measures pick single entries of the PM, which makes them look for
unusual pairwise preferences. Considering a population where the majority agrees that λ1 �
λ4, any subgroup where most of the subjects agree that λ4 � λ1 will be considered very
interesting. This means that, if a population displays this preference tamago � kappa −
maki , a subgroup where most people prefer kappa − maki � tamago will be deemed
interesting by these type of measures. Our assumption is that, even though over 98% of the
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total rankings in the Sushi dataset are unique, there is plenty of information present in these
rankings: the partial orders and pairwise comparisons can reveal interesting subgroups.

4.3 Characterizing exceptional subgroups

In this section we formally define the quality measures for EPM, which evaluate how excep-
tional the preferences are in the subgroups. A subgroup can be considered interesting both
by the amount of deviation (distance) and by its size (number of records covered by the sub-
group, as discussed in Sect. 3) (Dzyuba and van Leeuwen 2013). Since, reasonable quality
measures should take both these factors into account, we divide the quality measures into
two parts: the distance component and the size component.

QMS = si zeS · distanceS
In order to allow direct comparisons between different quality measures, both components
are normalized to the interval [0, 1]. A common measure for the size in subgroup discovery
is

√
s (Klösgen 1996), where s is the size of the subgroup. To normalize, we use the square

root of the fraction of the dataset covered by S: si zeS = √
s/n.

Before introducing the distance components, let us first define a distance (or difference)
matrix LS , as the distance matrix between two PMs, MS and MD :

LS = 1

2
(MD − MS)

where S ⊆ D (the division by 2 limits the distance to the interval [−1, 1]). We can measure
different properties of LS and represent them with a numeric value. This way we get an
indicator of the quality of the distance of preferences for a subgroup. Consider the subgroup
Ŝ1 : A1 ≥ 0.3, which covers the last two cases from our example dataset D̂. Its PM is:

MŜ1
=

⎡

⎢⎢
⎣

0 1 1 1
−1 0 −1 0
−1 1 0 1
−1 0 −1 0

⎤

⎥⎥
⎦

The first row clearly reveals that λ1 is always preferred to all other labels in this subgroup. If
we compute the distance matrix L Ŝ1

we get:

L Ŝ1
=

⎡

⎢⎢
⎣

0 −0.5 −0.5 −0.25
0.5 0 0 0
0.5 0 0 0
0.25 0 0 0

⎤

⎥⎥
⎦

Thus, the distance matrix L Ŝ1
confirms that the behavior of λ1 is exceptional in Ŝ1 while for

the other labels, the behavior is the same as in the original dataset.

4.4 Quality measures

In this section we introduce the quality measures used in this work. We propose 4 quality
measures: 2 rankingwise, 1 labelwise and 1 pairwise (Sect. 4.2). We describe 3 previously
proposed measures (de Sá et al. 2016) and introduce a new one.

As we are interested in subgroups with exceptional preferences, we should be able to
measure a preference distance. For that we can use the distance matrix LS . The distance
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measures we employ, typically consider a particular subset of the entries of the distance
matrix LS . Because rankings have inter-label relations that can be explored (Henzgen and
Hüllermeier 2014), there are many ways to tackle this, for example, to use less restrictive
measures to look for unusual behaviors of partial rankings.

To the best of our knowledge, as in most EMM approaches (Leeuwen and Knobbe 2012),
none of the following qualitymeasures are guaranteed of having anti-monotonicity properties.

4.4.1 Rankingwise measures

Rankingwise quality measures should prefer subgroups whose average rankings are very
different to the average ranking of the complete dataset, i.e. maximizing the distance between
complete rankings.

Rankingwise norm If one is searching for subgroups whose average ranking is as close
as possible to the inverse ranking of the population, one should use the Rankingwise Norm
quality measure, RWNorm. Given a set of subgroups with same size, this measure gives the
highest score to subgroups whose rankings are the inverse of the population.

In other words, this is done by maximizing all the entries of the distance matrix LS .
Maximizing the distance of preferences is also maximizing the magnitude of LS . The most
fundamental mathematical way to measure the magnitude of a vector or matrix is the norm.
Hence we can use the Frobenius norm of LS as a distance measure.

RWNorm(S) = √
s/n · ||LS ||F = √

s/n ·
√∑k

i=1

∑k

j=1
LS (i, j)2

As mentioned in Sect. 4.1.2, the PMs can be aggregated with mean or the mode. That is,
the entries of the PMs of the dataset, MD , and the subgroup, MS , are aggregated with the
mode. Therefore, a different distance matrix LS is measured. To make clear when we use the
mode, we refer to RWNorm − Mode.

Rankingwise covariance Covariance is used in statistics to measure the extent to which two
variables change in comparison with each other. In simple terms, a positive value indicates
that when one increases, the other also increases. If they behave in opposite directions, the
covariance is negative.

As in RWNorm, we are interested in subgroups with complete rankings that contradict
the preferences in the general population. Hence, we can use covariance to measure the
deviations of preferences. The entries of a row in the PM MS represent how a label relates to
the remaining labels in the subgroup S. By abuse of notation, the rows of MS and MD can
be seen as independent variables, which allows us to measure the covariance between labels.
That is, we can compare the PM values of a label in a subgroup S with the corresponding
values of the same label in D using their covariance.

Since our aim is to find opposite preferences in comparison to the population, we are
interested in a negative covariance:

RWCov (S) = −√
s/n · cov (vec (MD) , vec (MS))

Where, vec (MD) and vec (MS) stands for the vectorization of matrices MD and MS respec-
tively. As mentioned in Sect. 4.1, the PMs are antisymmetric, which implies that the average
of the entries is always zero. Hence it does not matter if one includes the diagonal or not in
this particular case.
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In comparison to RWNorm, we expect this measure to be more conservative because it
requires thatmost of the entries behave in opposite directions. On the other hand, thismeasure
is better at distinguishing one subgroup whose overall deviation is due to one label deviating
strongly and the others not so much, from one where all labels have small deviations.

4.4.2 Labelwise measures

The fact that only one label behaves differently, disregarding the interaction between the other
labels, can also be interesting (Cheng et al. 2013). Therefore, it is useful to define labelwise
measures that look for subgroups where a label shows unusual behavior. Depending on the
application at hand, a subgroup can be considered interesting when at least one label is
under- or over-appreciated in comparison to the population. For example, a data analyst
might be interested in finding subgroups where the preference for a particular type of sushi
is substantially different, when compared to the population.

Labelwise norm We can measure the preference distance of each label, in a subgroup S, by
computing the norm of the rows from LS . This measure considers only the maximum value
of the set of rows, hence high values of the measure indicate that, at least, one label behaves
differently:

LWNorm(S) = √
s/n · max

i=1,...,k

√∑k

j=1
LS (i, j)2

Other examples of labelwise measures could be, for example, a variant of this one, but
based on the second highest score by label. In that case, it would find subgroups where at
least 2 labels are behaving in an unusual way.

4.4.3 Pairwise measures

In PL, Pairwise Preferences (Hüllermeier et al. 2008) are often the focus of the analysis,
decomposing the preferences into pairs label-vs-label. In EPM, if we are interested in sub-
groupswith at least one pair of labelswith distinctive preference behaviorwe can use pairwise
measures.

Pairwise max We can employ the following pairwise quality measure:

PWMax(S) = √
s/n · max

i, j=1,...,k
|LS (i, j) |

This quality measure is the least restrictive of this set: a subgroup is interesting if one pair of
labels interacts unusually, disregarding all other label interactions.

One alternative pairwise measure could be the pairwise minimum, which would provide
the lower bound of PWMax for each subgroup.

4.5 Tackling false discoveries

In SD, one aims to find subsets of the dataset that are interesting in some sense. As such, the
space of candidates to be considered for what essentially amounts to a statistical test is vast.
Hence, SD suffers from the multiple comparisons problem (Hochberg and Tamhane 1987):
when testing a large number of a null hypotheses, by definition, some will incorrectly be
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rejected. Namely, with a significance level of α, α out of each 100 null hypotheses tested are
expected to be incorrectly rejected.

For supervised local pattern mining, to which SD belongs, a swap-randomization-based
statistical test procedure has been developed (Duivesteijn and Knobbe 2011). First, a number
of copies of the original dataset is generated, and in each of the copies the target attributes
are swap randomized. All other attributes are kept intact. This means that the search space of
the mining algorithm and the distribution of the targets remains intact, but the connections
between the search space and the target space are broken. The procedure then involves
running the algorithm to be tested on each copy of the dataset, and reporting the best subgroup
found, according to the selected quality measure. Any subgroup that is found on such a copy
of the dataset is interesting only because of random effects. Hence, these are artificially
generated false discoveries. The procedure then builds a global model over the artificial false
discoveries, the so-called Distribution of False Discoveries (DFD). Then, the subgroups
found on the original dataset can be assigned a p value, corresponding to the null hypothesis
that a subgroup with this quality is generated by the same process that generated the DFD.
Refuting the null hypothesis essentially refutes the hypothesis that the subgroup found is a
false discovery.

The DFD validation procedure has only one parameter: the number of dataset copies. This
number must be large enough to satisfy certain conditions arising in the global modeling
involved in creating the DFD. As noted in Duivesteijn and Knobbe (2011), typically, 100
copies are enough.

5 Experiments

In this section we start with a description of the experimental setup (Sect. 5.1), then we
present some statistics of the datasets used (Sect. 5.2). Then we present the results obtained
(Sect. 5.3) and finally we compare our findings with the results of an alternative approach
(Sect. 5.4).

5.1 Implementation and experimental setup

We incorporate exceptional preferences mining in the Cortana3 software package (Meeng
and Knobbe 2011). This package delivers a generic framework for SD, implements several
SD instances, and offers many generic features allowing for different SD approaches. The
description language consists of logical conjunctions of conditions on single attributes.

Our experiments use a greedy best-first search approach (Algorithm 1). The numeric
strategy used for this experiments is an on the fly discretization approach of 8 equal-width
bins. For every extreme of the bin we use a set of numeric operators such as ≥ and ≤.

All the findings we present in this paper have gone through the DFD validation procedure
(Sect. 4.5) with 100 copies, and all have been found significant at a significance level of
α = 1%.

All the subgroups presented in this manuscript were found in less than 3 minutes of
execution time, on an Intel Core i7 5500U CPU @ 2.40GHz with 16GB of RAM. The DFD
validation procedure, for depths bigger than 4 can take more than 30 minutes, depending on
the dataset.

3 http://datamining.liacs.nl/cortana.html.
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5.2 Datasets

To illustrate domain-specific interpretation of the results,we experimentwith some real-world
datasets (Table 2). The Algae dataset4 is based on the COIL 1999 Competition Data from
UCI (Lichman 2013). This dataset concerns the frequencies of algae populations in different
environments. This dataset consists of 340 examples, each representing measurements of
a sample of water from different European rivers in different periods. The measurements
include concentrations of chemical substances such as nitrogen (in the form of nitrates,
nitrites and ammonia), oxygen and chlorine. Also the pH, season, river size and flow velocity
are registered. For each sample, we have the preference relations of 7 types of algae which
represent the concentrations ordered from larger to smaller concentrations. Those with 0
frequency are placed in last position and equal frequencies are represented with ties. Missing
values are set to 0.

The Sushi preference dataset (Kamishima 2003), is composed of demographic data about
5000 people and their sushi preferences. Each person sorted a set of 10 different sushi types
by preference. The 10 types of sushi, are (a) shrimp, (b) sea eel, (c) tuna, (d) squid, (e) sea
urchin, (f) salmon roe, (g) egg (h) fatty tuna, (i) tuna roll and (j) cucumber roll.

The Top7movies dataset is a subset of the MovieLens 1M Dataset (Harper and Kon-
stan 2016).5 The original dataset has 1 million ratings from 6000 users on 4000 movies.
For each user, we have its demographic data, such as gender, age, occupation and zipcode.
Using the zipcode R package (Breen 2012), we obtained the city, state, latitude and longi-
tude related to the given zipcodes of the users. We selected the subset of users which have
rated all the 7 most rated movies. This means that, in the end we obtained demographic
data and a ranking of 7 movies per user. The labels in this dataset represent the following
movies:

– a) American Beauty (1999)
– b) Star Wars: Episode IV—A New Hope (1977)
– c) Star Wars: Episode V—The Empire Strikes Back (1980)
– d) Star Wars: Episode VI—Return of the Jedi (1983)
– e) Jurassic Park (1993)
– f) Saving Private Ryan (1998)
– g) Terminator 2: Judgment Day (1991)

Examples which contained rankings with complete ties were removed.
We also study data with socio-economic information from regions of Germany and

its electoral results, the datasets GermanElections2005 and GermanElections2009. The
413 records correspond to the administrative districts of Germany, which are described
by 39 attributes. Both datasets are parts of data which was extracted from a publicly
available database of the German Federal Office of Statistic (Boley et al. 2013). A sim-
ilar study has been presented in Grosskreutz et al. (2010), but restricted to the city of
Cologne.

In terms of independent attributes we have: age and education of the population, economic
indicators (e.g., GDP growth, percentage of unemployment), indicators of the labor work-
force in different sectors such as production, public service, etc. In terms of the target, we
transformed the election results of the five major political parties for the federal elections in
2005 and 2009 into rankings. In this dataset the labels represent:

4 http://dx.doi.org/10.17632/spwmg2z7cv.2.
5 https://grouplens.org/datasets/movielens/1m/.
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Table 2 Dataset details

Datasets #examples #labels #attributes Uπ (%) E (Uπ ) (%)

GermanElections2005 412 5 31 5 28

GermanElections2009 412 5 33 7 28

Top7movies 602 7 7 52 94

Algae 316 7 11 72 96

Sushi 5000 10 10 98 99

Cpu-small 8192 5 6 1 1

The column Uπ represents the percentage of unique rankings

– a) CDU (conservative)
– b) SPD (center-left)
– c) FDP (liberal)
– d) Green (center-left)
– e) Left (left-wing)

We also choose to experiment with a Label Ranking dataset from the Data Repository
of Paderborn University,6 since this set of data is well-known in the preference learning
community (Cheng et al. 2009). In particular, we use the Cpu-small dataset which was
transformed from a regression dataset (Cheng et al. 2009). The target ranking, with 5 labels,
was derived for each example from the order of the values of 5 numerical variables (which are
then no longer used as independent variables). In the process, the features were normalized,
and its names replaced by A1, A2, . . . , A6. Therefore, in this case, the reported subgroups
cannot be interpreted as in the original dataset domain.

The percentage of unique rankings Uπ (Table 2) measures the proportion of distinct
rankings in the dataset:

Uπ = #distinct rankings

n

where n is the size of the data. We also show the expected number of different rankings given
n examples, E (Uπ ). This is, if we randomly pick n rankings of a fixed size k, we should
expect E (Uπ ) rankings. By comparison withUπ we can have an idea if there are any biases
in the behaviors of the rankings.

Considering the case of the Sushi dataset (Table 2), with an Uπ = 98%, if we randomly
pick 100 instances (i.e. 100 users and its rankings), wewill probably have 98 distinct rankings.
This means that, it will be extremely unlikely to find more than 3 users with the very same
preferences. On the other hand, because the Uπ = 98% is close to the E (Uπ ) = 99%, we
should also not expect very strong biases in the ranking behaviors. For these reasons, we
expect that it will be harder to find complete ranking patterns in this dataset.

Looking into the E (Uπ ) of the two german elections datasets, theirUπ is considerably less
than its expected value. This seems to indicate that, not all rankings have equal probability in
this election scenario. However, because we know that in elections it is very unusual that all
parties have equal chances of being in all positions, across different regions, it makes sense.

6 https://www-old.cs.uni-paderborn.de/fachgebiete/intelligente-systeme/software/label-ranking-datasets.
html.
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5.3 Results

In this sectionwe show some of themost interesting results obtainedwith the different quality
measures.

5.3.1 Study on the behavior and biases of the quality measures

With each of the introduced quality measures, one can find subgroups featuring exceptional
ranking behavior. The exceptionality is measured in (sometimes subtly) different ways for
the different quality measures; which quality measure one uses depends on what type of
exceptional ranking one is looking for. The quality measures we have outlined in Sect. 4.4
all live at a different level of granularity: a subgroup is flagged up as interesting by the one
measure if only a single pair of labels has an exceptional relative ranking, by the othermeasure
if a single label has an exceptional ranking relative to all others, and by the last measure if
overall label behavior is exceptional. This difference in scope implies that the measures are
correlated, but not perfectly so. In this section, we explore the resulting differences in focus
between the quality measures, to allow the user to make an informed choice.

The result of this exploration is displayed in Fig. 2.We generate 10,000 random subgroups,
whose scores are evaluated by all quality measures. The generation is performed by randomly
combining descriptions until the maximum depth is reached. The search depth is fixed to 3,
to allow some diversity of combinations. For each pair of quality measures, Fig. 2 contains
a scatterplot displaying the relation of the scores.

Thefirst row shows the subgroups ofRWNorm and the vertical axis represents its score. The
horizontal axis represents the scores of eachqualitymeasure, in the followingorder:RWNorm,
RWNorm-Mode, RWCov, LWNorm and PWMax. The second row shows the subgroups of
RWNorm-Mode, and so on.

As expected, some quality measures have a different but congruent bias. We can observe
that 3 measures have a very similar bias, RWNorm, LWNorm and PWMax. This is somewhat
expected, since they basically have the same measure, but applied in different parts of the
distance matrix LS .

TheRWNorm-Mode shows a distinct behavior from the latter group. This measure is based
on a different distance matrix LS , obtained from the difference between the modes of the
population MD and the modes of the subgroups MS . Its behavior can be explained with a
simple example. Consider only one entry of LS , and let us assume that 51% of the subjects
of a population agree that λa � λb. Then, a reasonably-sized subgroup where 51% agree that
λb � λa and the remaining 49% agree that λa � λb, will have a very high score with this
measure. In fact, in this subgroup, only 2% fewer of the subjects prefer λa � λb, compared to
the overall population. For the measures RWNorm, LWNorm and PWMax, subgroups of this
type will not be very interesting, unless that difference is bigger. This explains the behavior
of the line on the top-left, observed on the second row of Fig. 2, where RWNorm-Mode
compares to RWNorm, LWNorm and PWMax. The rest of the behavior seems to be in line
with the other measures.

Finally, RWCov, seems to have the most different bias. That is because it is not based
on the distance matrix LS ; instead, it directly measures the negative correlation between the
population MD and the subgroups MS . Therefore, with this quality measure, we will find
subgroups that do not necessarily maximize preference distance, but instead feature unusual
preference behavior in a abstract sense.

Now, let us focus on the number of subgroups obtained per measure, in terms of the given
datasets in Table 3. Using a best-first search to find subgroups, we compare the number of
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Fig. 2 Comparison of the scores of the quality measures on random subgroups obtained on the Cpu-Small
dataset

Table 3 Total number of significant subgroups found per dataset, with depth 1, using the different quality
measures

Datasets RWNorm RWNorm-Mode RWCov LWNorm PWMax

GermanElections2005 59 19 0 59 62

GermanElections2009 55 18 1 53 59

Top7movies 2 0 0 2 2

Algae 22 5 1 22 21

Sushi 25 5 0 18 20

Cpu-small 12 10 6 12 12
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subgroups obtained, per quality measure per dataset. For simplicity, we use a search depth
of 1. RWCov is, by far, the measure that identifies the least number of subgroups throughout
measures and datasets. This seems to indicate that this measure is very restrictive, as expected
(Sect. 4.4).

5.3.2 German elections

With theGermanElections2005 dataset, using the PWMax with a search depth of 1, we found
62 significant subgroups. The best subgroup, Region = East, indicates that the party with
label e in comparison to the party with label c has a very different behavior from the majority.
In fact, while on 75% of the districts in Germany the FDP party (label c) was more voted than
the Left party (label e), on the 2005 elections, all the 87 districts from East Germany voted
more on the Left party than on the FDP party. This shows a great example of an extreme
inversion of preferences.

The second best subgroup obtained, compares the center-left Green party (label d) with
the left-wing Left party (label e). The Green party had more votes than the Left party on 72%
of the districts in Germany. On the other hand, on 88% of the districts where the average
income is less or equal than 16,979, the Left party was more voted than the Green party.

To comparewith theGerman elections of 2009, we used theGermanElections2009 dataset
with the same settings and found 57 significant subgroups. As in the 2005 elections, the best
subgroup shows that 100% of the districts in east Germany gave more votes to the Left party
than on the Green party, in comparison to only 27% in the whole Germany. The second
best subgroup, as in the 2005 case, compares the center-left Green party (label d) with the
left-wing Left party (label e). However, in this case, 94% of the districts, where the average
income is less or equal than 16,979, the Left party was in advantage in comparison to the
Green party. Comparing to the 88% of 2005, we realize that, in 2009, 6 p.p. more districts,
where the average income was ≤16,979, increased the votes in the Left party, in comparison
to the Green party.

Continuing with the GermanElections2009 and using the LWNorm with a search depth
of 2, we found 2965 significant subgroups. The most relevant is expressed with a simple
condition Region = East. This subgroup is interesting because it shows that, in most regions
of East Germany, the Left party is often one of the top voted parties. In Fig. 3 we can clearly
see the distribution of the ranks. We observed that, the Left party was either first or second
in the elections of 2009 in 97% of the districts in East Germany. Moreover, it was 3rd place
in 3% of them. Other subgroups encountered show a very similar behavior in terms of the
label that represents the Left party, like:

– Children Population ≤ 14.8% ∧ Income ≤ 16, 634
– Children Population ≤ 14.8% ∧ Unemployment ≥ 8.4%

On the other hand, we also found subgroups were the Left party is often the least voted
party. Some examples are:

– Income ≥ 18,442
– Income ≥ 17,791 ∧ Youth unemployment ≤ 8.5%

In Fig. 4 we can visualize the distribution of Income ≥ 18442.
Finally, in Fig. 5 we can visualize the PM of subgroups which are described by the name

of the state. This visualization clearly shows some nuances in the voting behavior on the
different states of Germany.

From a different perspective, if we look at the average rankings of each PM from Fig. 5
we obtain:
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Fig. 3 Histograms representing the relative position of the Left party obtained in the 2009 elections of districts
in Germany. In red, the subgroup Region = East and in blue the distribution for all districts (Color figure
online)
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Fig. 4 Histograms representing the relative position of the Left party obtained in the 2009 elections of districts
in Germany. In red, the subgroup Income ≥ 18,442 and in blue the distribution for all districts (Color figure
online)

– CDU � Left � SPD � FDP � Green (Thuringia)
– Left � SPD � CDU � FDP � Green (Brandenburg)
– Left � CDU � SPD � FDP � Green (Saxony-Anhalt)
– CDU � Left � SPD � FDP � Green (Saxony)
– CDU � SPD � FDP � Green � Le f t (Bavaria)
– CDU � SPD � FDP � Le f t � Green (All states)

We highlight (in bold) the parties which got a better relative position in the corresponding
state, in comparison to the overall average ranking. As one can conclude from most of the
rankings in this list, at least one party (one label), seems to have its position changed relatively
to the others. This clearly shows that the method is working as expected.

This analysis, also shows the potential of EPM as a tool to study election data. By looking
at different levels of granularity of the preferences, EPM does not necessarily focus on the
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Fig. 5 PM representation of some subgroups described by the feature State in comparison to the base matrix
(All districts). The subgroups are sorted by relevance (first row, first column:most relevant; second row, second
column: least relevant)

winners, but rather on major preference shifts. Also, considering the elections application,
different ranking aggregation metrics can be used to comply with the Condorcet method
(de Condorcet 1785).

5.3.3 Top7Movies

With the LWNorm quality measure, we found 2 significant subgroups for a search depth of
2. The members of the first subgroup, people older than 34 years old living bellow a latitude
of 32.9, seem to dislike the most voted movie American Beauty, more than usual (Fig. 6).
This subgroup, includes people from different states, such as Arizona, California, Florida,
Georgia, Louisiana, New Mexico, Texas and even Hawaii. An interesting conclusion we can
draw, is that, this group voted in Star Wars: Episode IV—A New Hope and Saving Private
Ryan with high scores.

On the other hand they seem to dislike American Beauty and Jurassic Park. In fact, the
average ranking of this subgroup is b � f � c � d � g � a � e and the average ranking of
the whole population is b � c � a � f � d � g � e.

5.3.4 Algae

With the Algae dataset, we obtain results about the concentrations of algae with the RWNorm
measure. Results seem to indicate that during Spring, the species of algae a, b and c are much
more common in rivers than the others species. This can be easily concluded by studying
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Fig. 6 PMrepresentationof the datasetTop7Movies (basematrix), the subgroup Age ≥ 35∧Lati tude ≤ 32.9
(subgroup matrix) and the difference (difference matrix)

Fig. 7 PM representation of the subgroups Season = Spring (left subgroup matrix) and Season = Autumn
(right subgroup matrix) from the Algae dataset

the PM representation of the subgroup (Fig. 7). On the other hand, we also see an interesting
behavior during the Autumn season.

With the LWNorm measure, we find a bit more than 400 subgroups with maximum depth
2, the best of which is presented in Fig. 8. In the subgroup, the label a is strongly preferred
over all others, while the image is much more nuanced over the whole dataset. If we ignore
the label a, the PMs for both the overall dataset and the subgroup are rather bland, and their
difference is not very pronounced. But for this one particular label a, the behavior on the
subgroup is extremely clear-cut, and the LWNorm quality measure picks up on that effect.

Using a depth of 3 with the same measure, we found around 5400 subgroups. We show
the best one in Fig. 9. One interesting aspect of this subgroup is that it shows an opposite
behavior, in comparison to the one in Fig. 8, in terms of the label a (as it is clear from the
difference matrix).

The visual representations of the PM clearly reveal the effect of the LWNorm quality
measure in this dataset. We can also observe from the description of the subgroups obtained,
that the variables V 10 and V 6 are highly correlated with the presence of the algae a.
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Fig. 8 PM representation of the dataset Algae (base matrix) and the subgroup V 10 ≤ 59 ∧ V 6 ≤ 11.87
(subgroup matrix), with difference matrix on the right

Fig. 9 PM representation of the dataset Algae (base matrix) and the subgroup V 10 ≥ 137.78 ∧ V 6 ≥
14.32 ∧ V 9 ≥ 60.83 (subgroup matrix), with difference matrix on the right

5.3.5 Sushi

Considering the high percentage of unique rankings in the sushi dataset (Table 2) we do not
expect to find strong patterns in the whole PM, therefore, we focus on labelwise ranking
patterns.

With the LWNorm measure, we find 149 subgroups on the Sushi dataset. We present the
best subgroup using this measure in Fig. 10. The subgroup (Males over 30 years) shows a
preference for Sea Urchin, since the majority of men rank this sushi type in the top 4. By
contrast, in the whole population, more than half rate it between 5th to 10th, and every fifth
person rate it in the last place.

5.3.6 Cpu-small

On theCpu-small dataset,we used theRWCov qualitymeasure. Experimentswith amaximum
depth of 4, found 275 significant subgroups. In Fig. 11 we can visualize the PM of the most
relevant subgroup found. The PM of this subgroup, of size 62, shows deviations in all the
entries of the matrix, which is a good indicator that this measure is working as expected.

In terms of the rankings, the average ranking of the whole dataset is (2, 4, 3, 1, 5), and
the average ranking in this subgroup is (3, 1, 5, 4, 2). The Kendall τ correlation of these two
rankings is −0.4, which confirms the unusualness of the subgroup.
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Fig. 10 Percentage of ranks for Sea Urchin (Sushi dataset) for all individuals in comparison to the subgroup
(males older than 30 years)

Fig. 11 PM representation of the dataset Cpu-small (base matrix), the subgroup A5 ≥ 0.710∧ A6 ≥ 2.143∧
A3 ≤ 0.755 (subgroup Matrix) and the difference (difference matrix)

We could also observe that, despite having obtained 275 significant subgroups, there were
many subgroups whose PM was very similar and showing the same unusual behavior. This
could also be observed in terms of the ranking derived from their PM.

5.3.7 Comparison of different aggregation metrics

As mentioned in Sect. 4.1, different metrics can be used in the aggregation of PM. To test
how this choice can affect the model, we analyzed some results were PMs are aggregated
with the mode (instead of the the mean), however, for the sake of space, we only present one
dataset and one quality measure, RWNorm-Mode.

Using the mode as the aggregation, RWNorm-Mode quality measure, we found 131 signif-
icant subgroups of depth 2 on the Cpu-small dataset. As a point of comparison, we obtained
155 significant subgroups, with the same settings, using theRWNorm qualitymeasure (aggre-
gation with the mean). Despite the similar number of subgroups found, the two groups of
subgroups are quite distinct. This is somehow expected from the previous analysis of the
quality measures in Sect. 5.3.1.

A striking difference is that the rankings of the subgroups from RWNorm-Mode are con-
sistently different from the ones obtained with RWNorm. However, despite being different,
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Fig. 12 Representation of the PMs, aggregated with the mode, of the dataset Cpu-small (base matrix), the
subgroup A4 ≥ −0.22354 (subgroup matrix) and the difference (difference matrix)
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Fig. 13 Distributions of the correlation between the average ranking and each ranking belonging to the best
subgroup found with RWNorm-Mode (green) and RWNorm (brown) (Color figure online)

the average rankings of the subgroups have a similar correlation (in terms of the Kendall
τ ) to the average ranking of the population.7 In other words, the subgroups are at a similar
“preference distance” from the population. This seems to indicate that RWNorm-Mode can
be a complementary measure with RWNorm.

The behavior described above, is also observed on the remaining datasets presented in
Table 2. For the sake of space, let us consider the best subgroup, according to RWNorm-
Mode, depicted in Fig. 12. This subgroup is described by: A4 ≥ − 0.22354. In Fig. 12 we
can observe that the difference matrix of the best subgroup has very faint colored tiles, which
means that the PM is not very different from the PM of the whole dataset. On the other hand,
these small differences are quite spread along the difference matrix, which, when summed
up, makes it interesting too.

From a different perspective, in Fig. 13 we compare the distributions of the correlation
between the average ranking of the dataset and each one of the rankings that are part of
the best subgroup. We measure this correlation in terms of the Kendall τ correlation coef-
ficient. As seen in Fig. 13, the distributions are similar. This behavior was also observed
in other subgroups and other datasets. Therefore, this confirms what we observed above,
that RWNorm-Mode and RWNorm find different subgroups but with similar ’preference dis-
tances’.

7 We note that two distinct rankings can have the same Kendall τ correlation with a third ranking.
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Table 4 Example dataset D̂ with
the proposed alternative
representation in the rightmost
column of the table

A1 π Similarity to average ranking
λ1 λ2 λ3 λ4

0.1 4 3 1 2 0

0.2 3 2 1 4 0.66

0.3 1 4 2 3 0.33

0.4 1 3 2 4 0.66

Aggregating a PMwith the mode can yield either 1, 0 or−1 in contrast to the mean where
any value in the interval [−1, 1] is possible. Therefore, the mean can measure exceptionality
on subgroups with the same mode as the dataset (e.g., label a in Fig. 8). On the other hand,
the mode can detect subgroups where the majority of the pairs behave differently. Therefore,
depending on the task, the best choice of the aggregation metric for the quality measures can
change. However, we believe that the best way is to complement the use of RWNorm-Mode
with RWNorm and vice versa.

5.4 Comparison with distribution rules

In this section, we compare subgroups found with our algorithm (using Cortana) with sub-
groups from a different approach, Distribution Rules (DR) (using CAREN Azevedo and
Jorge 2010 software8). As mentioned before (Sect. 3.2), Distribution Rules are a SD method
that looks for unusual target distributions (Jorge et al. 2006; Lucas et al. 2007). Cortana and
CAREN can be used for mining other structures of data. For simplicity, in this work we refer
to Cortana and CAREN as the tools with our preference learning approaches.

DRuse a numeric target to construct the distributions. Sincewehave rankings as targets,we
propose a simple way to represent individual rankings as numeric values. For each example
we compute the similarity score between its ranking and the average ranking (consensus
ranking Brazdil et al. 2003) of the dataset. Given that, the similarity measure that we use is
the Kendall τ , the new target can have values in the range [−1, 1].

We show in Table 4 how the example dataset D̂ would look like under this transformation.
Considering that the average ranking of the rankings in D̂ is: (2, 3, 1, 4), for the second
example in D̂, we do: τ ((2, 3, 1, 4) , (3, 2, 1, 4)) = 0.66.

For a fair comparison between the two methods, we discretized the numeric attributes
beforehand with an equal width discretization of 8 bins. We handle the discretized numerical
attributes as a nominal, not ordinal, scale. In terms of the property of interest (target), this
numerical variable does not have to be previously discretized, because the method works
with raw distributions (Lucas et al. 2007).

In terms of the experimental setup, we will use the same maximum search depth for both
methods. In Cortana, we take theRWNorm quality measure. For each subgroup, we perform a
Kolmogorov–Smirnov statistical test to compare the target distribution of the subgroup with
the target distribution of the whole population. Subgroups which are deemed interesting, are
the oneswhose distributions differ significantly from the distribution of thewhole population.

Wewill use the term subgroup and distribution rules interchangeably to refer to distribution
rules. However, when there is the need to differentiate from subgroups found with Cortana
and CAREN, we will use the terms subgroups and distribution rules, respectively.

8 http://www4.di.uminho.pt/~pja/class/caren.html.
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Table 5 Comparison of subgroups found by CAREN and Cortana

CAREN Cortana

Region = East Region = East

Region = East ∧ Type = Rural Region = East ∧ Reg.Web.Dom. = a

Region = East ∧ Reg.Web.Dom. = a Income = a ∧ Region = East

Income = a ∧ Region = East Region = East ∧ Type = Rural

Income = a Income = a

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

Region=East

KS.int=1− 6.6e−17 Sup= 0.2112

Mean= 0.458 St.Dev= 0.149

P.O.I: distance

Fig. 14 Graphical representation of the distributions of the target of the subgroup Region = East (in bold) in
comparison to the whole target distribution in GermanElections2009

5.4.1 German elections

With the GermanElections2009 dataset, we found 1597 significant distribution rules using
CAREN and 1073 subgroups with Cortana for a search depth of 2. The most interesting
distribution rules are not only in line with the subgroups found, in this experiment, but also
with the ones previously discussed in Sect. 5.3.2. For the sake of simplicity, we only show
the top five subgroups obtained by both approaches in Table 5. It is clear from Table 5 that
the subgroups found by CAREN are very similar from the subgroups of Cortana, despite
their very distinct approaches.

The distribution of themost interesting subgroup, Region = East, is represented in Fig. 14.
We can observe that, the majority of the rankings in the whole dataset have a similarity of
0.8 with the average ranking. On the other hand, the rankings of this subgroup, have at most
a similarity of 0.7.
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age=e, latitude=h

KS.int=1− 0.011 Sup= 0.1512

Mean= 0.199 St.Dev= 0.336

P.O.I: distance

−0.62 0.05 0.56

age=e, longitude=g

KS.int=1− 0.011 Sup= 0.1512

Mean= 0.199 St.Dev= 0.336

P.O.I: distance

age=e

KS.int=1− 0.022 Sup= 0.1545

Mean= 0.205 St.Dev= 0.335

P.O.I: distance

occupations=other, age=d

KS.int=1− 0.024 Sup= 0.0664

Mean= 0.487 St.Dev= 0.256

P.O.I: distance

occupations=other, gender=M

KS.int=1− 0.034 Sup= 0.1013

Mean= 0.423 St.Dev= 0.303

P.O.I: distance
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Fig. 15 Graphical representation of the distributions rules found in Top7Movies dataset

5.4.2 Top7Movies

In this section, we analyze a set of DR found with the Top7Movies dataset and compare to
the subgroups obtained with Cortana. We found 7 significant DR with CAREN and a search
depth of 2. In Fig. 15 we can see the description and the distributions of the DR found on the
Top7Movies dataset.

With Cortana, we found 7 significant subgroups with a search depth of 2. From this set,
3 subgroups are the same (but in a different order), as we can see from Table 6.

We note that, in the Label Ranking context, despite the similarities between the subgroups
found both by CAREN and Cortana, the interpretation of the rankings is richer with a PM
than with a distribution. PM are better for spotting slight nuances in the preference patterns,
for example, when a particular label is under- or over-appreciated. Moreover, if we want
to search for partial ranking patterns such as labels or simply label-vs-label, it is simpler to
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Table 6 Comparison of subgroups found by CAREN and Cortana

CAREN Cortana

Age =35–44∧Latitude = h Age =35–44∧Gender = Male

Age =35–44∧ longitude = g Age =35–44

Age =35–44 Age =35–44∧Latitude = h

Occupations = Other ∧ Age =25–34 Age =35–44∧Longitude = g

Occupations = Other ∧ Gender = Male Age =18–24

Age =50+∧Gender = Male Age =18–24∧Latitude = h

Occupations = Other Age =18–24 ∧Longitude = g

visualize and handle it with a PM. This mean that, EPM, due to its representation of rankings,
has a bigger margin for the creation of new quality measures.

6 Conclusions

In this work, we empirically show how exceptional preferences mining (EPM) can be used
in problems where the target concept can be represented as a preference of a set of labels,
such as rankings or pairwise comparisons. The results are a set of subgroups, that can be
described in terms of a conjunction of few conditions on some attributes, where the label
preferences are exceptional in some sense. The presented subgroups form clear coherent parts
of the search space, which means that EPM finds deviating preferences that are actionable
for domain experts, since their description in terms of attributes should be familiar to them.

All subgroups whose PM deviates significantly from the Preference Matrix (PM) for the
whole dataset are considered to be interesting. We used four quality measures for EPM
that instantiate this concept of ‘interesting’ to different levels, Rankingwise, Labelwise and
Pairwise. The RWNorm, RWNorm-Mode and RWCov quality measures consider a subgroup
interesting if the full set of preference relations is substantially displaced. The LWNorm
quality measure highlights subgroups where any one label interacts exceptionally with the
other labels, agnostic of how those other labels interact with each other. The PWMax quality
measure finds a subgroup interesting if any one pair of labels display exceptional preference
relations. Hence, by choosing the appropriate quality measure, EPM delivers subgroups
featuring preference relations that are exceptional at your preferred scope.

To show the potential of the approach, we provided experiments on several datasets.
The experiments with the RWNorm quality measure on the Algae dataset revealed several
interesting conditions that can affect the populations of the different species of algae from
rivers. The experiments with the LWNorm quality measure on the Sushi dataset illustrate the
relative merit of this quality measure: it focuses on subgroups where one particular label is
exceptionally under- or over-appreciated. The subgroup presented has a penchant for Sea
Urchin (cf. Fig. 10). The PWMax measure shows its potential on the German2005elections
dataset by identifying several subgroup with strong exceptional preferences with respect to
the different parties. The experiments with the RWCov quality measure on the Cpu-small
dataset (e.g., Fig. 11) reveal a subgroup with quite unusual preference behavior. Finally,
the RWNorm-Mode was compared to the RWNorm measure, in different experiments, and
we could observe that it revealed some interesting subgroups too. Moreover, we concluded
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that RWNorm-Mode and RWNorm can be complementary measures to study exceptional
preference patterns.

As we argued in Sect. 3, one of the main benefits of a local pattern mining method such
as EPM is that it delivers interpretable results. That means that the resulting subgroups are
ideally suited to instigate real-world policies and actions. For this reason, we studied several
real-world datasets.

We also compared the results found with EPM with an alternative approach, the Distri-
bution Rules (DR). Despite their very different setting, the subgroups found by this method
were very similar to the ones found with Cortana. In our opinion, this simple comparison
empirically shows that our suggested quality measures for EPM are finding relevant patterns.
In terms of interpretation, PM are better than distribution rules to detect slight nuances in
the preference patterns, for example, when a particular label is under- or over-appreciated.
In some cases, information which is not easy to obtain with the usual representations of
rankings, is clearly revealed through the PM visualization (see Sect. 5.3.2).

From this study, we also understand some limitations of our approach. We observed
that, in some cases, despite having obtained many significant subgroups, most of them are
specializations of simpler subgroups with very similar average rankings, if not equal. This
means that, many different subgroups are finding the same ranking behaviors.

EPM also has the disadvantage to be time consuming. A large number of labels combined
with a still reasonably high search depth makes the statistical tests very time consuming.

As futureworkwewould like to study alternativeways to represent and look for patterns in
rankings, for example for rankings with a large number of labels as well as for partial orders.
Finally, we would also like to study how pruning techniques such as minimum improvement
can be used to filter out subgroups, that are specializations of simpler subgroups, but have
very similar PMs.
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