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Abstract—Backed by more powerful computational resources
and optimized training routines, deep learning models have
attained unprecedented performance in extracting information
from chest X-ray data. Preceding other tasks, an automated
abnormality detection stage can be useful to prioritize certain
exams and enable a more efficient clinical workflow. However,
the presence of image artifacts such as lettering often generates
a harmful bias in the classifier, leading to an increase of false
positive results. Consequently, healthcare would benefit from a
system that selects the thoracic region of interest prior to deciding
whether an image is possibly pathologic. The current work tack-
les this binary classification exercise using an attention-driven
and spatially unsupervised Spatial Transformer Network (STN).
The results indicate that the STN achieves similar results to
using YOLO-cropped images, with fewer computational expenses
and without the need for localization labels. More specifically,
the system is able to distinguish between normal and abnormal
CheXpert images with a mean AUC of 84.22%.

Index Terms—binary classification, deep learning, module,
object detection, radiography, thorax

I. INTRODUCTION

Among the most popular medical imaging exams, the Chest

X-Ray (CXR) is frequently requested by healthcare profes-

sionals to assess the presence of thoracic diseases, due to

its low-cost and non-invasive nature. Nevertheless, a thorough

analysis of CXR images is time-consuming and their interpre-

tation may be dubious even for expert radiologists [1]. For this

reason, the incorporation of computer-aided diagnosis systems
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in the hospitals is an attractive solution to provide a second

opinion, and promote greater efficiency in the interpretation

of these exams. Following the advances in computational

capabilities and the increasing availability of medical data sets,

Deep Learning (DL) based systems can provide a great pre-

liminary diagnostic tools to reduce the physicians’ workload.

In particular, considering that cardiothoracic and pulmonary

abnormalities are one of the leading causes of morbidity and

mortality worldwide [2], a CXR-based abnormality detection

system may help clinicians to prioritize more urgent abnormal

exams. Hence, this work focuses on a system for the detection

of general thoracic abnormalities, using the binary image-level

labels “normal” or “abnormal”.

While DL is mainly known for its embedded feature en-

gineering, inherently selecting and combining attributes for

a more efficient learning process, the resulting models are

also subject to data-related biases [3]. For instance, the letters

present in a CXR scan may be wrongfully interpreted as

pathologic features (Figure 1a in red) [4]. Such characteristic

is a major setback for their broad adoption in a clinical setting,

whose domain is grounded in the ability to exploit causal rela-

tionships. This way, researchers often resort to a preprocessing

stage in which they crop the images’ Region of Interest (ROI)

before feeding them to a classifier, selecting only the portion

of the image that contains the thorax. Object detection models

are often used for this purpose, as exemplified in Figure 1b. By

selecting the ROI and removing image artifacts, this approach

may reduce the number of false positive predictions, but at

the same time it also implies training a completely separate

model with bounding box ground truths before training the

main classifier, thus creating a significant extra computational

cost.
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Spatial Transformer Networks (STNs) were originally intro-

duced in [5] and refer to any Convolutional Neural Network

(CNN) that includes a Spatial Transformer module. This mod-

ule can be trained end-to-end with a classifier to transform the

original input images in a way that benefits the classification

task. In sum, the present work focuses on replacing the typical

object detection model [6], [7] for a more efficient workflow,

using an attention-driven STN to simultaneously select the

ROI and classify the images, and thus suppressing the need

for two independent models. The main contributions of this

paper are summarized below:

1) A single STN whose attention-driven module and classi-

fier are trained end-to-end to crop and classify the CXR

scans, without any modifications to the standard loss

function.

2) A reduced computational cost in comparison to the typ-

ical object detection models, which require localization

ground truth annotations and larger architectures and

training times.

(a) Original image with
artifacts marked in red.

(b) ROI selected by a thorax
detection model.

Fig. 1: Example of an image before and after cropping.

II. RELATED WORK

Published work in this field has typically favored pathology

classification rather than abnormality detection; yet, such de-

tection task can have a high impact when it comes to building a

triage system for the analysis of CXR images. In general, stan-

dard off-the-shelf CNN-based methods are frequently applied

to the data in question, establishing a comparison between

well-known architectures [8], [9]. In alternative, other state-

of-the-art publications opt for autoencoder-based one-class

learning approaches in order to infer on normality patterns

and distinguish the abnormal scans [10], [11].

Only two relevant papers have recently implemented STNs

in CXR scans to achieve an invariant canonical pose through

affine transformations (rotation, shear, scaling, and transla-

tion). More specifically, the first one focuses on multi-label

pathology classification using spatial annotations, and pro-

poses a loss function that minimizes the difference between

the transformed scans and a canonical CXR reference [12].

The second addresses the binary abnormality classification

using multi-modal data and image-level labels [13]. Both of

these publications employ the NIH ChestX-Ray14 dataset [14].

TABLE I: Label distribution of the CheXpert subset.

Findings Frequency Binary Setting

Atelectasis 6,440

22,146 abnormal images

Cardiomegaly 4,044
Consolidation 4,312
Edema 2,547
Enlarged Cardiomediastinum 3,297
Fracture 1,540
Lung Lesion 2,482
Lung Opacity 10,794
Pleural Effusion 9,880
Pleural Other 1,776
Pneumonia 3,469
Pneumothorax 2,223

No Finding 5,508 5,508 normal images

In other domains, STNs have been used mostly for object

localization [15] and scene recognition [16], [17], benefiting

from the attention provided by the module, but resorting to

overall complex architectures with multiple branches to detect

more than a single object.

III. METHODOLOGY

A. Dataset and Preprocessing

The dataset employed in this work comprises a total of

27,654 postero-anterior CXR scans selected from the CheX-

pert database. The scans were provided by the Stanford ML

Group and the corresponding annotations include image-level

labels of common thoracic diseases [18]. More specifically,

the frequency of each pathologic finding in this subset is

discriminated in Table I, yielding 5,508 normal images (class

“0”) and 22,146 abnormal images (class “1”). The conversion

of the original annotations into binary ones was done following

a U-Ones approach, in which uncertain labels are considered

positive, and all images were resized to 512×512 pixels.

Note that the presence of support devices was disregarded

as is not indicative of any abnormality, and that an image

was considered normal only if none of the other findings are

mentioned, independently of the presence of these devices.

B. Experimental Setup

Three experimentation settings were established. The first

two are considered baseline experiments and are used as con-

trol for comparison purposes with the third and main setting,

which is the proposed STN. In all cases, the results were

achieved by splitting the dataset across five folds for cross-

validation, preserving the original pathology proportion and

without patient overlap. Three folds were used for training, one

for validation, and one for testing. Additionally, the training

data was augmented to generate more samples through soft

random affine transformations (i.e. 5 degrees of rotation range

and 3 degrees of shear range). To tackle the considerable

class imbalance, a weighted random sampler was implemented

when loading the training set. Figure 2 shows the general

workflow for the three experimentation settings, which are

further described below.
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Fig. 2: Workflow of the baseline, baseline with thorax

detection, and STN.

Fig. 3: Schematic of the ST module.

1) Baseline: The baseline setting corresponds to the im-

plementation of a standard binary classifier, a widely-used

VGG16 architecture, whose last fully-connected layer was

modified to consider a single node. This layer is followed

by a sigmoid activation function to yield the corresponding

predictions. Other architectures were initially considered, but

ultimately the VGG16 proved to have enough layers for this

specific learning task. Therefore, the model was trained using

the binary cross entropy loss and Adam optimizer, with an

initial learning rate of 10−5 and a total of 20 epochs (due to the

fast convergence of the network). This classifier is common

to all the following experimentation settings, preserving the

same optimization routine.

2) Baseline with Thorax Detection: This section focuses on

refining the initial baseline workflow by restricting the image

regions being analysed by the model - more specifically, by

keeping only the thorax portion of the scan and eliminating

any structures outside this ROI. Note that the aim here is to

prevent the influence of information represented outside the

thorax region, such as left/right lettering markers or irrelevant

anatomical features (e.g. the patient’s neck and shoulders).

The thorax detection model was based on a YOLOv5 and

trained with 956 CXRs from publicly available lung seg-

mentation databases. More specifically, the ground-truth was

obtained by drawing a bounding box around the manual lung

field segmentation masks provided in the JSRT, Montgomery,

and Shenzhen datasets [19], [20]. The YOLOv5 network was

initialized using weights pre-trained on the COCO dataset [21],

and training was performed using a stochastic gradient descent

optimizer with an initial learning rate of 10−2 for a duration

of 150 epochs.

Once trained, the detection model was applied to the CheX-

pert data to yield bounding boxes of the thorax region. Low

confidence predictions (i.e. probability inferior to 0.90) were

discarded to keep only the most relevant cropped images as

reference. The largest dimension of each remaining bounding

box was used to crop a square centered in the middle of

the box, without distorting the proportions of the image. The

images were then resized back to 512×512 pixels.

3) Spatial Transformer Network: The STN is composed of

the ST module, followed by the classifier previously outlined

in Section III-B1. Hence, the present section will focus on the

description of the module and its main components: a local-

ization network, a grid generator, and a sampler, represented

in Figure 3.

Firstly, an input image U is fed to the localization network

that predicts the theta parameters (θ). These parameters en-

code the affine transformations to be applied to the image,

and originally encompassed operations of scaling, translation,

rotation, and shearing. However, the last two operations are not

necessary for the purpose of attention, and so it is proposed

to reduce the complexity of the transformations by predicting

only four θ parameters instead of six, corresponding to vertical

and horizontal scaling (s) and translation (t) in Equation 1.

Here, a simple CNN was considered for the architecture of the

localization network, composed of four convolutional blocks

(convolutional layer with ReLU activation followed by max

pooling), a dense layer with ReLU activation, and a final dense

layer to predict the four θ variables.

The domain knowledge indicates that a larger zoom in the

vertical axis is needed rather than in the horizontal axis. For

this reason, non-isotropic scaling was considered to better

frame the ROI, particularly since the original scans already

have shorter margins on the left and right sides of the thorax,

in comparison to the top and bottom margins. This way, the

parameters were initialized as follows: sx = 1, sy = 0.1,

tx = 0, and ty = 0. Note that the original publication proposes

to initialize all parameters with an identity matrix, meaning

that the model will implement no transformations in the first

epoch, and then progress towards optimal theta values during

training [5]. However, in this case the sy component can be

initialized with a low positive value (0.1), meaning that early

transformations start with a large vertical zoom and progress

towards the optimal sy prediction in the following epochs.

This enables a faster convergence, as 0.1 is closer than 1 to

that optimal sy value.

θ =

[
θ1 θ2 θ3
θ4 θ5 θ6

]
=

[
sx 0 tx
0 sy ty

]
(1)

The grid generator will then obtain a sampling grid Gi with

target coordinates (xt
i, y

t
i), based on the predicted θ transfor-

mation matrix. Finally, the sampler uses bilinear interpolation
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in the set of sampling points Tθ(Gi) to produce the final output

V. This process is depicted in Equation 2, that determines the

source image coordinates (xs
i , y

s
i ) to transform.

(
xs
i

ysi

)
= Tθ(Gi) =

[
sx 0 tx
0 sy ty

]
×
⎛
⎝xt

i

yti
1

⎞
⎠ (2)

In short, the module yields a transformed image with the

same size as the original input, which is passed along to the

VGG16 for classification, in a way that both the module and

the classifier are optimized together and trained end-to-end.

IV. RESULTS AND DISCUSSION

This section analyses the results of the three scenarios

previously described, in order to infer if it is possible for

the STN to achieve similar results to using YOLO-cropped

images, with less computational expense and without the need

for localization labels. To do so, the analysis focuses on

two main aspects: the performance of the classifier in these

settings, and the results of the ROI selection using the YOLO

model and the ST module.

A. Classifier Performance

The VGG16 classifiers were evaluated using the follow-

ing standard metrics: Area under the ROC Curve (AUC),

Precision-Recall Area under the Curve (PR-AUC), and pre-

cision. For a more accurate comparison between the three

scenarios, a high recall operating point of 95% was defined.

The high recall suits the medical domain premise, in which a

false negative prediction is more severe than a false positive

one. Table II presents the average results across five different

test sets, including the rate of True Positive (TP), False

Positive (FP), True Negative (TN), and False Negative (FN)

predictions.

Overall, the STN classifier outperformed both baseline

settings in all established metrics: the baseline with thorax

detection offers a 0.77% increase in AUC in comparison to the

single classifier, while the STN offers an increase of 1.01%.

Additionally and as expected, both the YOLO model and the

ST module contributed to reduce the FP rate and increase the

TN rate, by eliminating misleading image artifacts. The latter

was able to reduce the FP rate in 0.97% and boost the TN

rate in 0.96%.

No significant changes were detected in terms of TPs and

FNs. While the classifier is not able to discriminate specific

types of abnormal findings, the top-three pathologies that

most contribute to the TP rate are edema, pneumonia, and

cardiomegaly/lung opacity (similar score), and the top-three

pathologies that most contribute to the FN rate are fractures,

enlarged cardiomediastinum, and lung lesions.

Direct comparisons with the state-of-the-art are challenging,

due to the lack of publications addressing the same binary

classification setting with an STN-based approach and/or the

same data. Nevertheless, there is one publication which em-

ploys an STN to distinguish between normal and abnormal

scans [13]. This publication reports a precision increase of 1%

between their baseline and the STN, but does not disclose AUC

scores. Regarding abnormality detection in general, all papers

cited in Section II employ the NIH ChestX-ray14 dataset, in

opposition to the more recent CheXpert one. The justification

for choosing CheXpert over ChestX-ray14 in this study is

grounded in [22]. Both cases generate most of the annota-

tions through natural language processing labelers, but their

overall consistency and reliability is indisputably different. For

instance, the author argues that ChestX-ray14 lacks patient

diversity and proper labeling structure and quality, with error

rates that range from 30% to 90% in the various findings.

The error rates in CheXpert are approximately between 5%

and 15%. The author also concludes that CheXpert is larger

and overall better for DL implementation, as its labeler was

more thoroughly evaluated and proved to produce “labels that

accurately reflect the reports”.

TABLE II: Mean and standard deviation results after cross-

validation.

% Baseline Baseline with
Thorax Detection

Proposed
STN

AUC 83.21±0.69 83.98±0.75 84.22±0.70
PR-AUC 94.78±0.29 95.12±0.28 95.23±0.29
Precision 84.33±0.39 85.00±0.42 85.25±0.49

TP Rate 76.06±0.04 76.05±0.01 76.08±0.01
FP Rate 14.14±0.50 13.43±0.44 13.17±0.42
TN Rate 5.78±0.96 6.49±0.44 6.74±0.42
FN Rate 4.02±0.05 4.03±0.02 4.01±0.02

B. ROI Selection

Both the YOLO detection model and the ST module are

employed for attention, forcing the classifier to infer on the

image regions most relevant for the diagnosis. The main

difference between these two approaches is the fact that the

first is trained independently from the classifier using spatial

annotations (bounding boxes locating the thorax), and the

second is optimized simultaneously with the classifier, using

exclusively the image-level binary labels. Several examples of

both approaches are presented in Figure 4.

Regarding the YOLO model, an average precision of

99.84% at an IoU>0.5 was obtained in the validation set. This

detection network is able to perfectly delimit the left and right

boundaries of the thorax, but on the other hand, by preserving

the original proportion of the images, the vertical cropping is

not as precise, thus not being able to eliminate certain artifacts

in Figures 4a,d,e.

As mentioned in Section III-B3, the STN considers non-

isotropic scaling, meaning the original proportions of the

image may or may not be preserved. In this study, the classifier

benefited from a larger vertical scaling than a horizontal one,

increasing the detail in that direction. In fact, the horizontal

delimitation of the module is not as precise as in YOLO, but

rather focusing its attention on the center and lower regions

of the thorax, as showed in Figures 4b,c. In other words, the
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 4: Examples per row of original, cropped (YOLO), and

transformed (STN) images, respectively.

STN is able to successfully delimit the bottom of the lungs,

but also tends to slightly crop the lung apex. As the network is

trained in a spatially unsupervised manner to select the ROI,

it may infer that there are no statistically relevant features in

the upper part of the lungs. This is more severe when the

lower abdomen representation is noisier, drawing the model’s

attention to that bottom region (Figure 4f).

The proposed method differs from the state-of-the-art in the

sense that no changes were made to the loss function, and no

multi-modal data was employed. In fact, the main distinction

from the methods proposed in [12], [13] is the restriction in

allowed transformations, which enabled the attention-driven

component of the work, while using a much simpler archi-

tecture for the module. The STN results presented in Table

II indicate an improvement in precision of 0.92% versus the

standard baseline, similar to the 1% improvement disclosed in

[13]. Note that different datasets were employed, so a direct

comparison cannot be established.

V. CONCLUSIONS

The successful classification of thoracic abnormalities in

CXR scans can be extremely useful for patient management

and follow-up, when implemented as a triage step to prioritize

more urgent cases. Moreover, being able to do so in an

automated fashion can bring crucial advantages in a clinical

context, in which resources are often scarce. The current

work aims to contribute to the detection of abnormal images

through an automated deep learning based binary classification

model, to help the specialists distinguishing between normal

and abnormal instances.

Consequently, the developed architecture faces three ma-

jor challenges: the inherent complexity associated with the

anatomical structures, the often noisy, blurred and/or low con-

trasted nature of medical images, and the presence of image

artifacts that mislead the model into mostly FP predictions.

To tackle these difficulties, an attention-driven approach is

considered as a means of restricting the learning process

exclusively to the area of interest to the diagnosis. In CXR

data analysis, this becomes particularly relevant to ensure that

the classifier is in fact making predictions based on the correct

anatomical region, in this case the thorax. Note that this work

targets only image artifacts found outside the ROI, and does

not consider the artifacts that may be present within that

region, such as arrows or other annotations.

The proposed approach can be described as a CNN, com-

posed of an attention-driven ST module and a classifier, which

is able to select the thoracic ROI, transform the input images

accordingly, and then detect several indiscriminate types of

abnormalities in a binary manner. This is a more efficient

alternative to using an object detection model as an a priori
processing stage, promoting the use of a single network

to perform all tasks end-to-end. Furthermore, the present

publication demonstrates that the STN is able to replace the

complex YOLO architecture with a four convolutional layer

module to achieve similar cropping results without the need

for two independent models. Generally speaking, by restricting
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the transformation matrix to only translation and non-isotropic

scaling, the model dynamically scales and aligns the images

to maximize the classifier’s performance. The non-isotropic

nature of the theta parameters allow for a more detailed

scaling of the input images, thus eliminating more artifacts

than the traditional approach. In sum, the proposed approach

is beneficial in terms of required computational power and

training time, without the need for spatial annotations.

While the proposed model succeeds at identifying the lower

limit of the lungs and cropping the ROI accordingly, it is not

as precise at identifying the upper limit. This aspect may

be regarded in future work, as measures can be taken to

prevent the loss of information in the lung apex, in order to

preserve the totality of the thorax for further analysis. Such

step would ensure no minor abnormality is neglected by the

model during inference, and may be implemented by adding

further restrictions to the scaling components.
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