
A Safe Approximation

for Kolmogorov Complexity

Peter Bloem1, Francisco Mota2, Steven de Rooij1,
Lúıs Antunes2, and Pieter Adriaans1

1 System and Network Engineering Group
University of Amsterdam, Amsterdam, The Netherlands

uva@peterbloem.nl, steven.de.rooij@gmail.com, p.w.adriaans@uva.nl
2 CRACS & INESC-Porto LA and Institute for Telecommunications

University of Porto, Porto, Portugal
fmota@fmota.eu, lfa@dcc.fc.up.pt

Abstract. Kolmogorov complexity (K) is an incomputable function. It
can be approximated from above but not to arbitrary given precision and
it cannot be approximated from below. By restricting the source of the
data to a specific model class, we can construct a computable function κ
to approximate K in a probabilistic sense: the probability that the error
is greater than k decays exponentially with k. We apply the same method
to the normalized information distance (NID) and discuss conditions that
affect the safety of the approximation.

The Kolmogorov complexity of an object is its shortest description, considering
all computable descriptions. It has been described as “the accepted absolute
measure of information content of an individual object” [1], and its investigation
has spawned a slew of derived functions and analytical tools. Most of these tend
to separate neatly into one of two categories: the platonic and the practical.

On the platonic side, we find such tools as the normalized information distance
[2], algorithmic statistics [1] and sophistication [3, 4]. These subjects all deal with
incomputable “ideal” functions: they optimize over all computable functions, but
they cannot be computed themselves.

To construct practical applications (ie. runnable computer programs), the
most common approach is to take one of these platonic, incomputable functions,
derived from Kolmogorov complexity (K), and to approximate it by swapping
K out for a computable compressor like GZIP [5]. This approach has proved
effective in the case of normalized information distance (NID) [2] and its ap-
proximation, the normalized compression distance (NCD) [6]. Unfortunately,
the switch to a general-purpose compressor leaves an analytical gap. We know
that the compressor serves as an upper bound to K—up to a constant—but
we do not know the difference between the two, and how this error affects the
error of derived functions like the NCD. This can cause serious contradictions.
For instance, the normalized information distance has been shown to be non-
approximable [7], yet the NCD has proved its merit empirically [6]. Why this

P. Auer et al. (Eds.): ALT 2014, LNAI 8776, pp. 336–350, 2014.
c© Springer International Publishing Switzerland 2014

A Safe Approximation for Kolmogorov Complexity 337

should be the case, and when this approach may fail has, to our knowledge, not
yet been investigated.

We aim to provide the first tools to bridge this gap. We will define a com-
putable function which can be said to approximate Kolmogorov complexity, with
some practical limit to the error. To this end, we introduce two concepts:

– We generalize resource-bounded Kolmogorov complexity (Kt) to model-
bounded Kolmogorov complexity, which minimizes an object’s description
length over any given enumerable subset of Turing machines (a model class).
We explicitly assume that the source of the data is contained in the model
class.

– We introduce a probabilistic notion of approximation. A function approxi-
mates another safely, under a given distribution, if the probability of them
differing by more than k bits, decays at least exponentially in k.1

While the resource-bounded Kolmogorov complexity is computable in a technical
sense, it is never computed practically. The generalization to model bounded Kol-
mogorov complexity creates a connection to minimum description length (MDL)
[8, 9, 10], which does produce algorithms and methods that are used in a prac-
tical manner. Kolmogorov complexity has long been seen as a kind of platonic
ideal which MDL approximates. Our results show that MDL is not just an upper
bound to K, it also approximates it in a probabilistic sense.

Interestingly, the model-bounded Kolmogorov complexity itself—the smallest
description using a single element from the model class—is not a safe approxi-
mation. We can, however, construct a computable, safe approximation by taking
into account all descriptions the model class provides for the data.

The main result of this paper is a computable function κ which, under a model
assumption, safely approximates K (Theorem 3). We also investigate whether a
κ-based approximation of NID is safe, for different properties of the model class
from which the data originated (Theorems 5, 6 and 7).

1 Turing Machines and Probability

Turing Machines

Let B = {0, 1}∗. We assume that our data is encoded as a finite binary string.
Specifically, the natural numbers can be associated to binary strings, for instance
by the bijection: (0, ε), (1, 0), (2, 1), (3, 00), (4, 01), etc, where ε is the empty
string. To simplify notation, we will sometimes conflate natural numbers and
binary strings, implicitly using this ordering.

We fix a canonical prefix-free coding, denoted by x, such that |x| ≤ |x| +
2 log |x|. See [11, Example 1.11.13] for an example. Among other things, this
gives us a canonical pairing function to encode two strings x and y into one: xy.

1 This consideration is subject to all the normal drawbacks of asymptotic approaches.
For this reason, we have foregone the use of big-O notation as much as possible, in
order to make the constants and their meaning explicit.

338 P. Bloem et al.

We use the Turing machine model from [11, Example 3.1.1]. The following prop-
erties are important: the machine has a read-only, right-moving input tape, an
auxiliary tape which is read-only and two-way, two read-write two-way work-
tapes and a read-write two-way output tape.2 All tapes are one-way infinite. If
a tape head moves off the tape or the machine reads beyond the length of the
input, it enters an infinite loop. For the function computed by TM i on input
p with auxiliary input y, we write Ti(p | y) and Ti(p) = Ti(p | ε). The most
important consequence of this construction is that the programs for which a
machine with a given auxiliary input y halts, form a prefix-free set [11, Exam-
ple 3.1.1]. This allows us to interpret the machine as a probability distribution
(as described in the next subsection).

We fix an effective ordering {Ti}. We call the set of all Turing machines C .
There exists a universal Turing machine, which we will call U , that has the
property that U(ıp | y) = Ti(p | y) [11, Theorem 3.1.1].

Probability

We want to formalize the idea of a probability distribution that is computable:
it can be simulated or computed by a computational process. For this purpose,
we will interpret a given Turing machine Tq as a probability distribution pq:
each time the machine reads from the input tape, we provide it with a random
bit. The Turing machine will either halt, read a finite number of bits without
halting, or read an unbounded number of bits. pq(x) is the probability that this
process halts and produces x: pq(x) =

∑
p:Tq(p)=x 2

−|p|. We say that Tq samples

pq. Note that if p is a semimeasure, 1−∑
x p(x) corresponds to the probability

that this sampling process will not halt.
We model the probability of x conditional on y by a Turing machine with y

on its auxiliary tape: pq(x | y) = ∑
p:Tq(p|y)=x 2

−|p|.
The lower semicomputable semimeasures [11, Chapter 4] are an alternative

formalization. We show that it is equivalent to ours:

Lemma 1. �� The set of probability distributions sampled by Turing machines
in C is equivalent to the set of lower semicomputable semimeasures.

The distribution corresponding to the universal Turing machine U is called m:
m(x) =

∑
p:U(p)=x 2

−|p|. This is known as a universal distribution. K and m

dominate each other, ie. ∃c∀x : |K(x)− logm(x)| < c [11, Theorem 4.3.3].

2 Model-Bounded Kolmogorov Complexity

In this section we present a generalization of the notion of resource-bounded
Kolmogorov complexity. We first review the unbounded version:

2 Multiple work tapes are only required for proofs involving resource bounds.
�� Proof in the appendix.

A Safe Approximation for Kolmogorov Complexity 339

Definition 1. Let k(x | y) = arg minp:U(p|y)=x |p|. The prefix-free, conditional
Kolmogorov complexity is

K(x | y) = |k(x | y)|
with K(x) = K(x | ε).
Due to the halting problem, K is not computable. By limiting the set of Turing
machines under consideration, we can create a computable approximation.

Definition 2. A model class C ⊆ C is a computably enumerable set of Turing
machines. Its members are called models. A universal model for C is a Turing
machine UC such that UC(ıp | y) = Ti(p | y) where i is an index over the
elements of C.

Definition 3. For a given C and UC we have KC(x) = min
{|p| : UC(p) = x

}
,

called the model-bounded Kolmogorov complexity.

KC , unlike K, depends heavily on the choice of enumeration of C. A notation
like KUC or Ki,C would express this dependence better, but for the sake of
clarity we will use KC .

We define a model-bounded variant of m as mC(x) =
∑

p:UC(p)=x 2
−|p|, which

dominates all distributions in C:

Lemma 2. For any Tq ∈ C, mC(x) ≥ cqpq(x) for some cq independent of x.

Proof.

mC(x) =
∑

i,p:UC(ıp)=x

2−|ıp| ≥
∑

p:UC(qp)=x

2−|q|2−|p| = 2−|q|pq(x) . �	
Unlike K and − logm, KC and − logmC do not dominate one another. We can

only show that − logmC bounds KC from below (
∑

UC(p)=x 2
−|p| > 2−|kC(x)|).

In fact, as shown in Theorem 1, − logmC and KC can differ by arbitrary
amounts.

Example 1 (Resource-Bounded Kolmogorov Complexity [11, Ch. 7]).
Let t(n) be some time-constructible function.3Let T t

i be the modification of Ti ∈ C
such that at any point in the computation, it halts immediately if more than k cells
have been written to on the output tape and the number of steps that have passed is
less than t(k). In this case, whatever is on the output tape is taken as the output of
the computation. If this situation does not occur, Ti runs as normal. Let U t(ıp) =

T t
i (p). We call this model class Ct. We abbreviate KCt

as Kt.
Since there is no known means of simulating U t within t(n), we do not know

whether U t ∈ Ct. It can be run in ct(n) log t(n) [11, 12], so we do know that U t ∈
Cct log t.

Other model classes include Deterministic Finite Automata, Markov Chains, or
the exponential family (suitably discretized). These have all been thoroughly
investigated in coding contexts in the field of Minimum Description Length [10].

3 Ie. t : N → N and t can be computed in O(t(n)) [13].

340 P. Bloem et al.

3 Safe Approximation

When a code-length function like K turns out to be incomputable, we may try
to find a lower and upper bound, or to find a function which dominates it.
Unfortunately, neither of these will help us. Such functions invariably turn out
to be incomputable themselves [11, Section 2.3].

To bridge the gap between incomputable and computable functions, we require
a softer notion of approximation; one which states that errors of any size may
occur, but that the larger errors are so unlikely, that they can be safely ignored:

Definition 4. Let f and fa be two functions. We take fa to be an approxima-
tion of f . We call the approximation b-safe (from above) for a distribution (or
adversary) p if for all k and some c > 0:

p(fa(x)− f(x) ≥ k) ≤ cb−k .

Since we focus on code-length functions, usually omit “from above”. A safe func-
tion is b-safe for some b > 1. An approximation is safe for a model class C if it
is safe for all pq with Tq ∈ C.

While the definition requires this property to hold for all k, it actually suffices
to show that it holds for k above a constant, as we can freely scale c:

Lemma 3. If ∃c∀k:k>k0 : p(fa(x) − f(x) ≥ k) ≤ cb−k, then fa is b-safe for f
against p.

Proof. First, we name the k below k0 for which the ratio between the bound and
the probability is the greatest: km = arg maxk∈[0,k0]

[
p(fa(x) − f(x) ≥ k)/cb−k

]
.

We also define bm = cb−km and pm = p(fa(x) − f(x) ≥ km). At km, we have
p(fa(x) − f(x) ≥ km) = pm = pm

bm
cb−km . In other words, the bound c′b−k with

c′ = pm

bm
c bounds p at km, the point where it diverges the most from the old

bound. Therefore, it must bound it at all other k > 0 as well. �	

Safe approximation, domination and lowerbounding form a hierarchy:

Lemma 4. Let fa and f be code-length functions. If fa is a lower bound on f ,
it also dominates f . If fa dominates f , it is also a safe approximation.

Proof. Domination means that for all x: fa(x)−f(x) < c, if fa is a lower bound,
c = 0. If fa dominates f we have ∀p, k > c : p(fa(x)− f(x) ≥ k) = 0. �	

Finally, we show that safe approximation is transitive, so we can chain together
proofs of safe approximation; if we have several functions with each safe for the
next, we know that the first is also safe for the last.

Lemma 5. The property of safety is transitive over the space of functions from
B to B for a fixed adversary.

A Safe Approximation for Kolmogorov Complexity 341

KC(x)

C(x) =
 -log mC(x)

C(x) =
 -log mC(x) -log m(x)

K(x)

computable approximable

dominates

unsafe

bounds

2-safe

dominates

bounds

bounds

incomputable

dominates

dominates

Fig. 1. An overview of how various code-length functions relate to each other in terms
of approximation safety. These relations hold under the assumption that the data is
generated by a distribution in C and that C is sufficient and complete.

Proof. Let f , g and h be functions such that

p(f(x)− g(x) ≥ k) ≤ c1b1
−k and

p(g(x)− h(x) ≥ k) ≤ c2b2
−k .

We need to show that p(f(x)− h(x) ≥ k) decays exponentially with k. We start
with

p (f(x)− g(x) ≥ k ∨ g(x)− h(x) ≥ k) ≤ c1b1
−k + c2b2

−k .

{x : f(x)− h(x) ≥ 2k} is a subset of {x : f(x)− g(x) ≥ k ∨ g(x)− h(x) ≥ k}, so
that the probability of the first set is less than that of the second:

p (f(x)− h(x) ≥ 2k) ≤ c1b1
−k + c2b2

−k .

Which gives us

p (f(x) − h(x) ≥ 2k) ≤ cb−k with b = min(b1, b2) and c = max(c1, c2) ,

p (f(x) − h(x) ≥ k′) ≤ cb′−k′
with b′ =

√
b . �	

4 A Safe, Computable Approximation of K

Assuming that our data is produced from a model in C, can we construct a
computable function which is safe for K? An obvious first choice is KC . For it
to be computable, we would normally ensure that all programs for all models
in C halt. Since the halting programs form a prefix-free set, this is impossible.
There is however a property for prefix-free functions that is analogous. We call
this sufficiency:

Definition 5. A sufficient model T is a model for which every infinite binary
string contains a halting program as a prefix. A sufficient model class contains
only sufficient models.

342 P. Bloem et al.

We can therefore enumerate all inputs for UC from short to long in series to find
kC(x), so long as C is sufficient. For each input, UC either halts or attempts to
read beyond the length of the input.

In certain cases, we also require that C can represent all x ∈ B (ie. mC(x) is
never 0). We call this property completeness :

Definition 6. A model class C is called complete if for any x, there is at least
one p such that UC(p) = x.

We can now say, for instance, that KC is computable for sufficient C. Unfortu-
nately, KC turns out to be unsafe:

Theorem 1. There exist model classes C so that KC(x) is an unsafe approxi-
mation for K(x) against some pq with Tq ∈ C.

Proof. We first show that KC is unsafe for − logmC .
Let C contain a single Turing machine Tq which outputs x for any input of

the form xp with |p| = x and computes indefinitely for all other inputs.
Tq samples from pq(x) = 2−|x|, but it distributes each x’s probability mass

uniformly over many programs much longer than |x|.
This gives us KC(x) = |x| + |p| = |x| + x and − logmC(x) = |x|, so that

KC(x) + logmC(x) = x. We get

mC(KC(x) + logmC(x) ≥ k) = mC(x ≥ k) =
∑

x:x≥k

2−|x| ≥
∑

x:x≥k

2−2 log x ≥ k−2

so that KC is unsafe for − logmC .
It remains to show that this implies that KC is unsafe for K. In Theorem 2,

we prove that − logmC is safe for K. Assuming that KC is safe for K (which
dominates − logmC) implies KC is safe for − logmC , which gives us a contra-
diction. �	
Note that the use of a model class with a single model is for convenience only. The
main requirement for KC to be unsafe is that the prefix tree of UC ’s programs
distributes the probability mass for x over many programs of similar length. The
greater the difference between KC and − logmC , the greater the likelihood that
KC is unsafe.

Our next candidate for a safe approximation of K is − logmC . This time, we
fare better. We first require the following lemma, called the no-hypercompression
theorem in [10, p103]:

Lemma 6. Let pq be a probability distribution. The corresponding code-length
function, − log pq, is a 2-safe approximation for any other code-length function
against pq. For any pr and k > 0: pq(− log pq(x) + log pr(x) ≥ k) ≤ 2−k.

Theorem 2. − logmC(x) is a 2-safe approximation of K(x) against any ad-
versary from C.

A Safe Approximation for Kolmogorov Complexity 343

Proof. Let pq be some adversary in C. We have

pq(− logmC(x)−K(x) ≥ k)

≤ cmC(− logmC(x)−K(x) ≥ k) by Lemma 2,

≤ c2−k by Lemma 6. �	
While we have shownmC to be safe forK, it may not be computable, even if C is
sufficient (since it is an infinite sum). We can, however, define an approximation,
which, for sufficient C, is computable and dominates mC .

Definition 7. Let the model class D be the union of C and some arbitrary
sufficient and complete distribution from C .

Let mC
c (x) be the function computed by the following algorithm: Dovetail the

computation of all programs on UD(x) in cycles, so that in cycle n, the first n
programs are simulated for one further step. After each such step we consider
the probability mass s of all programs that have stopped (where each program p
contributes 2−|p|), and the probability mass sx of all programs that have stopped
and produced x. We halt the dovetailing and output sx if sx > 0 and the following
stop condition is met:

1− s

sx
≤ 2c − 1 .

Note that if C is sufficient so is D, so that s goes to 1 and sx never decreases.
Since all programs halt, the stop condition must be reached. The addition of a
complete model is required to ensure that sx does not remain 0 indefinitely.

Lemma 7. If C is sufficient, mC
c (x) dominates mC with a constant multiplica-

tive factor 2−c (ie. their code-lengths differ by at most c bits).

Proof. Wewill first show thatmC
c dominatesmD. Note thatwhen the computation

ofmC
c halts, we havemC

c (x) = sx and mD(x) ≤ sx + (1− s). This gives us:

mD(x)

mC
c (x)

≤ 1 +
1− s

sx
≤ 2c .

Since C ⊆ D, mD dominates mC (see Lemma 9 in the appendix) and thus, mC
c

dominates mC . �	
The parameter c in mC

c allows us to tune the algorithm to trade off running
time for a smaller constant of domination. We will usually omit it when it is not
relevant to the context.

Putting all this together, we have achieved our aim:

Theorem 3. For a sufficient model class C, − logmC is a safe, computable
approximation of K(x) against any adversary from C

Proof. We have shown that, under these conditions, − logmC safely approx-
imates − logm which dominates K, and that − logmC dominates − logmC .
Since domination implies safe approximation (Lemma 4), and safe approxima-
tion is transitive (Lemma 5), we have proved the theorem. �	

344 P. Bloem et al.

Figure 1 summarizes this chain of reasoning and other relations between the
various code-length functions mentioned.

The negative logarithm of mC will be our go-to approximation of K, so we
will abbreviate it with κ:

Definition 8. κC(x) = − logmC(x) and κC(x) = − logmC(x).

Finally, if we violate our model assumption we lose the property of safety. For
adversaries outside C, we cannot be sure that κC is safe:

Theorem 4. There exist adversaries pq with Tq /∈ C for which neither κC nor
κC is a safe approximation of K.

Proof. Consider the following algorithm for sampling from a computable distri-
bution (which we will call pq):

– Sample n ∈ N from some distribution s(n) which decays polynomially.
– Loop over all x of length n return the first x such that κC(x) ≥ n.

Note that at least one such x must exist by a counting argument: if all x of
length n have − logmC(x) < n we have a code that assigns 2n different strings
to 2n − 1 different codes.

For each x sampled from q, we know that κ(x) ≥ |x| and K(x) ≤ − log pq(x)+
cq. Thus:

pq(κ
C(x)−K(x) ≥ k) ≥ pq(|x|+ log pq(x) − cq ≥ k)

= pq(|x|+ log s(|x|) − cq ≥ k) =
∑

n:n+log s(n)−cq≥k
s(n) .

Let n0 be the smallest n for which 2n > n + log s(n) − cq. For all k > 2n0 we
have

∑

n:n+log s(n)−cq≥k
s(n) ≥

∑

n:2n≥k
s(n) ≥ s

(
1
2k

)
. �	

For Ct (as in Example 1), we can sample the pq constructed in the proof in
O(2n · t(n)). Thus, we know that κt is safe for K against adversaries from Ct,

and we know that it is unsafe against C2t .

5 Approximating Normalized Information Distance

Definition 9 ([2, 6]). The normalized information distance between two strings
x and y is

NID(x, y) =
max [K(x | y),K(y | x)]

max [K(x),K(y)]
.

The information distance (ID) is the numerator of this function. The NID is
neither lower nor upper semicomputable [7]. Here, we investigate whether we
can safely approximate either function using κ. We define IDC and NIDC as the
ID and NID functions with K replaced by κC . We first show that, even if the
adversary only combines functions and distributions in C, IDC may be an unsafe
approximation.

A Safe Approximation for Kolmogorov Complexity 345

Definition 10. 4A function f is a (b-safe) model-bounded one-way function
for C if it is injective, and for some b > 1, some c > 0, all q ∈ C and all k:

pq
(
κC(x) − κC (x | f(x)) ≥ k

) ≤ cb−k .

Theorem 5. �� Under the following assumptions:

– C contains a model T0, with p0(x) = 2−|x|s(|x|), with s a distribution on N

which decays polynomially or slower,

– there exists a model-bounded one-way function f for C,

– C is normal, ie. for some c and all x: κC(x) < |x|+ c

IDC is an unsafe approximation for ID against an adversary Tq which samples
x from p0 and returns xf(x).

If x and y are sampled from C independently, we can prove safety:

Theorem 6. �� Let Tq be a Turing machine which samples x from pa, y from

pb and returns xy. If Ta, Tb ∈ C, IDC(x, y) is a safe approximation for ID(x, y)
against any such Tq.

The proof relies on two facts:

– κC(x | y) is safe for K(x | y) if x and y are generated this way.

– Maximization is a safety preserving operation: if we have two functions f
and g with safe approximations fa and ga, max(fa(x), ga(x)) is a safe ap-
proximation of max(f(x), g(x)).

For normalized information distance, which is dimensionless, the error k in bits
as we have used it so far does not mean much. Instead, we use f/fa as a measure
of approximation error, and we introduce an additional parameter ε:

Theorem 7. �� We can approximate NID with NIDC with the following bound:

pq

(
NID(x, y)

NIDC(x, y)
/∈
(

1− k

c
, 1 +

k

c

))

≤ c′b−k + 2ε

with

pq(ID
C(x, y) ≥ c) ≤ ε and pq

(
max

[
κC(x), κC(y)

] ≥ c
) ≤ ε

for some b > 1 and c′ > 0, assuming that pq samples x and y independently from
models in C.

4 This is similar to the Kolmogorov one-way function [14, Definition 11].

346 P. Bloem et al.

6 Discussion

We have provided a function κC(x) for a given model class C, which is com-
putable if C is sufficient. Under the assumption that x is produced by a model
from C, κC(x) approximates K(x) in a probabilistic sense. We have also shown
that KC(x) is not safe. Finally, we have given some insight into the conditions
on C and the adversary, which can affect the safety of NCD as an approximation
to NID.

Since, as shown in Example 1, resource-bounded Kolmogorov complexity is
a variant of model-bounded Kolmogorov complexity, our results apply to Kt as
well: Kt is not necessarily a safe approximation of K, even if the data can be
sampled in t and κt is safe if the data can be sampled in t. Whether Kt is safe
ultimately depends on whether a single shortest program dominates among the
sum of all programs, as it does in the unbounded case.

For complex model classes, κC may still be impractical to compute. In such
cases, we may be able to continue the chain of safe approximation proofs. Ideally,
we would show that a model which is only locally optimal, found by an iterative
method like gradient descent, is still a safe approximation of K. Such proofs
would truly close the circuit between the ideal world of Kolmogorov complexity
and modern statistical practice.

Acknowledgement. We would like to thank the reviewers for their insight-
ful comments. This publication was supported by the Dutch national program
COMMIT, the Netherlands eScience center, the ERDF (European Regional De-
velopment Fund) through the COMPETE Programme (Operational Programme
for Competitiveness) and by National Funds through the FCT (Fundação para a
Ciôncia e a Tecnologia, the Portuguese Foundation for Science and Technology)
within project FCOMP-01-0124-FEDER-037281.

References

[1] Gács, P., Tromp, J., Vitányi, P.M.B.: Algorithmic statistics. IEEE Transactions
on Information Theory 47(6), 2443–2463 (2001)

[2] Li, M., Chen, X., Li, X., Ma, B., Vitányi, P.M.B.: The similarity metric. IEEE
Transactions on Information Theory 50(12), 3250–3264 (2004)

[3] Vitányi, P.M.B.: Meaningful information. IEEE Transactions on Information The-
ory 52(10), 4617–4626 (2006)

[4] Adriaans, P.: Facticity as the amount of self-descriptive information in a data set.
arXiv preprint arXiv:1203.2245 (2012)

[5] Gailly, J., Adler, M.: The GZIP compressor (1991)
[6] Cilibrasi, R., Vitányi, P.M.B.: Clustering by compression. IEEE Transactions on

Information Theory 51(4), 1523–1545 (2005)
[7] Terwijn, S.A., Torenvliet, L., Vitányi, P.M.B.: Nonapproximability of the normal-

ized information distance. J. Comput. Syst. Sci. 77(4), 738–742 (2011)
[8] Rissanen, J.: Modeling by shortest data description. Automatica 14(5), 465–471

(1978)

A Safe Approximation for Kolmogorov Complexity 347

[9] Rissanen, J.: Universal coding, information, prediction, and estimation. IEEE
Transactions on Information Theory 30(4), 629–636 (1984)

[10] Grünwald, P.D.: The Minimum Description Length Principle. Adaptive computa-
tion and machine learning series. The MIT Press (2007)

[11] Li, M., Vitányi, P.M.B.: An introduction to Kolmogorov complexity and its ap-
plications, 2nd edn. Graduate Texts in Computer Science. Springer (1997)

[12] Hennie, F.C., Stearns, R.E.: Two-tape simulation of multitape Turing machines.
J. ACM 13(4), 533–546 (1966)

[13] Antunes, L.F.C., Matos, A., Souto, A., Vitányi, P.M.B.: Depth as randomness
deficiency. Theory Comput. Syst. 45(4), 724–739 (2009)

[14] Antunes, L.F.C., Matos, A., Pinto, A., Souto, A., Teixeira, A.: One-way functions
using algorithmic and classical information theories. Theory Comput. Syst. 52(1),
162–178 (2013)

A Appendix

A.1 Turing Machines and lsc. Probability Semimeasures (Lemma 1)

Definition 11. A function f : B → R is lower semicomputable (lsc.) iff there
exists a total, computable two-argument function f ′ : B × N → Q such that:
limi→∞ f ′(x, i) = f(x) and for all i, f ′(x, i+ 1) ≥ f ′(x, i).

Lemma 8. If f is an lsc. probability semimeasure, then there exists a a function
f∗(x, i) with the same properties of the function f ′ from Definition 11, and the
additional property that all values returned by f∗ have finite binary expansions.

Proof. Let xj represent x ∈ D truncated at the first j bits of its binary expansion
and xj the remainder. Let f∗(x, i) = f ′(x, i)i. Since f ′(x, i)− f∗(x, i)i is a value
with i+1 as the highest non-zero bit in its binary expansion, limi→∞ f∗(x, i) =
lim f ′(x, i) = f(x).

It remains to show that f∗ is nondecreasing in i. Let x ≥ y. We will show that
xj ≥ yj , and thus xj+1 ≥ yj. If x = y the result follows trivially. Otherwise, we
have xj = x−xj > y−xj = yj+yj−xj ≥ yj−2−j. Substituting x = f ′(x, i+1)
and y = f ′(x, i) tells us that f∗(x, i+ 1) ≥ f∗(x, i) �	
Theorem 8. Any TM, Tq, samples from an lsc. probability semimeasure.

Proof. We will define a program computing a function p′q(x, i) to approximate
pq(x): Dovetail the computation of Tq on all inputs x ∈ B for i cycles.

Clearly this function is nondecreasing. To show that it goes to p(x) with i, we
first note that for a given i0 there is a j such that, 2−j−1 < pq(x)−pq(x, i0) ≤ 2−j .
Let {pi} be an ordering of the programs producing x, by increasing length,
that have not yet stopped at dovetailing cycle i0. There is an m such that∑m

i=1 2
−|pi| ≥ 2−j−1, since

∑∞
i=1 2

−|pi| > 2−j−i. Let i1 be the dovetailing cycle
for which the last program below pm+1 halts. This gives us pq(x) − pq(x, i1) ≤
2−j−1. Thus, by induction, we can choose i to make p(x) − p′(x, i) arbitrarily
small. �	

348 P. Bloem et al.

Theorem 9. Any lsc. probability semimeasure can be sampled by a TM.

Proof. Let p(x) be an lsc. probability semimeasure and p∗(x, i) as in Lemma 8.
We assume—without loss of generality—that p∗(x, 0) = 0. Consider the following
algorithm:
initialize s ← ε, r ← ε
for c = 1, 2, . . .:
for x ∈ {b ∈ B : |b| ≤ c}
d ← p∗(x, c− i+ 1)− p∗(x, c− i)
s ← s+ d
add a random bit to r until it is as long as s
if r < s then return x

The reader may verify that this program dovetails computation of p∗(x, i) for
increasing i for all x; the variable s contains the summed probability mass that
has been encountered so far. Whenever s is incremented, mentally associate the
interval (s, s+ d] with outcome x. Since p∗(x, i) goes to p(x) as i increases, the
summed length of the intervals associated with x goes to p(x) and s itself goes
to s =

∑
x p(x). We can therefore sample from p by picking a number r that

is uniformly random on [0, 1] and returning the outcome associated with the
interval containing r. Since s must have finite length (due to the construction of
p∗), we only need to know r up to finite precision to be able to determine which
interval it falls in; this allows us to generate r on the fly. The algorithm halts
unless r falls in the interval [s, 1], which corresponds exactly to the deficiency of
p: if p is a semimeasure, we expect the non-halting probability of a TM sampling
it to correspond to 1−∑

x p(x). �	
Theorems 8 and 9 combined prove that the class of distributions sampled by
Turing machines equals the lower semicomputable semimeasures (Lemma 1).

A.2 Domination of Model Class Supersets

Lemma 9. Let C and D be model classes. If C ⊆ D, then mD dominates mC :

mD(x)

mC(x)
≥ α

for some constant α independent of x.

Proof. We can partition the models of D into those belonging to C and the
rest, which we’ll call C. For any given enumeration of D, we get mD(x) =

αmC(x) + (1− α)mC(x). This gives us:

mD(x)

mC(x)
= α+ (1− α)

mC(x)

mC(x)
≥ α .

�	

A Safe Approximation for Kolmogorov Complexity 349

A.3 Unsafe Approximation of ID (Theorem 5)

Proof.

pq
(
IDC(x, y)− ID(x, y) ≥ k

)
=

p0
(
max

[
κC(x | f(x)), κC(f(x) | x)] −max [K(x | f(x)),K(f(x) | x))] ≥ k

)
.

pq
(|x| − IDC(x, y) ≥ 2k

) ≤ p0
(|x| − κC(x | f(x)) ≥ 2k

)

≤ p0
(|x| − κC(x) ≥ k ∨ κC(x)− κC(x | f(x)) ≥ k

)

≤ p0
(|x| − κC(x) ≥ k

)
+ p0

(
κC(x)− κC(x | f(x)) ≥ k

) ≤ 2−k + cb−k .

K can invert f(x), so

ID(x, y) = max [K(x | f(x)),K(f(x) | x)] = max [|f∗|, |f∗
inv|] < cf

where f∗ and f∗
inv are the shortest program to compute f on U and the shortest

program to compute the inverse of f on U respectively.

pq
(
IDC(x, y)− ID(x, y) ≥ k

)
+ pq

(|x| − IDC(x, y) ≥ k
)

≥ pq
(
IDC(x, y)− ID(x, y) ≥ k ∨ |x| − IDC(x, y) ≥ k

)

≥ pq (|x| − ID(x, y) ≥ k) ≥ p0 (|x| − cf ≥ k) =
∑

i≥k−cf
s(i) .

Which gives us:

pq
(
IDC(x, y)− ID(x, y) ≥ k

)

≥ −pq(|x| − IDC ≥ k) +
∑

i≥k−|f | s(i) ≥ −cb−k +
∑

i≥k−|f | s(i)

≥ s(k − |f |)− cb−k ≥ c′s(k) for the right c′. �	
Corollary 1 Under the assumptions of Theorem 5, κC(x | y) is an unsafe ap-
proximation for K(x | y) against q.
Proof. Assuming κC is safe, then since max is safety-preserving (Lemma 11),
IDC should be safe for ID. Since it isn’t, κC cannot be safe. �	

A.4 Safe Approximation of ID (Theorem 6)

Lemma 10. If q samples x and y independently from models in C, then κC(x | y)
is a 2-safe approximation of − logm(x | y) against q.
Proof. Let q sample x from pr and y from ps.

pq(− logmC(x | y) + logm(x | y) ≥ k) = pq(m(x | y)/mC(x | y) ≥ 2k)

≤ 2−kE
[
m(x | y)/mC(x | y)] = 2−k

∑

x,y

ps(y)m(x | y) pr(x)

mC(x | y)

≤ c2−k
∑

x,y

ps(y)m(x | y)m
C(x | y)

mC(x | y) ≤ c2−k
∑

x,y

ps(y)m(x | y) ≤ c2−k . �	

350 P. Bloem et al.

Since m and K mutually dominate, − logmC is 2-safe for K(x | y), as is κ(x | y).
Lemma 11. If fa is safe for f against q, and ga is safe for g against q, then
max(fa, ga) is safe for max(f, g) against q.5

Proof. We first partition B into sets Ak and Bk:

Ak = {x : fa(x)− f(x) ≥ k ∨ ga − g(x) ≥ k} Since both fa and ga are safe, we
know that pq(Ak) will be bounded above by the sum of two inverse expo-
nentials in k, which from a given k0 is itself bounded by an exponential in
k.

Bk = {x : fa(x) − f(x) < k ∧ ga − g(x) < k} We want to show that B contains
no strings with error over k. If, for a given x the left and right max func-
tions in max (fa, ga) − max (f, g) select the outcome from matching func-
tions, and the error is below k by definition. Assume then, that a different
function is selected on each side. Without loss of generality, we can say that
max(fa, ga) = fa and max(f, g) = g. This gives us: max(fa, ga)−max(f, g) =
fa − g ≤ fa − f ≤ k.

We now have p(Bk) = 0 and p(Ak) ≤ cb−k, from which the theorem follows.
�	

Corollary 2 IDC is a safe approximation of ID against sources that sample x
and y independently from models in C.

A.5 Safe Approximation of NID (Theorem 7)

Lemma 12. Let f and g be two functions, with fa and ga their safe approxima-
tions against adversary pq. Let h(x) = f(x)/g(x) and ha(x) = fa(x)/ga(x).
Let c > 1 and 0 < ε � 1 be constants such that pq(fa(x) ≥ c) ≤ ε and
pq(ga(x) ≥ c) ≤ ε. We can show that for some b > 1 and c > 0

pq

(∣
∣
∣
∣
h(x)

ha(x)
− 1

∣
∣
∣
∣ ≥

k

c

)

≤ cb−k + 2ε .

Proof. We will first prove the bound from above, using fa’s safety, and then the
bound from below using ga’s safety.

pq

(
h

ha
≤ 1− k

c

)

≤ pq

(
h

ha
≤ 1− k

c
& c < fa

)

+ ε ≤ pq

(
h

ha
≤ 1− k

fa

)

+ ε

= pq

(
f

fa

ga
g

≤ 1− k

fa

)

+ ε ≤ pq

(
f

fa
≤ 1− k

fa

)

+ ε

= pq

(
f + k

fa
≤ 1

)

+ ε = pq (fa − f ≥ k) + ε ≤ cfbf
−k + ε .

The other bound we prove similarly. Combining the two, we get

pq (h/ha /∈ (k/c− 1, k/c+ 1)) ≤ cfbf
−k + cgbg

−k + 2ε ≤ c′b′−k + 2ε . �	
Theorem 7 follows as a corollary.

5 We will call such operations safety preserving.

	A Safe Approximation
for Kolmogorov Complexity
	1 Turing Machines and Probability
	2 Model-Bounded Kolmogorov Complexity
	3 Safe Approximation
	4 A Safe, Computable Approximation of K

	5 Approximating Normalized Information Distance
	6 Discussion
	References
	A Appendix

