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Abstract—Adaptability and energy-efficient sensing are essen-
tial properties to sustain the easy deployment and lifetime of
WSNs. These properties assume a stronger role in autonomous
sensing environments where the application objectives or the
parameters under measurement vary, and human intervention is
not viable. In this context, this paper proposes LiteSense, a self-
adaptive sampling scheme for WSNs, which aims at capturing
accurately the behavior of the physical parameters of interest
in each WSN context yet reducing the overhead in terms of
sensing events and, consequently, the energy consumption. For
this purpose, a set of low-complexity rules auto-regulates the sens-
ing frequency depending on the observed parameter variation.
Resorting to real environmental datasets, we provide statistical
results showing the ability of LiteSense in reducing sensing
activity and power consumption, while keeping the estimation
accuracy of sensing events.

I. INTRODUCTION

WSNs may include several types of sensing, from continu-
ous sensing to event detection or triggering of local actuators.
This versatility allows their use in a wide spectrum of applica-
tion fields, for instance, precision agriculture, intrusion detec-
tion and security systems, health care, wearables and environ-
mental sensing. In many cases, WSNs operate without human
intervention as devices substitution or maintenance may be
impracticable, making the presence of self-management and
power saving mechanisms strongly recommended [1]. In this
way, sensor nodes must waste the minimum of power to
accomplish their tasks, trying to maximize lifetime resorting
to the utilization of efficient algorithms, lower-power usage
components or reconfiguration procedures.

Considering that the energy consumed by the communi-
cation module when transmitting a bit across the network
can overcome the energy required to process thousands of
instructions [2], it is clear that reducing the volume of data
transmitted is a key aspect in WSNs operation. Although
this can be addressed resorting to data aggregation schemes,
the underlying processes may imply data loss. Furthermore,
the sensing subsystem is also a significant source of power
consumption and, for this reason, sensing data should only
be acquired when necessary, avoiding the waste of sensing,
processing and transmission capacity.

In this context, this paper proposes LiteSense, an adaptive
sampling scheme oriented to WSNs aiming at improving the
trade-off between capturing data accurately and saving energy
to enhance operational sensors’ lifetime. The mechanism re-
lies on self-regulation of sensing events in order to reduce
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the amount of data acquired and transmitted without human
intervention. The proof-of-concept demonstrates that adaptive
sampling can be a solid approach to reduce significantly
the number of sensing events and power consumption, while
maintaining an accurate view of WSN activity and behavior.

This paper is organized as follows: related work is discussed
in Section II; the sampling scheme design goals and rational
are described in Section III; the proof-of-concept and the
corresponding evaluation results are discussed in Section 1V;
and the conclusions are summarized in Section V.

II. RELATED WORK

Although adaptive sampling has been successfully used in
conventional computer networks [3], [4], the available solu-
tions can hardly be applied in resource-constrained networks
such as WSNs. Thus, several authors have devoted efforts in
proposing adaptive sampling approaches for WSNss, attending
to their inherent computational and energetic limitations.

In [5], it is proposed an optimal sensing scheduling policy
for a power harvesting system equipped with a finite bat-
tery. This system aims to rule sensing frequency based on
the battery power levels of sensor nodes, disregarding the
variability of the observed parameter. In [6], it is proposed a
recovering framework for big data sets through a small number
of sensing events taking into account the space and time
correlation properties from previous samples. The analysis
resorts to probabilistic relations among variables involved in
the compression, transmission and recovering processes. This
process lowers the number of transmissions and transmission
rate, disregarding the accuracy of the sensing process. Simi-
larly, the authors in [7] establish a framework for collecting
data from a WSN based on adaptive compressive sensing
that considers the power consumption and the amount of
information in sensing data. The study proposes an algorithm
to obtain a more precise approximation of the measurements
by wasting as less energy as possible. This proposal is also
confined to adapt the transmission rate.

Taking into account the above discussion it is clear that
most of the studies on adaptive sensing only cover a partial
set of variables to optimise, such as the transmission rate,
disregarding measurement accuracy. This evinces the need of
studying and improving the trade-off between sensing events
and accuracy for distinct WSN contexts. The present work
intends to be a contribution in this respect.



ITI. LITESENSE SAMPLING SCHEME

The proposed sampling scheme aims at sensing physical
parameters by detecting their values and variations accurately
while saving sensor nodes’ resources. The main design goals
are identified in Figure 1 and explained next.
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Fig. 1. LiteSense adaptive sampling - design goals

Versatility - the sampling scheme should be able to operate
over distinct type of WSN measuring scenarios and param-
eters. This can be obtained endowing the sampling scheme
with an intrinsic self-adaptability property in order to auto-
regulate the data sensing events according to each parameter
behavior. It involves detecting variations on the measures and
increasing/decreasing the sampling frequency accordingly.

Accuracy - the sampling scheme should be able to capture
the correct behavior and values of the physical parameters
under measurement. This involves identifying either the con-
tinuous behavior of a parameter being sensed or detecting
critical and sporadic events.

Low overhead - the sampling process should reduce the
overhead of sensing events, without compromising accuracy.
This can be achieved taking advantage of parameter stability
to decrease sampling frequency, reacting to variations with
reduced impact on the overall performance.

Low complexity - the self-adaptive nature of the sampling
scheme should be driven by simplicity of implementation
and low consumption of resources. Adaptiveness should rely
on a simple arithmetic process, e.g., inspired on TCP RTT
estimation mechanism [8].

Energy saving - the sampling scheme should be able to
monitor the parameters of interest based on energy-aware
sensing, processing and communication subsystems. In this
way, (i) reducing the number of sensing events needed to
capture the parameter behavior; (ii) adapting the sampling
frequency through low-cost algorithms; and (iii) reducing the
number of transmissions to other sensors/actuators, are steps
to impact positively on the energy consumption.

A. Self-adaptive sampling

As mentioned before, attending to the heterogeneity of
application scenarios WSNs may have, self-adaptiveness is
a mandatory property to assure. In this context, LiteSense
adaptive sampling scheme uses the temporal variation in the
observed scalar physical quantities in order to self-adjust the
interval between two consecutive sensing events.

Basically, when the sampled values of the observed param-
eter do not vary significantly, the interval between two sensing
events is increased, reducing its frequency, which leads to less
computational effort and consequent less energy consumption
[2]. Conversely, if a significant variation in the sampled param-
eter is observed, the time scheduling for the next sensing event
is decreased in order to improve the accuracy in identifying its
temporal fluctuation. Thus, when a sensing event is performed,
the mean of the observed variable is calculated using the
moving average X; = (1 — a)X;_1 + aS, where X;_; is
the mean calculated in the previous event and « is the weight
of new observed value S.

Although the standard deviation o is the conventional choice
for estimating the variance, it imposes costly operations to
constrained devices. Alternatively, as discussed in [8], the
mean deviation is a good approximation to o, being easier
to compute. Therefore, using the current mean value X;, the
variation in the observed values is calculated resorting to the
mean deviation V; = (1 — B)V;_1 + B|X; — S|, where, V;_;
is the mean deviation identified in the last sensing event and
3 determines the weight of the current deviation | X; — 5.

As presented in Table I, the adaptive mechanism compares
the current estimated mean variation (V;) with the variation
calculated in the previous sensing event (V;_;) in order to
identify if the observed parameter has changed significantly,
and then, the time interval used to schedule the next sensing
event is adjusted accordingly. If V; is lower or equal to
Vi_1, the observed parameter did not change significantly
from the last sensing events, which allows to reduce the
sensing frequency by increasing AT Otherwise, the observed
parameter changed significantly since the last observation,
which requires more frequent sensing events, obtained by
reducing AT. An additional constraint is used to prevent
AT from growing indefinitely (AT},q.), thus guaranteeing a
minimum number of samples per time unit. Conversely, the
maximum frequency of sampling (AT,,;,) is also limited so
that the interval between sensing events does not tend to zero,
which would result in an overwhelming resource consumption.
The factor € in Table I is a filter expressing the scheme
reactivity. This value may be set as a constant, indexed to
the variation level of the observed parameter, or a function
related to the battery level.

TABLE I
RULES TO SCHEDULE THE NEXT SENSING EVENT

Xi—l — Xl <—L) S AT,;+1

1 ’I”I’LZ’I’L(A’TI -+ (AT,, X 6), AT,,LQI)
_1 max(AT; — (AT; X €), AT min)

IV. EVALUATION RESULTS

This section provides the proof-of-concept for LiteSense,
including a set of evaluation results regarding the ability of
adaptive sampling in: (i) reducing the number of sensing
events; (ii) identifying the temporal variation of the ob-
served parameters accurately; (iii) self-adjusting the sensing



frequency in accordance with the variability of environmental
parameters; and (iv) reducing the power consumption of
sensing and communication subsystems.

The analysis compares the performance of LiteSense adap-
tive sampling scheme to a deterministic scheme, widely used
in monitoring scalar physical quantities. The publicly available
dataset used in the tests was previously collected during
approximately six hours, at intervals of five seconds, in a WSN
using TelosB motes [9]. The WSN consists of eight sensors
deployed in indoor and outdoor environments, sensing tem-
perature (indoor: ST1,ST2; outdoor: ST3,ST4) and humidity
(indoor: SH1,SH2; outdoor: SH3,SH4). Aiming at evaluating
the accuracy in identifying sudden changes in the observed
parameters, sensors (ST1, ST4; SH1, SH4) were exposed to a
steam of hot water to spark humidity and temperature levels.

The adaptive scheme was experimentally set with o« = 5 =
0.7 in order to stress the weight of the latest sensed value and
corresponding variation. The rules in Table I were set with
€ = 0.15, meaning that the interval between samples (AT)
is increased by a factor of 15% when the observed parameter
remains stable, and reduced by the same factor when it changes
significantly. As discussed in Section III-A, this adjustment
may also be indexed to the observed variation or to the current
battery level. In this proof-of-concept, AT,,q. and ATy,
were set to 30 and 5 seconds, respectively.

The performance of LiteSense is evaluated relating the
number of sensing events along the monitoring period with the
accuracy in identifying the temporal variation of the observed
parameters (temperature and humidity). As deterministic and
adaptive sampling mechanisms yield to distinct number of
samples, the statistical analysis considers the mean estimated
value per second from the resultant time series. The accuracy
is then estimated resorting both to the Mean Squared Error
(MSE) and to the correlation between the time series.

A. Sensing events and estimation accuracy

Regarding the ability to reduce the number of sensing
events, Figure 2 shows that, for all nodes and parameters,
the adaptive scheme reduces in around 80% the number of
events observed through the deterministic scheme. Attending
to the lightweight algorithm ruling LiteSense, this significant
reduction will also contribute to reduce energy consumption
in the sensors, as discussed in Section IV-B.

However, despite of reducing the number of sensing events
significantly, proving the efficiency of the proposed scheme
requires verifying its ability to capture the real distribution of
the observed parameters. This is accomplished by estimating
the statistical representativeness of adaptive time series against
the deterministic behavior. In this way, Figure 3 shows the
distribution of sampled values along the test period, for indoor
and outdoor sensors. The almost complete overlap of adaptive
and deterministic resultant series, highlighted during both
smooth and unstable periods, demonstrates that, even reducing
the sensing events in around 80%, the adaptive scheme in Lite-
Sense has the capability to catch up the real parameter pattern.
Note that, even in presence of sudden environmental changes
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Fig. 2. Number of sensing events: Temperature (ST); Humidity (SH).
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Fig. 3. Indoor observations (ST); Outdoor observations (SH).

affecting sensors ST1 and SH4, the adaptive scheme adjusts
the sensing schedule correctly, confirming the versatility of
LiteSense. These observations are corroborated through the
high correlation (0.98 for all series) between the distributions
of estimated parameters, and the low MSE (approximately 0.5
for temperature and 0.03 for humidity). This means that, for
the considered scenarios, the estimation of humidity levels
was more accurate, however, as depicted in Figure 3, the
temperature was also accurately estimated.

The study of how the variation of ST1 impacts on the
adaptiveness of AT along the time is illustrated in Figure
4. As shown, in presence of stable temperature readings (e.g.,
around t=15000 seconds), AT assumes a steady behavior in its
highest values, meaning that the sampling frequency is kept
low. Conversely, upon more unstable periods of the sensed
parameter (as in the anomaly peak mentioned previously), the
mechanism reacts promptly reducing AT, which is reflected
in a sampling frequency increase.
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Fig. 5. Power Consumption: Indoor sensor (SH); Outdoor sensor (ST)

B. Power Consumption

Aiming at assessing the enhancement in power consumption
promoted by LiteSense, the main operational states in the
sensing and communication subsystems were identified and
measured individually for each sensing event in a single-hop
topology. The power consumption for different operation states
in TelosB sensors is presented in Table II. The total consump-
tion (Tp) is reflected by the sum of partial average times
in which the sensor was involved in transmitting, receiving,
listening, sensing and sleeping events, i.e.,:

TP = Ttransmitting X Nty + Treceiving X Npg+

+Tslee;m'ng X ng + Crlistening X ny+ Tsensing X Mg

D

TABLE II
POWER CONSUMPTION FOR TELOSB OPERATIONAL STATES

[ Operation state [ Power consumption (W) ]

Transmitting 5.9E —5
Receiving 2.86E — 5
Sleeping 1.0E -7
Listening 1.0E —6
Sensing 0.5E — 6

Figure 5 shows the evolution of power consumption for
sensors SH1 and ST3 along the performed tests. At the
beginning, all sensors had batteries fully charged (i.e., 19160
W). As depicted, the progression of power consumed by the
deterministic scheme is linear and leads to a faster battery
drain when compared with the adaptive scheme. In this way,
by using LiteSense, the power consumption is reduced in about
60% for all scenarios considered, which demonstrates that the
ability in self-adapting sensing events has a major impact on

reducing power consumption without affecting the accuracy of
physical parameter measurements.

V. CONCLUSIONS

Attending to the inherent resource constraints of WSNs,
this paper has proposed LiteSense, a self-adaptive sampling
scheme aiming at capturing the behavior of multiple physical
parameters accurately while reducing the overhead of sensing
events and, consequently, the levels of energy consumption.
The ability to adapt the sampling frequency through a low-cost
algorithm was also defined as a design goal, due to the well
known low-processing capabilities of sensor nodes. The proof-
of-concept has provided initial results attesting the proposal
ability to measure environmental parameters accurately, while
reducing in 80% the number of sensing events comparing to
deterministic sampling. As future work, the tests will consider
a wider range of sensing parameters, and the tuning of the
proposed sampling scheme (e.g., exploring how € can be
related to both the variation observed in sensed values and
the battery level) aiming at further increasing its versatility.
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