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1. Introduction 

Remote sensing platforms in precision agriculture (PA) have been applied for several years by the usage of different 
platforms such as satellites or manned aircrafts. Lately with the appearance of Unmanned Aerial Systems (UAS), that 
can be remotely piloted or have a programmed route to perform autonomous flight, new possibilities are offered in the 
remote sensing field. Generally, UASs also requires a ground-control station, sensor suites and communication devices 
for carrying out flight missions1. PA is a concept based on observing, measuring and responding to inter and intra-
field variability in crops. The goal of PA is to define a decision support system for farm management with the goal of 
optimizing returns on inputs while, at the same time, preserving resources2. To achieve this, a fast, reliable, cost-
effective and easy method to scan the fields is required. The crop’s condition can be assessed by the stage of ripening, 
water status, pest attacks and nutritional requirements. The remote sensing capabilities acquired by UAS can provide 
this necessary data, so that the farmer is able to identify problems in early stages and rapidly select the appropriated 
interventions3. PA relies on four main tasks: data acquisition; terrain variability mapping; decision making; and 
application of management practices4. Remote sensing can be used with great benefit in the first three tasks. Acquiring 
the necessary information is one of the key factors of PA to provide correct support in the decision-making process 
and recognition of temporal variations5. The use of Unmanned Aerial Vehicles (UAV) can help to determine 
parameters such as leaf area index (LAI), crop cover, volume or height. Providing a flexible access to crop parameters 
such as vegetative vigour, quality and yield estimation6. 

This study proposes a methodology capable of analysing very high resolution UAV-based data from different types 
of sensors in a multi-temporal perspective, focusing on two different crops of great economic impact in Portugal, 
vineyards (Vitis vinifera L.) and chestnut trees (Castanea sativa Mill.). Where considerable areas of these crops  are 
present in  the northern region of the country7. The commercial value of these plantations depends on several factors 
such as: the caste (vineyards), the plant quality, and the climatic conditions of the region. However, in both crops, 
there are problems that may interfere with their development, which makes effective detection and inspection 
techniques necessary to decrease the occurrence risk of those problems, thus enabling a viable and sustainable 
cultivation of these crops. Nowadays, direct ground observations are performed to assess the presence of issues. In 
the vineyard, there are diseases for which it is necessary to eliminate many plants from the parcel or in some cases, to 
eliminate the whole parcel8. Regarding chestnut trees, problems such as Chestnut ink and Chestnut blight are the main 
causes of its decline9. For all these reasons, the detection of problems in earlier stages becomes indispensable, allowing 
a quicker response capacity to apply the proper treatment, saving up crops and reducing maintenance costs.  

UAVs appear as the ideal tool, allowing the monitoring of crops through the analysis of spectral signatures and its 
vegetative development. The proposed methodology allows evaluating the temporal evolution of these cultures, 
determining the probable causes of potential problems, from biotic and/or abiotic origins, thus allowing the application 
of the most appropriate measures to eliminate/mitigate the identified problems. 

This paper is structured as following: a brief overview of the related work in UAVs applied to agroforestry with a 
major focus on studies that used time-series data and data generated by each flight mission is provided in section two; 
in section three, the data analysis process is present and described; the fourth section, presents some preliminary results 
from the application of the proposed methodology; finally, section five presents some conclusions and provides the 
next steps implementing the proposed methodology. 

2. Background 

The technological development lead to the emergence of affordable and easy to operate small-sized UASs10, 
making this platform suitable to be applied in different areas11. UAS allows the acquisition of very high resolution 
data using different types of sensors, with a greater versatility and cost-effectiveness than satellites or manned aircrafts 
in small/medium-sized projects12. The possibility to survey considerable areas in shorter time, providing very-high 
spatial and temporal resolutions images, makes UAS an ideal platform for monitoring agroforestry parcels13. In this 
specific sector, the UAS applicability goes from crop monitoring13,14, invasive weed mapping15, irrigation 
management16–18, biomass19–21, chlorophyll22,23, and nutrient estimation21,24 to vegetation height maps25,26, among 
others. Different types of sensors operating in different parts of the electromagnetic spectrum (i.e. visible, red edge, 
near infra-red, thermal) can be used10.  
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The flexibility of UAS platforms increases its applicability to survey the same area over time. This approach was 
already applied in some studies, where UAVs and different sensors to acquire time series of data have been used with 
different purposes in different types of agricultural crops as barley27, sunflowers28, silage maize29, rice30 and 
vineyards6. In the aforementioned studies, time series allowed to reach results that, in some cases, were noticeable 
only after a certain vegetative cycle stage of the studied crops. Thus the use of time series among the same area bring 
great advantages, since they allow to assess the vegetation development in several phenological stages and to identify 
problematic areas, which will enable to analyse the response to the implemented mitigation measures in an effective 
way. 

The usual system architecture for UAS-based data acquisition and processing follows two main components: the 
UAS responsible for acquiring field data and a processing unit composed by a high-performance workstation for 
storing, management and delivering the information to the user. The data acquisition is performed by the UAS, 
composed by an UAV, with sensors coupled to it, and a ground station. Each UAV, independently of the chosen 
configuration, which are fixed-wing or rotary-wing, is usually composed by a GNSS receiver (at least GPS receiver), 
a data acquisition sensor and a ground station along with a local storage to collect the acquired data. The acquired data 
passes through a photogrammetric processing stage where the data is unfolded into different outputs as: orthophoto 
mosaics, three-dimensional models, Digital Elevation Models (DEMs) and 3D point clouds10. Orthophoto mosaics 
provide imagery data that can be used in image processing algorithms. DEMs provide elevation data from the terrain’s 
surface, which can contain elevation data from features present in the ground surface - Digital Surface Model (DSM) 
- or only from the ground - Digital Terrain Models (DTM)31. These models are computed considering the three-
dimensional point clouds generated from the application of Structure from Motion (SfM) algorithms in the images 
acquired by the sensors on-board the UAV. From the subtraction of the DTM from the DSM, elevation models 
containing only information from objects above the ground - Digital Differential Model (DDM) or Canopy Height 
Models (CHM) - can be computed19. 

However, data generated by the photogrammetric software does not provide any valuable information to the final 
user and in a multi-temporal perspective: it must be analysed, and usually this type of analysis is performed manually. 
In the next section some directions on how to automatize such task are presented with the examples of vineyards and 
chestnuts. Digital image processing techniques applied to the outputs derived from UAS-based data allows, among 
others, to determine the area occupied by vegetation on a given land parcel. This enables the identification of areas 
with higher production, allowing, for instance, sowing optimization, diseases and/or pest detection, thus contributing 
to promote an efficient management. 

3. Proposed data analysis methodology 

This section specifies the proposed methodology that enables the processing of UAS-based data in agriculture 
crops, more specifically in vineyards and chestnuts. It presents the different phases, that ranges, from vegetation 
segmentation to the information obtained from the specifications provided by the user. Fig. 1 presents an overview of 
the processing pipeline, where the several outcomes from the photogrammetric processing are used as inputs. The 
crop’s vegetation segmentation is performed, depending on the type of crop and/or parameters. Finally, time series 
analysis is performed to provide a comparison with the extracted parameters and to identify areas with possible biotic 
and abiotic issues reporting them to the user. 

 

Fig. 1. The proposed methodology workflow, performing time series analysis to enable decision support in PA. 
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3.1. Crop’s specific vegetation extraction 

For multi-temporal analysis of agricultural crops, specific parameters need to be assessed to understand their 
influence in crops’ development. These include the epoch of the year, the vegetative stage, the meteorological and soil 
conditions and the phytosanitary and nutritional status. Once the parameters are identified, they need to be transposed 
to the platforms and sensors, guiding their selection along with other variables. In addition, some of these conditions 
may mask the normal manifestation of specific problems, generating important relationships between variables, hence 
the importance of time series, since it allows reducing the inherent risks. The algorithms to be developed and 
implemented must be capable of dealing with each specific characteristic from both cultures. The algorithms should 
be capable of successfully accomplishing three different stages: crop’s vegetation segmentation, extraction of 
parameters from a single flight and perform the multi-temporal analysis in the same area of interest. 

Crop’s vegetation segmentation can be performed in different ways, through global32,33, or local34 thresholding, 
using vegetation indices32 or object-based image analyses33. In both cases, the algorithms should be capable of 
detecting crop’s vegetation, separating it from the soil and non-vineyard and non-chestnut vegetation (e.g. roads, 
buildings, soil vegetation). To perform vineyard vegetation segmentation, some authors successfully applied different 
methods, based on Hough transform34, skeletonization35, machine learning methods, k-means and vegetation indices36. 
However, in this case and regarding vineyards, it is intended to automatically delimit each vineyard plot and to identify 
vine rows. In order to perform vineyard plot detection some authors used Fast Fourier Transform (FFT) and Gabor 
filters37. Regarding the chestnut tree, it is planned to individually detect each chestnut tree in several chestnut plots.  

With the crop’s vegetation properly segmented, it is possible to extract more valuable and accurate information 
from both cultures. In the vineyards, its volume, area and vegetative vigour are parameters that can provide general 
information about the vines state. Fig. 2 presents the proposed methods to perform the parameters extraction in 
vineyards, with the inputs from the pre-processed UAS-based data, the vineyard plot is identified and masked. In the 
vegetation segmentation stage, the soil vegetation is excluded to improve the reliability of the extracted parameters, 
after vegetation segmentation being performed different parameters can be extracted. With each vineyard plot being 
automatically detected, it is possible to compare the extracted parameters in a multi-temporal perspective. 

 

 

Fig. 2 Methodology to extract parameters from UAS-based data in vineyards. Different types of sensors can be applied in order to extract more 
and useful parameters. 

Regarding chestnut trees, it is possible to identify and extract properties such as crown diameter and the height of 
tree present in a given image. Fig. 3 presents an example of the proposed methodology using data from several sources 
acquired in a small chestnut plot. The imagery data along with the digital elevation models are used as inputs and then 
the chestnut vegetation is segmented, making possible to obtain parameters as canopy cover area and height. These 
parameters extracted from a single set of data can be crossed with other sources of information in order to enhance 
the time-series analysis. 
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Fig. 3 Methodology to extract crop parameters from UAS-based data in chestnut plots using elevation and imagery data. 

3.2. Multi-Temporal analysis 

After processing the data collected from each individual flight, it is possible to analyse the same area and compare 
it with a previous campaign, in order to perform a temporal evaluation of a specific crop. In vineyard’s specific case 
the comparison should be performed in a plot-to-plot scale. The vegetative status of the plants can be estimated by 
spectral vegetation indices, computed from multispectral or hyperspectral UAS-based data, or by thermal data.  

For the chestnut tree case, after the detection of each tree in a given area, an individual tree assessment in a different 
dataset (different flight) can be performed, to compare parameters, such as crown height and area. From this 
comparison different scenarios can happen: (1) the tree is not identified, which means that it can be dead and/or it was 
cut-down; (2) a big area regression was found, which can be related with the presence of a phytosanitary problem and 
it must be inspected in the field; (3) the area is bigger or approximately the same, which represents that the 
development is in the correct path or the tree is in a controlled environment even if it is infected, meaning that any 
potential disease as not manifested itself. This way, it is possible to provide a clear overview of the behaviour of 
phytosanitary problems distribution and to provide an overview of the vegetation development. Table 1 presents the 
parameters extracted from the data of two flights over the same chestnut plot and the respective difference. 

The obtained results from the temporal analysis can be compiled in a form of a report or maps, providing valuable 
information about the crop’s conditions both in a global and in a local perspective. The application of this approach 
in comparison with traditional methods will reduce the time and human resources allocation to monitor and mitigate 
the occurrence and emergence of biotic and abiotic problems. 
 

4. Proof of concept 

This section presents the applicability of the proposed methods described in the previous section. Two cases are 
presented, regarding a chestnut area and a vineyard plot. The data were acquired using a fixed-wing UAV, the eBee 
(senseFly SA, Lausanne, Switzerland). In what regards chestnut area data, it is related with two flights from two 
different years 2014 and 2015. The vineyard data were acquired during 2016 in six different flights. 

Table 1 presents the results from the canopy height and the area occupation of 9 chestnuts in the two acquisition 
epochs in an area of approximately 900 m2. The occupation area was extracted from the segmented images of both 
flights and the canopy height was extracted from the DDM. Results demonstrate the possibility of the correct 
extraction of parameters from UAS-based data. The chestnut occupation area growth had an evolution of 
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approximately 35 m2 while the average height increase in the compared chestnut trees was of 0.15 m. Thus, results are 
considered normal, which means that there are no phytosanitary problems on the evaluated area. 

Table 1. Comparison of the extracted parameters on the same chestnut area. 

Tree 
number 

Acquisition 1 Acquisition 2 Difference 

Area (m2) Height (m) Area (m2) Height (m) Area (m2) Height (m) 

1 56.6 6.6 54.2 7.0 -2.4 0.4 

2 38.5 5.5 39.0 5.5 0.5 0 

3 51.7 6.9 54.8 7.1 3.1 0.2 

4 44.5 6.3 52.4 6.5 7.9 0.2 

5 42.8 5.3 48.3 6.1 5.5 0.8 

6 30.8 2.9 30.8 2.8 0 -0.1 

7 37.2 6.6 43.0 6.1 5.8 -0.5 

8 40.9 6.6 51.4 6.6 10.5 0 

9 50.1 6.1 53.7 6.4 3.6 0.3 

 
Regarding the vineyard parcel, Fig. 4 (a) represents the area occupied by the vine vegetation acquired in six flights. 

These flights address different phenological stages, from the fruit set - when the grape berries are forming - to the 
veraison stage, when grape clusters are ripening. The vineyard occupation area is presented in Fig. 4 (b). It can be 
noticed a vegetation increase in the first three flights and from this onwards, a decrease in vegetation up to the last 
flight when the harvest season is approaching.  

 

  
(a) (b) 

Fig.  4 Temporal evolution of a vineyard plot vegetation along six flights, (a) segmented vineyard vegetation, (b) vineyard vegetation area. 

The multi-temporal analysis performed in this section validates the possibility to collect important information for 
both chestnut and vineyard areas. The presented results also demonstrate the validity of extracting parameters to 
estimate vegetative development. 

5. Conclusions and future work 

In this study a methodology to improve the UAS-based data analysis in PA is presented, with a major focus on 
vineyards and chestnut trees. The presented methodology is capable of monitoring the decline of chestnut trees and 
the vegetative development of vineyards from UAV-based data in a multi-temporal perspective. This methodology 
can be implemented in an agricultural management system to improve the support to the decision making process. 
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As future work, a suitable data acquisition methodology should be defined to ensure the correct timing according 
to the crop in analysis, given the phenological development among other conditions. The algorithms to be used in each 
step of the vegetation analysis must ensure a proper performance and, at same time, accurate results. The ability of 
the algorithms to automatically detect anomalous situations is a key factor to reduce the time required to perform 
interventions and to allocate the necessary human resources. The final goal will be a controlled monitoring of problems 
affecting the cultures, with the economic benefits that come from it, as well as the crops’ vegetative development 
monitoring. 
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