LNCS 10150

Inés Dutra - Rui Camacho
Jorge Barbosa - Osni Marques (Eds.)

High Performance Computing
for Computational Science -
VECPAR 2016

12th International Conference
Porto, Portugal, June 28-30, 2016
Revised Selected Papers

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, Lancaster, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Zurich, Switzerland
John C. Mitchell

Stanford University, Stanford, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

TU Dortmund University, Dortmund, Germany
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Gerhard Weikum

Max Planck Institute for Informatics, Saarbriicken, Germany

10150

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

In€s Dutra - Rui Camacho
Jorge Barbosa - Osni Marques (Eds.)

High Performance Computing
for Computational Science —

VECPAR 2016

12th International Conference
Porto, Portugal, June 28-30, 2016
Revised Selected Papers

@ Springer

Editors

Inés Dutra Jorge Barbosa
University of Porto University of Porto
Porto Porto

Portugal Portugal

Rui Camacho Osni Marques
University of Porto Lawrence Berkeley National Laboratory
Porto Berkeley, CA

Portugal USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science

ISBN 978-3-319-61981-1 ISBN 978-3-319-61982-8 (eBook)

DOI 10.1007/978-3-319-61982-8
Library of Congress Control Number: 2017946688
LNCS Sublibrary: SL1 — Theoretical Computer Science and General Issues

© Springer International Publishing AG 2017

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper
This Springer imprint is published by Springer Nature

The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

The International Meeting on High-Performance Computing for Computational Sci-
ence (VECPAR) is a biannual conference and is the premier venue for presenting and
discussing the latest research and practice in high-end computer modeling and complex
systems. The audience and participants of VECPAR are researchers and students in
academic departments, government laboratories, and industrial organizations. There is
a permanent website for the conference series at http://vecpar.fe.up.pt. In this 2016
edition, the conference went back to Porto, where it originated. Previous editions of
VECPAR were held in Oregon (USA, 2014), Kobe (Japan, 2012), Berkeley (USA,
2010), Toulouse (France, 2008), Rio de Janeiro (Brazil, 2006), Valencia (Spain, 2004),
and Porto (Portugal, 2002, 2000, 1998, 1996 and 1993).

This VECPAR edition had a very exciting program with 20 papers accepted from 10
different countries. The acceptance rate was 51%, repeating the pattern of previous
editions. We had a varied selection of paper subjects ranging from distributed to shared
and hybrid parallel algorithms and systems, but with a strong focus on computational
science applications. Examples are epidemic modeling and word searching. Parallel
libraries was also a popular subject this year. Studies of parallel platforms range from
clouds to multi-core, many-core, and GPUs. The conference also had the contribution
of invited talks given by four prominent speakers (Prof. Omar Ghattas, “Scalable
Algorithms for Bayesian Inference of Large-Scale Models from Large-Scale Data”,
Prof. Bruno Schulze, “HPC as a Service”, Prof. Mateo Valero, “Runtime Aware
Architectures”, and Prof. Luc Giraud, “Numerical Resiliency in Iterative Linear
Algebra Calculation”), two workshops: the Workshop on “Big Data and Deep Learning
in HPC,” on June 30; and the Workshop on “Computational Challenges for Climate
Modelling and Weather Prediction,” on July 1; as well as a crash course on Mul-
tithreading and Vectorization on Intel®Xeon and Intel®Xeon Phi" Architectures
using OpenMP. In the social program, we had a welcome reception and a fantastic
social dinner including Port wine tasting.

A co-organized summer school on “Advanced Scientific Computing” was organized
in Braga, during the previous week, in collaboration with the Texas Advanced Com-
puting Center (TACC), at Austin, Texas, USA.

The most significant contributions to VECPAR 2016 are made available in the
present book, edited after the conference and after a second review of all accepted
papers that were presented.

The paper submission and selection processes were managed via the EasyChair
conference management system. The website of the conference is maintained by the
Faculty of Engineering of the University of Porto.

http://vecpar.fe.up.pt

VI Preface

The success of the VECPAR conference and its long life are a result of the col-
laboration of many people. For the 2016 edition, we would like to thank Alexandra
Ferreira and Isabel Gongalves, our very efficient secretaries in the Department of
Computer Science of the University of Porto. We would also like to thank all the
organizers, reviewers, and authors for their fantastic work and for meeting tight
deadlines.

December 2016 Jorge Barbosa
Rui Camacho

Inés Dutra

Osni Marques

Organization

VECPAR 2016, the 12th edition of the VECPAR series of conferences, was organized
by the Department of Computer Science, Faculty of Sciences of the University of
Porto, Porto, Portugal.

Executive Committee

Conference Chairs

Jorge Barbosa University of Porto, Portugal
Inés Dutra University of Porto, Portugal
Rui Camacho University of Porto, Portugal
Osni Marques LBL, USA

Workshops Chair
Jodo Manuel R.S. Tavares University of Porto, Portugal

Publicity Chair

Carlos Ferreira ISEP, Portugal
Web Chair
Vitor Carvalho University of Porto, Portugal

Steering Committee

Osni Marques (Chair) Lawrence Berkeley National Laboratory, USA
Alvaro Coutinho COPPE/UFRIJ, Brazil

Michel Daydé ENSEEIHT, France

Jack Dongarra University of Tennessee, USA

Inés Dutra University of Porto, Portugal

Kengo Nakajima University of Tokyo, Japan

Sameer Shende University of Oregon, USA

Scientific Committee

Claudio Amorim, Brazil Jodo Cardoso, Portugal
Filipe Aratijo, Portugal Lucia Catabriga, Brazil
Cristiana Bentes, Brazil Alvaro Coutinho, Brazil
Cristina Boeres, Brazil Yifeng Cui, USA

Xing Cai, Norway Michel Daydé, France

VI Organization

Pedro Diniz, USA

Jorge Gonzélez-Dominguez, Spain
Tingxing Dong, USA

Lacia Drummond, Brazil

Felipe M.G. Franca, Brazil
Akihiro Fujii, Japan

Claudio Geyer, Brazil

Laura Grigori, France

Ronan Guivarch, France
Abdelkader Hameurlain, France
Antonio J. Tomeu-Hardasmal, Spain
Toshiyuki Imamura, Japan
Alexandru Iosup, The Netherlands
Florin Isaila, Spain

Takeshi Iwashita, Japan

Helen Karatza, Greece

Takahiro Katagiri, Japan

Jakub Kurzak, USA

Daniel Kressner, Switzerland
Stéphane Lanteri, France

Alexey Lastovetsky, Ireland

Paul Lin, USA

Jean-Yves L’Excellent, France
Jodo Lourenco, Portugal

Piotr Luszczek, USA

Tomas Margalef, Spain

Pedro Medeiros, Portugal

Kengo Nakajima, Japan

Kenji Ono, Japan

Additional Reviewers

Diego Dutra, Brazil
Yulu Jia, USA

Tiago Vale, Portugal
Paulo Martins, Portugal

Satoshi Ohshima, Japan
Hervé Paulino, Portugal
Maria S. Perez, Spain
Alberto Proenca, Portugal
Rui Ralha, Portugal

Doallo Ramén, Spain
Vinod Rebello, Brazil
Ligia Ribeiro, Portugal
Pedro Ribeiro, Portugal
Francisco F. Rivera, Spain
Ricardo Rocha, Portugal
Paolo Romano, Portugal
Rizos Sakellariou, UK
Tetsuya Sakurai, Japan
Sameer Shende, USA
Fernando Silva, Portugal
David E. Singh, Spain
Jodo Sobral, Portugal

A. Augusto Sousa, Portugal
Leonel Sousa, Portugal
Reiji Suda, Japan

Frederic Suter, France
Domenico Talia, Italy
Keita Teranishi, USA
Mirek Tuma, Czech Republic
Paulo Vasconcelos, Portugal
Xavier Vasseur, France
Luis Veiga, Portugal
Weichung Wang, Taiwan

Jodo Gante, Portugal
Nuno Oliveira, Portugal
Roberto R. Expdsito, Spain

Organization IX

Sponsoring Institutions

Springer International Publishing

Porto Convention Bureau, Porto, Portugal

ParaTools, Inc., 2836 Kincaid St., Eugene, OR 97405, USA
HP Portugal, Information Technology and Services

Reitoria da Universidade do Porto, Porto, Portugal

&) Spri
Z 1 prlnger @

O'porto!
N

events a la carte

[BAPORTO

REITORIA

ParaTools

Contents

Invited Talks

Scalable Algorithms for Bayesian Inference of Large-Scale Models
from Large-Scale Data.
Omar Ghattas, Tobin Isaac, Noémi Petra, and Georg Stadler

Analysis of High Performance Applications Using Workload Requirements . . .
Mariza Ferro, Giacomo Mc Evoy, and Bruno Schulze

Hard Faults and Soft-Errors: Possible Numerical Remedies in Linear

Algebra SOIVErS e
E. Agullo, S. Cools, L. Giraud, A. Moreau, P. Salas, W. Vanroose,
E.F. Yetkin, and M. Zounon

Applications

SIMD Parallel Sparse Matrix-Vector and Transposed-Matrix-Vector
Multiplication in DD Precision
Toshiaki Hishinuma, Hidehiko Hasegawa, and Teruo Tanaka

Accelerating the Conjugate Gradient Algorithm with GPUs

in CFD Simulations. e
Hartwig Anzt, Marc Baboulin, Jack Dongarra, Yvan Fournier,
Frank Hulsemann, Amal Khabou, and Yushan Wang

Parallelisation of MACOPA, A Multi-physics Asynchronous Solver
Ronan Guivarch, Guillaume Joslin, Ronan Perrussel, Daniel Ruiz,
Jean Tshimanga, and Thomas Unfer

Performance Analysis of SA-AMG Method by Setting Extracted

Near-Kernel Vectors i i
Naoya Nomura, Akihiro Fujii, Teruo Tanaka, Kengo Nakajima,
and Osni Marques

Computing the Bidiagonal SVD Through an Associated
Tridiagonal Eigenproblem
Osni Marques and Paulo B. Vasconcelos

HPC on the Intel Xeon Phi: Homomorphic Word Searching.
Paulo Martins and Leonel Sousa

http://dx.doi.org/10.1007/978-3-319-61982-8_1
http://dx.doi.org/10.1007/978-3-319-61982-8_1
http://dx.doi.org/10.1007/978-3-319-61982-8_2
http://dx.doi.org/10.1007/978-3-319-61982-8_3
http://dx.doi.org/10.1007/978-3-319-61982-8_3
http://dx.doi.org/10.1007/978-3-319-61982-8_4
http://dx.doi.org/10.1007/978-3-319-61982-8_4
http://dx.doi.org/10.1007/978-3-319-61982-8_5
http://dx.doi.org/10.1007/978-3-319-61982-8_5
http://dx.doi.org/10.1007/978-3-319-61982-8_6
http://dx.doi.org/10.1007/978-3-319-61982-8_7
http://dx.doi.org/10.1007/978-3-319-61982-8_7
http://dx.doi.org/10.1007/978-3-319-61982-8_8
http://dx.doi.org/10.1007/978-3-319-61982-8_8
http://dx.doi.org/10.1007/978-3-319-61982-8_9

XII Contents

A Data Parallel Algorithm for Seismic Raytracing. 89
Allen D. Malony, Stephanie McCumsey, Joseph Byrnes,
Craig Rasmusen, Soren Rasmusen, Erik Keever, and Doug Toomey

Performance Modeling and Analysis

A Cross-Core Performance Model for Heterogeneous Many-Core
ATChIteCUIES ot e e 101
Rui Pinheiro, Nuno Roma, and Pedro Tomas

On the Acceleration of Graph500: Characterizing PCle Overheads
with Multi-GPUs. 112
Mayank Daga

Evaluation of Runtime Cut-off Approaches for Parallel Programs 121
Alcides Fonseca and Bruno Cabral

Implementation and Evaluation of NAS Parallel CG Benchmark

on GPU Cluster with Proprietary Interconnect TCA. 135
Kazuya Matsumoto, Norihisa Fujita, Toshihiro Hanawa,
and Taisuke Boku

Low Level Support

The Design of Advanced Communication to Reduce Memory

Usage for Exa-scale Systems 149
Shinji Sumimoto, Yuichiro Ajima, Kazushige Saga, Takafumi Nose,
Naoyuki Shida, and Takeshi Nanri

A Vectorized, Cache Efficient LLL Implementation. 162
Artur Mariano, Fabio Correia, and Christian Bischof

Versat, a Minimal Coarse-Grain Reconfigurable Array. 174
Jodo D. Lopes and José T. de Sousa

Environments/Libraries to Support Parallelization

An Application-Level Solution for the Dynamic Reconfiguration

of MPI Applications 191
Ivan Cores, Patricia Gonzalez, Emmanuel Jeannot, Maria J. Martin,
and Gabriel Rodriguez

Scientific Workflow Scheduling with Provenance Support
in Multisite Cloud. e 206
Ji Liu, Esther Pacitti, Patrick Valduriez, and Marta Mattoso

http://dx.doi.org/10.1007/978-3-319-61982-8_10
http://dx.doi.org/10.1007/978-3-319-61982-8_11
http://dx.doi.org/10.1007/978-3-319-61982-8_11
http://dx.doi.org/10.1007/978-3-319-61982-8_12
http://dx.doi.org/10.1007/978-3-319-61982-8_12
http://dx.doi.org/10.1007/978-3-319-61982-8_13
http://dx.doi.org/10.1007/978-3-319-61982-8_14
http://dx.doi.org/10.1007/978-3-319-61982-8_14
http://dx.doi.org/10.1007/978-3-319-61982-8_15
http://dx.doi.org/10.1007/978-3-319-61982-8_15
http://dx.doi.org/10.1007/978-3-319-61982-8_16
http://dx.doi.org/10.1007/978-3-319-61982-8_17
http://dx.doi.org/10.1007/978-3-319-61982-8_18
http://dx.doi.org/10.1007/978-3-319-61982-8_18
http://dx.doi.org/10.1007/978-3-319-61982-8_19
http://dx.doi.org/10.1007/978-3-319-61982-8_19

Contents XIII

Aspect Oriented Parallel Framework for Java 220
Bruno Medeiros and Jodo L. Sobral

Gaspar Data-Centric Framework 234
Rui Silva and J.L. Sobral

A Parallel and Resilient Frontend for High Performance Validation Suites . . . 248
Julien Adam and Marc Pérache

A Heterogeneous Runtime Environment for Scientific Desktop Computing. . .. 256
Nuno Oliveira and Pedro D. Medeiros

Author Index e 271

http://dx.doi.org/10.1007/978-3-319-61982-8_20
http://dx.doi.org/10.1007/978-3-319-61982-8_21
http://dx.doi.org/10.1007/978-3-319-61982-8_22
http://dx.doi.org/10.1007/978-3-319-61982-8_23

Invited Talks

Scalable Algorithms for Bayesian Inference
of Large-Scale Models from Large-Scale Data

Omar Ghattas'®), Tobin Isaac?, Noémi Petra®, and Georg Stadler?

! Institute for Computational Engineering and Sciences,
Departments of Geological Sciences and Mechanical Engineering,
The University of Texas at Austin, Austin, USA
omar@ices.utexas.edu
2 Computation Institute, University of Chicago, Chicago, USA
3 School of Natural Sciences, University of California, Merced, Merced, USA
4 Courant Institute for Mathematical Sciences, New York University, New York, USA

One of the greatest challenges in computational science and engineering today
is how to combine complex data with complex models to create better pre-
dictions. This challenge cuts across every application area within CS&E, from
geosciences, materials, chemical systems, biological systems, and astrophysics
to engineered systems in aerospace, transportation, structures, electronics, bio-
medicine, and beyond. Many of these systems are characterized by complex non-
linear behavior coupling multiple physical processes over a wide range of length
and time scales. Mathematical and computational models of these systems often
contain numerous uncertain parameters, making high-reliability predictive mod-
eling a challenge. Rapidly expanding volumes of observational data—along with
tremendous increases in HPC capability—present opportunities to reduce these
uncertainties via solution of large-scale inverse problems.

In an inverse problem, we infer unknown model parameters (e.g., coeffi-
cients, material properties, source terms, initial or boundary conditions, geome-
try, model structure) from observations of model outputs. The need to quantify
the uncertainty in the solution of such inverse problems has attracted wide-
spread attention in recent years. This can be carried out in a systematic manner
by casting the inverse problem within the framework of Bayesian inference. In
this framework, uncertain observations and uncertain models are combined with
available prior knowledge to yield a probability density in the model parame-
ters as the solution of the inverse problem, thereby providing a rational and
systematic means of quantifying uncertainties in the inference of these parame-
ters. The resulting uncertainties in model parameters are then propagated for-
ward through models to yield predictions with associated uncertainty. Finally,
given this capability to quantify uncertainties in inverse problems, one can deter-
mine the design of the observational system (e.g., location of sensors, nature of

This work was supported by AFOSR grants FA9550-12-1-0484 and FA9550-09-
1-0608, DARPA/ARO contract W911NF-15-2-0121, DOE grants DE-SC0010518,
DE-SC0009286, DE-11018096, DE-SC0006656, DE-SC0002710, and DE-FGO02-
08ER25860, and NSF grants ACI-1550593, CBET-1508713, CBET-1507009, CMMI-
1028889, and ARC-0941678. Computations were performed on supercomputers at
TACC, ORNL, and LLNL. We gratefully acknowledge this support.

© Springer International Publishing AG 2017

I. Dutra et al. (Eds.): VECPAR 2016, LNCS 10150, pp. 3-6, 2017.
DOI: 10.1007/978-3-319-61982-8_1

4 O. Ghattas et al.

measured quantities) that maximizes the information gain from the observations
(or minimizes the uncertainty in the inferred model or subsequent prediction).
This is the optimal experimental design (OED) problem, which wraps an opti-
mization problem around the Bayesian inverse problem.

The Markov chain Monte Carlo (MCMC) method has emerged as the method
of choice for solving Bayesian inverse problems. Unfortunately, when the forward
model is large and complex (e.g., when the model takes the form of an expensive-
to-solve system of partial differential equations), and when the parameters are
high-dimensional (as results from discretization of an infinite dimensional field
such as an initial condition or heterogeneous material property), solution of
Bayesian inverse problems via conventional MCMC is intractable. Moreover,
addressing the meta-question of how to optimally obtain experimental data for
such problems via solution of an OED problem is completely out of the question.

However, a number of advances over the past decade have brought the goal of
Bayesian inference of large-scale complex models from large-scale complex data
much closer. First, improvements in scalable forward solvers for many classes
of large-scale models have made feasible numerous evaluations of model outputs
for differing inputs. Second, sustained growth in HPC capabilities has multiplied
the effects of the advances in solvers. Third, the emergence of MCMC methods
that exploit problem structure (e.g., curvature of the posterior probability) has
radically improved the prospects of sampling posterior distributions for inverse
problems governed by expensive models. And fourth, recent exponential expan-
sions of observational capabilities have produced massive volumes of data from
which inference of large computational models can be carried out.

To overcome the prohibitive nature of Bayesian methods for high-dimensional
inverse problems governed by expensive-to-solve PDEs, we exploit the fact that,
despite the large size of observational data, they typically provide only sparse
information on model parameters. This implicit dimension reduction is provided
by low rank approximations of the Hessian of the data misfit functional, which is
typically a compact operator due to ill-posedness of the inverse problem. A low
rank approximation of the Hessian can be extracted efficiently in a matrix-free
manner (without forming the Hessian) by a Lanczos [8,14] or randomized SVD
[4,5,12,15,21] method, requiring a number of matrix-vector products that scales
only with the rank of the Hessian, and not the parameter dimension. Moreover,
the rank reflects how informative the data are, i.e., how many directions in
parameter space are informed by the data. Finally, each Hessian-vector product
can be computed using just a pair of linearized forward/adjoint PDE solves
[4,5,8,9,12,14-17,21,22].

We have applied the methodology described above (for exploiting the geo-
metric structure of the posterior) to geophysical inverse problems arising in ice
sheet flow, seismic wave propagation, mantle convection, atmospheric transport,
poromechanics, and subsurface flow. We are able to substantially reduce the
effective parameter dimension (often by three orders of magnitude) at a cost,
measured in (linearized) forward/adjoint PDE solves, that is independent of
both the parameter and data dimensions [4,5,8,9,12,14,15,20,21].

Scalable Algorithms for Bayesian Inference of Large-Scale Models 5

For linearized Bayesian analysis of nonlinear inverse problems, the Hessian
evaluated at the point in parameter space that maximizes the posterior (i.e., the
MAP point) completely characterizes the uncertainty in inferred parameters.
One can build on this idea to solve optimal experimental design problems at
a cost that also does not scale with the parameter or data dimensions [1-3].
For nonlinear Bayesian inverse problems, the Hessian varies from point to point.
However the low rank Hessian approximation machinery described above can still
be exploited to accelerate MCMC sampling, by serving as an inverse covariance
approximation for a Gaussian proposal that is tailored to the local curvature of
the posterior [14,15] (this is known as the stochastic Newton method).

The most complex inverse problem for which we have carried out Bayesian
inversion involves ice sheet flow [12,15,16,22]. The flow of ice from polar ice
sheets such as Antarctica and Greenland is the primary contributor to projected
sea level rise in the 21st century. The ice is modeled as a creeping, viscous,
incompressible, non-Newtonian, shear-thinning fluid, for which we have devel-
oped custom scalable parallel solvers [13,18,19] on adaptively refined forest-of-
octree meshes [6,7,10,11], the combination of which has scaled to hundreds of
billions of unknowns on up to 1.6 million cores [4,6,18]. One of the main diffi-
culties faced in modeling ice sheet flow is the unknown spatially-varying Robin
boundary condition that describes the resistance to sliding at the base of the ice.
Satellite observations of the surface ice flow velocity can be used to infer this
uncertain basal boundary condition. We have solved this ill-posed inverse prob-
lem using the (linearized) Bayesian inference machinery described above, which
allows us to infer not only the unknown basal sliding parameters, but also the
associated uncertainty [12]. We have demonstrated that the number of required
forward solves is independent of the parameter dimension, data dimension, and
number of processor cores. The largest Bayesian inverse problem solved has over
one million uncertain parameters.

References

1. Alexanderian, A., Petra, N., Stadler, G., Ghattas, O.: A-optimal design of exper-
iments for infinite-dimensional Bayesian linear inverse problems with regularized
Lo-sparsification. SIAM J. Sci. Comput. 36(5), A2122-A2148 (2014)

2. Alexanderian, A., Petra, N., Stadler, G., Ghattas, O.: A fast and scalable method
for A-optimal design of experiments for infinite-dimensional Bayesian nonlinear
inverse problems. SIAM J. Sci. Comput. 38(1), A243-A272 (2016)

3. Alexanderian, A., Gloor, P., Ghattas, O.: On Bayesian A- and D-optimal experi-
mental designs in infinite dimensions. Bayesian Anal. 11(3), 671-695 (2016)

4. Bui-Thanh, T., Burstedde, C., Ghattas, O., Martin, J., Stadler, G., Wilcox, L.C.:
Extreme-scale UQ for Bayesian inverse problems governed by PDEs. In: Proceed-
ings of IEEE/ACM SC12 (2012)

5. Bui-Thanh, T., Ghattas, O., Martin, J., Stadler, G.: A computational framework
for infinite-dimensional Bayesian inverse problems. Part I: The linearized case, with
applications to global seismic inversion. STAM J. Sci. Comput. 35(6), A2494-A2523
(2013)

6. Burstedde, C., Ghattas, O., Gurnis, M., Isaac, T., Stadler, G., Warburton, T.,
Wilcox, L.C.: Extreme-scale AMR. In: Proceedings of ACM/IEEE SC 2010 (2010)

6

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

O. Ghattas et al.

Burstedde, C., Wilcox, L.C., Ghattas, O.: pdest: Scalable algorithms for parallel
adaptive mesh refinement on forests of octrees. STAM J. Sci. Comput. 33(3), 1103—
1133 (2011)

Flath, H.P., Wilcox, L.C., Akcelik, V., Hill, J., van Bloemen, B., Ghattas, O.:
Fast algorithms for Bayesian uncertainty quantification in large-scale linear inverse
problems based on low-rank partial Hessian approximations. SIAM J. Sci. Comput.
33(1), 407-432 (2011)

Hesse, M., Stadler, G.: Joint inversion in coupled quasistatic poroelasticity. J. Geo-
phys. Res. Solid Earth 119, 1425-1445 (2014)

Isaac, T., Burstedde, C., Ghattas, O.: Low-cost parallel algorithms for 2:1 octree
balance. In: International Parallel and Distributed Processing Symposium (IPDPS
2012), pp. 426-437. IEEE Computer Society (2012)

Isaac, T., Burstedde, C., Wilcox, L.C., Ghattas, O.: Recursive algorithms for dis-
tributed forests of octrees. SIAM J. Sci. Comput. 37(5), C497-C531 (2015)
Isaac, T., Petra, N., Stadler, G., Ghattas, O.: Scalable and efficient algorithms for
the propagation of uncertainty from data through inference to prediction for large-
scale problems, with application to flow of the Antarctic ice sheet. J. Comput.
Phys. 296(1), 348-368 (2015)

Isaac, T., Stadler, G., Ghattas, O.: Solution of nonlinear Stokes equations dis-
cretized by high-order finite elements on nonconforming and anisotropic meshes,
with application to ice sheet dynamics. STAM J. Sci. Comput. 37(6), B804-B833
(2015)

Martin, J., Wilcox, L.C., Burstedde, C., Ghattas, O.: A Stochastic Newton MCMC
method for large-scale statistical inverse problems with application to seismic inver-
sion. SIAM J. Sci. Comput. 34(3), A1460-A1487 (2012)

Petra, N., Martin, J., Stadler, G., Ghattas, O.: A computational framework for
infinite-dimensional Bayesian inverse problems: Part II: Stochastic Newton MCMC
with application to ice sheet flow inverse problems. SIAM J. Sci. Comput. 36(4),
A1525-A1555 (2014)

Petra, N., Zhu, H., Stadler, G., Hughes, T.J.R., Ghattas, O.: An inexact Gauss-
Newton method for inversion of basal sliding and rheology parameters in a nonlin-
ear Stokes ice sheet model. J. Glaciol. 58(211), 8389-903 (2012)

Ratnaswamy, V., Stadler, G., Gurnis, M.: Adjoint-based estimation of plate cou-
pling in a non-linear mantle flow model: theory and examples. Geophys. J. Int.
202(2), 768-786 (2015)

Rudi, J., Malossi, A.C.I., Isaac, T., Stadler, G., Gurnis, M., Staar, P.W.J., Ine-
ichen, Y., Bekas, C., Curioni, A., Ghattas, O.: An extreme-scale implicit solver
for complex PDEs: highly heterogeneous flow in earth’s mantle. In: Proceedings of
IEEE/ACM SC 2015 (2015)

Rudi, J., Stadler, G., Ghattas, O.: Weighted BFBT Preconditioner for Stokes Flow
Problems with Highly Heterogeneous Viscosity (submitted) (2016)

Worthen, J., Stadler, G., Petra, N., Gurnis, M., Ghattas, O.: Towards adjoint-
based inversion for rheological parameters in nonlinear viscous mantle flow. Phys.
Earth Planet. Inter. 234, 23-34 (2014)

Zhu, H., Li, S., Fomel, S., Stadler, G., Ghattas, O.: A Bayesian approach to esti-
mate uncertainty for full waveform inversion using a priori information from depth
migration. Geophysics 81(5), R307-R323 (2016)

Zhu, H., Petra, N., Stadler, G., Isaac, T., Hughes, T.J.R., Ghattas, O.: Inversion of
geothermal heat flux in a thermomechanically coupled nonlinear Stokes ice sheet
model. Cryosphere 10, 1477-1494 (2016)

Analysis of High Performance Applications
Using Workload Requirements

Mariza Ferro®™) | Giacomo Mc Evoy, and Bruno Schulze

National Laboratory of Scientific Computing, Petrépolis, Brazil
{mariza,giacomo,schulze}@lncc.br

Abstract. This short paper proposes two novel methodologies for ana-
lyzing scientific applications in distributed environments, using work-
load requirements. The first explores the impact of features such as
problem size and programming language, over different computational
architectures. The second explores the impact of mapping virtual cluster
resources on the performance of parallel applications.

Keywords: HPC - Scientific computing + Performance prediction -
Virtualization

1 Introduction

High Performance Distributed Computing is essential to improve scientific
progress in many areas of science and to efficiently deploy a number of com-
plex scientific applications. Also, the efficient deployment of High Performance
Computing applications on Clouds offers many challenges, in particular, for
communication- intensive applications. Benchmarks are good for comparisons
between computational architectures, but they are not the best approach for
evaluating if an architecture is adequate for a set of scientific applications. In
this paper, we discuss two methodologies for evaluating the impact of the under-
lying infrastructure on observed performance, both from physical and virtual
perspectives. The first methodology begins on scientific application character-
istics, and then considers how these characteristics interact with the problem
size, with the programming language and finally with a specific computational
architecture. The second methodology focuses on the case of distributed appli-
cations in virtual clusters by analyzing the impact of different VM profiles and
placements.

2 Methodology Based on Requirements

In this methodology, the performance evaluation is made considering the char-
acteristics of the applications that will be used in the HPC infrastructure, under
conditions as real as possible. It was developed based on Operational Analysis
(OA) concepts [5] from where we extract the systematic model to evaluate com-
plex systems and to provide a decision-making process to rationally choose an

© Springer International Publishing AG 2017
I. Dutra et al. (Eds.): VECPAR 2016, LNCS 10150, pp. 7-10, 2017.
DOI: 10.1007/978-3-319-61982-8_2

8 M. Ferro et al.

architecture. Also, it was made a study about the requirements of the scientific
applications, based on applications classes named Dwarfs [1]. These classes rep-
resent the behavior in terms of computational requirements. These requirements
were studied, modeled and a set of parameters were defined for the methodology
(Essential Elements of Analysis - EEA).

The methodology comprises a set of phases and respective steps, briefly
described next. All phases and steps of the methodology are detailed in [2].

2.1 Description of Methodology Phases

The first phase is the Definition Problem in which the real problem and the
objective of the methodology application are clearly defined. In sequence, the
phase Problem Detailing Analysis details the user problem, searching the com-
plete definition of requirements. It is very important here the knowledge acquired
about each application, focus of the evaluation: the real problem sizes/workload
executed, programming languages, applications executed sequentially or in par-
allel, etc. Further, the relative importance of each one is defined in a subjective
way by researchers and converted in a set of numerical weights by means of
Analytic Hierarchy Process (AHP). Beyond those critical issues, the Measures
of Effectiveness (MOEs) and EEA are defined. A MOE of a system is a parame-
ter that evaluates the capability of the system to accomplish its assigned goal
under a given set of conditions. The implementation phase is where the test
planning is completed, based on both aforementioned phases. The methodology
endorses that the real application and workloads must be used for performance
evaluation, enabling an evaluation as real as possible. However, we know that
it is not always possible, for example by confidentiality or software licenses. So,
in this case the real applications are mapped to a Dwarf class. The model for
mapping applications to Dwarf comprises a set of rules that enable us to define
the class of an application based on the EEA measured under the execution
tests. Based on the classification of each application, one or more benchmarks
are defined to be executed as evaluation test. The last phase is Communication
of Results, in which data collected on tests are confronted with MOEs and the
data from different providers are compared. For this phase it was developed a
Gain Function (GF) that enables the decision based on quantitative and qual-
itative parameters about the problem of the researcher. Using MOEs and the
GF, it is possible to define the operational effectiveness and suitability of the
infrastructure. The GF is briefly described in Eq. 1 [3].

G(k) =wq Y w;D(j,k) + wCr, k=1,...,m (1)
j=1

For each application j, 7 = 1,...,n, on each evaluated infrastructure Ey,
k = 1,...,m, the execution time ¢(j, k) is measured. For each application j it is
assigned a weight w;. Also, for each architecture is considered its cost cj. Let w,
and wy be the weights for cost and performance. From those operational values,
the GF enables to consider the performance (execution time) of each scientific
application for each architecture evaluated.

Analysis of High Performance Applications Using Workload Requirements 9

3 Multi-dimensional Analysis on Virtual Clusters

This methodology proposes the utilization of Canonical Correlation Analysis
(CCA) to find optimal virtual cluster settings of an application, accounting for
its communication pattern. It is built upon three sources of information:

1. Characteristics about how the virtual cluster is defined and deployed;
2. Characteristics of the performance of the target application;
3. Characteristics about the nature of the workload using Dwarfs.

Extracting Characteristics: The Cluster Placement [4] was proposed to
address the limitations of current descriptions of virtual clusters. Most repre-
sentations focus solely on the dimensions of the virtual cluster. These elements
can be directly observed by a parallel application running on the cluster. With
our proposed model, it is not only possible to determine which VMs execute
on which physical machine, but also know how each virtual core is mapped to
underlying hardware using virtual core pinning (or lack thereof). This enriched
information allow us to map virtualization characteristics to performance more
effectively.

In order to understand the effect that Cluster Placement exerts on the per-
formance of an application, we developed the VESPA (Virtualized Experiments
for Scientific Parallel Applications) framework that manages the systematic
execution of the application along several scenarios with different Cluster Place-
ments. Executions were performed in a controlled environment to isolate result-
ing variability to characteristics of the Cluster Placement. The framework
registers a series of performance metrics to be related to each execution, both
(i) user-centric (runtime, application/kernel time, application-specific); (ii)
system-centric (physical/virtual CPU and network utilization).

Mapping Characteristics to Performance: The nature of the workload is
extracted by an equivalence to one of the Dwarfs [1], and at least one repre-
sentative benchmark. The representative benchmarks are executed beforehand
over several possible Cluster Placements (hundreds), and the relevant metrics
are gathered, thereby creating a performance matrix.

For a given target application, a series of Cluster Placements (in our expe-
rience, at least 40) are proposed to create an initial profile for the application
over virtualized environments. CCA enables us to find relationships between the
datasets of the target and the representative application of the corresponding
Dwarf. Within the space obtained through dimensionality reduction, we find lin-
ear regressions between performance and placement, and therefore we can predict
performance for new placements using interpolations. For the Structured Grid
Dwarf, we obtained accuracy higher than 90% in performance prediction, when
at least 50 data points are known.

4 Summary

The methodology based on applications requirements can assists researchers
to define what is the best to solve their set of scientific applications. The

10 M. Ferro et al.

methodology enables to define representative evaluation tests, including a model
to define a representative benchmark, when the real application could not be
used. Also, the GF allows a decision-making based on the performances of a set
of applications and architectures and its relative importance. We made a case
study for bioinformatics applications, in which some steps are detailed and where
the methodology proved to be useful and relevant [3].

The proposed methodology based on Cluster Placement and VESPA was
helpful in understanding how latency effects can be minimized by carefully con-
structing virtual clusters. The relationship between performance and Cluster
Placement appears non-linear and complex, but by using CCA we were able
to find linear relationships between two sets of relationships, enabling reason-
ably accurate predictions. The accuracy seems to depends on the type of Dwarf,
whereby applications with higher frequency of communication are more difficult
to predict.

References

1. Asanovic, K., Bodik, R., Demmel, J., Keaveny, T., Keutzer, K., Kubiatowicz, J.,
Morgan, N., Patterson, D., Sen, K., Wawrzynek, J., Wessel, D., Yelick, K.: A view
of the parallel computing landscape. Commun. ACM 52(10), 56—67 (2009). http://
doi.acm.org/10.1145/1562764.1562783

2. Ferro, M., Mury, A.R., Schulze, B.: Manual de metodologia de andlise operacional
de sistemas de computacdo cientifica distribuida de alto desempenho. Relatérios
de Pesquisa e Desenvolvimento do LNCC 01/2015, Laboratério Nacional de Com-
putacao Cientifica, Petropolis (2015). www.lncc.br

3. Ferro, M., Nicolds, M.F.; del Rosario, Q., Saji, G., Mury, A.R., Schulze, B.:
Leveraging high performance computing for bioinformatics: a methodology that
enables a reliable decision-making. In: 16th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing, CCGrid 2016, Cartagena, 16—19 May 2016,
pp. 684-692. IEEE Computer Society (2016)

4. Mc Evoy, G., Porto, F., Schulze, B.: A representation model for virtual machine allo-
cation. In: International Workshop on Clouds and (eScience) Applications Manage-
ment - CloudAM 2012. 2012 IEEE/ACM Fifth International Conference on Utility
and Cloud Computing (2012)

5. Wagner, D., Mylander, W., Sanders, T.: Naval Operations Analysis, 3rd edn. Naval
Institute Press, Annapolis (1999)

http://doi.acm.org/10.1145/1562764.1562783
http://doi.acm.org/10.1145/1562764.1562783
www.lncc.br

Hard Faults and Soft-Errors: Possible Numerical
Remedies in Linear Algebra Solvers

E. Agullo', S. Cools?, L. Giraud!®) A. Moreau', P. Salas®, W. Vanroose?,
E.F. Yetkin*, and M. Zounon®

! Inria, Bordeaux, France
luc.giraud@inria.fr
2 University of Antwerp, Antwerp, Belgium
3 Sherbrooke University, Sherbrooke, Canada
4 Istanbul Kemerburgaz University, Istanbul, Turkey
5 The University of Manchester, Manchester, UK

Abstract. On future large-scale systems, the mean time between fail-
ures (MTBF) of the system is expected to decrease so that many faults
could occur during the solution of large problems. Consequently, it
becomes critical to design parallel numerical linear algebra kernels that
can survive faults. In that framework, we investigate the relevance of
approaches relying on numerical techniques, which might be combined
with more classical techniques for real large-scale parallel implementa-
tions. Our main objective is to provide robust resilient schemes so that
the solver may keep converging in the presence of the hard fault with-
out restarting the calculation from scratch. For this purpose, we study
interpolation-restart (IR) strategies. For a given numerical scheme, the
IR strategies consist of extracting relevant information from available
data after a fault. After data extraction, a well-selected part of the miss-
ing data is regenerated through interpolation strategies to constitute
a meaningful input to restart the numerical algorithm. In this paper,
we revisit a few state-of-the-art methods in numerical linear algebra in
the light of our IR strategies. Through a few numerical experiments, we
illustrate the respective robustness of the resulting resilient schemes with
respect to the MTBF via qualitative illustrations.

Keywords: Numerical resiliency + Hard fault + Soft fault - Numerical
linear algebra - Krylov linear solvers - Eigensolvers

1 Introduction

One of the current challenge in high performance computing (HPC) is to increase
the level of concurrency by using the largest number of resources operated at
lower energy consumption. The use of these parallel resources at large scale
leads to a significant decrease of the mean time between faults (MTBF) of HPC
systems. To cope with these unstable situations, parallel applications have to be
resilient, i.e., be able to compute a correct output despite the presence of faults.

© Springer International Publishing AG 2017
I. Dutra et al. (Eds.): VECPAR 2016, LNCS 10150, pp. 11-18, 2017.
DOI: 10.1007/978-3-319-61982-8_3

12 E. Agullo et al.

To guarantee fault tolerance, two classes of strategies are required. One for
the fault detection and the other for fault correction. Faults such as computa-
tional node crashes are obvious to detect while silent faults may be challenging
to detect. To cope with silent faults, a duplication strategy is commonly used for
fault detection [14] by comparing the outputs, while triple modular redundancy
(TMR) is used for fault detection and correction [25]. However, the additional
computational resources required by such replication strategies may represent
a severe penalty. Instead of replicating computational resources, studies [7,26]
propose a time redundancy model for fault detection. It consists in repeating
computation twice on the same resource. The advantage of time redundancy
models is the flexibility at application level; software developers can indeed select
only a set of critical instructions to protect. Recomputing only some instruc-
tions instead of the whole application lowers the time redundancy overhead [19].
In some numerical simulations, data naturally satisfy well defined mathemati-
cal properties. These properties can be efficiently exploited for fault detection
through a periodical check of the numerical properties during computation [9].

Checkpoint /restart is the most studied fault recovery strategy in the context
of HPC systems. The common checkpoint/restart scheme consists in periodi-
cally saving data onto a reliable storage device such as a remote disk. When a
fault occurs, a roll back is performed to the point of the most recent and consis-
tent checkpoint. According to the implemented checkpoint strategy, all processes
may perform the periodical record simultaneously. It is called a coordinated
checkpoint [10,21,24]. In parallel distributed environments, synchronizations due
to coordination may significantly degrade application performance [11,18]. To
avoid synchronization, uncoordinated checkpoint may be employed combined
with message logging protocols [5,15]. Many mechanisms have been developed
to lower the overhead of the checkpoint/restart strategy [17,22,27]. However, the
additional usage of resources (such as memory, disk) that is required by check-
point/restart schemes may be prohibitive, or the time to restore data might
become larger than the MTBF [8].

Algorithm based fault tolerance (ABFT) is a class of approaches in which
algorithms are adapted to encode extra data for fault tolerance at expected low
cost [6,12,13,20]. The basic idea consists in maintaining consistency between
extra encoded data and application data. The extra encoded data can be
exploited for fault detection and for loss data recovery. ABFT strategies may
be excellent candidates to ensure the resilience of an application; however they
induce extra costs for computing and storing the data encoding even when no
fault occurs.

In this paper, we present numerical resilient methods for linear algebra prob-
lems that are the innermost numerical kernels in many scientific and engineering
applications and also often ones of the most time consuming parts. We consider
iterative methods that are widely used in many engineering applications. In addi-
tion to having attractive computational features for efficient parallel implemen-
tations, iterative methods are potentially more resilient. After a “perturbation”
induced by a fault, the computed iterate can still serve as an initial guess as long
as the key data that define the problem to solve, that are the matrix and the

Hard Faults and Soft-Errors: Possible Numerical Remedies 13

right-hand side for linear system solver or simply the matrix for eignesolvers,
are not corrupted. We exploit this natural resilience potential to design robust
resilience iterative solvers which may still converge in the presence of successive
and possibly numerous faults.

2 Interpolation Policies

In the context of parallel distributed computing, common faults are hardware
node crashes. To cope with such node crashes often referred to as hard faults, an
interpolation strategy has been introduced first for GMRES in [16] and extended
and generalized to CG and GMRES in [3] where its theoretical properties are
further studied. It consists in computing meaningful values for the lost entries
of the current iterate through the solution of a relatively small linear system.
The recovered iterate is then used as a new initial guess to restart GMRES. We
name Linear Interpolation this class of methods and denote it LI. An alternative
interpolation approach is based on a linear least squares solution. We name Least
Square Interpolation this class of more robust but potentially more expensive
methods and denote it LSI in the sequel. These LI and LSI numerical resilient
strategies are called Interpolation-Restart (IR) strategies.

Assumption 1. In our parallel computational context, all the vectors or matri-
ces of dimension n are distributed by blocks of rows in the memory of the different
computing nodes but scalars or low dimensional matrices are replicated.

For the sake of simplicity of exposure, we first describe the interpolation
policies in the context of linear solvers and extend them to eigensolvers. We
consider the solution of sparse linear system

Ax =b,
where the matrix A € R™*"™ is nonsingular, the right-hand side b € R™ and
the solution x € R™. According to Assumption 1, the right-hand side b and the
coefficient matrix A are distributed according to a block-row partition as well
as all vectors of dimension n generated during the solve step whereas scalars or
low dimensional matrices are replicated on all nodes. Let N be the number of
partitions, such that each block-row is mapped to a computing node. For all p,
p € [1, N], I, denotes the set of row indices mapped to node p. With respect to
this notation, node p stores the block-row A 1,,- and x, as well as the entries of all
the vectors involved in the solver associated with the corresponding row indices
of this block-row. If the block Az, ;, contains at least one nonzero entry, node p
is referred to as neighbor of node ¢ as communication will occur between those
two nodes to perform a parallel matrix-vector product. By J, = {{, ar,1, # 0},
we denote the set of row indices in the block-column A. ; that contain nonzero
entries and |J,,| denotes the cardinality of this set.

When a node crashes, all available data in its memory are lost. We consider
the formalism proposed in [16] in the same computing framework, where data loss

14 E. Agullo et al.

are classified into three categories: computational environment, static data and
dynamic data. The computational environment is all data needed to perform the
computation (code of the program, environment variables, ...). Static data are
those that are setup during the initialization phase and that remain unchanged
during the computation. They correspond to the input data to the problem
and include in particular the coefficient matrix A, the right-hand side vector b.
Dynamic data are all data whose value may change during the computation. The
Krylov basis vectors (e.g., Arnoldi basis, descent directions, residual, ...) and
the iterate are examples of dynamic data. In particular, we assume that when
a fault occurs, the crashed node is replaced and the associated computational
environment and static data are restored.

The LI strategy, first introduced in [16], consists in interpolating lost data
by using data from surviving nodes. Let (/) be the approximate solution when
a fault occurs. After the fault, the entries of 2(f) are known on all nodes except
the failed one. The LI strategy computes a new approximate solution by solving
a local linear system associated with the failed node. If the node p fails, (&0 is
computed via

2D =il for g # p,
(LI) AI_ o bI 72‘4[I, :Zf(f)) (1)

q#p

Alternatively, LSI, relies on a least squares solution. Assuming that the node
p has crashed, x7, is interpolated as follows:

2y = o) for ¢ # p,

(LSI) = argmin||(b — ZA I, x(f)) A e (2)

TIp a#p

Those ideas can be extended to the solution of the standard eigenproblem of
the form:
Au = u,

where A € C™"*", with u # 0, u € C"™ and A € C. The couple (A, u) is called an
eigenpair of A where the vector u is an eigenvector with the associated eigen-
value .

The IR strategies consist in interpolating lost data by using non-corrupted
data. Let ul) be an approximated eigenvector when a fault occurs. After the
fault, the entries of (/) are correct, except those stored in the failed node p.
Assuming that in a parallel distributed environment, the current eigenvalue Ay is
naturally replicated in the memory of the different computing nodes, we present
two strategies to compute a new approximate eigenvector. The first strategy,
referred to as linear interpolation and denoted LI, consists in solving a local linear
system associated with the submatrices A 1,.1, of the failed node. The second
one relies on the solution of a least squares interpolation and is denoted LSI.
Those two alternatives result from considering (A, ulf)) as an exact eigenpair.

Hard Faults and Soft-Errors: Possible Numerical Remedies 15

We may have a block row viewpoint, which defines the LI variant. If node p fails,

LI computes a new approximation of the eigenvector u(E?) as follows
up ! = ! for 4 # p,
) = (A, = Mi,1) 7 - Anr i)

a#q

Alternatively, we can have a block column point of view, which leads to the LSI
variant that computes wESD) yig,

WESD _ 4D

q q
¥ = argmin|| (A, 1, — A1,)ur, — > (Aur, — Mg,)ui)|.

P
“Tp q#p

for q # p,

Here, 7,, € C**" is the identity matrix and we furthermore assume that
(Ag,.1, — M, 1,) is non singular and that (A.;, — AZ. ;) has full rank.

3 Numerical Experiments

In order to study the numerical behavior of the IR strategies, and illustrate
their possible robustness and weaknesses, we consider three additional executions
in our numerical experiments. To distinguish between the interpolation quality
effect and possible convergence delay introduced by the restart, we also report
on what is referred to as the Enforced Restart (ER) execution. It consists in
enforcing the solver to restart at iteration f.

The faulty parallel environment is simulated with the following procedure as
a sequence of crash nodes occurring at certain dates (iteration numbers). The
iterations at which faults occur are decided following a pseudo-random Weibull
probability distribution, considered as a relevant and realistic probabilistic model
for characterizing the behavior of large-scale computational platforms [23].

In Fig.1, we investigate the robustness of the IR strategies when the rate
of faults is varied while the amount of recovered entries remains the same after
each fault, that is 0.2%. Those experiments are conduced with a GMRES(100)
using the kim1 matrix. An expected general trend that can be observed on that
example is: the larger the number of faults the slower the convergence. When only
a few faults occur, the convergence penalty is not significant compared to the
non-faulty case. For a large number of faults, the convergence is slowed down
but continues to take place. For instance, for an expected accuracy of 1077,
the number of iterations with 40 faults is twice the one without fault. More
information and details on those resilient numerical techniques can be found
in [3].

For the eigensolver, we illustrate the resilience of the IR strategies designed
for Jacobi-Davidson. In these experiments, we seek the five (nev = 5) eigenpairs
whose eigenvalues are the closest to zero. To facilitate the readability and the
analysis of the convergence histories plotted in this section, we only report on

16 E. Agullo et al.

1 1
|
01y 01 K d"\
oo L\, oo L\ I L NSRRIV IS
0.001 = 0.001 R\ K AN v“V \| NJI\
- 0.0001 b= _ 00001 — i
) Ny)
= 1e-05 = 1e-05
= ~ 7 ~
< 1e-06 < 1e-06 s
£ ., £ S
= 1e07 _— = 1e07
=
1e-08 B 1e-08
“a.
1e:09 | Reset N 1e:09 | Reset
L —— Ne. [
lel0 LSl —e— Sa lel0 LSl —e—
ER ER
le-11 s . L le-11 s .
0 140 280 420 560 700 840 980 1120 1260 1400 0 140 280 420 560 700 840 980 1120 1260 1400
Iteration Iteration
4 faults 40 faults

Fig. 1. Numerical behavior of the IR strategies when the rate of faults varies (matrix
Kim/kim1 with 0.2% data loss at each fault)

l Lsi l Lsi
le401 M\If‘ NF —o— le+01 i [N E——
— 1 — 1 i\
< <
S k=t \
€ ol € ot
8 Kl
= 001 = 001
3 0.001 3 0.001
£ \ \ \ \ \ £
S o000 S o000
= 105 \ = 1e:05
106 ‘ 106
1e:07 1e:07 - e - e

0 300 60 90 120 150 180 210 240 270 300 0 30060 90 120 150 180 210 240 270 300
Iteration Iteration

3 faults 24 faults

Fig. 2. Impact of the fault rate on the resilience of LSI when computing the five
eigenpairs associated with the smallest eigenvalues using Jacobi-Davidson. The
fault rate varies whereas a proportion of 0.2% of data is lost at each fault. (Color figure
online)

results for one LSI strategy and the non faulty execution (NF). In these plots,
we use vertical green lines to indicate the convergence of new eigenpairs (such as
iterations 100, 122, 187 and 218 for the 3 fault graph in Fig.2 and vertical red
lines to indicate faulty iterations (such as iterations 70, 140 and 210 still in the 3
fault graph). We indicate the number of Schur vectors retrieved in the basis used
to restart in red color under the vertical red line corresponding to the associated
fault. For instance, 2 already converged Schur vectors are immediately retrieved
at the restart, after the fault at iteration 140 in the 3 fault graph.

In Fig. 2 we depict the convergence histories when the fault rate varies leading
to a number of faults that goes from 3 to 24; as expected, the larger the number
of faults, the larger the convergence delay. However, the IR policy is rather robust
and succeeds in converging the five eigenpairs in both cases. More information

Hard Faults and Soft-Errors: Possible Numerical Remedies 17

and details on those resilient numerical techniques for classical eigensolvers can
be found in [4].

4 Concluding Remarks

Many scientific and engineering applications require the solution of linear algebra
problems such as linear system solutions or eigenproblems. The objective of the
work has been to propose and study numerical schemes suitable for the design of
resilient parallel solvers. For that purpose, we have proposed two interpolation
procedures to regenerate meaningful information for restarting the solvers after
a fault. To evaluate the qualitative behavior of the resilient schemes, we have
simulated stressful conditions by increasing the fault rate and the volume of
data loss. One of the main features of this numerical remedy is that it does not
require extra resources, i.e., computational unit or computing time, when no
fault occurs.

On the route of robust and resilient numerical linear algebra solvers, another
challenge to address is related to soft-errors where the detection of a fault is
already complex. This is an ongoing research activity we conduce and hope to
have soon interesting results to present [1,2].

References

1. Agullo, E., Cools, S., Giraud, L., Vanroose, W., Yetkin, F.E.: On the sensitivity of
CG to soft-errors and robust numerical detection mechanisms. Research Report in
Preparation, Inria (2017)

2. Agullo, E., GiraudL, L., Moreau, A.: Adaptive soft-error detection criterion for
GMRES. Research Report in Preparation, Inria (2017)

3. Agullo, E., Giraud, L., Guermouche, A., Roman, J., Zounon, M.: Numerical recov-
ery strategies for parallel resilient Krylov linear solvers. Numer. Linear Algebra
Appl. 23, 888-905 (2016)

4. Agullo, E.,; Giraud, L., Salas, P., Zounon, M.: Interpolation-restart strategies for
resilient eigensolvers. STAM J. Sci. Comput. 38(5), C560-C583 (2016)

5. Alvisi, L., Marzullo, K.: Message logging: pessimistic, optimistic, causal, and opti-
mal. IEEE Trans. Softw. Eng. 24(2), 149-159 (1998)

6. Anfinson, J., Luk, F.T.: A linear algebraic model of algorithm-based fault tolerance.
IEEE Trans. Comput. 37, 1599-1604 (1988)

7. Austin, T.M.: DIVA: a reliable substrate for deep submicron microarchitecture
design. In: Proceedings of the 32nd Annual ACM/IEEE International Symposium
on Microarchitecture, MICRO 32, Washington, DC, pp. 196-207. IEEE Computer
Society (1999)

8. Cappello, F., Casanova, H., Robert, Y.: Preventive migration vs. preventive check-
pointing for extreme scale supercomputers. Parallel Process. Lett. 21, 111-132
(2011)

9. Chen, Z.: Online-ABFT: an online algorithm based fault tolerance scheme for
soft error detection in iterative methods. In: ACM SIGPLAN Notices, vol. 48,
pp. 167-176. ACM (2013)

18

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

E. Agullo et al.

Elnozahy, E.N.; Alvisi, L., Wang, Y.-M., Johnson, D.B.: A survey of rollback-
recovery protocols in message-passing systems. ACM Comput. Surv. 34(3),
375-408 (2002)

Elnozahy, E.N., Johnson, D.B., Zwaenepoel, W.: The performance of consistent
checkpointing. In: Proceedings of the 11th Symposium on Reliable Distributed
Systems, pp. 39-47, October 1992

Gunnels, J.A., Van De Geijn, R.A., Katz, D.S., Quintana-orti, E.S.: Fault-tolerant
high-performance matrix multiplication: theory and practice. In: Dependable Sys-
tems and Networks, pp. 47-56 (2001)

Huang, K.-H., Abraham, J.A.: Algorithm-based fault tolerance for matrix opera-
tions. IEEE Trans. Comput. 33, 518-528 (1984)

Iyer, R.K., Nakka, N.M., Kalbarczyk, Z.T., Mitra, S.: Recent advances and new
avenues in hardware-level reliability support. IEEE Micro 25(6), 18-29 (2005)
Johnson, D.B., Zwaenepoel, W.: Sender-based message logging (1987)

Langou, J., Chen, Z., Bosilca, G., Dongarra, J.: Recovery patterns for iterative
methods in a parallel unstable environment. SIAM J. Sci. Comput. 30, 102-116
(2007)

Li, C.-C.J., Fuchs, W.K.: Catch-compiler-assisted techniques for checkpointing. In:
20th International Symposium on Fault-Tolerant Computing. FTCS-20. Digest of
Papers, pp. 74-81, June 1990

Liu, Y., Nassar, R., Leangsuksun, C.B., Naksinehaboon, N., Paun, M., Scott, S.L.:
An optimal checkpoint/restart model for a large scale high performance computing
system. In: IEEE International Symposium on Parallel and Distributed Processing
(IPDPS 2008), pp. 1-9, April 2008

Oh, N., Shirvani, P.P., McCluskey, E.J.: Error detection by duplicated instructions
in super-scalar processors. IEEE Trans. Reliab. 51(1), 63-75 (2002)

Plank, J.S., Kim, Y., Dongarra, J.: Fault tolerant matrix operations for networks
of workstations using diskless checkpointing. J. Parallel Distrib. Comput. 43(2),
125-138 (1997)

Plank, J.: An overview of checkpointing in uniprocessor and distributed systems,
focusing on implementation and performance. Technical report UT-CS-97-372,
Department of Computer Science, University of Tennessee (1997)

Plank, J.S., Li, K.: ICKP: a consistent checkpointer for multicomputers. Parallel
Distrib. Technol. Syst. Appl. 2(2), 62-67 (1994). IEEE

Raju, N., Liu, Y., Leangsuksun, C.B., Nassar, R., Scott, S.: Reliability Analysis in
HPC clusters. In: Proceedings of the High Availability and Performance Computing
Workshop (2006)

Sancho, J.C., Petrini, F., Davis, K., Gioiosa, R., Jiang, S.: Current practice and
a direction forward in checkpoint/restart implementations for fault tolerance. In:
Proceedings of 19th IEEE International Parallel and Distributed Processing Sym-
posium, April 2005

Scholzel, M.: Reduced triple modular redundancy for built-in self-repair in VLIW-
processors. In: Signal Processing Algorithms, Architectures, Arrangements and
Applications, pp. 21-26 (2007)

Vijaykumar, T.N., Pomeranz, I., Cheng, K.: Transient-fault recovery using simulta-
neous multithreading. In: Proceedings of the 29th Annual International Symposium
on Computer Architecture, pp. 87-98 (2002)

Wang, C., Mueller, F., Engelmann, C., Scott, S.L.: Hybrid full/incremental check-
point /restart for MPI jobs in HPC environments. Department of Computer Sci-
ence, North Carolina State University (2009)

Applications

SIMD Parallel Sparse Matrix-Vector
and Transposed-Matrix-Vector Multiplication
in DD Precision

Toshiaki Hishinuma!®™), Hidehiko Hasegawa'?, and Teruo Tanaka?

! University of Tsukuba, Tsukuba, Japan
hishinuma@slis.tsukuba.ac.jp
2 Kogakuin University, Tokyo, Japan

Abstract. We accelerate a double-precision sparse matrix and DD vec-
tor multiplication (DD-SpMV) and its transposition and DD vector mul-
tiplication (DD-TSpMV) using SIMD AVX2. AVX2 requires changing
the memory access pattern to allow four consecutive 64-bit elements to
be read at once. In our previous research, DD-SpMV in CRS using AVX2
needed non-continuous memory load, processing for the remainder, and
the summation of four elements in the AVX2 register. These factors
degrade the performance of DD-SpMV. In this paper, we compare the
storage formats of DD-SpMV and DD-TSpMV for AVX2 to eliminate
the performance degradation factors in CRS. Our result indicates that
BCRS4x1, whose block size fits the AVX2 register’s length, is effective
for DD-SpMV and DD-TSpMV.

Keywords: Matrix storage format - SpMV - Transposed SpMV -
Double-double precision arithmetic - AVX2

1 Introduction

High-precision arithmetic operations reduce rounding errors and improve the
convergence of Krylov subspace methods [1]; however, they are very costly.
Double-double-precision (DD) arithmetic, which is one type of high-precision
arithmetic, is constructed by combining double-precision operations, but it
requires more than 10 double-precision operations for one DD operation [2].
However, it can greatly speed up performance using SIMD because it has a
smaller memory access rate than double-precision arithmetic [4].

A sparse matrix and vector multiplication take much time in Krylov sub-
space methods. We accelerated the double-precision sparse matrix and the DD
vector multiplication (DD-SpMV) and its transposition and the DD vector mul-
tiplication (DD-TSpMYV) using advanced vector extensions 2 (AVX2) [3,4]. The
AVX2 instruction set, which is a 256-bit single instruction multiple data stream-
ing (SIMD) instruction set, provides fused multiply and add instruction (FMA).
AVX2 simultaneously computes four double-precision FMA instructions.

© Springer International Publishing AG 2017
I. Dutra et al. (Eds.): VECPAR 2016, LNCS 10150, pp. 21-34, 2017.
DOI: 10.1007/978-3-319-61982-8_4

22 T. Hishinuma et al.

AVX2 required changing the memory access pattern to allow four consecu-
tive 64-bit elements to be read at once. In DD-SpMV and DD-TSpMV for a
compressed row storage format (CRS) [5], a non-continuous memory load and
store are needed for using AVX2. In addition, since it must simultaneously com-
pute four double-precision data. Furthermore, processing for the remainder in
each row is needed, because AVX2 must simultaneously compute four double-
precision data. Consequently, the performance might be degraded. We call these
CRS problems, collectively, performance degradation factors.

To avoid them, we use the BCRS format [5], which divides matrix A into
r X ¢ small dense submatrices (called blocks), which might include some zero-
elements. BCRS4x1, 2 x 2, and 1 x 4 (r x ¢ = 4) can simultaneously compute
four elements.

BCRS4x1 (r = 4, ¢ = 1) is suitable for DD-SpMV using AVX2 because the
block size fits the SIMD register’s length [6]. However, since BCRS4x1 requires
up to four times the amount of operations and data as CRS. In DD-TSpMV,
BCRS4x1 fails to eliminate performance degradation factors. Consequently, we
must compare BCRS1x4 and BCRS4x1.

In this paper, we show that the effective implementation of DD-SpMV and
DD-TSpMV improves the AVX2 performance and analyze the optimal storage
format to eliminate the performance degradation factors in CRS.

2 Related Work

XBLAS [7] is a well-known extended precision BLAS whose input and output
are double-precision that internally uses the DD operations. However, it does
not accelerate them using SIMD.

Lis [8], which is an iterative solver library, internally uses DD operations,
which are accelerated by SIMD SSE2. SSE2 has 128-bit SIMD registers.

On the other hand, Karakasis [9] and Im [10] accelerated a double-precision
SpMV. Blocking, which fits the SIMD register’s length, is effective for a double-
precision SpMV. In AVX2, BCRS4x1 is effective. Xing [11] implemented a
double-precision SpMV in ELLPACK and an ELLPACK sparse block format
on MIC (Intel many integrated core architecture).

However, since these studies, which failed to evaluate TSpMV, are only dou-
ble precision, we must compare DD-SpMV in BCRS1x4 and BCRS4x1.

3 Implementation of DD-SpMV and DD-TSpMV
Using AVX2

3.1 DD Arithmetic

DD arithmetic, which is based on error-free, floating-point arithmetic algorithms
by Dekker [12] and Knuth [13], only consists of combinations of double-precision
values and uses two double-precision variables to implement one quadruple pre-
cision variable [2].

SIMD Parallel SpMV and TSpMV in DD Precision 23

An IEEE 754 quadruple precision variable consists of a 1-bit sign part, a
15-bit exponent part, and a 112-bit significand part. A DD-precision variable
consists of a 1-bit sign part, an 11-bit exponent part, and a 104-bit (52 x 2)
significand part. The exponent part of a DD-precision variable is 4 bits shorter
and the significand part is 8 bits shorter than the exponent and significand parts
of an IEEE 754 quadruple precision variable, respectively.

The simplest way to use IEEE 754 quadruple precision is with Fortran
REAL*16. We compared Fortran REAL*16 using an Intel Fortran compiler
13.0.1 (ifort) and DD arithmetic without any SIMD instructions. The compiler
option in ifort was -O3. Fortran REAL*16 in ifort was only implemented by inte-
ger operations. We computed y = o X + y, where & and y are the quadruple
precision vectors and « is quadruple precision variable. Two 10° vectors, and
y, can be stored in the cache. The elapsed time of Fortran REAL*16 was 2.7 ms
and that of the DD arithmetic was 0.64ms in 1 thread, which means that the
DD arithmetic was 4.2 times faster than Fortran REAL*16.

DD addition consists of 11 double-precision additions, and DD multiplication
consists of 10 double-precision operations: three double-precision additions, three
double-precision multiplications, and two double-precision FMA instructions
(3+ 3+ 2 x 2=10 flops).

In DD multiplication, two sign inversions are needed. However, since AVX2
lacks sign inversion instruction, we use two double-precision multiplications for
two sign inversion. This flop count consists of these multiplications.

We implemented DD vector & using two double-precision arrays («.hi and
x.lo) for the SIMD acceleration.

The bytes/flops of the DD operations are lower than those of the double-
precision operations. For example, in the DD-SpMV kernel stored in CRS, the
memory requirement is 28 bytes: 8 bytes for matrix A, 16-byte vector «, and 4 bytes
for the vector column index. We postulate that loading vector & has a cache miss.

The bytes/flops of double-precision SpMV is 20 (bytes)/2 (flops) = 10, those
of the DD matrix and the DD vector product is 36 (bytes)/23 (flops) = 1.56,
and those of DD-SpMV is 28 (bytes)/21 (flops) = 1.33. The byte/flop value of
DD-SpMYV is 13% of double-precision SpMV and 85% of the DD matrix and the
DD vector product.

DD-SpMYV is expected to greatly speed up the SIMD acceleration because
of the amount of data required for the memory. In many cases, for an iterative
solver library, input matrix A, which is given in double precision, is iteratively
used. To reduce the memory access of the sparse matrix and the vector product,
we use double-precision sparse matrix A and DD-precision vector & product.

3.2 Intel SIMD AVX2

In this section, we introduce Intel SIMD AVX2. AVX2 must simultaneously
compute, load, and store four double-precision variables. DD-SpMV and DD-
TSpMV use three types of load AVX2 instructions (_mm256_load_pd (load),
_mm256_broadcast_sd (broadcast), and _mm256_set_pd (set)) and one store
instruction (_mm256_store_pd (store)).

24 T. Hishinuma et al.

These instructions have the following descriptions:

— The “load” instruction loads four continuous double-precision elements that
begin with the same source memory address.

— The “broadcast” loads one double-precision element from one source memory
address to all the elements of the SIMD register.

— The “set” loads four double-precision elements from four different source
memory addresses.

— The “store” stores four continuous double-precision elements from the register
to the memory beginning with the same source address.

We easily implemented the following three macro-functions (i.e. “SCATTER”,
“REDUCTION”, “FRACTION_PROCESSING”) to SIMD-ize DD-SpMV and
DD-TSpMV.

To perform random store operation “scatter,” we implemented a “SCAT-
TER” macro-function using “store” and ordinary instructions. We also imple-
mented “SCATTER” to store the double-precision temporary array using the
“store” instruction and stored valuables using ordinary double-precision store
instructions.

To store the summation of the elements in the SIMD register storage into
one source address, we implemented a “REDUCTION” macro-function that
computes a summation of four DD variables in two SIMD registers (high and
low). We implemented “REDUCTION” using the “shuffle” instruction, which
rearranges the double-precision elements. For example, the AVX2 register has
{a, b, ¢, d} elements. First, the “shuffle” instruction makes {b, a, d, ¢} ele-
ments of AVX2 register from {a, b, ¢, d}. Second, we operate the DD addition
using the AVX2 of these registers, and then {a + b, a + b, ¢ + d, ¢ + d} AVX2
register is made. Finally, we operate the DD addition using ordinary instructions
for the second and third elements. ‘REDUCTION” consists of “shuffle” instruc-
tions and 11 (DD addition using AVX2) + 11 (DD addition using ordinary
instruction) = 22 flops.

To judge the processing for the AVX2 remainder, which is one, two, or
three elements for each row in the case of CRS, we implemented a “FRAC-
TION_PROCESSING” macro-function, which assigns zero to the “set” operand
at the execution and three conditional branchings.

“FRACTION_PROCESSING” consists of the following C code:

av = load(A[valuel[jl]);
yv = set_zero();
case (r == 3)
xv2 set(x[index[jl], x[index[j+1]], x[index[j+2]1], 0);
yv2 = DD_MULT_ADD(yv2, av, xv2); break;
case (r == 2)
set(x[index[jl], x[index[j+1]]1, 0, 0);
yv2 = DD_MULT_ADD(yv2, av, xv2); break;
case (r == 1)}
set(x[index[jl], 0, 0, 0);
yv2 = DD_MULT_ADD(yv2, av, xv2);

SIMD Parallel SpMV and TSpMV in DD Precision 25

The awv is the 256-bit AVX2 register type variables. Xv2 and yv2 are the
AVX2 register type variables for DD variables. “DD_MULT_ADD” computes
DD multiplication and addition using AVX2: yv2 + av x xv2. “Set_zero()”
means an AVX2 register type variable initialization with zero. “FRAC-
TION_PROCESSING” needs a maximum of three times as many branches on
the conditions.

The “set” is costly compared to “load” and “broadcast [3].” “SCATTER,”
“REDUCTION,” and “FRACTION_PROCESSING” are costly because “SCAT-
TER?” occurs in the random memory store. “REDUCTION” requires more com-
putations because it needs a “shuffle” instruction and 22 double-precision addi-
tions. “FRACTION_PROCESSING” occurs in the conditional branching.

4 Performance Degradation Factors of DD-SpMV
and DD-TSpMYV in CRS Using AVX2

4.1 DD-SpMV

The CRS format is expressed by the following three arrays: ind, ptr, and val.
The double-precision wal array stores the values of the non-zero elements of
matrix A since they are traversed row-wise. The énd array is the column indices
that correspond to the values, and ptr is the list of value indexes where each
row starts. DD-SpMV in CRS using AVX2 consists of the following C code:

#pragma omp parallel for private (j, av, xv2, yv2)
for(i=0; i<N; i++){
yv2 = set_zero();
for(j=A->ptr[i]; j<A->ptr[i+1]-3; j+=4){
xv2 = set(x[A->ind[j+0]1],..,x[A->ind[j+3]1]1);
av = load(&A->vall[jl);
yv2 = DD_MULT_ADD(yv2, av, xv2); break;
}
yv2 = FRACTION_PROCESSINGQ) ;
y[i] = REDUCTION(yv2);
}

X and y are a double-precision array, and A is the CRS format. DD-SpMV in
CRS using AVX2 needs a “set” of x, the “REDUCTION” of y, and “FRAC-
TION_PROCESSING.”

4.2 DD-TSpMYV in CRS Using AVX2
DD-TSpMYV in CRS using AVX2 consists of the following C code:

num_threads = omp_num_threads() ;
work = malloc(num_threads * N);
#pragma omp parallel private (i, j, k, av, xv2, yv2){

26 T. Hishinuma et al.

k = omp_get_thread_num();
#pragma omp for
for(i=0; i<N; i++){
xv2 = broadcast (&x[i]);
for(j=A->ptr[il; j<A->ptr[i+1]-3; j+=4){
jj =3 + k + N;
yv2 = set(y[A->ind[j+0]],..,y[A->ind[j+3]1]1);
av = load(&A->vall[jl);
yv2 = DD_MULT_ADD(yv2, av, xv2); break;
SCATTER(yv2, work[A->ind[jj+0],..,work[A->ind[jj+3]1]1);
}
av = load(&A->valljl);
yv2 = FRACTION_PROCESSING(A,x);
SCATTER(yv2, work[A->ind[jj+0],..,work[A->ind[jj+3]]);
3
for(i=0;i<N,i++)
for(j=0;j<num_threads,i++)
y[i] = DD_ADD(y[i], work[A->ind[i+j*N]);

DD-TSpMV in CRS needs a “set” of y, a “SCATTER” of y, and “FRAC-
TION_PROCESSING.”

In multi-threading, DD-TSpMV in CRS needs the number of thread work
vectors and their array-reduction after computation.

5 Implementation and Evaluation of DD-SpMV
and DD-TSpMYV in Other Storage Formats

CRS has some performance degradation factors, and AVX2 must change the
memory access pattern to allow four consecutive 64-bit elements to be read at
once. In this section, we compare the features of some storage formats using
performance degradation factors.

5.1 DD-SpMV

BCRS r x c is expressed by the following three arrays: bind, bptr, and bval.
The length of the double-precision array bwal is the number of blocks (blk) x
r X ¢ store values of the non-zero blocks since they are traversed row-wise. The
bind array is the column indices that correspond to the blocks, and bptr is the
list of block indexes where each block row starts.

Table 1 shows the features of CRS, BCRS1x4, BCRS4x1, and ELL [5].

BCRS4x1 does not need “set,” “REDUCTION,” or “FRACTION_
PROCESSING.” It needs “REDUCTION,” and ELL needs a “set” of «. In DD-
SpMV, BCRS4x1 is the best estimation because it eliminates the performance
degradation factors in CRS. However, it needs more operations and data.

SIMD Parallel SpMV and TSpMV in DD Precision 27

Table 1. Features of DD-SpMV in each storage format

CRS BCRS1x4 BCRS4x1 | ELL
Loading = set load broadcast | set
Loading y set_zero set_zero set_zero | set_zero
Storing y REDUCTION | REDUCTION | store store
FRACTION_PROCESSING | each row none none each col.
Computation ratio (max) 1 4 4 the num. of row

DD-SpMV in BCRS4x1 using AVX2 consists of the following C code:

#pragma omp parallel for private (jb, av, xv2, yv2)
for(i=0; i<N-3; i+=4){ // block_row is about N/4.
yv2 = set_zero();
for(j=A->bptr[i]; j<A->bptrl[i+1]; j++){
xv2 = broadcast(x[A->bind[j]]);
av = load(&A->bvall[j * 4]);
yv2 = DD_MULT_ADD(yv2, av, xv2); break;
}
y[i] = store(yv2);

In the inner-loop (j-loop), DD-SpMV in CRS needs four double-precision
elements of A and four non-contiguous and indirect DD elements of . BCRS4x1
only needs four double-precision elements of A and one indirect DD element of
. The amount of bytes/flops of BCRS4x1 is smaller than that of CRS. The
memory requirement of BCRS4x1 in the inner-loop is smaller than that of CRS.

5.2 DD-TSpMV

The performance degradation factors of DD-TSpMV in CRS are non-continuous
load/store, “FRACTION_PROCESSING,” and the initialization and summation
of the work vectors in multi-threading. In DD-SpMV, the BCRS4x1 feature is
the best. However, in DD-TSpMV, BCRS4x1 fails to eliminate the work vectors.

We improved DD-TSpMYV in BCRS4x1 for high performance in DD-SpMV
and DD-TSpMV on only one storage format. Its BCRS4x1 applied column-wise
multi-threading; the others applied row-wise multi-threading. The DD-TSpMV
performance in BCRS4x1 applied additional column-wise multi-threading, which
is improved here because BCRS4x1 only computes one column in j-loop; i.e., it
can easily be thread-partitioned. DD-TSpMV in BCRS4x1 using the AVX2 of
column-wise multi-threading consists of the following C code:

num_threads = omp_num_threads() ;
work = malloc(4* N); // The length of SIMD.
#pragma omp parallel private(work, jb, av, xv2, yv2){

28 T. Hishinuma et al.

k = omp_get_thread_num();
alpha = N / num_threads * k;
beta = N / num_threads * (k+1);
for (i = 0; i < N-3; i+=4){
xv2 = load(x[il);
#pragma omp for
for (j = bptr[il; j < bptr[i+1]; j++){
if (alpha < bind[jb] <= beta){ //thread-partitioning
av = load(A->bvalljl);
yv2 = broadcast (work[bind[j]);
yv2 = DD_MULT_ADD(yv2, av, xv2); break;
y[i]l = store(yv2);

133
Table 2. DD-TSpMYV features in each storage format
CRS BCRS1x4 | BCRS4x1 | ELL

Loading « broadcast | broadcast | load broadcast
Loading y set load broadcast | set
Storing y SCATTER | store store REDUCTION
Fraction_processing each row | none none each col.
Computation ratio (max) || 1 4 4 number of rows

BCRS4x1 can eliminate “REDUCTION” and continuously store work vectors
in j-loop. Since it needs only four work vectors, it is expected to speed up per-
formance on more multi-core systems.

Table 2 shows the TSpMV features in each storage format. BCRS1x4 and
BCRS4x1 do not need “set” “scatter,” or “REDUCTION.” ELL needs “set”
and “REDUCTION.” In addition, BCRS4x1 only needs four work vectors and
continuous storage for them. In DD-TSpMV, BCRS1x4 or BCRS4x1 is the best.

6 Experimental Results

We performed our tests on a machine with a 4-core 8-thread Intel Core i7 4770
3.4 GHz CPU, an 8-MB L3 cache, and 16-GB memory. We used Fedora 20 OS
and Intel C/C++ compiler 15.0.0 as well as compiler options -O3, -xCORE-
AVX2, -openmp, and -fp-model precise. Our code was written in C and used
AV X2 intrinsic instructions. We also used an openMP guided scheduling option
and 4-thread multi-threading.

SIMD Parallel SpMV and TSpMV in DD Precision 29

6.1 DD-SpMYV and DD-TSpMYV Overheads

We evaluated the performance in each storage format with 23 matrices, which
were taken from The University of Florida Sparse Matrix Collection (Florida
Collection) [14].

Figures 1 and 2 shows the overhead of DD-SpMV and DD-TSpMV. We mea-
sured the elapsed time of the non-continuous load to change the load instruction
from the set instruction. calculation kernel means elapsed time without over-
heads.

From Fig. 1, we compared the DD-SpMV in CRS overheads in the following
results, where the calculation kernel is the baseline:

— Non-continuous load (set instruction) overheads are 74-630%.
- “FRACTION_PROCESSING” overheads are 4-89%.
—~ “REDUCTION” overheads are 27-380%.

The effect of the non-continuous load and “REDUCTION” is very large.
When the nnz/row is small, the overhead effects are large because “FRAC-
TION_PROCESSING” and “REDUCTION” occurred in each row.

The total time of BCRS1x4 is 1.6-7.3 times slower than the calculation kernel
in CRS. The elapsed time of BCRS1x4 is more than four times slower because
it needs “REDUCTION”.

In all cases, BCRS1x4 is slower than BCRS4x1 because of the “REDUC-
TION” overhead. The total time of BCRS4x1 is 1.2-3.2 times slower than the

[Non-continuous loading x I BCRS4x1

[—— REDUCTION BN BCRS1x4
/1 FRACTION_PROCESSING I CRS calculation kernel

1200 T

1000 - | -
o
— 800 A o
o
-
S 600
4
g 400
-
E_|

200

100

2506010500 é/p«% 006@& 00002,
oS i %Wl %9 955 @{@ 5578 209088 S e,
055X S Ss &0 /& Se [N z° PN
\/yéjé ?)Q{g] OL\Qy((/5 & OL\\P\Qéé & é«f‘é«{* s
pils O0g¢s R0 s S/ 5 6yu SNE 256
\é\/
2

Fig. 1. DD-SpMYV overhead

30 T. Hishinuma et al.

1000 T

[Non-continuous loading and storing y

900 [Initialization and summation work vectors |
[FRACTION_PROCESSING

B BCRS4x1

800 - BN BCRS1x4 -

EEEN CRS calculation kernel

700 H - L

[5]

600
500
400

Time ratio

300

200

100

%60\@0@60@ 2, eé /b «? \/0 o 6 %&Q f&é éo%
00\3\&\7 6‘@& é ,/) @ Q o@x @ 9.0 O@%@@@@
B N R hg RSV
0ls 9g¥s Rp% e Veby “\&iﬁﬁoé
v

Fig. 2. DD-TSpMV overhead

calculation kernel in CRS. The computation ratios of BCRS4x1 are 1.1-3.9 times.
The elapsed time and the computation ratio are proportional.

From Fig. 2, we compared the DD-TSpMYV in CRS overheads in the following
results, where the calculation kernel is the baseline:

— Non-continuous load/store (set instruction and “SCATTER”) overheads are
140-640%.

~ “FRACTION_PROCESSING” overheads are 3-79%.

— “Initialization and summation of work vectors” overheads are 12-150%.

The overheads of non-continuous load/store, Initialization, and the summation
of work vectors are large.

The total time of BCRS1x4 is 1.4-5.1 times slower than the calculation kernel
in CRS. The elapsed time of BCRS1x4 is more than four times slower.

The total time of BCRS4x1 is 1.2-3.8 times slower than the calculation kernel
in CRS. The computation ratios of BCRS4x1 are 1.1-3.9 times. The elapsed time
and the computation ratio are proportional.

6.2 Convert Costs of BCRS4x1 from CRS

Next we evaluated the convert costs of BCRS4x1 from CRS using 100 matrices
taken from the Florida Collection. The convert BCRS4x1 from CRS consists of
the following C code:

SIMD Parallel SpMV and TSpMV in DD Precision 31

for(bi=0;bi<nr;bi++){

i = bix*r;

ii = 0;

kk = Aout.bptr([bil;

while(i+ii<n && ii<=r-1){

for(k=Ain.ptr[i+ii];k<Ain.ptr[i+ii+1];k++){
Aout.bindex[kk] = Ain.index[k]/c;

Aout.value[ij] = Ain.valuel[k];
kk = kk+1;

We measured the convert times and compared them to the computation times
of DD-SpMV in BCRS4x1. The average convert time was 4.2, the minimum
convert time was 2.6, and the maximum convert time was 5.1 times slower than
the elapsed time of DD-SpMV in CRS. The convert time is small.

6.3 BCRS4x1 Effect

Figure3 compares the time ratio of BCRS4x1 to CRS for 100 sparse matrices
taken from the Florida Collection.

x 1 < comp. ratio £ 2 £ 2 < comp. ratio £ 3 e 3 < comp. ratio £ 4

-

2 :
= 3
21
O
x o0 L %X A] L x]
oy
:<>1 x x:x - . :‘: AA.
~ = X % ‘.‘. j - *
x X i x A e x4 o
&'J 2—1 5 Osa 2. 4 B - - g Ko ® g
& N X . X x : ‘.§<A .
M Koxx xS N 2 % . E
< % a X
Z 52 e ¥ 2
Ll v . _ L i |
x i
o o SR . X x X x X
o i % x * x
fu}
8273 E
o % Xy X .
£
a % 4l < *
2—4 i L L L A% A ! L
= . r . Z N - .
2 53 B2 ks 2? gt gt 58 372 51 2° o

Time ratio (AVX CRS / non-SIMD CRS)

Fig. 3. Time ratio of BCRS4x1 compared with CRS [ms] (left: DD-SpMV, right: DD-
TSpMV). The comp. ratio compares the amount of operations in BCRS4x1 to CRS.

32 T. Hishinuma et al.

In many cases, BCRS4x1 is faster than CRS using AVX2. The time ratios of
DD-SpMV in CRS using AVX2 are 0.06-1.34 with an average of 0.38 compared
with CRS without SIMD. The time ratios of DD-SpMV in BCRS4x1 are 0.09-
1.96 times faster (average 0.43) than the case of CRS using AVX2. In DD-SpMV,
the 96/100 matrix performance outperforms Scalar CRS.

The time ratios of DD-TSpMV in CRS using AVX2 are 0.06-1.14 with an
average of 0.34 compared with CRS without SIMD. The times of DD-TSpMYV in
BCRS4x1 using AVX2 are 0.08-1.07 with an average of 0.38 compared with CRS
using AVX2. In DD-TSpMV, the 100/100 matrix is better than Scalar CRS.

For example, the time ratio of “cell2” in BCRS4x1 using AVX2 is 1.96 times
slower than that in CRS using AVX2. It has different placement of the non-zero
elements in each row, nnz/row is 5, and the computation ratio is 1.9. When
nnz/row is less than 8, BCRS4x1 is bad because it cannot improve the memory
access.

7 Discussion

In DD-SpMV in CRS, the overheads by performance degradation factors are
130-1010% compared to the calculation kernel. The average overhead is about
300%. The overheads of the non-continuous load (set instruction) are 74-630%,
and those of “REDUCTION” are 27-380%. These effects are very large.

BCRS4x1 may require at most four times the elapsed time of the calculation
kernel. However, solving this trade-off problem is easy because CRS has 300%
overheads.

As a result of DD-SpMV, BCRS4x1 is faster in 97/100 matrices than CRS.
BCRS4x1 is effective for most cases because it eliminates the performance degra-
dation factors. If the case of overhead is small and the computation ratio of
BCRS4x1 is four, BCRS4x1 may be less than 2 times slower than CRS because
it has a minimum 100% overhead in addition to the calculation kernel alone.

In the DD-TSpMYV in CRS, the overheads by performance degradation fac-
tors are 180-890% compared to the calculation kernel. The overhead average
is about 370%. The overheads of the non-continuous load/store (set instruction
and “SCATTER”) are 140-640%, and those of the Initialization and summation
of work vectors are 12-150%. These effects are huge.

The maximum DD-TSpMV overheads are smaller than those of DD-SpMV.
However, since the average is large, any large-sized matrix is affected.

As a result of DD-TSpMV, BCRS4x1 is faster in 99/100 matrices than CRS.
If the case of overhead is small and the computation ratio of BCRS4x1 is four,
BCRS4x1 may be less than 1.4 times slower than CRS because it has a minimum
180% overhead compared to the calculation kernel.

In this paper, We used row-wise access storage formats. On the other hand,
there are column-wise access storage formats, for example, compressed column
storage (CCS) and Block CCS (BCCS).

In BCCS, since DD-TSpMV needs work vectors for multi-threading, the
column-wise access storage formats are better in DD-TSpMV than DD-SpMV. In

SIMD Parallel SpMV and TSpMV in DD Precision 33

many algorithms, the frequency use of DD-SpMYV exceeds DD-TSpMV. Row-wise
access storage formats have higher versatility than column-wise access storage
formats.

We conclude that the effects of eliminating the performance degradation
factors are large. In sparse matrix operation with SIMD, we must eliminate
non-continuous memory access and horizontal vector summation.

8 Conclusion

We evaluated the performance degradation factors of CRS using AVX2 and a
storage format that eliminated the performance degradation factors of CRS for
DD-SpMV and DD-TSpMV. We compared DD-SpMV and DD-TSpMYV in CRS,
BCRS1x4, and BCRS4x1 formats.

AVX2 required the memory access pattern to be changed to allow four con-
secutive 64-bit elements to be read at once. Four consecutive 64-bit elements
must be allowed with blocking.

In DD-SpMV in CRS using AVX2, three performance degradation factors
occur: non-continuous memory load from x, “FRACTION_PROCESSING,” and
the summation of the four DD variables in two SIMD registers. The overheads by
the performance degradation factors are 130-1010% compared to the calculation
kernel.

In DD-TSpMYV in CRS using AVX2, three performance degradation factors
occur: non-continuous load/store for y, the summation of each variable of SIMD
register (“REDUCTION”), and “FRACTION_PROCESSING.” However, DD-
TSpMV in BCRS4x1 in multi-threading needs the number of thread work vectors
and their summation.

One of our improvements is column-wise multi-threading, but such thread-
partitioning is difficult for row-wise access storage format. Column-wise multi-
threading of BCRS4x1, which can be easily implemented, can factor out the
“REDUCTION?” in the storage and summation of four work vectors.

In DD-TSpMV in CRS, the overheads by performance degradation factors
are 180-890% compared to the calculation kernel.

BCRS4x1 may require at most four times the elapsed time of the calcula-
tion kernel. However, solving this trade-off problem is easy because the CRS
overheads are large. If the overhead case is small and the computation ratio of
BCRS4x1 is four, DD-SpMV in BCRS4x1 may be less than 2.0 times slower than
CRS, and DD-TSpMYV in BCRS4x1 may be less than 1.4 times slower than CRS.
The convert cost of BCRS4x1 is about five times more than the computation
time of DD-SpMYV in BCRS4x1. This convert time is small.

BCRS4x1 is suitable for AVX2 because the block size fits the SIMD register’s
length and BCRS4x1 eliminates the performance degradation factors in CRS.
However, BCRS4x1 requires at most four times the amount of operations and
data as CRS. Changing the memory access pattern and thread-partitioning for
the multi-threading are good implementation for DD-SpMV and DD-TSpMV.

34

T. Hishinuma et al.

In the future, we will apply our technique to other SIMD lengths and multi-

core systems. Column-wise multi-threading in the BCRS format only needs the
length of the SIMD’s register work vectors because they are expected to speed
up performance on multi-core systems.

Acknowledgments. This work was supported by JSPS KAKENHI Grant Number
25330144. The authors thank the reviewers for their helpful comments.

References

10.

11.

12.

13.

14.

. Kouya, T.: A highly efficient implementation of multiple precision sparse matrix-

vector multiplication and its application to product-type Krylov subspace methods.
Int. J. Numer. Methods Appl. 7(2), 107-119 (2012)

Bailey, D.H.: High-precision floating-point arithmetic in scientific computation.
Comput. Sci. Eng. 7, 54-61 (2005)

Intel. http://software.intel.com/en-us/articles/intel-intrinsics-guide

Hishinuma, T., Fujii, A., Tanaka, T., Hasegawa, H.: AVX acceleration of DD arith-
metic between a sparse matrix and vector. In: Wyrzykowski, R., Dongarra, J.,
Karczewski, K., Wadniewski, J. (eds.) PPAM 2013. LNCS, vol. 8384, pp. 622-631.
Springer, Heidelberg (2014). doi:10.1007/978-3-642-55224-3_58

Barrett, R., et al.: Templates for the Solution of Linear Systems: Building Blocks
for Iterative Methods, pp. 57-65. SIAM (1994)

Hishinuma, T., Fujii, A., Tanaka, T., Hasegawa, H.: AVX2 acceleration of double
precision sparse matrix in BCRS format and DD vector product. IPSJ Trans. Adv.
Comput. Syst. 7(4), 25-33 (2014). (in a Japanese)

Li, X., et al.: Design, implementation and testing of extended and mixed precision
BLAS. ACS Trans. Math. Softw. 28(2), 152-205 (2002)

Lis: Library of Iterative Solvers for Linear Systems. http://www.ssisc.org/lis/
Karakasis, V., Goumas, G., Koziris, N.: Exploring the effect of block shapes on the
performance of sparse kernels. In: 2009 IEEE International Symposium on Parallel
& Distributed Processing, pp. 1-8 (2009)

Im, E., Yelick, K., Vuduc, R.: SPARSITY: optimization framework for sparse
matrix kernels. Int. J. High Perform. Comput. Appl. 18(1), 135-158 (2004)

Liu, X., Smelyanskiy, M., Chow, E., Dubey, P.: Efficient sparse matrix-vector mul-
tiplication on x86-based many-core processors. In: 27th International Conference
on Supercomputing, pp. 273-282 (2013)

Dekker, T.: A floating-point technique for extending the available precision.
Numerische Mathematik 18, 224-242 (1971)

Knuth, D.E.: The Art of Computer Programming: Seminumerical Algorithms, vol.
2. Addison-Wesley, Reading (1969)

The University of Florida Sparse Matrix Collection. http://www.cise.uhl.edu/
research/sparse/matrices/

http://software.intel.com/en-us/articles/intel-intrinsics-guide
http://dx.doi.org/10.1007/978-3-642-55224-3_58
http://www.ssisc.org/lis/
http://www.cise.uhl.edu/research/sparse/matrices/
http://www.cise.uhl.edu/research/sparse/matrices/

Accelerating the Conjugate Gradient Algorithm
with GPUs in CFD Simulations

Hartwig Anzt!, Marc Baboulin?, Jack Dongarra!, Yvan Fournier?,

Frank Hulsemann®, Amal Khabou?®) and Yushan Wang?

! Innovative Computing Laboratory, University of Tennessee, Knoxville, USA
2 Laboratoire de Recherche en Informatique, Université Paris-Sud, Orsay, France
khabou@lri.fr
3 EDF R&D, Clamart, France

Abstract. This paper illustrates how GPU computing can be used to
accelerate computational fluid dynamics (CFD) simulations. For sparse
linear systems arising from finite volume discretization, we evaluate and
optimize the performance of Conjugate Gradient (CG) routines designed
for manycore accelerators and compare against an industrial CPU-based
implementation. We also investigate how the recent advances in precon-
ditioning, such as iterative Incomplete Cholesky (IC, as symmetric case
of ILU) preconditioning, match the requirements for solving real world
problems.

1 Introduction

A significant gap exists in-between the availability of open-source software
libraries for sparse linear algebra computations on accelerators, and what is actu-
ally used in an industrial environment. An example is the Code_Saturne [5] pack-
age, a general purpose Computational Fluid Dynamics (CFD) software devel-
oped and used at Electricité de France (EDF). Among the main reasons behind
this situation is the limited experience of how open-source packages, often com-
ing from an academic environment, fit the demands of an industrial setting.
Another concern is whether the accelerator hardware specifications, in partic-
ular the limited memory bandwidth of graphics processing units (GPUs), are
suitable for real world applications. In this position paper, we address these two
concerns by evaluating the performance of different implementations of the Con-
jugate Gradient (CG) method for two benchmarks with a finite volume origin.
As the iterative solution process plays a key role in the simulation algorithm —
it can account for up to 80% of the computational time in Code_Saturne — the
performance improvements are quickly reflected in the overall runtime of the
CFD simulation. Thus the main contribution of this work is to show that the
use of GPU-enabled sparse linear algebra libraries in the framework of indus-
trial applications allows for significant performance improvements with minimal
implementation effort.

The rest of the paper is organized as follows. In Sect.2 we provide some
background about the industrial code, the software libraries, and the bench-
marks that we consider. Section3 reviews some strategies known to enhance

© Springer International Publishing AG 2017
I. Dutra et al. (Eds.): VECPAR 2016, LNCS 10150, pp. 35-43, 2017.
DOI: 10.1007/978-3-319-61982-8_5

36 H. Anzt et al.

the performance of iterative solvers on GPUs. This includes the optimization of
the sparse matrix vector product (SpMV) which typically dominates the perfor-
mance of Krylov solvers such as CG, and the use of kernel fusion for enhanced
data locality. We also review some of the latest ideas on preconditioning tech-
niques suitable for fine-grained hardware parallelism. In Sect. 4, we report some
experimental results obtained using the different software packages to solve the
CFD problems. We conclude in Sect. 5.

2 Problem Setting and Software Framework

Code_Saturne [5] is a general purpose Computational Fluid Dynamics (CFD)
software package developed and used at Electricité de France (EDF). It is based
on a co-located finite volume approach, using a fractional time step method.
This allows for any type of polyhedral mesh, though best results are usually
obtained with regular, hexahedral meshes. The flux discretization uses a 2-point
scheme, with contributions due to mesh non-orthogonalities added at the right-
hand side and solved through sub-iterations. The matrix graph is thus based on
face to cell adjacencies, leading to very sparse matrices. For a scalar variable
on a hexahedral mesh, we have 7 non-zero entries per row (6 face neighbors +
1 diagonal). For a tetrahedral mesh, this even goes down to 5 non-zero entries
per row. The benchmark problems we consider in this paper originate from
Code_Saturne. As the problems are all symmetric and positive definite, they
can be solved efficiently with the CG iterative solver. Enhancing the CG with
a Jacobi preconditioner (diagonal scaling) typically improves both convergence
and performance. We note that, in Code_Saturne, parallelism is handled via MPI
and OpenMP. However, in our evaluation, we limit the parallelism to OpenMP,
as we are considering single node performance only.

The CUsparse [10] software library is a collection of routines for sparse linear
algebra computations on NVIDIA GPUs. It provides the main building blocks,
such as the sparse matrix vector product kernel, matrix conversion routines, and
incomplete LU (ILU) preconditioning techniques. Some basic iterative solvers
such as CG are also available. Developed by NVIDIA, this library typically
achieves very good performance on NVIDIA architectures.

MAGMA [8] is an accelerator-focused linear algebra library developed at
the University of Tennessee. It provides backends for NVIDIA GPUs, Intel’s
Xeon Phi manycore accelerators (MIC), and any OpenCL-compatible system
such as AMD GPUs. In addition being well-known for the dense linear algebra
routines, MAGMA also contains a large variety of solvers, preconditioners, and
eigensolvers for sparse linear systems. Comprehensive support for NVIDIA GPUs
is provided, some basic routines and functionalities are also available in OpenCL
and for the Xeon Phi.

ViennaCL [11] is a free open-source linear algebra and solver library written
in C++. The functionality provided by ViennaCL overlaps significantly with
the functionality provided by MAGMA. However, ViennaCL provides a unified
interface for three fully supported compute backends using CUDA (for NVIDIA

Accelerating the Conjugate Gradient Algorithm 37

GPUs), OpenCL (for cross-vendor GPU-support), and OpenMP (for multi-core
CPUs). Also, in contrast to MAGMA, the compute backends in ViennaCL can
be switched at runtime.

In the experimental evaluation, we consider two benchmarks from the EDF
application:

— The bundle problem is generated using one regular hexahedral mesh. The
matrices are built from a matrix of size 16384 (average nnz per row is 7) for
which we duplicate the initial mesh to obtain larger systems and study the
scalability. Figure 1(left) shows the geometry of the domain in the numerical
simulation.

— The bora problem originates from a mostly hexahedral mesh, but includes
face subdivisions at non-conformal mesh joining interfaces. As a result, most
matrix rows have 7 non-zero entries, but some rows have a higher number of
non-zero entries. In this benchmark, we solve a linear system of size 10196476
and the geometry of the compute domain is shown in Fig. 1(right).

For both benchmarks, the bundle and bora, the linear system to be solved is
extracted from the Laplacian operator within the pressure correction step, with
a right-hand side corresponding to the flow initialization. The matrix struc-
ture does not change over time, but the coefficients may change whenever the
fluid properties vary. For these test matrices, we assume constant temperature
and constant fluid properties, which means that the matrix coefficients remain
constant.

LI ARER LAY i

Fig. 1. Domain representation of bundle (left) and bora (right). The middle figure is a
close-up of the upper part of the right figure. The discretization in this part is different
from the rest of the domain, leading to a sparse matrix with an irregular pattern.

3 Sparse Linear Algebra on GPUs

The performance of Krylov methods like the Conjugate Gradient is generally
bounded by the memory bandwidth of the hardware architecture used. Hence,
optimizing the performance for these solvers is usually equivalent to optimiz-
ing the access to the GPU main memory. The implication is twofold: reducing

38 H. Anzt et al.

the total amount of data that is read and written to the main memory, and
organizing the memory access as coalescent reads [9]. As the CG and its precon-
ditioned variant arise as a combination of matrix-vector and vector-operations,
the optimization for coalescent memory reads boils down to the sparse matrix
vector product. There exists extensive work on optimizing storage format and
sparse matrix vector performance for GPUs, and in this work we focus on using
the CSR, ELL, and SELLP formats, known to provide good performance [4].
To reduce the memory traffic, it is necessary to use algorithm-specific kernels
that apply kernel-fusion to the basic linear algebra operations whenever possi-
ble [1]. More precisely, consecutive vector operations sharing some of the input
or output data are merged into a single kernel, such that data, once loaded
into the fast multiprocessor memory, is reused. See [2] for details on how this
is achieved for the Conjugate Gradient solver used in this study. The Magma
library implementations feature kernel fusion for the basic CG as well as the
preconditioned variant. In ViennaCL, the concept of kernel fusion is applied to
the basic CG, not yet for the preconditioned variant. This optimization will be
included in a future release, which will bring the performance of ViennaCL closer
to that of MAGMA for the preconditioned CG as well. Beside Jacobi, another
preconditioner suitable for a large variety of problems is an incomplete LU fac-
torization [12]. A drawback of ILU preconditioners is the sequential nature of
both the preconditioner generation via Gaussian-Elimination, and the sparse
triangular solves in the preconditioner application. Also, approaches using level-
scheduling or multi-color ordering for enhancing the concurrency often fail to
exploit the fine grained parallelism provided by manycore architectures. Given
this background, the recently proposed iterative approach to ILU precondition-
ing has attracted much attention [6,7]. On GPUs in particular, the forward
and backward substitutions traditionally used to solve the sparse triangular sys-
tems in every outer Krylov iteration are expensive. Replacing those with a few
Jacobi sweeps can accelerate the overall solution process significantly [3]. Vien-
naCL and MAGMA both provide an iterative ILU, and we include this option in
the experimental evaluation although, the Code_Saturne reference software does
not contain an ILU preconditioner. In the experiments, as we are dealing with
symmetric positive definite systems, we use the symmetric variant of ILU, the
Incomplete Cholesky (IC).

4 Experimental Results

In this section, we analyze the convergence and performance of the Conjugate
Gradient method using different preconditioners when solving the real-world
CFD benchmarks previously described. The solvers are taken from different soft-
ware libraries: Code_Saturne version 4.0.0 is compared against MAGMA release
2.0.0 and ViennaCL version 1.7.0. The GPU implementations are based on
CUDA and CUsparse version 7.5 [10], and use an NVIDIA Tesla K40c GPU. The
default block size is 256, which is also the size of the matrix slices in the SELLP
format. Code_Saturne is using a 6-core Intel Xeon E5-2620 (Ivy Bridge) with

Accelerating the Conjugate Gradient Algorithm 39

hyperthreading enabled. In our experiments, we use 8 or 10 OpenMP threads,
whichever provides the best performance.

In Fig. 2, we analyze how well the different CG implementations scale with
respect to the problem size. As described in Sect.2, we replicate the bundle
problem to generate linear systems of larger dimensions. For a comprehensive
evaluation, we use the MAGMA and ViennaCL solvers with different matrix
storage formats. The intention is to identify the most suitable format for this
problem. The right side shows the runtime of 100 iterations using a Jacobi-
preconditioned CG (JCG). In this case, the preconditioner setup time is included
as well. Note that CUsparse does not contain a pre-coded JCG implementa-
tion. ViennaCL only allows for the use of the CSR format, and does not pro-
vide a JCG version featuring kernel fusion in version 1.7.0. This explains the
larger difference between the JCG runtime for ViennaCL and MAGMA when
using the CSR format. As expected, SELLP again gives the best performance.
A Jacobi preconditioner increases the pressure on the memory bandwidth, which
is the performance-limiting factor for the GPU implementations. Nevertheless,
the MAGMA JCG using SELLP format solves the largest problem about 8 times
faster than Code_Saturne. For the small problems, the multicore JCG should be
preferred. As SELLP gives also the best performance for the bora problem, we
choose this format for the CG implementations of MAGMA and ViennaCL. On
the left side, we show the time needed to execute 100 CG iterations using dif-
ferent combinations of software and matrix formats. For the GPU-based solvers
(CUsparse, ViennaCL, MAGMA), the time needed for transferring the matrix
and vectors between host and GPU is also included. 100 iterations are typically
insufficient for convergence (also for this problem), which emphasizes the impact
of these data transfers.

For small problems, the overhead of the data transfers plays an important
role. Also, the parallel compute power of the GPU cannot be exploited, as the
size of the linear system is smaller than the parallelism provided. For these

——Code_Saturne ——Code_Saturne
100k CUsparse L ViennaCL
\hﬁiggrr:%CL ——NMagma

=
()
£
510
[

10'2 L L

10 10° 10° 107 107
Problem size Problem size

Fig. 2. Solver execution time for 100 iterations of different implementations of CG
(left) and JCG (right). The target problem is the replicated bundle. Solid lines (with
circle marker) are for CSR format, dotted lines (with star marker) for SELLP.

40 H. Anzt et al.

problems, Code_Saturne is much faster than all GPU codes. With increasing
problem size, the runtime of Code_Saturne grows much faster than for the GPU
implementations, and for the largest problem (2 million unknowns), ViennaCL,
CUsparse, and MAGMA run between 5 and 10 times faster than the multicore
CG. NVIDIA’s CUsparse implementation is highly optimized, and its perfor-
mance for the CSR format is unmatched by either MAGMA or ViennaCL. At
the same time, it does not support the ELL and the SELLP matrix format, which
gives much better performance for this class of test matrices. For MAGMA and
ViennaCL, using SELLP gives the fastest CG execution time. The higher back-
end flexibility of ViennaCL comes along with some performance decrease. The
MAGMA implementation of CG is optimized in CUDA, and using the SELLP
format in this routine is the overall winner for larger problems (15000 unknowns).

In Fig.3, we compare the runtime for the different software libraries and
solver settings when solving the bora problem. Notice that, in contrast to Fig. 2,
we do not show the execution time for a fixed number of iterations, but show the
timings of the preconditioner setup phase, the data transfer, and the iteration
phase when solving the linear system for a relative residual stopping criterion of
1010, This implies that using a Jacobi preconditioner improves convergence, but
makes every CG iteration more expensive. The validity of the results is ensured
as the iteration counts are consistent across the different software libraries.

35
[__ISolver runtime

[T Preconditioner setup
I Memory transfer

Runtime [s]
n N W
o (5] o
T T T
I I

o
T
|

o
T
|

o
T
|

o | _
CG JCG CG CG JCG CG JCG
Code_Saturne CUsparse ViennaCL Magma

Fig. 3. Execution time of different implementations of CG and JCG for bora.

Despite the additional cost of the preconditioner setup, all implementations
benefit from using a Jacobi preconditioner. The execution time for Code_Saturne
improves by a factor of 4. Similarly, the ViennaCL and MAGMA JCG solve bora
significantly faster than the corresponding CG implementations. The accelera-
tion is smaller for ViennaCL, as the JCG is not enhanced with kernel fusion in
the current release. All the GPU implementations are significantly faster than
the multicore implementation. The overall winners are the MAGMA implemen-
tations for CG and JCG. Compared to the multicore Code_Saturne implemen-
tation, MAGMA improves the execution times of CG and JCG from 34.81s to

Accelerating the Conjugate Gradient Algorithm 41

6.36s and from 8.64s to 1.61s, respectively. This includes the expensive pre-
conditioner setup phase. In a scenario where a sequence of similar problems has
to be solved, the reuse of a generated preconditioner would provide even larger
benefits.

Although not available in Code_Saturne, we want to investigate whether the
recent advances in iterative ILU preconditioning are suitable for the given real-
world problems. ILU preconditioners are well-known to significantly reduce the
iteration count for a large range of problems, and replacing the exact sparse
triangular solves in the preconditioner application with approximate triangu-
lar solves can also make incomplete factorization preconditioners attractive for
GPUs [3].

In Fig.4, we compare iteration count (left) and execution time (right) for
solving the bora problem with different preconditioners. Although also available
in ViennaCL, in this experiment we focus on the MAGMA software package,
as we exclusively target NVIDIA GPUs, and previously identified the imple-
mentations in MAGMA as performance winners for this problem. As previously
mentioned, despite the ILU-notation, we internally use an incomplete Cholesky
factorization, the symmetric variant of the incomplete LU factorization [12].

10° - - 45 - - - -
———No preconditioner { ———No preconditioner| l
——Jacobi A0 b ——Jacobi £
Eactiu A e P — o Orrrennn o EeetiLu
—o—Approximate ILU 35h —o—Approximate ILU
30+
12} z
c - [
-% ag) iuiraalioNulul S A A
s Saof
= i
15+
10 I J\’M
o -_-0 - -0 -
- S 5 f
10! o) — . : :
2 4 6 8 10 2 4 6 8 10
Number of sweeps in approximate triangular solve Number of sweeps in approximate triangular solve

Fig.4. CG iteration count (left) and execution time (right) for solving bora with
different preconditioner configurations available in the MAGMA library. For the ILU
preconditioner, solid lines are ILU(0), dashed lines are ILU(1), dotted lines are ILU(2).
Exact ILU uses exact triangular solves based on level scheduling, approximate ILU
uses different numbers of Jacobi sweeps.

The left side shows the iteration count needed for the relative residual stop-
ping criterion of 1071 when using a plain CG, a Jacobi preconditioner (JCG),
an exact ILU preconditioner, or the variant using approximate triangular solves.
The incomplete factorization preconditioners are generated as level-ILU [12]
using different fill-in levels. For simplicity, the factorizations themselves are gen-
erated as exact factorizations, despite MAGMA also providing the functionality
for iterative ILU-factor generation [6].

42 H. Anzt et al.

Using a Jacobi preconditioner decreases the number of iterations significantly,
from 547 to 90. An exact factorization preconditioner provides even larger con-
vergence improvement, reducing the iteration count to 26, 18, and 15, for ILU(0),
ILU(1), and ILU(2), respectively. Using approximate triangular solves requires
some additional iterations of the outer CG solver, but depending on the fill-in
level, 3-6 sweeps in the approximate triangular solves are sufficient to bring the
CG iteration count close to the exact ILU.

More relevant than the iteration count is the execution time, as this is the
metric of interest when optimizing CFD simulations. The right side of Fig. 4
shows the corresponding execution time of the different configurations. Despite
the higher iteration count, approximate triangular solves accelerate the ILU-
preconditioned CG. Also, the lower iteration count for higher fill-in levels is not
reflected in execution time, and despite the significantly lower iteration count
(15 vs. 547), the ILU(2) using exact triangular solves needs about 8 times longer
than the unpreconditioned CG. This comes partly from the higher cost of the
preconditioner setup and data transfers. Also, higher fill-in levels make the sparse
triangular solves (exact and approximate) more expensive. For using an incom-
plete factorization preconditioner, the runtime winner is the setting of an ILU(0)
and two Jacobi sweeps in the approximate triangular solves. This configuration
needs 3.55 s for the preconditioner setup, 0.37s for the data transfers, and 2.38's
for the PCG iterations. In the execution time of the iterations, 1.97 s are needed
for the approximate triangular solves. Due to the expensive preconditioner setup,
the overall performance hardly matches the performance of the unpreconditioned
CG. Using the iterative ILU generation would improve the results, but real bene-
fits can only be expected when solving a sequence of linear systems that allow for
reusing a generated preconditioner. In the end, it is the Jacobi-preconditioned
CG that gives the best performance when solving the bora problem.

5 Summary and Future Work

In this position paper, we evaluated whether the available open-source soft-
ware libraries for sparse linear algebra computations on GPUs are suitable for
real-world problems arising from an industrial application. For two CFD sim-
ulations, we compared the performance of the solvers from Code_Saturne, an
in-house developed multicore computational fluid dynamics code from EDF, to
that of CUsparse, MAGMA and ViennaCL. The results reveal the superiority
of Code_Saturne for small problems. For large problems, the GPU codes run
up to 5x faster. In the future, we will address sequences of linear systems and
evaluate the benefits of reusing a preconditioner for problems with similar prop-
erties. We will also address non-symmetric problems, where the benefits of the
Jacobi preconditioner are typically smaller, and the iterative ILU preconditioner
may become the method of choice.

Acknowledgements. This work was funded by the contract P02220 between Univer-
sité Paris-Sud and EDF. We are grateful to Karl Rupp (TU Wien) for his support in
using the ViennaCL library.

Accelerating the Conjugate Gradient Algorithm 43

References

10.
11.

12.

Aliaga, J.I., Pérez, J., Quintana-Orti, E.S.: Systematic fusion of CUDA kernels for
iterative sparse linear system solvers. In: Traff, J.L., Hunold, S., Versaci, F. (eds.)
Euro-Par 2015. LNCS, vol. 9233, pp. 675-686. Springer, Heidelberg (2015). doi:10.
1007/978-3-662-48096-0-52

Aliaga, J.I., Perez, J., Quintana-Orti, E.S., Anzt, H.: Reformulated conjugate gra-
dient for the energy-aware solution of linear systems on GPUs. In: 2013 42nd Inter-
national Conference on Parallel Processing (ICPP), pp. 320-329, October 2013
Anzt, H., Chow, E., Dongarra, J.: Iterative sparse triangular solves for precondi-
tioning. In: Traff, J.L., Hunold, S., Versaci, F. (eds.) Euro-Par 2015. LNCS, vol.
9233, pp. 650-661. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48096-0_50
Anzt, H., Tomov, S., Dongarra, J.: Energy efficiency and performance frontiers
for sparse computations on GPU supercomputers. In: Proceedings of the Sixth
International Workshop on Programming Models and Applications for Multicores
and Manycores, PMAM 2015, pp. 1-10. ACM, New York (2015)

Archambeau, F., Méchitoua, N., Sakiz, M.: Code Saturne: A Finite Volume Code
for the computation of turbulent incompressible flows - Industrial Applications.
Int. J. Finite 1(1) (2004)

Chow, E., Anzt, H., Dongarra, J.: Asynchronous iterative algorithm for computing
incomplete factorizations on GPUs. In: Kunkel, J.M., Ludwig, T. (eds.) ISC High
Performance 2015. LNCS, vol. 9137, pp. 1-16. Springer, Cham (2015). doi:10.1007/
978-3-319-20119-1_1

Chow, E., Patel, A.: Fine-grained parallel incomplete LU factorization. STAM J.
Sci. Comput. 37, C169-C193 (2015)

MAGMA Web page. http://icl.cs.utk.edu/magma/index.html

NVIDIA Corporation. CUDA C best practices guide. http://docs.nvidia.com/
cuda/cuda-c-best-practices-guide/

NVIDIA Corporation. CUDA Toolkit Documentation v7.5, September 2015
Rupp, K., Rudolf, F., Weinbub, J.: ViennaCL - a high level linear algebra library
for GPUs and multi-core CPUs. In: International Workshop on GPUs and Scientific
Applications, pp. 51-56 (2010)

Saad, Y.: Iterative Methods for Sparse Linear Systems. Society for Industrial and
Applied Mathematics, Philadelphia (2003)

http://dx.doi.org/10.1007/978-3-662-48096-0_52
http://dx.doi.org/10.1007/978-3-662-48096-0_52
http://dx.doi.org/10.1007/978-3-662-48096-0_50
http://dx.doi.org/10.1007/978-3-319-20119-1_1
http://dx.doi.org/10.1007/978-3-319-20119-1_1
http://icl.cs.utk.edu/magma/index.html
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/

Parallelisation of MACOPA, A Multi-physics
Asynchronous Solver

Ronan Guivarch!®) | Guillaume Joslin', Ronan Perrussel?, Daniel Ruiz’,
Jean Tshimanga', and Thomas Unfer?

! INP(ENSEEIHT)-IRIT, University of Toulouse, Toulouse, France
ronan.guivarch@enseeiht.fr
2 INP(ENSEEIHT)-LAPLACE, University of Toulouse, Toulouse, France

Abstract. Macopa is a partial differential equations solver based on
a particular local time-stepping technique dedicated to multi-physics
and multi-scale problems. Here, some parallelisation strategies — multi-
threading, domain decomposition, and hybrid OpenMP /MPI — are intro-
duced for this solver. Their efficiency is evaluated on a few examples.

1 Context

Numerical simulation has become a central tool for the modeling of many phy-
sical systems (combustion, atmospheric plasmas, etc.). Multi-scale phenomena
make the integration of these models difficult in terms of accuracy and computa-
tion time. Time-stepping integration techniques used for modeling such problems
generally fall into two categories: explicit and implicit schemes. In the explicit
schemes, all unknown variables are computed at the current time level from
quantities already available. Time step is then limited by the most restrictive
stability condition over the whole computation domain. In the implicit method,
the time step is no longer limited by a stability condition. However the scheme is
generally not suitable for strongly coupled problems. To solve such problems, a
number of local time-stepping approaches have been developed. These methods
are restricted by a local stability condition rather than the traditional global
stability condition.

Macopa is a Partial Differential Equations (PDE) solver based on an asyn-
chronous time-stepping technique proposed in [1]. The asynchronous time-
stepping is an explicit local time-stepping technique which is consistent in time
for solving a system of conservative PDE. Two data description modes are con-
sidered, cell-centered schemes and cell-vertex schemes. It has been successfully
applied to fluid mechanics, combustion, micro-wave propagation, and plasma
discharge modeling. Recent developments have extended the paradigm to higher
order accuracy when it is used in combination with a discontinuous Galerkin
method [2].

The capability of handling a large number of different time steps is obtained
assuming that the time steps themselves can be discretized using an elementary
virtual sub-time step. Under this hypothesis a Discrete Time Scheduler (DTS)
has been introduced in [1]. The architecture of the DTS relies on two concepts:

© Springer International Publishing AG 2017
I. Dutra et al. (Eds.): VECPAR 2016, LNCS 10150, pp. 44-51, 2017.
DOI: 10.1007/978-3-319-61982-8_6

Parallelisation of MACOPA, A Multi-physics Asynchronous Solver 45

I Current simulation time

Fig. 1. Example of a sequential DTS

the “task” which is an elementary computation to be done, typically “refreshing”
the values of the local variables in a cell of the mesh, and the “pool” which is a
list of tasks to be treated at a given time tag. This list can eventually be empty
when no task are required at this given time tag. The DTS itself is a circular
table of pools with a particular pool holding the current time. As the simulation
moves in time, a new time tag in the future is assigned to the previous pool (see
Fig.1). The horizon of the DTS is the size of the sub-time step multiplied by
the number of pools in the table. Tasks, which have time steps larger than the
horizon of the DTS, are managed with delays. The DTS insures a planning of n
tasks with a complexity of O(n). When it is required, the virtual sub-time step
is rescaled dynamically during the simulation.

2 Parallelisation

Parallelisation of the asynchronous time-stepping was realized using either multi-
threading or mesh partitioning with possible hybridization of both approaches.

2.1 Multi-threading

Multi-threading of the algorithm is possible as long as thread-safety is insured
when accessing the data within the mesh, but it also has to be handled when
performing the scheduling of the tasks.

For thread-safe scheduling of the tasks, the strategy that has been followed
is to duplicate the DTS: creating one circular table of pools for each thread.
At the beginning of the treatment of the current simulation time, task lists are
balanced from one local DTS to the others if needed (see Fig.2). Then each
thread processes its tasks and replaces them in the future pools within its local
DTS.

The mesh data issues arises because for conservation equations, say for
instance in the finite volume approach, data from the cells on both side of a
face are needed to compute a numerical flux through the face. Then this flux is

46 R. Guivarch et al.

l Current simulation time Current simulation time
DTS thread 1 DTS thread 1
o] [o—fo—e]
DTS thread 2 DTS thread 2
e o)

Fig. 2. Example of a multi-threaded DTS: before starting the treatment at the current
simulation time (left), the Master balances the tasks between the threads (right).

used in the flux balance computation needed to obtain the time derivatives of the
unknown in both neighboring cells. So if two threads try to refresh two adjacent
cells at the same time, a thread-safety issue occurs. The workaround consists in
splitting the algorithm in two phases. During the first phase, threads treat their
tasks. They are allowed to access cell data such as states and time derivatives
for reading but not for writing. In this phase, only intermediate variables such as
fluxes or source terms are written, and for each cell in which the states and time
derivative have to evolve an integration task is then created. This task is inserted
into the pool of the thread creating it (so that those updates can be done safely
in parallel). The integration task consists in synchronizing the states at present
simulation time and computing the new time derivatives. For the integration to
be thread safe, we must insure that a single cell appears only once in the inte-
gration lists of all threads. A synchronization step is performed to remove every
duplicated cell from the union of these lists of integration tasks. Then the size
of the lists are balanced again and each thread performs its integration tasks.

2.2 Mesh Partitioning

Mesh partitioning has been done using the SCOTCH mesh partitioner [3]
(Fig.4). The mesh cells have been weighted with the refreshment frequency
(inverse of the local time step) and the faces are weighted with the average
refreshment frequency of both cells. Process communications are done using
MPI. Each process has its own DTS. For two adjacent cells on both side of
the MPI boundary that have different time steps, the refreshment time tags
do not necessarily match. The approach that has been developed is to send
fluxes/partial residuals with their time of validity. The time of validity is the
next simulation time tag at which the MPI boundary cell must be updated
again.

Parallelisation of MACOPA, A Multi-physics Asynchronous Solver 47

t6 _|
At
message (flux_2_to_1@t5, t7) t5
4 oy ...
message (flux_1_to_2@t4, t6)
At
t3 oy ...
message (flux_1_to_2@t3, t4)
At "
message (flux_2_to_1@t2, t5) 2
o Ay -
message (flux_1_to_2@tl, t3)
cell 1 on processor 1 cell 2 on processor 2

Fig. 3. Example of communication between two processors: each message contains, for
two adjacent cells, some physical fields and the time of validity of those fields. (Color
figure online)

So from the sender point of view, a message shall be sent each time an
intermediate variable (flux or partial residual) is recomputed. The receiver has
to receive as many messages as needed until the message that contains a validity
time that is beyond its own simulation time. So that the current values can be
incorporated into the current computations.

For instance, in Fig.3, the blue processor 2 has to wait the message
(flux_1_to_2@t4, t6) in order to perform its task at time t5.

A single MPI message could be sent /received for every single cell at the MPI
border, using for instance different message tags. But this approach faces MPI
latency because of too many very small messages. The workaround that has
been implemented is to manually create larger messages with all single messages
that shall be sent/received at the current simulation time of a MPI process.
All MPT calls are non blocking, so if a task needs a MPI message which is not
available yet, it is pushed back at the end of the pool. By doing this, other tasks,
which do not need MPI messages (such as interior cells), can be performed in
the meantime.

Furthermore MPI cell tasks are considered more urgent than inner cell tasks,
so when scheduling the task, MPI cell tasks are inserted on top of the pool
whereas inner cell tasks are inserted at the bottom of the pool.

Note: with this paradigm, from the simulation time point of view, every
process is also “asynchronous”.

48 R. Guivarch et al.

Fig. 4. Example of partition with SCOTCH on a 3D case

2.3 Hybrid OpenMP /MPI Parallelisation

For the hybrid mode, MPT is used in multiple thread mode so that every thread
in every process can communicate via MPI to any other thread in a locally
connected process. When solving PDE using the cell-vertex data description, two
threads refreshing two adjacent cells could try to read the same boundary point
MPI message. To insure thread-safety in this case, the OpenMP lock concept
is used. A thread shall lock a boundary point prior to try to access to its MPI
message.

3 Performance Results

We present in this section some performance results obtained on the super-
computer EOS of CALMIP.

Its system is a Bullt DLC B710 Blades, Intel Xeon E5-2680v2 10C 2.8GHz,
Infiniband FDR system. EOS got 122,440 cores and its performances are 255,078
Gflop/s as RMAX and 274,176 Gflop/s as RPEAK and is 399 in the 46" Top500
list (November 2015).

3.1 OpenMP Results

Our first test case is a 2D CH4/air premixed laminar flame (see Fig.5 for a
snapshot of the temperature field). The mesh consists of unstructured triangles
for a total of 73,850 nodes.

In Fig.6 it is shown the speed-up obtained on 1 node where we vary the
number of threads from 1 to 20 (number of cores by node). We notice that the
results are perfectly scalable until 8 threads where the number of tasks by pool
is probably the limiting factor.

http://www.calmip.univ-toulouse.fr/
http://top500.org/system/178436

Parallelisation of MACOPA, A Multi-physics Asynchronous Solver 49

Fig. 5. Temperature field

T T
20 | —— Ideal B
—— Effective

15

10 |-

Speed-Up.

o
T

Thread Number.

Fig. 6. Flame: OpenMP strong scaling

3.2 Domain Decomposition Results

Our test case for those results is the propagation of an acoustic wave. It is
possible to simulate in a 2D or 3D simple domain.

For the 2D results, two meshes are used. The first mesh is uniform and
made of quadrangles. In the second mesh, quadrangle size varies according to a
polynomial law in both directions. Thus for the last one, the simulation faces a
large amount of different local time steps.

The uniform mesh permits to validate the MPI strategy presented in Sect. 2.2.
The non uniform mesh should illustrate the benefit of the asynchronous behavior
of Macopa in a strongly asynchronous case.

Figure 7 shows that it is possible to implement a parallel version using MPI
of the asynchronous algorithm with a reasonable speed-up. However our imple-
mentation is a first step and many optimizations are still possible (see the last
section for some perspectives).

50 R. Guivarch et al.

—— Ideal —— Ideal
—— 2D uniform 60 || —— 3D uniform
—=— 2D asynchronous
200
=3 =) 40
= =
3 3
2 2
& 100 &
20
0 0
0 50 100 150 200 250 0 20 40 60
Number of cores. Number of cores.
(a) 2D - 5000pts per node (b) 3D - 5000pts per node
—— Ideal —— Ideal
60 | —— 2D uniform 300 || —— 2D uniform
—<— 2D asynchronous
3 40 S
=) B 200
3 3
o4 3
o4 3
% Q
@)
2 100
0
0
0 20 40 60 0 50 100 150 200 250 300 350
Number of cores. Number of cores.
(c) 2D - 20,000pts per node (d) 2D - 80,000pts per node/20
threads

Fig. 7. Speed-Up on the propagation of an acoustic wave

The results of Fig.7(a) show that for the current parallel implementation
of Macopa, 5,000 points per core are too low. The MPI boundaries are large
with respect to the interior mesh. In this case, overlapping computation with
communication is not effective. The results for the 3D case (Fig. 7(b)) shows the
same trends. The performance is improved with more points per core (Fig. 7(c)).

The difference between the uniform and the asynchronous cases means there
is still some improvements to propose for the mesh partitioning.

For the hybrid case (OpenMP + MPI), we assume that the speed-up with
one node and 20 threads is linear. We know that this assumption is far too
optimistic (see Sect. 3.1) but the point was to assess the MPI performance in the
natural way of using the EOS super-computer: OpenMP on one node and MPI
between the nodes. In this situation, with 80,000 points per node, the scaling is

interesting (Fig. 7(d)).
4 Future Work

We noticed that it is difficult with SCOTCH to take into account the amount
of work on each cell with asynchronous meshes in order to generate a balanced

Parallelisation of MACOPA, A Multi-physics Asynchronous Solver 51

partitioning. We are looking for some other partitioners, for instance hypergraph
partitioners [4,5] in order to express better the constraints and obtain a better
partitioning.

Finally, a new version of the standard MPI is now complete. For instance, the
MPI Remote Memory Access (RMA) interface has been re-examined and permits
efficient one-sided programming model within MPI. We should investigate these
new functionalities to determine if they could be useful in Macopa.

Acknowledgements. This research is granted by the project MACOPA (ANR-11-
MONU-0019).

This work was performed using HPC resources from CALMIP (Grants 2015-[p1528]
and 2016-[p16023)).

We also thank Alfredo Buttari for his support and advices.

References

1. Unfer, T., Boeuf, J.P., Rogier, F., Thivet, F.: An asynchronous scheme with local
time-stepping for multi-scale transport problems: application to gas discharges. J.
Comp. Phys. 227, 898-918 (2007)

2. Toumi, A., Dufour, G., Perrusel, R., Unfer, T.: Asynchronous numerical scheme
for modeling hyperbolic systems. Comptes Rendus Mathematique 353(9), 843-847
(2015)

3. Pellegrini, F.: SCOTCH 5.1 User’s Guide, Laboratoire Bordelais de Recherche en
Informatique (LaBRI) (2008)

4. Catalytirek, U.V., Aykanat, C.: PaToH: A Multilevel Hypergraph Partitioning Tool,
Version 3.0, Bilkent University, Department of Computer Engineering, Ankara,
06533 Turkey (1999). PaToH is available at http://bmi.osu.edu/umit/software.htm

5. Rietmann, M., Peter, D., Schenk, O., Ucar, B., Grote, M.J.: Load-balanced local
time-stepping for large-scale wave propagation, IEEE CPS. In: 29th IEEE Interna-
tional Parallel & Distributed Processing Symposium, Hyderabad, India, pp. 925-
935, May 2015. <hal-01159687>

http://bmi.osu.edu/umit/software.htm

Performance Analysis of SA-AMG Method
by Setting Extracted Near-Kernel Vectors

Naoya Nomura!®) Akihiro Fujii!, Teruo Tanaka', Kengo Nakajima?,
and Osni Marques?

! Kogakuin University, Tokyo, Japan
em15016@ns.kogakuin.ac. jp
2 The University of Tokyo, Tokyo, Japan
3 Lawrence Berkeley National Laboratory, Berkeley, USA

Abstract. The smoothed aggregation algebraic multigrid (SA-AMG)
method is among the fastest solvers for large-scale linear equations. It
achieves good convergence by generating small matrices from the orig-
inal matrix problem. However, the convergence of the method can be
further improved by using near-kernel vectors. Our research investigates
the effectiveness of using multiple near-kernel vectors and finds the near-
kernel vectors that are most important for obtaining rapid convergence.
We apply our method to the three-dimensional problem in elasticity. The
known near-kernel vectors (the parallel translation and rotation vectors)
improve the convergence and execution time of the SA-AMG method.
We use an iterative process known as the V-cycle to extract multiple
near-kernel vectors. In numerical experiments, we show that a suitable
choice of the near-kernel vectors reduces the number of iterations by up to
two-thirds and halves the execution time, compared to use of the known
near-kernel vectors. Our method will be effective for cases in which the
same matrix problem is solved repeatedly.

Keywords: Linear solver - Algebraic multigrid method - Near-kernel
vectors + Performance evaluation

1 Introduction

Tterative solutions to large-scale systems of linear equations Ax = b are often
required in scientific computing. Among the fastest solvers for these equations
is the algebraic multigrid (AMG) method [1], a multilevel method that creates
smaller matrices from the matrix problem. A variant called the smoothed aggre-
gation AMG (SA-AMG) method [2-4] is effective for solving various problems
and is widely used.

The SA-AMG method comprises a setup part and a solution part. The setup
part creates a graph structure based on a matrix problem and defines a coarse
problem based on aggregates of unknowns. Recursive application of this process
generates multiple small matrices. The solution part repeatedly applies relax-
ation (e.g., the Jacobi method) to the hierarchical matrices constructed in the

© Springer International Publishing AG 2017
I. Dutra et al. (Eds.): VECPAR 2016, LNCS 10150, pp. 52-63, 2017.
DOI: 10.1007/978-3-319-61982-8_7

Performance Analysis of SA-AMG Method 53

setup part, thereby achieving rapid convergence. The structure is hierarchical,
with fine levels (large matrices) and coarser levels (small matrices). The finest
level corresponds to the original matrix problem.

The SA-AMG method can incorporate error components that are difficult
to correct using ordinary relaxation methods. These error components typically
correspond to the near-kernel vectors, defined as nonzero vectors x satisfying
Az =~ 0. The SA-AMG method sets these error components and efficiently cor-
rects them by moving them to coarser levels.

In this research, we focus on the three-dimensional problem in elasticity, in
which the near-kernel vectors are the parallel translation and rotation vectors.
The use of these near-kernel vectors improves the convergence of the SA-AMG
method in the target problem. To our knowledge, methods for extracting near-
kernel vectors and their efficiency have been rarely reported other than for aSA
[5], which is described in Sect. 4. This study reports a simple method for using
V-cycles to extract multiple near-kernel vectors and numerically evaluates its
performance.

2 SA-AMG Method

This section describes the SA-AMG method, which creates and solves hierarchi-
cal matrices.

The AMG method is among the fastest solvers for large-scale linear equa-
tions. It creates multiple small matrices from the matrix problem and uses their
solutions to solve the problem settings. The AMG method has setup part and a
solution part. Figure 1 shows the setup part, which creates coarser matrix prob-
lems and the prolongation and restriction matrices from the fine matrix prob-
lem, and it does this hierarchically. The top level is the original matrix problem,
and progressively coarser levels are represented by progressively smaller matri-
ces. The number of levels depends on the size of the matrix problem. Data are
moved between levels by the interlevel prolongation and restriction matrices.

Fine
Level 1 A
(Original problem)
\ Py, Ry = Pz[
Level2 Az = RpAP;
P3,Ry = P{
N L Z 7
Level 3 A3z = R3A;P;
(Coarsest small matrix)
Coarse

R: Restriction matrix

P: Prolongation matrix

Fig. 1. Setup part of the SA-AMG

54 N. Nomura et al.

The coarse matrices and the interlevel prolongation and restriction matrices
are used in the solution. Figure 2 shows the solution part of the AMG method,
which performs matrix vector multiplication and relaxation. First, the relaxation
method is applied to the finest matrix. Next, the residual vector is calculated
and multiplied by the restriction matrix, which moves it to a coarser level. At
the coarser level, this vector is set as the right-hand vector. After applying relax-
ation at the coarser level, the corrected vector is determined and multiplied by
the prolongation matrix, which moves it to a finer level. The solution is added
to the existing solution vector at the finer level. Finally, relaxation is repeated
at the finer level. This process is called the V-cycle.

1X1 1 x; =b
(Original problem) = =
< by —Ax
R %

Level 2 “ Ayxy = by ” “ Ayxy = by ”

Xy & Xp + P3x3

8

Ty < by — Ayx,
by < R3r,

(Coarsest small matrix)

l:l : Relaxation R: Restriction matrix
l:| : Move level P: Prolongation matrix

Fig. 2. V-cycle of the SA-AMG (Solution part)

S

___”__
H

=¢

Sal 1]
I_':-__ . 'I
! 1

Fine level

Coarse level

Aggregate

Fig. 3. How an aggregate is made

There are many types of AMG methods with different ways of creating the
interlevel matrices [6]. In this study, we used the SA-AMG method, which creates
coarser matrices from a graph structure that is based on the matrix problem.
The unknowns and nonzero elements correspond to nodes and edges, respectively.
The SA-AMG method then aggregates the unknowns and assigns each aggregate
to a node at the next coarser level. Each node at a finer level belongs to a
corresponding aggregate. Figure 3 shows the making of an aggregate. The SA-
AMG method creates aggregates using the graph structure based on the matrix

Performance Analysis of SA-AMG Method 55

problem, and each aggregate of unknowns at a finer level corresponds to the
unknowns at a coarser level. For interpolation, the SA-AMG method sets weight
values on each of the aggregate nodes. The weights are stored in an interlevel
matrix. The coarser matrix is calculated by two matrix-matrix multiplications
RAP, where R and P are the restriction and prolongation matrices, respectively.
To improve the convergence of the SA-AMG method, the interlevel matrix can
be constructed from the near-kernel vectors.

3 Near-Kernel Vector

In this section, we define near-kernel vectors and explain how they are deter-
mined in the SA-AMG method.

The near-kernel vector is a vector x that satisfies Az =~ 0(x # 0). When
the equation Ax = b is solved by a regular iterative solver, the solution vec-
tor is updated using the vector b. However, the error components of the near-
kernel vectors cannot be corrected by this vector. Consequently, the convergence
stagnates.

For moving the near-kernel vector components to coarser levels, the SA-
AMG method uses the near-kernel vectors to calculate the interlevel operators.
Thus, these components are efficiently corrected at coarser levels, and rapid
convergence is achieved [2-4]. In some cases, the near-kernel vectors can be
determined from the problem settings. For example, the near-kernel vectors for
a problem in elasticity are the translation and rotation vectors.

Figure 4 illustrates the use of near-kernel vectors in the interlevel matrix. In
this figure, the prolongation matrix is constructed from two near-kernel vectors
and two aggregates. In particular, the prolongation matrix is created by select-
ing the corresponding elements from the near-kernel vectors for each aggregate.
In the SA-AMG method, the number of columns in the prolongation matrix is
proportional with the number of near-kernel vectors, and this increases the cal-
culation costs. Therefore, there is a trade-off between the number of near-kernel
vectors and the execution time.

Figures 5 and 6 show how the number of iterations necessary for convergence
depends on the number of near-kernel vectors. Figure 5 shows the target problem
of this experiment. The matrix structure of this problem in elasticity is described

ProblemA Nearkernel vectory Matrix P’ Matrix P
0
11 1]1 1| -2
1
Aggregate 1 12 1112 0 [1[] O
2 103 113 QR & 11
3 T2 1[4 Smoother |7 2
[4 1] 1[5 ‘ 1]5 12
5 1)6 0 1]6 1
Aggregate 26 17 107 0 |1]!
18 108 12
7

Fig. 4. Construction of the prolongation matrix from the near-kernel vectors

56 N. Nomura et al.

Upper half is soft
-Young’s modulus: 1:0.8
- Poisson’s ratio: 0.3:0.3

100

® Number of kernel vectors: 1
» 80 ® Number of kernel vectors: 3
'g 70 ® Number of kernel vectors: 6

1 8 64 216 512
Number of processes

Fig. 6. Effect of multiple near-kernel vectors on the required number of iterations in
the SA-AMG method

in Sect. 5.1; the object comprises a soft upper part and a hard lower part. A force
is applied over a small area on the upper side. Young’s modulus is 1:0.8, and
Poisson’s ratio is 0.3:0.3. The graph in Fig.6 shows the number of iterations
necessary to reach convergence. The number of near-kernel vectors is indicated;
“Number of kernel vectors: 1”7 uses a constant vector, “Number of kernel vectors:
3” uses only translation vectors, and “Number of kernel vectors: 6” uses both
translation and rotation vectors. This experiment is a weak scaling test (with a
local domain size per process of 6 X 15 x 60). The domain size is proportional to
the number of processes. We note that using more near-kernel vectors reduces
the number of iterations because the near-kernel vectors are already known from
the problem settings. In the next section, we consider the extraction of additional
near-kernel vectors that are not known a priori.

4 Near-Kernel Vector Extraction

This section describes the method used to extract near-kernel vectors.

The aSA method, which uses V-cycles to extract near-kernel vectors, was
proposed in a previous study [5]. The authors of [5] first calculated the coarser-
level near-kernel vectors and then interpolated them to the finest level, for use as

Performance Analysis of SA-AMG Method 57

near-kernel vectors at that level. However, we perform multiple V-cycle iterations
in order to directly calculate the near-kernel vectors, as follows:

1. Initialize the vector £ randomly.

2. Iterate the V-cycle p times to solve Ax = 0.

3. Set the solution vector & in Step 2 as an additional near-kernel vector. If the
number of near-kernel vectors is insufficient, return to Step 1.

4. Output the extracted near-kernel vectors.

After solving Az = 0 by performing a sufficient number of V-cycle iterations,
we are left with the near-kernel error component, which cannot be solved by a
V-cycle. The V-cycle iterations are executed on near-kernel vectors extracted
in the previous iteration steps. Thus, the new near-kernel vector is different
from the previous near-kernel vectors. We note that in order to perform a
V-cycle, it is necessary to have an initial near-kernel vector, and that vector
must be determined from the problem settings. In subsequent processes, the
method extracts independent near-kernel vectors.

In Step 2, the parameter p is provided as an input. This parameter specifies
the number of V-cycle iterations and largely determines the performance of the
SA-AMG method. As an area of future work, we will consider the optimization
of p. In the present study, we set u to 20.

5 Numerical Experiments

5.1 Experimental Environments and Problem Setup

Experiments were performed on an FX10 supercomputer system (Oakleaf-FX)
[7] at the University of Tokyo. Each node of the FX10 is equipped with one
SPARC64 IXfx processor (1.848 GHz, 16 cores) and 32 GB memory. These nodes
are connected through the 6D mesh/tours network (5 GB/s/link, bidirectional).
We launched one process per core (Flat MPI model), employing up to 512 cores.

The experimental subject was a three-dimensional problem in elasticity, in
which an elastic object is pressed under a constant force, and the displacements
of all parts of the object are to be determined. The problem was constructed as a
3 x 3 block matrix at each node. This linear elasticity problem in a simple cubic
geometry in a heterogeneous media was solved using the finite-element method
(FEM). Tri-linear hexahedral (cubic) elements were used for the discretization,
and a heterogeneous distribution of Young’s modulus in each element was cal-
culated by a sequential Gauss algorithm, which is widely used in the area of
geostatistics [8]. The object consisted of an inner hard cube and an outer soft
cube, and a force was applied to a small area on the upper face (see Fig. 7).
Young’s modulus (indicating the stiffness of the material) was 5in the hard area
and 0.51in the soft area, and Poisson’s ratio was 0.31in all areas. Moreover, the
experiment was performed as a weak scaling (with a local domain per process
of 15 x 15 x 15). The problem domain was divided into several subdomains with
equal intervals on each axis.

58 N. Nomura et al.

— Stiffness area

Interior is hard ;
- Young’s modulus: 5:0.5
- Poisson’s ratio: 0.3:0.3 Top

Fig. 7. Setup of the experimental problem in elasticity

The experiment was implemented in the AMGS library [9], which solves
large-scale linear equations by the AMG method. The solution part was executed
by the generalized product bi-conjugate gradient (GPBiCG) method [10], and
one iteration of the V-cycle was used as a preconditioner. We implemented the
program contained in the AMGS library, and we implemented the GPBiCG
method in the Fortran programming language with the MPI library. We used
the Fujitsu Fortran compiler with the option “-Kfast,openmp”. We linked to
the MPI library provided by Fujitsu.

The relaxation procedure of the solution part was performed twice per level
by the Symmetric Gauss-Seidel method, ignoring the data dependency beyond
the border of the processing domain. The coarsest level was determined to con-
tain less than 100 unknown blocks; that is, there were fewer than 100 x k&
unknowns at the coarsest level when it is initialized with k near-kernel vec-
tors. The termination criterion for the 2-norm of the relative residuals was set
to 1.0 x 1077, The maximum number of iterations was set to 500.

5.2 Experimental Results

In this experiment, we investigated the performance of the SA-AMG method
by changing the number of near-kernel vectors. The near-kernel vector setups
are provided in Table 1. The near-kernel vectors in the extraction process were
initialized as the parallel translation vectors.

Figure 8 shows the results. The five graphs correspond to results with 1, 8, 64,
216, and 512 processes, respectively. The horizontal axis indicates the number
of near-kernel vectors that were used. The height of each bar indicates the time

Table 1. Experimental setup

Near-kernel vectors | Details

3 provided Parallel translation in each axis direction (X,Y,Z)

6 provided Parallel translation + rotation on each axis (X,Y,Z)

3p+1, 3p+2,... Parallel translation + extracted near-kernel vectors (up to 7)

9.0
8.0
7.0

_60

15}

250

240
3.0

2.0

50.0
450
40.0

_350

§30.0
=250
£200
15.0
10.0
5.0

0.0

Performance Analysis of SA-AMG Method

mmSetup © Solution H# of ilerations‘

3p 6p 3p+13p+23p+3 3p+4 3p+53p+6 3p+7 3p 6p 341 342 343 3+4 345 3+6 3+7

Number of processes: 1 Near-kernel vectors Number of processes: 8

mmSetup “Solution A of iterations

3p 6p 341 342 343 3+4 3+5 346 3+7 3p 6p 341 342 343 344 3+5 3+6 347

Near-kernel vectors

Number of processes: 64 Number of processes: 216

160 500
400 «
120 =
_ 350%
5100 300 5
g 80 250%
£ 60 200 3
150 £
40 1007
20 \ mm Setup = Solution M of 1terat1ons\
50
O e B 0
3p 6p 3p+l 3p+2 3p+3 3p+4 3p+5 3p+6 3p+7
Near-kernel vectors
Number of processes: 512

Fig. 8. Experimental results with various sets of near-kernel vectors

180
160
140
120
100
80
60
40
20

59

Number of iterations

Number of iterations

until convergence, while the line indicates the required number of iterations.
“Setup” and “Solve” indicate the execution times of the setup part and solution
part, respectively. If the number of iterations exceeded 500, the execution time
is not shown. In this experiment, we disregarded the time required to extract the
near-kernel vectors. As shown in Fig. 8, the lowest number of iterations and the
best execution time were obtained when 3 or 6 near-kernel vectors were provided.
However, using additional near-kernel vectors does not always improve the rate of

60 N. Nomura et al.

convergence. For example, when running 512 processes, the method with 3p+7
near-kernel vectors failed to converge. In 64 processes, the lowest number of
iterations was achieved for 3p+7 near-kernel vectors, whereas 3p+1 near-kernel
vectors achieved the lowest execution time. This result can be explained by
noting that the processing time for 3p+7 near-kernel vectors is greater than
that for 3p+1.

Figure 9 shows the best results from Fig. 8. The left and right panels show the
number of iterations and the execution time, respectively. The horizontal axis indi-
cates the number of processes, and the vertical axis indicates the number of iter-
ations (left panel) and the execution time (right panel). “3 provided” and “6 pro-
vided” indicate the results obtained when using “parallel translation” and “par-
allel translation + rotation” vectors, respectively. “Best in extracted vectors” is
the result that had the best execution time of the 7 sets of extracted vectors that
were considered. This figure shows that by appropriately determining the near-
kernel vectors, we can dramatically reduce the number of iterations. Even in the
largest problem (512 processes), the best of the extracted vectors approximately
halved the number of iterations and reduced the execution time by approximately
40%, relative to the case in which 6 near-kernel vectors were provided. However,
we note that when there are 512 processes, many more iterations (iterations =
141) are required than when there are 64 processes (iterations = 47).

500 120
@ m 3 provided = || —*—3 provided
.5400 1 | ®m6 provided §100 —e—6 provided
g Best in extracted vectors o 80 A Best in extracted vectors
2300 E
b= = 60 A
5200 A g
g 5 40
Q
olo m In o L
1 8 64 216 512 1 8 64 216 512
Number of processes Number of processes

Fig. 9. Number of iterations (left) and execution time (right) for various sets of near-
kernel vectors (3 provided, 6 provided, and the best number of extracted near-kernel
vectors)

In order to further evaluate this approach, a simple problem was prepared.
For both parts (inner and outer) shown in Fig. 7, Young’s modulus was changed
to unity (that is, it was made uniform throughout the system). Figure 10 shows
the number of iterations required for convergence; note that it was nearly the
same for both 64 (iterations = 11) and 512 (iterations = 13) processes. Tuning
the number of extracted near-kernel vectors reduces the number of iterations
even for this easy problem.

These results have shown that the number of iterations can be reduced by
the choice of a suitable number of near-kernel vectors to be extracted. For the

Performance Analysis of SA-AMG Method 61

m 3 provided
B 6 provided
m Best in extracted vector

10 1

Number of iterations

W
!

(=]

1 8 64 216 512
Number of processes

Fig. 10. Number of iterations for various near-kernel vectors in an easy problem
(Young’s modulus is changed to 1:1)

12 [
7]
2
g 216
&
5 64
5
i)
e s |l
=
Z - ——
1 il ® Extract time ® Solution tim¢

0 200 400 600 800 1000

Execution time [sec.]

Fig. 11. Search time for best near-kernel vectors

problem described in Fig. 7, we now consider the cost of extracting near-kernel
vectors and the optimal number to use. Figure 11 shows the time required to
extract near-kernel vectors and to find the solution, for each of the number of
vectors from 3p+1 to 3p+7. The horizontal and vertical axes correspond to the
execution time and the number of processes, respectively. “Extract time” is the
time required to extract 7 vectors, and “Solution time” is the time required to
solve the problem 7 times, each with a different set of near-kernel vectors. For
the example with 216 processes, as shown in Fig.11, the time to extract the
near-kernel vectors and to search is only about 9 times that with 6p near-kernel
vectors. Thus, this method is an efficient way to repeatedly solve the same matrix
equation with different initial conditions.

6 Conclusion

In this paper, we investigated the effect on the performance of the SA-AMG
method of using multiple V-cycle iterations to extract multiple near-kernel vec-
tors. To do this, we applied our method to a three-dimensional problem in

62 N. Nomura et al.

elasticity. The results were compared with those when using the known vec-
tors (the parallel translation and rotation vectors). In the largest problem (512
processes), using the extracted near-kernel vectors halved the number of iter-
ations and decreased the solution time by approximately 40%, relative to the
results when using the ordinary translation and rotation vectors. Thus, the ordi-
nary V-cycle iterations were found to extract near-kernel vectors that were effec-
tive for rapid convergence. Another problem is the scalability of this for cases
with many nodes. Figure9 shows that both the number of iterations and the
computation time increase as the problem size increases. This occurs primarily
because of the localized block-Jacobi-type Gauss-Seidel smoothers in the SA-
AMG procedure. The increase in the number of iterations is very significant for
ill-conditioned problems, but it is not very large when the condition number is
close to unity, as shown in Fig.6. Stabilization of the localized smoother is a
very critical issue. Some remedies described in Ref. [11], such as extending the
overlapped zones, will be considered in the future.

We conclude with some remarks on directions for further research. First, set-
ting many near-kernel vectors did not always improve the performance; in par-
ticular, the method sometimes extracted inappropriate near-kernel vectors that
failed to converge. Therefore, we must thoroughly investigate the near-kernel
vectors that are extracted. We also intend to examine the relationship between
the residual history of the near-kernel vector extraction and the effectiveness of
these vectors.

Acknowledgments. The authors would like to thank the anonymous referees for their
valuable comments. This work was partially supported by the Japan Society for the
Promotion of Science KAKENHI (grant numbers 15K15998, 25330144), and Initiative
on Promotion of Supercomputing for Young or Women Researchers, Supercomputing
Division, Information Technology Center, The University of Tokyo.

References

1. Pereira, F.H., Verardi, S.L.L., Nabeta, S.I.: A fast algebraic multigrid precondi-
tioned conjugate gradient solver. Appl. Math. Comput. 179, 344-351 (2006)

2. Vanek, P., Brezina, M., Mandel, J.: Convergence of algebraic multigrid based on
smoothed aggregation. Numer. Math. 88, 559-579 (2001)

3. Vanek, P., Mandel, J., Brezina, M.: Algebraic multigrid by smoothed aggregation
for second and fourth order elliptic problems. Computing 56, 179-196 (1998)

4. Chan, T.F., Vanek, P.: Multilevel algebraic Elliptic Solvers, UCLA Math, Dept.,
CAM Report (1999)

5. Brezina, M., Falgout, R., Maclachlan, S., Manteuffel, T., Mccormick, S., Ruge, J.:
Adaptive smoothed aggregation (aSA). SIAM J. Sci. Comput. 25(6), 1896-1920
(2004)

6. Fujii, A., Oyanagi, Y.: Evaluation of algebraic multi-grid method: an efficient linear
solver for scientific simulations. Simulations 28(4), 149-154 (2009). 2009-12-15,
pp. 9-14

7. Information Technology Center: The University of Tokyo. http://www.cc.u-tokyo.
ac.jp/

http://www.cc.u-tokyo.ac.jp/
http://www.cc.u-tokyo.ac.jp/

11.

Performance Analysis of SA-AMG Method 63

Deutsch, C.V., Journel, A.G.: GSLIB Geostatistical Software Library and User’s
Guide, 2nd edn. Oxford University Press, Oxford (1998)
AMGS Library: http://hpcl.info.kogakuin.ac.jp/lab/software/amgs

. Zhang, S.-L.: GPBi-CG: generalized product-type methods based on Bi-CG for

solving nonsymmetric linear systems STAM. J. Sci. Comput. 18(2), 537-551 (1997)
Nakajima, K.: Strategies for preconditioning methods of parallel iterative solvers
in finite-element applications on geophysics. Advances in Geocomputing. Lecture
Notes in Earth Science, vol. 119, pp. 65-118. Springer, Heidelberg (2009)

http://hpcl.info.kogakuin.ac.jp/lab/software/amgs

Computing the Bidiagonal SVD Through
an Associated Tridiagonal Eigenproblem

Osni Marques!®) and Paulo B. Vasconcelos?(®)
! Lawrence Berkeley National Laboratory, Berkeley, USA
oamarques@lbl.gov
2 Faculdade de Economia and CMUP, Universidade Do Porto, Porto, Portugal
pjv@fep.up.pt

Abstract. In this paper, we present an algorithm for the singular value
decomposition (SVD) of a bidiagonal matrix by means of the eigenpairs
of an associated symmetric tridiagonal matrix. The algorithm is par-
ticularly suited for the computation of a subset of singular values and
corresponding vectors. We focus on a sequential implementation of the
algorithm, discuss special cases and other issues. We use a large set of
bidiagonal matrices to assess the accuracy of the implementation and
to identify potential shortcomings. We show that the algorithm can be
up to three orders of magnitude faster than existing algorithms, which
are limited to the computation of a full SVD.

1 Introduction

It is well known that the singular value decomposition (SVD) of a matrix A €
R™*" namely A = USVT, with left singular vectors U = [uy,us, ... u,], right
singular vectors V' = [v1, va,...v,], and singular values S = diag(s1, sa, ... Sn),
81 > 82 > ...8, > 0, can be obtained through the eigenpairs (), x) of the matri-
ces Cpxn = ATA and C,yxm = AAT. However, if A is square and orthogonal
Chxn and Cyp,xm are both the identity and provide little information about the
singular vectors of A, which are not unique: A = (AV)IV7T is the SVD of A for
any orthogonal matrix V. A potential difficulty for some algorithms (e.g. the one
presented in this paper) is the existence of large clusters of close singular val-
ues, as this may have an impact on the orthogonality of the computed singular
vectors.

Alternatively to Cpxpn and Cp,xm, the SVD can be obtained through the
augmented matrix [1]

S B L LA

such that the eigenvalues of C' are +s and its eigenvectors are mapped into the
singular vectors of A (scaled by \/ﬁ) in a very structured manner.

In practical calculations, the SVD of a full matrix A involves the reduction
of A to bidiagonal form B through orthogonal transformations, i.e. A = UBVT.

© Springer International Publishing AG 2017
I. Dutra et al. (Eds.): VECPAR 2016, LNCS 10150, pp. 64-74, 2017.
DOI: 10.1007/978-3-319-61982-8_8

Computing the Bidiagonal SVD 65

The singular values are thus preserved; the singular vectors of B need to be back
transformed into those of A.

If B is an upper bidiagonal matrix with (a1, as,...a,) on the main diagonal
and (b1, ba,...b,—1) on the off diagonal, we can replace A with B in (1) to obtain
C = PTgk PT, where Tg is the Golub-Kahan symmetric tridiagonal matrix,

aiy bl as bg . bn,1 (07%%
Tox =tridiag{ 0 0 0 0 ... 0 0], (2)
al bl as bg e bn—l Qp,

and the perfect shuffle P = [e, 41, €1, €nt2,€2,€nt3,...€2,], where the e’s are
the columns of the identity matrix of dimension 2n. Then, if the eigenpairs of
Tar are (+s, z), with ||z|| = 1, and from (1), we obtain z = P(u”, +v7)//2 [6].
Thus, we can extract the SVD of B from the eigendecomposition of T .

Table 1 lists the current LAPACK subroutines intended for the computation
of the SVD of bidiagonal matrices, and eigenvalues and eigenvectors of tridiago-
nal matrices. The trade-offs (performance, accuracy) of these eigensolvers have
been thoroughly examined in [3]. We are interested in how the symmetric tridi-
agonal (ST) subroutines could be applied to (2), specially for the computation of
subsets of eigenpairs, which in turn could reduce the computational costs when
a full SVD is not needed (or for the computations of subsets in parallel). While
STEDC could be potentially redesigned to compute a subset of eigenvectors, sav-
ing some work but only at the top level of recursion of the divide-and-conquer
algorithm, STEVX and STEMR offer more straightforward alternatives. STEVX per-
forms bisection to find selected eigenvalues followed by inverse iteration to find
their eigenvectors, for an O(n) cost per eigenpair. STEVX can occasionally fail to
provide orthogonal eigenvectors when the eigenvalues are too closely clustered.
In contrast, STEMR uses a much more sophisticated algorithm called MRRR [4, 5]
to guarantee orthogonality. An improved version of the MRRR algorithm tar-
geting T i in order to compute the SVD has been proposed in [6]; however, our
experiments with an implementation given in [6] produced vectors with inade-
quate level of orthogonality, for relatively simple matrices. (We illustrate with
one case in the numerical experiments session.) Therefore, we have decided to
adopt STEVX for computing eigenvalues and eigenvectors of (2), even though it
has known failure modes that we discuss later.

Table 1. LAPACK’s (bidiagonal, BD) SVD and (tridiagonal, ST) eigensolvers.

Routine | Usage Algorithm
BDSQR | all s and (opt.) u and/or v | implicit QL or QR
BDSDC | all s and (opt.) u and v divide-and-conquer

STEQR | all X’s and (opt.) = implicit QL or QR
STEVX | selected \’s and (opt.) | bisection & inverse iteration
STEDC |all X’s and (opt.) = divide-and-conquer

STEMR | selected \’s and (opt.) z | MRRR

66 O. Marques and P.B. Vasconcelos

The main contribution of this paper is to discuss an implementation of an
algorithm for the SVD of a bidiagonal matrix obtained from eigenpairs of a
tridiagonal matrix T . This implementation is called BDSVDX, introduced in
LAPACK 3.6.0. While the associated formulation is not necessarily new, as men-
tioned above, its actual implementation requires care in order to deal correctly
with multiple or tightly clustered singular values, or some cases of splitting. To
the best of our knowledge, no such implementation has been done and exhaus-
tively tested. In concert with BDSVDX we have also developed GESVDX, which takes
a general matrix A, reduces it to bidiagonal form B, invokes BDSVDX, and then
maps the output of BDSVDX into the SVD of A. In LAPACK, the current coun-
terparts of GESVDX are GESVD and GESDD, which are based on the BD subroutines
listed in Table 1 and can only compute all singular values (and optionally singu-
lar vectors). This can be much more expensive if only a few singular values and
vectors are desired.

The rest of the paper is organized as follows. First, we discuss how singular
values are mapped into the eigenvalue spectrum. Then, we discuss special cases,
the criterion for splitting a bidiagonal matrix, and other implementation details.
Next, we show the results of our tests with BDSVDX using a large set of bidiagonal
matrices, to assess both accuracy and computational performance. We compare
the performances of BDSQR, BDSDC and BDSVDX, and GESVD, GESDD and GESVDX.
Finally, we discuss limitations and opportunities for future work.

2 Mapping Singular Values into Eigenvalues

Similarly to BDSQR and BDSDC, BDSVDX allows the computation of singular val-
ues only or singular values and the corresponding singular vectors. Borrowing
features from STEVX, BDSVDX can be used in three modes, through a character
variable RANGE. If RANGE = “A”, all singular values will be found: BDSVDX will
compute the smallest (negative or zero) n eigenvalues of the corresponding Tk -
If RANGE = “V”, all singular values in the half-open interval (VL,VU] will be
found: BDSVDX will compute the eigenvalues of the corresponding Tk in the
interval (—VU,—VL]. If RANGE = “I”, the IL-th through IU-th singular values
will be found: the indices IL and IU are mapped into values (similar to VL
and VU) by applying bisection to Tgx. VL, VU, IL and IU are arguments of
BDSVDX (which are mapped into similar arguments for STEVX).

For a bidiagonal matrix B of dimension n, if singular vectors are requested,
BDSVDX returns an array Z of dimension 2n x p, where p < n is a function
of RANGE. Each column of Z will contain (u],v!)7 corresponding to singular
value s;, i.e. (using MATLAB notation) Z = [U; V]. STEVX returns eigenvalues
(and corresponding vectors) in ascending order, so we target the negative part
of the eigenvalue spectrum (i.e. —S) in (1). Therefore, the absolute values of the
returned eigenvalues give us the singular values in the desired order, s; > so >
...S8, > 0. We only need to change the signs of the entries in the eigenvectors
that are reloaded to V. We note that BDSVDX inherits some shortcomings from
STEVX: in extreme situations bisection may fail to converge, or not all eigenvalues

Computing the Bidiagonal SVD 67

with indices IL:IU can be found, or inverse iteration fails to converge after the
allowed number of iterations is reached. However, we have never observed the
occurrence of any of these anomalies in our thorough tests.

3 Splitting: Special Cases

The criterion for splitting in BDSVDX is the same that is used in STEQR and is
discussed in [7]. We first form the matrix Tgx and check for splitting in two
phases, starting with the off diagonal entries of Tgx with even indices (i.e.
the b’s). If, for a given i, b; = 0 (or it is tiny enough to be set to zero) the
matrix B splits and the SVD for each resulting (square) submatrix of B can
be obtained independently. This effect is propagated into the associated T,
i.e. the eigenvalues and eigenvectors of each submatrix of T i can be obtained
independently. We then check the off diagonal entries of T¢x with odd indices
(i.e. the a’s). If, for a given j, a; = 0 (or tiny enough), we end up with rectangular
bidiagonal matrices, which do not have equal numbers of left and right singular
vectors. This complicates our simple approach for extracting singular vectors of
B from eigenvectors of Tgi. The problem can be reduced to one of the three
special cases illustrated below with small matrices.

Zero in the interior. If n =5 and a3 = 0, we have the following SVD:

YT b1 b2 b3 b4 o U1 Sl ‘/vlT
s (" 070" 0" 0) =[] [P] [vz

where Uy and V5 are 2-by-2, Us and Vj are 3-by-3, Sy is 2-by-3 (its third column
contains only zeros), and So is 3-by-2 (its third row contains only zeros). If we
construct Tg})(and TéQI)(matrices as

a1 b1 az bs bs as by as
TS = tridiag [0 0 0 0 0|, TS =tridiag|0 0 0 0 0],
a1 b1 as by b3 as by as

then the first three columns of their respective eigenvector matrices are

—
-

(1) 2) (2

v g s I
o _ |5 o oo ge |0 R e | oo
Zsyis = Vg1 V22 V3 D™, Zgis = Uy Uz g Uz 3 D
us) ugy 0 vl o)
i i 1 2 2 2
vl vis vl uf?l uy i)

where ZEEIX)B and Zéi)g show how the entries of the eigenvectors corresponding to

the three smallest (negative) eigenvalues of Tg])(,)\(11) < /\él) <)\:(31)’ and Tc(:21)<v
)\52) < Ag2) <)\52) relate to the entries of Uy, Us, Vi and V5, where vg) are the
entries of V7 and so on. Note that the left and right singular vectors corresponding

68 O. Marques and P.B. Vasconcelos

to s3 are in different matrices, with D = diag(v/2, v/2, 1). (The array Z returned

by BDSVDX would be, in MATLAB notation, Z = [1% Z{!%). 0 z{2),], where

5x3) 5x3
Z(1a) n

5o contains the first two columns of Zéx 3, while Zéibg has zeros in its two

first columns and the last column of Zélx)3 in its last column.)

Zero at the top. If n =4 and a; = 0, we have the following SVD:

L b b b 0 1
B:bzdzag(o 10,2 2(],3 3Q4>:[U]|: S:||: VT:|7

where U is 4-by-4, S is 3-by-3, and V is 3-by-3. If we construct a Tgx from
B, its first row and column will be zero, and the entries of the eigenvectors
corresponding to the five smallest eigenvalues of Tk (again, related explicitly
to singular values of B) relate to the entries of U and V' as shown in Table 2. (The
array Z returned by BDSVDX would be formed by taking the last four columns of
Zélx)5; its last column is concatenated with the first column of Z§1X)5.)

Zero at the bottom. If n =4 and a4 = 0, we have the following SVD:

T bl bQ bg _ U S T
B—lndmg(a1 4 as 0) —{ 1] [O} [V],

where U is 3-by-3, S is 3-by-3, and V is 4-by-4. If we construct a T from B, its
last row and column will be zero, the entries of the eigenvectors corresponding to
the five smallest eigenvalues of Tk (again, related explicitly to singular values
of B) relate to the entries of U and V as shown in Table 2. (The array Z returned
by BDSVDX would be formed by taking the first four columns of Zéi)5? its last
column is concatenated with the last column of Zézx)5.

If the eigenpairs of Tgx are (+£s,z), with ||z]| = 1, and from (1), we obtain
z = P(u”,+vT)/y/2 [6]. Thus, we can extract the SVD of B from the eigende-
composition of Tk

Table 2. Relation between the eigenvectors of Tk and the entries of U and V for a
zero at the top or bottom of B.

Zero at the top Zero at the bottom
(1) 1 1)y-1 (2) 78, @)\-1
Zgxs = (1) (D) Zgis = (D)
Zrs 1
DW = diag(1,v/2,v/2,v2,1) D® = diag(v/2,v/2,v/2,1,1)
Columns of Z§1X)4: Columns of Z;2X>4:

T T
(u1,1 w11 w21 V2,1 w3 Vs wan) | (Vi w1 V21 U2l Vs U3 V1)
T T
(u1,2 vi,2 w22 V2,2 uz2 V32 u42) | (Vi2 U2 V22 U2 V32 U3 Vi)
T T
(u1,3 v1,3 u23 V2,3 usz 3z U3z u4as) | (V1,3 w13 V2,3 U23 V3,3 U3,3 V4a3)

T T
(u1,4 0 u2a 0 uga 0 uaa) (vi,a 0 v24 0 v O va4)

Computing the Bidiagonal SVD 69

4 Reorthogonalization of Vectors

As discussed earlier, given an eigenvector z; of Tgr, z = P(ul,—vI)T/V2
(i <1< n). We could simply create 4; with the even entries of z; and v; with
the odd entries of z; and multiply those vectors by v/2 in order to obtain u;
and v;. However, in our implementation we explicitly normalize @; and 9;. This
allows us to check how far the norms of #; and v; are from %, which may be
the case if z; is associated with a small A. Then, if needed, we apply a Gram-
Schmidt reorthogonalization to 4; and ©;. Our test for triggering a reorthogo-
nalization is based on ||| — %| > tol (similarly for ¢), tol = /e, where ¢ is
the machine precision. However, we have identified matrices for which this test
is not sufficient, which suggests the need for a strategy that takes into account
the separation of A’s. This is the case, for example, of the bidiagonal matrix
defined as a; = 107D j = 1.2....n, b = 10a;,4 = 1,2,...n — 1,n = 8,
for which s; =~ 1.005, sy ~ 107!? and sg ~ 10722. While the eigenvectors
of Tax as computed by STEVX are orthogonal to work precision, specifically,
Z = [z1,29...2), I — ZTZ||/(2ne) = 0.125, actually the vectors associated
with eigenvalues —s7 and —sg span an eigenspace, resulting in singular vectors
that are not orthogonal to work precision.

5 Numerical Experiments

We have used a large set of bidiagonal matrices to test BDSVDX, on a typical
Intel-based computer, in double and single precisions, using different compilers.
Here we report results in double precision only, with the gnu compiler. Most of
the test matrices in our testbed are derived from symmetric tridiagonal matrices
described in [2] (also used in [3]). In this case, we factor T—vI = LLT (Cholesky)
for a proper value of v (obtained from the Gerschgorin bounds of T'), then set
B = LT. The testbed also includes bidiagonals generated with random entries.
All matrices used in our experiments are available upon request.

To test accuracy, we compute resid = ||[UTBV — S||/(||Bl|ne), orthU =
II —UTU|/(ne), and orthV = ||I —VTV||/(ne), where n is dimension of B. To
test RANGE = “I” or RANGE = “V” for a given B, we build the corresponding Tk
prior to invoking BDSVDX and compute its eigenvalues using bisection. Then, for
RANGE = “V” we generate ny pairs of random indices IL and IU, map those
indices into the eigenvalues of Tgx, perturb the eigenvalues slightly to obtain
corresponding pairs VL and VU, and then invoke BDSVDX ny times. For RANGE =
“I” we simply generate n; pairs of random indices IL and IU, and then invoke
BDSVDX n; times.

Figure 1a shows the accuracy of BDSVDX, for all singular values and vectors, for
200 bidiagonal matrices with dimensions ranging from 9 to 4006. Figures 1b-c show
the accuracy of BDSVDX for the same matrices of Fig. 1a, with n; = 10 (random)
pairs of IL, IU, and ny = 10 (random) pairs of VL, VU for each matrix. In the
figures, the matrices (y-axis) are ordered according to their condition numbers,
which range from 1.0 to >10%%°. For convenience, we use floor and ceiling functions
to bound the results in the z-axis, setting its limits to 1072 and 104,

70 O. Marques and P.B. Vasconcelos

200 (my | 2000 £l 2000)
Yo - .8/
Xy om x| xa ~-f
5
180 EEW 1800 1800
160 1600 (B @, - 1600 [
\..l h 5
140 1400 8 1400
k
. .
120 h - 1200 [N 1200
 resid i * resid X resid
morthU morthU ®morthu
100 e orthv 1000 1000 [0
- o o orthv 2 ® orthv
80 b 800 800
60 = 600 600
i
20 Mg 400 . 400
(]
x (X =)} >
20 /%. 200 SRR 0 200 LS
E Fom
0 0 0
LEOL 1E+00 1E+01 1E+02 1E+03 1E+04 LE0L LE+00 1E+01 1E+02 L1E+03 1E+04 LE0L LE+00 1E+01 1E+02 1E+03 1E+04
WA __u» Wy
(a) RANGE=“A (b) RANGE=*“I (c) RANGE=“V

Fig. 1. resid, orthU, orthV (z-axis, log scale) of BDSVDX for RANGE = “A” “I” and“V”,
double precision. (1a) 200 matrices (y-axis), increasing condition numbers; (1b) ny = 10
for each matrix of RANGE = “A”; (1c) nv = 10 for each matrix of RANGE = “A”.

As can be seen in Fig. la, the great majority of the results are adequately
below 1.0. We consider the outliers to be the ones above 100 and mark them with
an ellipsis. Matrix 26 is a bidiagonal matrix obtained from a tridiagonal matrix
with highly clustered eigenvalues. Its dimension is 1260, its condition number is
2.2668, and its 136 largest eigenvalues have 12 digits in common (its spectrum
contains other large clusters). Matrices 198-200 are more difficult: their entries
are taken randomly from the interval [2 x log(e), —2 x log(¢)], therefore ranging
from £72 to &2 (this is a notoriously hard case, borrowed from the LAPACK
testers), and their dimensions are 125, 250 and 500, respectively. For n = 500,
s1 = 1.47 x 10™3! and s, = 1.34 x 107284 (as computed by BDSQR). For these
matrices, resid is O(1078) but orthU and orthV are O(10%13). As expected,
the effect of large clusters of singular values of matrix 26 and the oddities of
matrices 198-200, are propagated to Figs. 1b and c. Figure 1b contains additional
outliers: case 398 corresponds to a bidiagonal similar to matrix 26 in Fig. 1a; cases
1551 and 1552 are related to a bidiagonal of dimension 1000, obtained from a
tridiagonal with one eigenvalue equal to 1.0 and all others equal to 1/+/e.

Figure 2 compares the times taken by BDSQR, BDSDC and BDSVDX on 12 bidi-
agonals with dimensions ranging from 494 to 2003 (a sample of matrices from
Fig. 1a). For BDSVDX, we compute all singular values/vectors, the largest 20%
and 10% singular values/vectors, and the largest 5 singular values/vectors. For
each matrix, the timings are normalized with respect to the time taken by BDSQR
(y-axis, log scale). As expected, BDSVDX is not competitive for all or a relatively
large set of singular values/vectors, the gains become apparent at about 10%.

Computing the Bidiagonal SVD 71

1.E+00

1.E-01

1.E-02

| 60 Tt
1 2 3 4 5 6 7 8 9 10 11 12

W BDSQR mBDSDC w BDSVDX(A) = BDSVDX (1,20%) m BDSVDX (1,10%) m BDSVDX (1,5)

Fig. 2. Normalized times (y-axis, log scale) for BDSQR, BDSDC and BDSVDX on 12 bidiago-
nals whose dimensions range from 494 to 2003 (z-axis, increasing size), double precision.
BDSVDX: all, the largest 20% and 10%, and the largest 5 singular values/vectors. For
each matrix, the timings are normalized with respect to the time taken by BDSQR, which
is typically the slowest.

1.0

0.9

0.8

normalized time
o
w

n 500 750 1000 1250 500 750 1000 1250 500 750 1000 1250 500 750 1000 1250

m 500 750 1000 1250
B GESVD ® GESDD m GESVDX (1,20%) = GESVDX (1,10%) ® GESVDX (I,5)

Fig. 3. Normalized times for GESVD, GESDD and GESVDX on 16 m X n matrices where m =
500, 750, 1000, 1250 and n = 500, 750, 1000, 1250, in double precision (real). GESVDX: the
largest 20%, the largest 10% and the largest 5 singular values/vectors. For each matrix,
the timings are normalized with respect to the time taken by GESVD.

In particular, BDSVDX is 3 orders of magnitude faster than BDSQR and 2 orders of
magnitude faster than BDSDC for the computation of the largest 5 singular values
and vectors of the largest matrix.

72 O. Marques and P.B. Vasconcelos

_ (-1
Table 3. Entries of T, \; = ¢ »=1) ¢ = %,i =1,2,...n,n=10.

~
~

i tiit1 = tit1,s
.893161597943482E-01 | 3.880873104122968E-01
.128005558065539E-01 | -3.516122075663728E-02
.258328488738520E-01 | 3.077875339462724E-02
.448430650126851E-02 | -4.746410482563373E-03
.268662131212184E-03 | -6.983851144411338E-05
.759036513821439E-04 | -1.142712831766173E-04
.443722972151846E-05 | 6.941905362025514E-06
.149112437832172E-06 | -7.426637317219540E-07
.117627370984594E-07 | 1.892470326809461E-08
.071603546505181E-07 | -

O 0| N | g|d | wWw| N+

PN OO N W/ N~ |0+

[y
o

40000

30000

20000

10000

Fig. 4. Surface plot of |I — Xi Xx|/(ne), where Xy contain the eigenvectors returned
by STEXR for the tridiagonal matrix given in Table 3. The first four columns of Xxz are
linearly dependent: those columns correspond to A1 ~ 1.49 x 1078, X\a &~ 1.10 x 1077,
As A~ 8.17 x 1077 and A4 &~ 6.06 x 107°.

Finally, Fig.3 compares the times taken by GESVD, GESDD and GESVDX in
double precision, on random m X n matrices with m = 500, 750, 1000, 1250
and n = 500, 750, 1000, 1250. GESVDX is used to compute the largest 20%, the
largest 10% and the largest 5 singular values/vectors. It is consistently faster
than its counterparts, which are limited to a full SVD. The gains become more
significant as the smallest dimension of the matrix increases: GESVDX is up to 7.5
times faster than GESVD and 2.8 times faster than GESDD.

A case of failure in STEXR. We show here a case of misbehavior of STEXR intro-
duced in [6], by using a tridiagonal matrix T generated with the prescribed

Computing the Bidiagonal SVD 73

eigenvalue distribution \; = cf%,c =1/yei = 1,2,...n,n = 10 (\; =~
1.49 x 1078,... A, = 1.00). Table3 lists the entries of 7. Although not shown
here, the eigenvalues of T computed with the eigensolvers listed in Table1
and also STEXR are in very good agreement. However, ||I — X& Xyrl||/(ne) ~
3.95 x 10*, where Xz corresponds to the matrix of eigenvectors returned by
STEXR; see Fig. 4. Noteworthy, || T — XyrAxa X |/ (|| T||ne) ~ 0.6, where Axg is
the diagonal matrix formed with the eigenvalues returned by STEXR. In contrast,
11 — X&Xuxl|/(ne) = 0.9 and ||I — Xk Xir||/(ne) = 0.1, where Xyy and Xy are
the vectors returned by STEVX and STEMR, respectively. We have identified other
matrices for which STEXR failed to produce orthogonal eigenvectors, for example
the Wilkinson symmetric tridiagonal matrix of dimension 21, W5, whose diago-
nal entries are (10,9,8,...,0,...8,9,10) and whose offdiagonal entries are all 1.
Our exhaustive tests revealed that STEMR may also fail for matrices with very
close eigenvalues (e.g. matrices formed by gluing Wilkinson-type matrices). To
the best of our knowledge, STEXR is not longer maintained, therefore our choice
of STEVX for the first implementation of BDSVDX. We note that the computa-
tion of the bidiagonal SVD using MRRR has been also explored in [8] but the
implementation discussed therein has not been incorporated into LAPACK; it
has been phased out in favor of a more robust theory presented in [6,9].

6 Conclusions

This paper presented an algorithm for the computation of the SVD of a bidiag-
onal matrix by means of the eigenpairs of an associated tridiagonal matrix. The
implementation, BDSVDX (included in the LAPACK 3.6.0 release), provides for
the computation of a subset of singular values/vectors, which is important for
many large dimensional problems that do not require the full set. Our experi-
ments revealed that this feature can lead to impressive gains in computing times,
when compared with existing implementations that are limited to the computa-
tion of the full SVD. The implementation discussed here offers opportunities for
parallelism, for example by assigning different subsets of values and vectors to
different processes. For a parallel implementation, we can built upon the work-
flow of the parallel subroutines PDSYEVX or PDSYEVR that are implemented in
ScaLAPACK. The former is based on bisection and inverse iteration, with the
caveat that it does guarantee orthogonality of eigenvectors that are on different
processes. The latter is based on the MRRR algorithm and presumably delivers
more satisfactory results and scalability [10]. Specific tests will be required (e.g.
with cases similar to the difficult ones in Fig. 1) to assess the best alternative.
Numerical results on a large set of test matrices substantiated the accuracy of
the implementation; the exceptions are matrices with very large condition num-
bers or highly clustered singular values. Interestingly, we have verified (results
not shown) that the accuracy is not so much dependent on the condition number
of the singular vectors, £y, = min(mi, %), gap; = minjz; |o; —oj|, as we
had originally thought. On the other hand, we have identified pathological cases
(typically very small singular values) for which the computed singular vectors

74

O. Marques and P.B. Vasconcelos

may not be orthogonal to work precision. A more robust strategy to cope with
such cases needs to be investigated; it will be a priority in our future work.

References

10.

. Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., van der Vorst, H. (eds.): Templates

for the solution of Algebraic Eigenvalue Problems: A Practical Guide. SIAM,
Philadelphia (2000)

. Marques, O., Demmel, J., Voemel, C., Parlett, B.N.: A testing infrastructure for

symmetric tridiagonal eigensolvers. ACM TOMS 35, 1-13 (2008)

Demmel, J., Marques, O., Voemel, C., Parlett, B.N.: Performance and accuracy of
LAPACK’s symmetric tridiagonal eigensolvers. SIAM J. Sci. Comput. 30, 1508-
1526 (2008)

Dhillon, I.S., Parlett, B.N.: Multiple representations to compute orthogonal eigen-
vectors of symmetric tridiagonal matrices. Linear Algebra Appl. 387, 1-28 (2004)
Dhillon, I.S., Parlett, B.N., Voemel, C.: The design and implementation of the
MRRR algorithm. ACM TOMS 32, 533-560 (2006)

Willems, P., Lang, B.: A framework for the MR? algorithm: theory and implemen-
tation. SIAM J. Sci. Comput. 35, 740-766 (2013)

Demmel, J., Kahan, W.: Accurate singular values of bidiagonal matrices. STAM J.
Sci. Stat. Comput. 11, 873-912 (1990)

Willems, P., Lang, B., Voemel, C.: Computing the bidiagonal SVD using multiple
relatively robust representations. STAM. J. Matrix Anal. Appl. 28, 907-926 (2006)
Willems, P.: On MR3-type algorithms for the tridiagonal symmetric eigenproblem
and the bidiagonal SVD, PhD dissertation, University of Wuppertal (2010)
Voemel, C.: ScaLAPACK’s MRRR algorithm. ACM TOMS 37, 1-35 (2010)

HPC on the Intel Xeon Phi:
Homomorphic Word Searching

Paulo Martins®™ and Leonel Sousa

INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
paulo.sergio@netcabo.pt, las@inesc-id.pt

Abstract. In this paper, the suitability of implementing parallel homo-
morphic word searching on Intel Xeon Phi coprocessors is evaluated for
the first time. Homomorphic encryption allows to produce a cryptogram
that encrypts the result of applying some values to any function, even
when the input values are encrypted and without access to the private-
key. For example, it is possible to search if any word of a set of encrypted
words matches a plaintext reference word and generate a new cryptogram
that encrypts the amount of matches. In this paper it is shown that this
operation is about 834 times faster by using a system with 4 Intel Xeon
Phi coprocessors 5110P attached to an Intel Xeon CPU E5-2630 v2, when
compared with an implementation on a single core of the Xeon CPU.

Keywords: Intel Xeon Phi - Homomorphic encryption - Homomorphic
word searching

1 Introduction

The use of embedded systems is becoming ubiquitous, as more sensors and actu-
ators are incorporated into everyday electronics and on the general infrastruc-
ture. Since these devices often have limited computational resources, it would
be beneficial to offload parts of their computation to a third party. However,
the processed data may be private, which means that the third party should
not have access to it. Cryptography enables the encryption of data, such that
access to it is impossible without the usage of a specific key. In particular, with
public-key cryptography, every user produces a pair of keys: one is public, and
should be widely distributed, while the other is private. Someone with access to
the public-key may produce a cryptogram by applying the encryption algorithm
to a plaintext. This cryptogram cannot be decrypted by anyone but the owner of
the corresponding private-key. Homomorphic Encryption (HE), in turn, allows
one to operate on ciphered data [2]. With this approach, one can produce an
encryption of the output of an arbitrary function from the encrypted inputs, and
without access to the deciphering key.

P. Martins—This work was supported by national funds through FCT (Fundagao
para a Ciéncia e a Tecnologia) with reference UID/CEC/50021/2013 and under the
Ph.D. grant with reference SFRH/BD/103791/2014.

© Springer International Publishing AG 2017

I. Dutra et al. (Eds.): VECPAR 2016, LNCS 10150, pp. 75-88, 2017.
DOT: 10.1007/978-3-319-61982-8_9

76 P. Martins and L. Sousa

With homomorphic encryption, processors with limited resources may offload
the processing of sensitive data without compromising the privacy of that data.
This may be useful for instance, for advertising companies that wish to select
ads based on the browsing history or keywords in e-mails of potential customers;
or to analyze medical data of sensors connected to a patient without breaching
the patient’s privacy; or for companies wishing to offload the computation of
the purchasing patterns of its customers. It is therefore of interest to investigate
how current servers may execute these procedures in an efficient and scalable
way. Some platforms to provide High Performance Computing (HPC) in server
settings include various Field-Programmable Gate-Array (FPGA) solutions, the
use of Graphics Processing Units (GPUs) for general purpose processing, among
others. However, these solutions typically lead to high development and mainte-
nance costs.

As an alternative, Intel developed the Many Integrated Core (MIC) archi-
tecture [5]. Intel MIC is a many core coprocessor architecture supported on a
modified version of the P54C design, used on the original Pentium. These cores
can be very power efficient on current semiconductor process architectures due
to short pipelines and low frequency operations. Also, the modified cores enable
the use of many of the programming models that most developers are already
accustomed to, such as OpenMP, OpenCL, Message Parsing Interface (MPI),
Cilk/Cilk Plus, and specialized versions of Fortran, C++ and math libraries.
This is twofold important. First, there is a large amount of code already being
deployed with these tools, that can be readily executed on the Intel Xeon Phi.
Second, it eases the process of porting applications to the new architecture. We
consider, therefore, that this architecture is one of the most suitable for servers
with heterogeneous workloads, and investigate for the first time how well it is
adapted to homomorphic word searching.

The rest of the paper is organized as follows. In Sect.2, we give an intro-
duction to HE, and describe how it can be applied to perform word searching.
Afterwards, in Sect. 3, procedures and algorithms are proposed for the Intel Xeon
Phi architecture. The performance of the proposed parallel algorithms is eval-
uated in Sect. 4, compared with related work in Sect. 5, and finally conclusions
are drawn in Sect. 6.

2 Homomorphic Encryption

HE can be metaphorically explained by the jewelry shop problem [3], whose
solution is represented in Fig.1. Alice, a shop owner, wanted her workers to
assemble precious materials, such as gold and diamonds, into intricately designed
rings and necklaces. However, she distrusted her workers, and thus did not want
the workers to come in direct contact with the materials, since she was afraid
they might steal them. In order to solve this problem, Alice used a transparent
impenetrable glovebox. She would then open the box, and store the raw materials
inside. Afterwards, she would lock the box using a key to which only she had
access. This process embodies the encryption procedure. As shown in Fig. 1,

HPC on the Intel Xeon Phi: Homomorphic Word Searching 77

Fig. 1. A piece of gold is locked inside a glovebox, so that a worker may transform it
into a ring. The ring is later removed when the glovebox is unlocked

the workers could use the gloves to assemble the rings and necklaces. In this
situation, the gloves represent the homomorphism of an HE scheme. Since the
box was impenetrable they could not have access to the precious materials; in a
similar manner to how a server is not be able to access the encrypted values it
processes homomorphically. When the piece was finished, Alice could open the
box, and retrieve the result, which is mirrored as the decryption operation in
the case of a cryptosystem.

Fully Homomorphic Encryption (FHE) was first uncovered in 2009 [2]. In
contrast to previous Somewhat Homomorphic Encryption (SHE) schemes that
only enabled a subset of all possible operations on cryptograms, with FHE it is
possible to arbitrarily process encrypted data. In this paper, the cryptosystem
described in [6] will be focused on. This cryptosystem is a leveled FHE scheme:
with it, it is possible to evaluate arbitrary functions of encrypted data; one
only needs to specify the maximum “size” of functions beforehand and the size
of the generated public-key depends on this value. Arithmetic is performed in
R, = %7 with @(x) = 2™ + 1 and n a power of two. In this ring, two
elements are congruent (i.e. equivalent) if their difference is a multiple of &(z).
Similarly, two elements a(z) and b(x) are congruent if the difference between
all corresponding coefficients a; and b; is a multiple k; of q. An example of
operations in this ring for n = 2 and g = 2 is as follows:

1
z+1

(z+D)+zx=2x+1
(x+1)xoz=a’+x

(1)

where = is used to denote congruency. In the first case, if we consider the coef-
ficients of x, one can see that 2 — 0 = 2 is a multiple of ¢ = 2, and therefore
the congruency is valid. In the second equation, we can see that 2% — (—1) is
a multiple of @(x) = 22 + 1, hence 22 + 2 = x — 1. Since (—1) — 1 is also a
multiple of ¢ = 2, the second congruency is valid in this ring. Typically, the
elements of R, with the smallest polynomial degrees, and with the smallest non-
negative coefficients are used as the representatives for the congruency classes.
With this representation, addition and multiplication of polynomials is followed
by the computation of the remainder of the division by @(z), and afterwards by
the computation of the remainder of the division of the coefficients by g.

In this cryptosystem, the secret-key corresponds to a vector sox; =
(1,-t)T e Rg, where t <~ Dpg_ 5, is a polynomial drawn from a “narrow” distrib-
ution [6], namely a Gaussian distribution. In order to produce the corresponding

78 P. Martins and L. Sousa

public-key, a < R, is drawn uniformly from R,, e <~ Dg,_ 5, is produced, and
b = at + e is computed. The public-key corresponds to A1y = (b, a). Note that

Aixa X sax1 =€ (2)

where e is a “small” polynomial. A cryptogram Cpyxs, with N = 2] and [=
[log ¢], encrypting a value 4 € R, is a matrix such that, for a small error:

1 0
2 0
21 0
Cnx2 X Sox1 = [0 1 X 821 + error (3)
0 2
6 2l.—1

If we add two cryptograms Cy x2 and Dy «2, the resulting cryptogram retains
the format described in Eq.(3). Homomorphic multiplication, in contrast, is
more complex. To multiply two ciphertexts Cnx2 and Dpx2, one computes
BD(Cnx2) X Dyxa. The BD(Cpx2) function expands each entry of the matrix
across [columns performing bit decomposition. In concrete, each element ¢; ; is
decomposed into ¢; ;[k| for k € {0,...,1 — 1}, such that ¢; ; = 2;10 ci i [k)2%,
where the ¢; ;[k] are polynomials with coefficients either 0 or 1, producing a
matrix:

CO,O[O] e Coyo[l — 1] 6071[0] . Co’l[l — 1]
6170[0] Clyo[lf 1] C1,1[0] Clql[lf 1]
S : S : (4)
CN_L()[O] e CN_L()[Z — 1] CN_171[0] RN CN_171[l — 1]

It can be proved that the result of BD(Cpnx2) X D2 retains the format in
(3), but & now takes the value of the product of the original plaintexts. If the
term error remains small enough, the result can still be deciphered.

As more operations are performed, error grows, and as such the number
of operations that can be applied are limited by the homomorphic capacity of
the cryptosystem. In the particular case of homomorphic multiplication, noise
growth is asymmetric, i.e. if matrices C'yx2 and Dy 2 are swapped in the expres-
sion BD(Cpnx2) X Dyxa, the final error will not necessarily be the same. It is
best to use the ciphertext with the largest error as Cnx2 [6].

2.1 Ring Arithmetic

The parameters for the cryptosystem described in [6] enable efficient arith-
metic over R,. In particular, the value of n was set to n = 1024 and ¢ to
q = 0x7FFE0001 in hexadecimal. This leads to [= 31 and N = 62. Reduction

HPC on the Intel Xeon Phi: Homomorphic Word Searching 79

modulo ¢ after multiplications is achieved by noting that the following congru-
ence is valid (both side of the expression have the same remainder modulo ¢):

231 =217 _ 1 mod ¢ (5)

since ¢ = 23! — 217 4 1. Thus, the value z € {0,..., (¢ — 1)?} of the product of
two polynomial coefficients can be rewritten as z = 2123 + 2o, and the following
congruence can be applied:

=224 20— (6)

This latter congruence is iteratively employed as depicted in Algorithm 1
until z € {0,...,23" — 1}. Afterwards, a conditional subtraction by ¢ when
z€{q,...,2% —1} suffices to ensure that z is in {0,...,¢—1}. When adding or
subtracting two polynomial coefficients, a subtraction or an addition by ¢ suffices
to bring the result z back to {0,...,¢ — 1} when z > g or z < 0, respectively.

Algorithm 1. Modular reduction in Z/(qZ)

Require: z € {0,...,¢°> —2q+ 1}
Ensure: z € {0,...,q— 1}
while z > 23! do
z1=2>>31
20 = 2& (2% — 1)
z = 21217 —+ (Zo — Zl)
end while
if z > ¢q then
z=z—q
end if
return =z

Addition of polynomials in R, is performed by adding the corre-

sponding polynomial coefficients in Z/(¢Z) with Single Instruction Multi-
Z/(qaZ)[#]
a1
is equivalent to a cyclic convolution of m points: if u(z) = Z?:_Ol U T,
k

ple Data (SIMD) instructions. Multiplication of two polynomials in
u(z)® = Z?:_ol Un—k+i mod nd? mod ™ — 1, thus 2(2) = wu(d) x v(i) =
ngol ;L;Ol Up—j+i mod n¥;&° mod ™ — 1. This operation is equivalent to mul-
tiplying the coefficients of the Fast Fourier Transform (FFT) over Z/(qZ) of the
two polynomials, which results in an algorithm with lower complexity. By noting
that if ™ = —1(modgq), and & = nz, then

" —=1=mz)" —1=—(2" 4+ 1) = 0(modz™ + 1) (7)

This means that if the change of variable & = nz is applied, operations modulo
™ —1 will be converted to operations modulo £+ 1 when the variable is changed
back to x = n~li.

80 P. Martins and L. Sousa

Thus, to multiply two polynomials a(x) and b(z) in R,, one first computes
u(d) = S0 ain Tl i and v(#) = S0 bin 4. Afterwards, one applies a FFT
—— ——

=
Uq Ui

over Z/(qZ) to v and v, and multiplies the resulting transforms coefficient-wise.

To get the final result, an inverse FFT has to be applied, and a final change of

variable to return the polynomials from z to x.

2.2 Homomorphic Word Matching

In this work, the previous scheme was applied to homomorphically perform word
matching. One can imagine a server where e-mails are stored in encrypted format.
The senders of e-mails should encrypt the words of those e-mails by applying
Algorithm 2 to the set of words in the e-mail. It should be noted that since a
hash function is used to conceal the words lengths it is not possible to obtain
the plaintext words back from the cryptograms. For practical implementations,
the sender would have to cipher the e-mail twice, once where all the words are
encrypted with this algorithm, and another time where the e-mail is encrypted
as a whole with a “reversible” encryption.

Algorithm 2. Encryption of a list of words to be searched
Require: List of words to be searched, input_list
Ensure: List of encrypted words, output list
output_list = {}
for all word in input_list do
encrypted_bit_list = {}
a = Hash(word)
for all bit a; in a do
¢; = Encrypt(a;)
encrypted_bit_list = encrypted_bit_list U {c; }
end for
output_list = output_list U {encrypted_bit_list}
end for
return output_list

The e-mail client could then issue word searching queries. We assume, for
simplicity, that the queried word is provided in the clear. The e-mail server
would iterate through all encrypted words, and apply Algorithm 3 to each of
them and the plaintext queried word. In this algorithm, one starts by computing
the hash of the word to be searched, producing a. Afterwards, the value of
Encrypt(] [, @i XNOR b;) is homomorphically computed, where b; is the it Dbit
of the hash of the encrypted word. When processing the cryptograms, the term
¢ in the product has the value of ¢; if a; = 1, and Encrypt(1) — ¢; otherwise,
where ¢; is the encryption of b;. This operation produces a cryptogram that
encrypts 1 when the two words are the same, or 0 otherwise. It should be noted

HPC on the Intel Xeon Phi: Homomorphic Word Searching 81

that due to the asymmetric noise growth, it is best to compute the product
linearly, instead of using a logarithmic tree. L.e., it is best to keep a product
“accumulator” and multiply all terms by this accumulator sequentially. This
allows one to always choose the accumulator of the product as the operand C 2
in BD(Cnx2) X Dnxa, leading to a slower growth of the error term. Moreover,
when one wants to perform a search over a set of encrypted words, one can apply
Algorithm 3 to each of these words, and afterwards add the results to get the
encrypted value of the number of matches. The server could then transfer this
result back to the client, without ever having access to the amount of matches.
The client could afterwards decipher the result.

Algorithm 3. Matching a plaintext word with an encrypted word
Require: Encrypted bits ¢; of the hash of word;
Require: Plaintext words
Ensure: Cryptogram match encrypts 1 if there was a match, and 0 otherwise
match = Encrypt(1)
a = Hash(words)
for all bit a; in a do
if a; = 1 then
di = C;
else
d; = Encrypt(1) — ¢;
end if
match = BD(match) X d;
end for
return match

In this work, only the more burdensome Algorithm 3 was parallelized and
accelerated using Xeon Phis. The parallel implementation of this algorithm will
be explained in detail in the following section.

3 Parallel Algorithms

The targeted system provided 4 Xeon Phi Knights Corner coprocessors [5]. Each
coprocessor features 61 cores operating at 1.053 GHz, interconnected via a 512-
bit bidirectional ring, as shown in Fig. 2. Since the Xeon Phi coprocessor runs
an Operating System (OS) inside, one of the cores will typically be dedicated
to answering hardware/software requests like interrupts. As such, there are 60
usable cores, each supporting four-way hyperthreading, and thus 240 hardware
threads are available. The cores can run at turbo modes, increasing the frequency
of operation, if the power envelope allows.

Each core has two 32kB L1 individual caches, for data and instructions, and
a 512kB L2 cache. The L2 caches are kept fully coherent by a global-distributed
tag directory. The performance of the architecture is boosted with the vector

82 P. Martins and L. Sousa

Fig. 2. Knights Corner schematic [11]

processing unit, which enables the processing of 512-bit registers. Each of the
Xeon Phi cores has 32 x 512-bit SIMD registers. At each clock cycle, up to
two instructions of a single thread are executed at each core. However, the two
instructions follow two architecturally different pipelines, and therefore only one
vector instruction can be executed at each cycle. The hardware cannot issue
instructions back to back from the same thread in the core, and therefore at
least two threads are necessary to reach full utilization of a core. Running 3
or 4 threads allows to hide more periods of latency, such as wrong instruction
prefetches.

Since 512-bit SIMD instructions are available, 16 coefficients of a polynomial
f(z) can be processed in parallel, as each coefficient was represented with 32
bits. When performing reductions after additions or subtractions, comparison
with g or 0 was implemented with the instruction vpcmpud, which produces a
mask that indicates which lanes are greater or equal than ¢, or less than 0.
This mask was used to prefix operations vpsubd and vpaddd that respectively
subtract or add ¢ to the lanes of the source register whose corresponding mask bit
is 1. Furthermore, the repeated application of congruence (6) to reduce modular
multiplications, as shown in Algorithm 1 was implemented with SIMD after
unrolling the loop for when z initially had the value of z = (¢ — 1)2, so as to
avoid divergent code on parallel operations.

Addition of polynomials in R, was implemented by adding the corresponding
polynomial coefficients over Z/(¢Z) with SIMD instructions. Polynomial mul-
tiplications were implemented using changes of variable and FFTs. FFTs are
decomposed into epochs, the number of which depends on the used radix r.
In particular, each FFT consists of log,. n epochs, and in each epoch n/r com-
putations, denominated butterflies, are performed. Using higher radices allows
one to improve data locality. For the considered parameters, a radix-4 FFT was
implemented, since 1024 = 45. It is not possible to use higher radices (except
for radix-1024, which is prohibitively large), since one cannot write 1024 as a

HPC on the Intel Xeon Phi: Homomorphic Word Searching 83

power of a larger integer. Moreover, 16 butterflies were processed in parallel
using SIMD extensions to speed up the FFT computation.

The homomorphic multiplication Enxa = BD(Cnx2) X Dnx2 proceeded in
three steps:

— In step (¢), multiple threads processed the Dy x2 matrix. It consists on chang-
ing the variable of the polynomials from x to &, and afterwards applying the
FFT, producing a new matrix Uyxs = FFT(CONV (Cxx2)) (where CONV
denotes the change in variable).

— In step (i¢), the matrix multiplication operation was processed in blocks.
Each of the 240 threads in a Xeon Phi coprocessor was given an identifier-
pair (idy,id,), with id, € {0,...,15} and id, € {0,...,14}. By denoting

Vixn = FFT(CONV(BD(Cnx2))), a; = |5 |, oy = |Gt],

16
idy X N idy+1)x N .
Yi = V b J, and yy = {%J, each thread performed the following
operation:
ﬁyz‘;zi @yi,ﬂﬂffl ﬂxi)o ’llg;i)l
W tida sidy) D : X (8)
'lA)yf,in . ?A)yffl’xffl Uzp—1,0 Uzp—1,1

where the values of 9; ; are produced from the matrix C'y «2 as they are needed
so as to reduce the memory requisites. Then, Algorithm 4 is used to add the
blocks W (id=:idv) with equal id, to produce the matrix Wy 2. In particular,
this algorithm implements a logarlthmlc tree structure to add the intermedi-
ary results of the matrix: the base of the tree contains all intermediary values
before running the algorithm, and the levels of the tree are processed from the
base to the root. Each level corresponds to a time instant where the nodes are
processed in parallel. In each of these nodes the values from its children are
added, and therefore after the root is reached all intermediary results have
been accumulated.

— In step (#it), an Inverse FET (IFFT) is applied to the polynomials in W, and
W = IFFT(W) is converted to Enxa = BD(Cpnx2) X Dyxa, by changing
the variable from & to z. Thread parallelism was used to process multiple
polynomials simultaneously.

Since steps (i) and (#i¢) did not fully utilize the computational power of
the Xeon Phi coprocessor, because there was not enough parallelism, several
matrices were processed in parallel in these steps; which corresponds to searching
on several words in parallel. Therefore, to compute s matrix multiplications, step
(i) is first applied to s matrices in parallel, then step (i7) is repeated s times
(once for each matrix multiplication), and finally step (7i7) is applied s times in
parallel to get the s results.

A modified version of Algorithm 3 was then implemented on the Xeon Phi.
This modification corresponds to the comparison of the plaintext word with s
encrypted words simultaneously, using the proposed matrix multiplication algo-
rithm. Furthermore, the subtraction featured in the algorithm was accelerated

84 P. Martins and L. Sousa

Algorithm 4. Logarithmic addition tree

Require: W%) Vid, € {0,...,15},Vid, € {0,...,14}
Ensure: W = (> ia, Wide:0) szr “i A4y
Wixz =0
The following code, until the return statement, is executed by all threads
for hop = 2; hop < 16; hop = hop X 2 do
Thread barrier
if id, is a multiple of hop then
if hop = 16 then
fori=y;i<ys;i=1i+1do
Wz 0= W(zd yidy) W('Ld +hop/2 idy)

i -0
end for
else
W(ld.,,zdy) W(ld.,,zdy) + W (idz+hop/2,idy)
end if
end if
end for

Thread bz}rrier
return W

using multi-threading and SIMD extensions. When using a system with k& Xeon
Phis, the modified algorithm can be processed k times in parallel, and ks matches
are homomorphically tested at the same time. Thus, when performing a search
of a plaintext word over a set of encrypted words, the set was broken into smaller
sets of ks encrypted words, and the Xeon Phis processed the sets in sequence.
Afterwards, the host Central Processing Unit (CPU) adds the encrypted matches
to create a cryptogram that when decrypted indicates how many encrypted
words are equal to the plaintext.

4 Experimental Results

The proposed parallel algorithm was implemented on a system with an Intel
Xeon CPU E5-2630 v2, operating at a frequency of 2.6 GHz, connected to 4 Intel
Xeon Phi coprocessors 5110P, running at 1.053 GHz. The code was compiled with
icc 16.0.1, using the optimization flag —O2. Computation was offloaded to the
Xeon Phi coprocessors through icc pragmas, and the code on the Xeon Phi
coprocessors was parallelized with OpenMP and SIMD intrinsics.

In order to find the optimal value for s (the number of matrix multiplica-
tions processed at a time by each Xeon Phi coprocessor), the homomorphic word
searching algorithm was run on the 4 Xeon Phi coprocessors and timed for dif-
ferent values of s. In particular, a plaintext word was compared with sets of over
90 words for s € {2,4,6,8,10,12}. The relative execution time per encrypted
word of the code offloaded to the Xeon Phi coprocessors can be found in Fig. 3.
One can see that the relative search time per word decreases from 0.154s for

HPC on the Intel Xeon Phi: Homomorphic Word Searching 85

= 015

Q

El

2

5 014

b=

g

é

o 0.3

Z

2

=

&
0.12

Fig. 3. Relative execution time per encrypted word as a function of the number of
matrix multiplications (s) processed at a time by each Xeon Phi coprocessor

Table 1. Total execution time for homomorphic keyword searching

Number of encrypted words|Sequential execution [s] |Parallel execution [s]|Speedup
24 2662.6 3.6 743.9
48 5585.6 6.0 933.2
72 8418.6 10.5 803.2
96 11735 13.7 856.0

s = 2 until 0.119 s for s = 6, and stabilizes around that value for larger values
of s. Therefore, the value of s = 6 was chosen for evaluating the performance of
the parallel algorithms and obtaining the results presented next.

A sequential baseline version of Algorithm 3 was also implemented on a single
core of the Xeon processor. Both the parallel implementation running on the
Xeon Phi coprocessors and the sequential version running on the Xeon core were
executed to perform a word search over sets of 24, 48, 72 and 96 encrypted words.
The execution times of the word searching algorithm can be found in Table 1.
There is a significant improvement in performance when executing the algorithm
on the Xeon Phi coprocessors. In particular, an average speedup of 834 was
obtained. By computing the obtained efficiency as the ratio between the speed-
up and the product of the number of hardware threads and the number of SIMD
lanes, and by taking into account the different frequencies of the Xeon processor
and the Xeon Phi accelerator, one gets a value of 13.3%. This is accounted for by
the fact that the vector unit is not exploited by all the instructions; that overhead
is introduced when exploiting SIMD parallelism — for instance, in Algorithm 1
the while loop is unrolled for the worst case when exploiting SIMD extensions;
and that there is also overhead associated with multi-threading parallelism — for

86 P. Martins and L. Sousa

example, when Algorithm 4 is executed, the underlying cache-coherence protocol
introduces delay in every iteration, so that data sharing is possible.

Finally, the Intel Xeon CPU E5-2630 v2 processor supports up to 12 hard-
ware threads, with SIMD instructions of 8 x 32-bits lanes. Hence, even if 100%
efficiency were obtained, with the parallelization of the sequential Xeon homo-
morphic word searching operation, one would require a cluster 18 processors to
beat the performance of the 4 Xeon Phi coprocessors.

5 Related Work

There has been work in the literature on how to port scientific applications to the
Xeon Phi, such as the lattice Boltzmann code [13], the Monte Carlo tree search [9],
the Rodinia benchmark [10] and sparse matrix multiplications [14] with very sat-
isfactory performance. Common concerns among these works include the division
of the work-load in a balanced way among the large amount of threads of the Xeon
Phi coprocessor, an effective vectorization of code, and also of how to best distrib-
ute data in memory. While some works focus on the computation of the FFT [7,8],
they are supported on the complex plane instead of finite fields, since they target
telecommunications protocols, and hence their performance is not directly com-
parable with the FFT implementation presented in this work. Furthermore, long
integer operations are optimized in [1] for the Xeon Phi coprocessor, with a spe-
cial focus on vectorization. These operations are used to implement the Rivest-
Shamir-Adleman (RSA) cryptosystem [12]. While textbook RSA is homomor-
phically multiplicative, since the multiplication of two cryptograms results in an
encryption of the multiplication of the underlying plaintexts, textbook RSA is not
considered safe, and this feature is not exploited in [1].

The described cryptosystem was supported on an earlier scheme [4], also
based on matrix operations. However, the latter did not exploit ring arithmetic,
which arguably degrades performance, and hence, as far as we know, there are
no practical implementations. The cryptosystem proposed in [6] was also imple-
mented therein using an Intel Core-i7 5930 K and a NVIDIA GeForce GTX980 as
an accelerator. An homomorphic word searching procedure took a relative time
of about 20 ms per encrypted word. This result cannot be directly compared with
the results obtained herein (see Fig. 3) since the main objective of this work was
to evaluate the improvement of performance one could get with widely deployed
programming tools, such as OpenMP, that are available on the Xeon Phis, and
provide more manageable code development. The GTX980 GPU is organized
according to a different architecture, and targets a more strict range of applica-
tions, which does not allow a direct comparison with the results obtained for the
Xeon Phi. Furthermore, the GTX980 GPU has 2048 CUDA cores, whereas the
4 Xeon Phis feature a total of 960 hardware threads, and therefore it is possible
to exploit a larger level of parallelism with the GTX980. Also, the GTX980 runs
at a slightly higher frequency (1.126 GHz) than the Xeon Phis (1.053 Ghz).

HPC on the Intel Xeon Phi: Homomorphic Word Searching 87

6 Conclusion

A large amount of embedded systems are currently being deployed in the mar-
ket, either in the form of consumer electronics or household appliances and in
the general infrastructure. Considering that they have limited computational
resources, more and more computation will start being offloaded to central
servers. Since this data may be private, it is expected that homomorphic encryp-
tion will become increasingly important, because it allows for the processing of
encrypted data. In this work, the performance of homomorphic encryption is
significantly enhanced with the use of Xeon Phi coprocessors. This enhancement
is achieved by exploiting the fact that the considered cryptosystem relies on
matrix multiplication over a specific ring, which is a burdensome operation with
a large level of parallelism. In concrete, a speedup of about 834 was obtained for
an homomorphic word searching procedure.

Furthermore, the Xeon Phi architecture has several advantages when com-
pared with other HPC systems. It is more flexible than GPU architectures,
supporting parallel divergent code more efficiently. It provides more manageable
and less time consuming tools for code development than FPGAs. Finally, it
supports multiple programming paradigms (such as OpenMP, and MPI) that
are widely deployed, and for which large codebases already exist.

References

1. Chang, C., Yao, S., Yu, D.: Vectorized big integer operations for cryptosystems on
the Intel MIC architecture. In: 2015 IEEE 22nd International Conference on High
Performance Computing (HiPC), pp. 194-203, December 2015

2. Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford Uni-
versity, Stanford, CA, USA (2009)

3. Gentry, C.: Computing arbitrary functions of encrypted data. Commun. ACM
53(3), 97-105 (2010). http://doi.acm.org/10.1145/1666420.1666444

4. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-faster, attribute-based. Cryptology
ePrint Archive, Report 2013/340 (2013). http://eprint.iacr.org/2013/340

5. Jeffers, J., Reinders, J.: Intel Xeon Phi Coprocessor High Performance Program-
ming, 1st edn. Morgan Kaufmann Publishers Inc., San Francisco (2013)

6. Khedr, A., Gulak, G., Vaikuntanathan, V.: Shield: scalable homomorphic imple-
mentation of encrypted data-classifiers. Cryptology ePrint Archive, Report
2014/838 (2014). http://eprint.iacr.org/

7. Khelifi, M., Massicotte, D., Savaria, Y.: Parallel independent FFT implementation
on intel processors and Xeon phi for LTE and OFDM systems. In: Nordic Cir-
cuits and Systems Conference (NORCAS): NORCHIP International Symposium
on System-on-Chip (SoC), pp. 1-4, October 2015

8. Khelifi, M., Massicotte, D., Savaria, Y.: Towards efficient and concurrent FFTs
implementation on Intel Xeon/MIC clusters for LTE and HPC. In: 2016 IEEE
International Symposium on Circuits and Systems (ISCAS), pp. 2611-2614, May
2016

http://doi.acm.org/10.1145/1666420.1666444
http://eprint.iacr.org/2013/340
http://eprint.iacr.org/

88

10.

11.

12.

13.

14.

P. Martins and L. Sousa

Mirsoleimani, S.A., Plaat, A., Van Den Herik, J., Vermaseren, J.: Scaling Monte
Carlo tree search on Intel Xeon phi. In: 21st International Conference on Parallel
and Distributed Systems (ICPADS), 2015, pp. 666-673, December 2015

Misra, G., Kurkure, N., Das, A., Valmiki, M., Das, S., Gupta, A.: Evaluation of
rodinia codes on Intel Xeon Phi. In: 2013 4th International Conference on Intelli-
gent Systems, Modelling and Simulation, pp. 415-419, January 2013

Reinders, J.: An overview of programming for Intel Xeon processors and
Intel Xeon Phi coprocessors, November 2012. https://software.intel.com/en-us/
mic-developer, Intel Corporation

Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital sig-
natures and public-key cryptosystems. Commun. ACM 21(2), 120-126 (1978).
http://doi.acm.org/10.1145/359340.359342

Rosales, C.: Porting to the Intel Xeon Phi: opportunities and challenges. In: 2013
Extreme Scaling Workshop (XSW 2013), pp. 1-7, August 2013

Saule, E., Kaya, K., Catalyiirek, U.V.: Performance evaluation of sparse matrix
multiplication kernels on Intel Xeon Phi. In: Wyrzykowski, R., Dongarra, J., Kar-
czewski, K., Wadniewski, J. (eds.) PPAM 2013. LNCS, vol. 8384, pp. 559-570.
Springer, Heidelberg (2014). doi:10.1007/978-3-642-55224-3_52

https://software.intel.com/en-us/mic-developer
https://software.intel.com/en-us/mic-developer
http://doi.acm.org/10.1145/359340.359342
http://dx.doi.org/10.1007/978-3-642-55224-3_52

A Data Parallel Algorithm
for Seismic Raytracing

Allen D. Malony®, Stephanie McCumsey, Joseph Byrnes, Craig Rasmusen,
Soren Rasmusen, Erik Keever, and Doug Toomey

University of Oregon, Eugene, USA
malony@cs.uoregon.edu

Abstract. Dijkstra’s single-source shortest path algorithm has been
applied in seismic tomography to determine paths of minimum travel
time from all locations in a 3D earth model to sensors used in seismic
experiments. An iterative data parallel algorithm is formulated for seis-
mic tomography based on the Bellman-Ford-Moore (BFM) algorithm.
Performance is demonstrated for OpenMP on multicore processors and
OpenCL on GPUs.

Keywords: Seismic tomography * Shortest path - Data parallel

1 Introduction

A common problem in scientific computing is finding the shortest path from a
point to all other points in a given dataset. One of the most commonly used algo-
rithms was first described by Dijkstra in his famous 1959 paper, “A Note on Two
Problems in Connexion with Graphs” [4]. Given a graph of n nodes each with
cost u and a starting node s, Dijkstra’s “single-source shortest path” (SSSP)
algorithm finds the path from s to all other nodes with minimum cost. Unfortu-
nately, Dijkstra’s algorithm is difficult to implement in parallel. In this study, we
describe a data parallel algorithm for finding shortest paths on a regularly-spaced
grid of points that can compete with Dijkstra’s in seismic raytracing.

Just as doctors use x-ray tomography to image the internal structure of the
human body, scientists studying the Earth use seismic tomography to image
its interior. Seismic waves propagate through the Earth at a velocity that varies
with local temperature, composition, and the presence of magma. Understanding
how these factors vary within the Earth is crucial to understanding the dynamic
processes that shape the planet. The method works by measuring the arrival
times of seismic waves from a source of seismic radiation, often an earthquake
or an explosion, and comparing the observed arrival times to the arrival times
predicted with a starting model. Perturbations to the starting model are then
solved by minimizing the misfit between the predicted and measured arrivals
times, generally with one of several variations on a least-squares approach [10].

In many cases, perturbations to the starting model are large enough to change
the geometric ray paths of the first-arriving waves [15]. Ray paths for the new

© Springer International Publishing AG 2017
I. Dutra et al. (Eds.): VECPAR 2016, LNCS 10150, pp. 89-98, 2017.
DOI: 10.1007/978-3-319-61982-8_10

90 A.D. Malony et al.

model must be calculated before new perturbations to the model are calculated.
This process increases the computation time of the algorithm from minutes to
many hours. For example, Bezada et al. [2] implemented Dijkstra’s algorithm
for a tomographic study of the upper mantle beneath Spain and Morocco. While
the improved results settled a long-standing controversy regarding the tectonic
history of the Western Mediterranean Ocean, Dijkstra’s algorithm had to be run
for 322 starting points over 8 iterations. A significant amount of computing time
was used for this purpose.

In general, reducing computation time is necessary to improve seismic tomog-
raphy for several reasons. Seismic tomography is an ill-posed inverse problem,
and several subjective parameters must be chosen to define the inverse problem.
Since these parameters influence the final model, many inversions employing
different parameter values must be analyzed before reliable inferences about
structures inside the Earth can be made. The resolving power of the available
data must also be explored, often through the inversion of many synthetic data
sets. Finally, the computation time taken by Dijkstra’s algorithm limits the scale
of the problems that can be addressed. Efficiency of the shortest path problem
must be improved for application to modern tomographic algorithms.

In this study, we present an alternative algorithm to that of Dijkstra [4] that
is more amenable to parallelization. The algorithm’s origin goes back to the
famous Bellman-Ford-Moore (BFM) [1,6,8] algorithms which iterates to deter-
mine shortest paths. In contrast to Dijkstra’s direct solution, ours then is an
indirect computation that must iterate to reach a converged state. Neverthe-
less, the significant increase in parallelism enabled by the algorithm translates
to overall reductions in execution times, as demonstrated for applications writ-
ten with OpenMP and OpenCL. More importantly, the algorithm will hopefully
expand the scale of the problems that can be addressed with seismic tomography
and aid in the rapid development of high quality models of seismic velocity.

2 Stingray

Moser’s formulation of the Dijkstra’s
shortest-path (DSP) method for seis-
mic tomography [9] as implemented by
Toomey et al. [15] is referred to in this
paper as Stingray-DSP. Moser’s app-
roach represents the seismic velocity of
a region of the Earth by a 3D grid of
N = N, x Ny x N, points. The objec-
tive is to find the shortest path from
a starting point s to all other points p
in the grid. This is done by initializing ™ oo lso wo 5°K,lun°m,5° wo lso ™ 2

the travel time to s at all points p to

o0, and the travel time at point s to Fig. 1. Visualization of ray paths in a 2D
zero. The travel time to all the points velocity model.

»

Kilometers

Seismic Velocity (kmys)

A Data Parallel Algorithm for Seismic Raytracing 91

in a neighborhood near s are then calculated along straight line paths. (The
travel time between any 2 points p and ¢ is a function of the velocity values at
p and ¢ and the distance between them.) The neighborhood of points used is
called the “forward star” for s, F'S(s). In this first step, the infinite travel times
for all the points in FS(s) are replaced by the travel time from s.

Once the travel time to all of the points within F'S(s) are found, the point p
with the minimum travel time from s is identified. The algorithm moves to p and
then the travel times for F'S(p) are found. This is the standard DSP step. Again,
only the minimum travel time for each point in F'S(p) is kept. Travel times along
paths that are not minimum time are discarded. The algorithm continues with
the next point ¢ with minimum travel time which has not yet had a forward star
centered on it. The process is repeated until a forward star had been centered
at every point in the velocity model.

The accuracy of the Moser method primarly depends on how finely the model
is discretized and how many points are included in the forward star. The error
varies with both these quantities because both control how the angles of the
ray paths leaving the center of the forward star are discretized. In pratice, we
generally use a forward star of radius 7!, with certain points removed that do not
effect the final accuracy of the solution [7]. In practice, a total of 818 points are
included in the reduced forward star of size 7. Figure 1 shows an example of the
fidelity of ray paths that can be obtained with Stingray-DSP with an 818-point
forward star resolution.

Various modifications to the algorithm are often to made to accommodate
the scientific problem being addressed. Seismic velocities are often anisotropic,
that is, the seismic velocity depends not only on local properties of the rock
but on the direction of the ray path. Three extra arrays must be stored in
addition to the seismic velocity (the fractional magnitude of anisotropy, and
the dip and azimuth of the fast direction) to compute anisotropic velocities, but
the algorithm is essentially unchanged. Many starting points can be initialized at
once to study the radiation of waves from an interface or a plane wave instead of a
point source. Essentially, the solution for each starting point becomes a separate
run of the algorithm. Finally, the choice of how the velocities are calculated
along a ray path can be varied based on the complexity of the problem. Often,
the velocity along a single ray is found by averaging the velocity at the end
points. However, if velocities vary on a length scale shorter than the size of the
forward star, a more expensive approach of integrating the velocities along the
ray can be used. The run times given here all use end point averaging, which is
appropriate for most geologic applications [2].

1 A forward star around point p of radius r will include all grid points within a distance
of § * r from p, where ¢ is the grid point unit spacing. Some of those points will be
redundant (e.g., colinear points) and can be removed from consideraton.

92 A.D. Malony et al.

3 Stingray Iterative Constraint Convergence Algorithm

The Stingray-DSP algorithm gives seismic modeling scientists high-quality ray-
tracing results compared to other methods. However, there are inherent limita-
tions on parallelism in the algorithm that prevent high-performance computing
(HPC) implementations. At each step of the algorithm, it is necessary to find
the leaf point on the unfolding spanning tree that has the minimum travel time.
This point must be the next one to expand, effectively sequentializing the control
path. It is possible to execute the Stingray-DSP algorithm on multiple starting
points at the same time, thus taking advantage of multiple computing resources.
Over a hundred starting points for a single velocity model are used routinely in
our work. Replicated parallelism is beneficial to geological scientists for through-
put purposes, but it does not produce a faster single starting point solution. Also,
very large velocity models could exceed the memory bounds of a single process-
ing node, requiring a splitting of the Stingray-DSP computation across nodes.
In general, DSP algorithms face fundamental performance inefficiencies when
executing in distributed memory systems.

It is possible to reformulate seismic raytracing as an iterative constraint con-
vergence (ICC) problem, where the constraint is the minimization of a travel
time metric. Let V' be the velocity field defined on a 3D grid of points and 7" the
travel times from each grid point to a starting point s. Assuming the final travel
times are known for each model point p, T'(p), they must satisfy the constraint:

T(p) = min(T(q) + Delay(p,q)), ¥ q € FS(p) (1)

where F'S(p) is the “forward star” set of points of p and Delay(p,q) is the
seismic time delay (determined by the velocity values, plus additional physcial
properties, in the case of anisotropic analysis) at p and ¢. The reason is that the
minimum travel time path from p to s must pass through a point, r, in F.S(p),
and r must be the point in F'S(p) whose own travel time to s, plus the delay
from p to r is the smallest. Any other point can not be on the minimum travel
time path from p to s. Based on this final constraint, an interative procedure to
update the travel times can be specified as follows:

To(p) = oo Vp # s, To(s) = 0 (2)

Tiy1(p) = min(T;(q) + Delay(p,q)) ¥V q € FS(p) (3)

where T;(p) and T;41(p) are the travel times of p to s at steps ¢ and i+ 1, respec-
tively. The procedure continues until T;11(p) = T;(p) V p. Note, convergence is
guaranteed because the travel times at each point are monotonically decreasing.

The Stingray-ICC algorithm formulated in this manner is highly data-
parallel, in that all points can be updated simultaneously. However, time to
solution will depend on how long the algorithm takes to converge. There are
three issues to consider. First, at step 0, all points have a time of co, except for
the starting point. Thus, much of the early computation will be irrelevant and
wasted until valid travel times radiate from the starting point. Second, the prop-
agation of valid travel times is directly correlated with the radius of the forward

A Data Parallel Algorithm for Seismic Raytracing 93

star. Geological scientists prefer forward stars with larger radii for better accu-
racy, which will radiate travel times faster and hopefully result in fewer steps for
convergence, but will also increase the computational work at each step. Third,
as the iterative algorithm gets closer to convergence, fewer travel times will be
adjusted, meaning more points will be already at their final travel times and the
computation will be redundant.

4 Parallelization Design Strategy

The highly-parallel nature of the Stingray-ICC algorithm provides an excellent
opportunity for parallelization on both multicore CPUs and manycore coproces-
sors. Ideally, we would like to articulate a parallelization design model that could
map to different execution targets. The idea is to decompose the model domain
into rectangular regions that can be worked on in parallel at each iteration step.
The regions will be defined such that they are non-overlapping, in order to elim-
inate dependencies between regions during the step-wise parallel computation.
However, between steps, exchanges between neighbor regions will be required
to update the travel times for points on the region boundaries. This is a stan-
dard domain decomposition approach with halos used for exchanging boundary
data. Typically, applications using domain decomposition will apply stencils in
updating values within a region. The forward star in Stingray-ICC is effectively
a stencil. The problem is that the 818-point forward star is a very large stencil.
This makes it more challenging.

In order to update the travel time of a single point, a region in the Stingray-
ICC domain decomposition must be at least of size 15 x 15 x 15 in order to hold
all of the points in the 818-point forward star. For a 150 x 150 x 150 velocity
model, this partitioning would generate 1000 regions. Once the partitioning is
done, the objective is to update every point in the region in parallel across all
regions, at each step. However, to do so, we would need to access the forward
star around every point in the region. That requires information to be exchanged
with our region neighbors to get those forward star points that are outside the
region boundary. (Only, the point in the center of the region has it entire forward
star set of points contained in the region.)

Deciding on halo size is essen-
tially a tradeoff of extra buffer 5 2
space versus when the exchanges | 2 o
with neighbors must be made. To l

15

accommodate all points in neigh-
boring regions needed to update
all points in a 15 x 15 x 15 15 poinie 1 neighber egion —
region with a 818-point forward

star, a region + halo dimension pig. 2, Illustration of 15x 15x 15 region, forward
of 22 X 22 x 22 is necessary. star, and 22 x 22 x 22 region with halo.
Figure 2 illustrates the decompo-

sition approach. It shows how the forward star defines the boundary overlap and
the resulting halo surrounding the region.

94 A.D. Malony et al.

The general parallelization design strategy above provides a basis for trans-
lation to target environments. In doing so, there are some additional strategies
we can apply. For instance, in multicore shared memory systems, where mul-
tithreading is used to process regions (1 thread per region), it is possible to
avoid the allocation of halos altogether by scheduling which region points are
updated when in a cooperative manner with neighbor regions. The basic idea is
illustrated in Fig. 3. Inspired by alternating direction implicit methods [5], the
top row shows how points in a region could be processed in sweeps across the
X (left), Y (middle), and Z (right) directions. (Reverse sweeps are also shown.)
By coordinating neighbor regions in synchronous sweeps, forward star points in
neighbor regions can be accessed directly without memory races. This is shown
in the bottom row for two neighbor regions in the X, Y, and Z orientations. The
strategy above could also have benefit in translation to manycore coprocessors,
but more specialization will likely be required, especially for GPU accelerators.

A strategy to improve
convergence is made pos-
sible by a slight addi-
tion in the Stingray-ICC
algorithm. At every step,
the algorithm updates the
travel time of a point p
by checking the travel times
and delays of the points in
its forward star. In doing
so, the following condition
might occur:

Sweep in X Sweep in Y SweepinZ
1 1 P

= =

.

. L A
region >
ry]

" boundary
region region

Fig. 3. Illustration of sweep methods for coordinated
scheduling in and between regions.

Ti(q) < Ti(p) + Delay(p,q) (4)

This means that we have discovered a better travel time for g. The strategy then
is to update ¢’s travel time opportunistically:

’

T;(q) = Ti(p) + Delay(p,q)) if Ti(q) < Ti(p) + Delay(p,q) (5)

The notation Ti/ (¢) is used to indicate that the update occurs in step i. The intu-
ition is that any travel time updates carry new information, potentially improv-
ing convergence rate. However, care must be taken with this strategy to ensure
that new memory race conditions are not introduced. Combining it with the
“sweeping” strategy above will help.

5 Implementation Approach

Our objective was to compare the Stingray-DSP implementation of Moser’s
method with different implementations of the Stingray-ICC algorithm. The For-
tran Stingray-DSP code runs sequentially for a velocity model and single starting
point. Travel times for multiple starting points can be solved by replicating the
Stingray-DSP execution across computing threads.

A Data Parallel Algorithm for Seismic Raytracing 95

The Stingray-ICC algorithm was implemented for both a CPU and GPU. The
CPU code was written in C with OpenMP for parallelization. The Stingray-ICC-
multistart version will execute the algorithm sequentially, but for multiple start-
ing points. This provides a close approximation to how the Stingray-DSP pro-
gram is used in practice. The Stingray-ICC-parsingle parallelizes the algorithm
for a single starting point. The Stingray-ICC-gpu program was adapted from the
original Fortran source using CoArray Fortran extensions (CAFe) to communi-
cate with and run OpenCL kernels on the GPU. CAFe allows the programmer to
explicitly allocate memory on the GPU, transfer memory between the CPU and
the GPU, and execute OpenCL kernels using coarray Fortran [12,14] syntax.
CAFe is implemented as an embedded Domain Specific Language (DSL) and
CAFe source is transformed automatically to standard Fortran [11], with wrap-
pers [13] implementing the OpenCL C library interfaces. The OpenCL kernels
implementing the Stingray-ICC-gpu algorithm were coded by hand.

6 Experimental Results

To evaluate the performance and
scaling behavior of the Stingray-

DSP and Stingray-ICC codes, “y1o4el[X Dim|Y Dim|Z Dim | # Points

we ran a series of experiments
on different velocity models and v100 | 100 100 100 1000000

sizes. These are described in v150 |150 150 150 3375000
Table1. The 0100, v150, v200, 200 200 200 200 8000000

and w300 models are synthet- " U500 "T300 " 1300 300 | 27000000
ically generated by chosing a
velocity value randomly within v24l 241 241 51 2962131

a velocity range for each model

point. The v241 model is taken from a real-world example. Each model is run
with 12 starting points. This is done in Stingray-DSP by replicating the code as
a separate process on each core of the CPU server. This is done in the Stingray-
ICC-multistart code with OpenMP. An additional set of experiments using the
v241 model and a single starting point were conducted with the Stingray-1CC-
parsingle for 1, 2, 4, 8, and 12 threads.

The shared memory machine used for our study was a HP ProLiant SL390 G7
server with two Intel X5650 2.66 GHz 6-core CPUs (12 cores total) and 72 GB
DDR3 memory. Two GPUs were used: a NVIDIA M2070 (448 CUDA cores,
6 GB) and NVIDIA K80 (2496 CUDA cores, 12 GB).

Figure4 (left) shows how the performance scales for the synthetic mod-
els and different codes. The Stingray-ICC versions perform significantly better
than Stingray-DSP. Both Stingray-DSP and Stingray-ICC-multistart solve for
12 starting points, where each is run sequentially on 1 of 12 cores. Thus, these
times reflect how long a serial execution for 1 starting point would take. In con-
trast, the Stingray-ICC-gpu results also solve for 12 starting points, but one after
the other. We plot the average execution time for a single starting point for each

Table 1. Velocity model descriptions.

96 A.D. Malony et al.

10* 20
—e—Stingray-ICC, Open MP
. @ A Stingray-ICC, serial =
m w @ Stingray-DSP o
S w W <
Q Q [8]
3] 8 &
b3 & o o
- o
o 10 [0} [0}
£ Ew o
- - I
c c
5 NS
2 s — =
© —e— Stingray-DSP ol
-06 Stingray-BFM, OpenMP “5 @
= —e— Stingray-BFM, M2070 GPU = 100 g
—s— Stingray-BFM, K80 GPU ~
10°

10° 107 50 2
Number of points in model ’ ’ Namber Sf threaads

Fig. 4. Performance with synthetic and real velocity models.

GPU. Note, the average number of steps to reach convergence are constant at 6
steps for Stingray-ICC-multistart, but increase from 21 (v100) to 61 (v300) for
Stingray-1CC-gpu.

The story gets more intriguing moving to the v241 model experiments.
Figure4 (right) shows results from running Stingray-DSP and Stingray-ICC-
multistart on 12 starting points. Again, Stingray-ICC-multistart is faster and
it takes 7 steps to reach convergence for all 12 starting points. Figure4 (right)
also plots Stingray-ICC-parsingle results for 1, 2, 4, 8, and 12 threads, run with
a single starting point. In this case, only 5 steps are needed to converge for 1
thread. However, the convergence steps increase from 2 to 12 threads (29 to 53
steps), though the time per sweep improves from 17.02 (1 thread) to 3.37 (12
threads). The increase in convergence steps nullifies the parallel performance
gains (12 threads take 178.4 seconds). Note, the GPU times for the v241 model
were less than 10 secionds.

7 Discussion

Dijkstra’s algorithm in Stingray-DSP only visits each point in the model once.
Thus, the number of steps is determined by the number of points IV in the model.
In contrast, the ICC algorithm visits every vertex in each sweep of the model
until the solution converges. Thus, the ICC execution time will be determined
by the time per iteration multiplied by the number of iterations necessary for
convergence. While the Stingray-ICC implementations are running faster than
the Stingray-DSP code we have used for many years (which is certainly a welcome
surprise), we notice that the number of convergence steps increases with larger
problem sizes and more parallelism. Our goal is to scale to much larger seismic
tomography problems with data parallel methods like ICC. If we can not get the
convergence better under control, scaling limits might occur.

There is an interesting tradeoff in parallelism and convergence. We see the
time per iteration decreasing in the v241 model experiments with Stingray-ICC-
parsingle. However, we believe the convergence steps increase because the sweep

A Data Parallel Algorithm for Seismic Raytracing 97

algorithm becomes more localized for each core and therefore less effective in
propagating knowledge about shortest delay paths to its neighbors. Performance
will improve with greater degrees of parallelism as long as the per iteration time
reduces fast enough to offset more convergence steps. From the trajectory of the
graph, we believe that great numbers of cores (e.g., as on the Xeon Phi) will
allow OpenMP to obtain faster execution times.

Clearly, the Stingray-ICC-gpu execution times on the two GPUs (NVIDIA
M2070 and K80) are taking significant advantage of data parallelism. The
increase in the number of CUDA cores in the K80 also demonstrates the benefit
of greater parallelism. The new NVIDIA Pascal architecture should deliver even
faster execution.

In general, the ICC algorithm as implemented in this study is ignorant of
anything having to do with the seismic model and the starting point. In fact,
where the starting point is located does affect the convergence rate. In contrast,
Stingray-DSP begins at the starting point. We believe that the runtime of the
ICC algorithms can be improved by considering the behavior of the DSP “wave-
front” propagation. Starting at the source, the wavefront will expand in roughly
an oblong shape with deviations from a sphere due to anisotropies in the velocity
model. Dijkstra’s algorithm calculates the travel time from the starting point to
its nearest neighbor (in time), then calculates the next nearest neighbor, and so
on. At any given travel time, the set of vertices updated with this travel time
will approximately map out the oblong shape of the expanding wavefront. If
we can approximate this type of wavefront in how the ICC algorithm deicides
which point to process, convergence rates might improve. This is currently being
investigated.

8 Related Work

Methods for parallelizing Dijkstra’s SSSP have been developed and recent work
targets GPU implementations [3]. However, these have not been used the field of
seismic tomography to solve the problems we consider here. Recasting the DSP
approach to seismic raytracing as an iterative constraint convergence algorithm
for parallelization purposes is similar to what is being done in calculating accu-
mulated cost surfaces (ACS) [16] in spatial modeling. The BFM algorithm is the
fundamental basis for both, except ACS applications are typically in 2D, such
as in spatial analysis of raster images to determine route travel times. Speedup
on ACS problems has been demonstrated with the BFM-inspired data parallel
algorithm when targeting GPU.

9 Conclusion

Geological scientists turn to seismic raytracing as a preferred solution to cre-
ate high-resolution tomographic models of the earth’s interior. However, seis-
mic raytracing based on Dijkstra’s “single-source shortest path” (SSSP) algo-
rithm can not take full advantage of parallel computing. We have described and

98

A.D. Malony et al.

demonstrated an alternative algorithm for seismic raytracing by reformulating
the problem as an iterative constraint convergence algorithm. The Stingray-1CC
approach is more amenable to parallelization and hence significantly reduces the
computation time needed to calculate high quality seismic velocity models. We
have demonstrated the application of the algorithm with OpenMP and OpenCL
for GPUs. The use of this algorithm in the future will aid seismologists in enhanc-
ing our understanding the internal structure and dynamic behavior of our ever
mysterious planet.

References

10.

11.

12.

13.

14.

15.

16.

Bellman, R.: On a routing problem. Q. Appl. Math. 16, 87-90 (1958)

Bezada, M., Humphreys, E., Toomey, D., Harnafi, M., Davila, J., Gallart, J.: Evi-
dence for slab rollback in westernmost mediterranean from improved upper mantle
imaging. Earth Planet. Sci. Lett. 368, 51-60 (2013)

Davidson, A., Baxter, S., Garland, M., Owens, J.: Work-efficient parallel GPU
methods for single-source shortest paths. In: International Parallel and Distributed
Processing Symposium, pp. 349-359. IEEE, May 2014

Dijkstra, E.: A note on two problems in connection with graphs. Numer. Math. 1,
269-271 (1959)

Douglas, J.: Alternating direction methods for three space variables. Numerische
Mathematik 4(1), 41-63 (1962)

Ford, L.: Network Flow Theory. RAND Corporation (1956)

Klimes, L., Kvasnicka, M.: 3-D network ray tracing. Geophys. J. Int. 116(3), 726—
738 (1994)

Moore, E.: The shortest path through a maze. In: International Symposium Switch-
ing Theory, pp. 285-292. Harvard University Press (1957)

Moser, T.: Shortest path calculation of seismic rays. Geophysics 56(1), 59-67
(1991)

Nolet, G.: A Breviary of Seismic Tomography: Imaging the Interior of the Earth
and Sun. Cambridge University Press, New York (2008)

Rasmussen, C., Sottile, M., Rasmussen, S., Nagle, D., Dumars, W.: Cafe: coarray
fortran extensions for heterogeneous computing. In: 21st International Workshop
High-Level Parallel Programming Models and Supportive Environments, HIPS
2016 Chicago, IL, USA, 23 May 23, 2016, Proceedings (2016)

Reid, J.: The new features of fortran 2008. SIGPLAN Fortran Forum 27(2), 8-21
(2008)

Sottile, M., Rasmussen, C., Weseloh, W., Robey, R., Quinlan, D., Overbey, J.:
ForOpenCL: transformations exploiting array syntax in fortran for accelerator pro-
gramming. Int. J. Comput. Sci. Eng. 8(1), 47-57 (2013)

The Fortran Committee. TS 18508 Additional parallel features in Fortran.
ISO/TIEC JTC1/SC22/WG5 N2007, March 2014

Toomey, D., Solomon, S., Purdy, G.: Tomographic imaging of the shallow crustal
structure of the East Pacific Rise at 9°30". J. Geophys. Res. 99, 24-24 (1994)
Trunfio, G., Sirakoulis, G.: Computing multiple accumulated cost surfaces with
graphics processing units. In: International Conference on Parallel, Distributed,
and Network-based Processing (PDP). Euromicro (2016)

Performance Modeling and Analysis

A Cross-Core Performance Model
for Heterogeneous Many-Core Architectures

Rui Pinheiro, Nuno Roma, and Pedro Tomdas®)

INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
pedro.tomas@inesc-id.pt

Abstract. An accurate performance predictor to identify the most suit-
able core-architecture to execute each thread/workload in a heteroge-
neous many-core structure is proposed. The devised predictor is based
on a linear regression model that considers several different parameters
of the many-core processor architectures, including the cache size, issue-
width, re-order buffer size, load/store queues size, etc. The devised pre-
dictor is easily integrated in most system schedulers, providing the ability
to periodically determine whether a certain thread is running in the most
efficient core-architecture. The obtained experimental results show that
the devised model is able to identify the correct core-architecture in a
large majority of the cases, leading to average performance differences
as low as 7% when compared with an oracle scheduling solution.

Keywords: Performance estimation - Linear regression model - Het-
erogeneous systems -+ Single-ISA architecture - Many-core processor -
Application scheduling

1 Introduction

Advances in processor design have recently pushed for the development of het-
erogeneous processors, in order to tackle the power and memory walls. In par-
ticular, by relying on appropriate and different core architectures, it is possible
to efficiently leverage Memory-Level Parallelism (MLP) and Instruction-Level
Parallelism (ILP) [7,8] such as to minimize power and energy consumption with
a reduced performance loss. However, exploiting heterogeneity often requires the
development of efficient scheduling mechanisms, in order to anticipate the perfor-
mance gains due to the migration of an application from one core to another, or
to the morphing of a given core, which can be achieved by means of clock/power
gating or by relying on reconfigurable technologies.

In particular, driven by the introduction of the ARM big.LITTLE hetero-
geneous processor [1] (although not exclusively), intensive research has recently
been put forth in the exploitation of heterogeneous processor systems composed

This work was partially supported by national funds through Fundagdo para a
Ciéncia e a Tecnologia (FCT), under project UID/CEC/50021/2013.
© Springer International Publishing AG 2017

I. Dutra et al. (Eds.): VECPAR 2016, LNCS 10150, pp. 101-111, 2017.
DOI: 10.1007/978-3-319-61982-8_11

102 R. Pinheiro et al.

of multiple in-order and out-of-order cores, by developing methodologies to man-
age the allocation of tasks to cores. For example, Patsilaras et al. [9] described
a Chip Multi-Processor (CMP) with two core architectures, where one is tuned
for exploiting MLP and the other for ILP. To manage the application alloca-
tion, the authors make use of on-line sampling techniques performed on both
core architectures, as well as a heuristic algorithm based on the detection of
clustered Last-Level Cache (LLC) misses.

A similar methodology was employed by Kumar et al. [8], although relying
on a two-stage approach. During the first stage (sampling), applications are per-
muted over all core architectures in order to obtain a set of per-core statistics,
retrieved from Hardware Counter (HCs). In a second stage, the gathered sta-
tistics are used to predict which core is the best suited for each application.
Although the authors consider the possibility of using more than two different
core types, they still require periodic on-line sampling of all application-core per-
mutations, which a slow process and requires the system to operate sub-optimally
during such periods.

Naturally, various attempts have been made to avoid this slow sampling
process. For example, Shelepov et al. [13] described a computational system where
the scheduler is supplied with application signatures, obtained through off-line
analysis. However, this requires all applications to be re-compiled specifically
for such a system, which is not always feasible. Saez et al. [11] use the count
of LLC misses to grossly estimate the speedup factor without having to sample
all application-core permutations. However, other parameters (e.g., core width),
which cause many different interactions affecting application performance, can-
not be properly described by just analyzing cache miss rates. Craeynest et al. [15]
took a similar approach, by deriving an HC based simplified model to estimate
performance differences between small in-order and big out-of-order cores. Based
on this model, the authors developed a system scheduler to regularly estimate the
performance of running applications on the alternate core and decide whether a
core switch is worthwhile. However, this approach is constrained to two core types
and can only take into account a small subset of architectural changes, namely in
Re-order Buffer (ROB) size and issue width. Hence, other parameters (e.g. the
cache hierarchy) are not correctly predicted. Taking this into consideration, Pri-
copi et al. [10] developed an ARM big. LITTLE specific prediction model that is
able to take into account more architectural parameters, using a mixture of HC
statistics and offline analysis. However, in addition to the requirement of an offline
analysis, it still only considers two possible core variations at once.

Other scheduling approaches have also been proposed based on the similar-
ity between the considered application and a previously known group or class
of applications. For example, Delimitrou and Kozyrakis [4] proposed the use of
a collaborative filtering technique on large data centers to schedule the appli-
cation, by identifying similarities with previously known applications. However,
such method requires an offline sampling process across a large set of server con-
figurations. Other approaches have also been proposed for the specific purpose of
guaranteeing the quality of service on ARM big.LITTLE systems (e.g., [5,6,16]).

A Cross-Core Performance Model 103

However, such strategies focus on applications with real-time constraints and
cannot be applied to the general case.

In accordance, this paper addresses the identified issues and limitations by
proposing a new low-overhead and architecture-independent method to derive
adaptable performance models. The devised models estimate the attainable per-
formance over a large range of varying micro-architectural parameters and can
be used both at a hardware-level or as a software module integrated into the
OS scheduler. The considered approach makes use of a Linear Regression Model
based on several commonly available HCs. In order to fully illustrate the pro-
posed method, an example model based on out-of-order cores with different cache
hierarchies, Re-order Buffer (ROB), Load Queue (LQ) and Store Queue (SQ)
sizes was derived. The resulting model was then cross-validated with a set of
81 different core types using the PARSEC benchmark suite [2] and the micro-
architectural simulator Sniper [3]. The proposed model is shown to be highly
accurate and, when integrated with a system scheduler, is able to obtain perfor-
mance errors below 2.2% and 6.8% for an heterogeneous processor featuring 2
and 11 different cores, respectively.

The remaining of this manuscript is organized as follows. Section 2 presents
the proposed performance modeling approach, which relies on typically avail-
able processor HCs to construct a linear regression model. By considering a
set of important architectural parameters that influence both memory- and
instruction-level parallelism, a logarithmic-linked function is derived to esti-
mate the average performance of an application (measured using the Cycles
Per Instruction (CPI) metric) when the execution is migrated from one core to
another. Section 3 presents the experimental results, by considering the differ-
ence between the real and the predicted performances of a set of applications
extracted from the PARSEC benchmark suite. Finally, Sect.4 concludes the
paper by highlighting the main contributions.

2 Performance Modeling

Most current processors are equipped with multiple HCs that can be config-
ured to measure various runtime statistics (e.g., cycle counts, retired instruc-
tions, cache misses), which can then be used to infer the application perfor-
mance [11,13,15]. Such information allows for the development of intelligent
software and/or hardware modules, capable of scheduling running applications
to the most appropriate core architectures and/or adapting the characteristics of
each core according to the scheduled application’s computational requirements.
Hence, it is herein considered that, during program execution, a set of HCs are
measured at a source core, in order to characterize the current application phase.
Based on such information, the devised system is able to predict the attainable
performance on a target core, in order to support a decision on whether to move
the thread to a different core or to apply any core morphing techniques. Like pre-
vious cross-core performance models, the proposed methodology assumes that
any cross-thread interaction effects (i.e., cache sharing or synchronization) are

104 R. Pinheiro et al.

core-independent, such that they manifest on all target cores similarly to the
source core, reducing the modeling difficulty considerably.

Hence, this manuscript leverages the correlation between HC statistics and
application performance in order to derive cross-core performance models. To
attain such a goal, a Linear Regression Model (LRM) is adopted, which allows
accurate performance predictions across hypothetical changes on several micro-
architectural parameters, given an initial representative training set. Moreover,
considering that the retired instruction count is an easy-to-measure and core-
independent runtime statistic, it is used to normalize all runtime statistics into
an application-independent scale that is easier to work with. As a result, CPI
becomes an obvious choice for performance metric and is therefore used as the
LRM dependent variable, since it can also be easily measured and is already
normalized by the instruction count.

Furthermore, in order to improve the quality of the model, a logarithm link
function is used. This is a natural approach, not only because the CPI metric
is always positive, but also because experimental evaluation has shown that the
original model’s residual distribution is log-normal. Accordingly, since normally-
distributed residuals are preferable in order to ensure that the least-squares
estimator matches the maximum-likelihood estimator (as the latter has better
statistical properties [12]), the proposed model is constructed in order to estimate
the logarithm of the CPI at a target core (tgt), log(CPItgt), by relying on the
perceived performance at a source core (src) and on a set of HCs that are highly
correlated with the architectural differences between source and target cores.
Hence, when applying the adopted LRM, the following performance estimation
equation is obtained:

N
log(CPLge) = fo + B110g(CPLiye) + > Biyai (1)

i=1

where CAPItgt represents the estimated CPI at the target core, §; are model coef-
ficients (in particular, By represents the constant or intercept term), log(C Pls,)
represents the logarithm of the CPI measured in the source core, and x1, -+ ,xy
represent the set of N regression terms obtained by coupling the statistics
gathered by using HCs with the micro-architectural parameter variations. Each
regression term z; is herein considered to express the product of the variation
Ap of a given micro-architectural parameter p between the source (psr.) and
target (pige) cores (Ap = pigt — Psre), With a runtime statistic S;, normalized by
the retired instruction count I:

Si
i:fAi. 2
zi = T Ap (2)

Concerning the selection of regression terms, it is important to note that,
although the model accuracy generally increases with the introduction of more
regression terms, this leads to an increase in model complexity and possibly
to over-fitting, reducing its effectiveness when applied to new (i.e., unobserved)
applications. It is therefore important to carefully select the minimum number

A Cross-Core Performance Model 105

Table 1. Description of the considered set of core parameters, together with their
dominant effects concerning the attained performance.

Architecture | Description Dominant effects

parameter

L{1,2,3}size | Total size of caches | Impacts the cache hit rate, significantly
L1, L2 and L3 impacting the memory access latency

LQsize Load Queue size When full, generates structural hazards for

new load instructions, causing pipeline stalls at
the issue stage

SQsize Store Queue size When full, generates structural hazards for
new store instructions, causing pipeline stalls
at the issue stage

ROB Re-order Buffer size | When full, generates structural hazards,
leading to stalls at instruction issue

w Core issue, dispatch | Affects the peak instruction throughput at
and commit Width |issue, dispatch and commit stages

of terms that allow attaining an effective modeling of the dominant effects of
all architectural parameters of interest. This procedure can be automated using
statistical methods for automatic regressor choice (e.g., Lasso [14] or Elastic
Net [17]), which provide the means for an automatic search over the regressor
space in order to retrieve the most adequate architectural parameters and run-
time statistics. Nevertheless, because the number of architectural parameters
herein considered is not too large such approaches are not strictly necessary.

In order to obtain a generic model that covers a representative set of para-
meters, and simultaneously shows the flexibility of using a LRM to predict per-
formance differences between different cores, a highly heterogeneous many-core
CMP is herein considered as an example proof of concept, including many differ-
ent out-of-order architectures of varying cache sizes (although limited to equal
sized L1 instruction and data caches), issue widths, ROB sizes, as well as dif-
ferent load and store queue sizes (modeled as two separate queues). The set of
considered parameters and their dominant effects are summarized in Table 1.
Accordingly, it is necessary to choose runtime application-dependent statistics
that are most correlated with the dominant effects of each micro-architectural
parameter being varied. In order to choose between different runtime statistics
that explain similar effects, their impact on the model prediction quality was
evaluated by relying on the Sniper Multi-Core Simulator [3] to provide accu-
rate simulations of several x86 micro-architectures. To analyze the results, the
t-statistic (i.e., significance) was used, as well as the coefficient of determina-
tion R? of the resulting model. Nonetheless, the ease of measuring the vari-
ous possible statistics in real hardware was also taken into account. The result
of this analysis is presented in Table2. As can be seen, all the chosen statis-
tics correlate with at least one of the dominant effects mentioned in Table 1.

106 R. Pinheiro et al.

Table 2. Runtime statistics subset (most-relevant) for each processor parameter, the
corresponding effect, and the maximum observed absolute t-Statistic value. Boldfaced
t-Statistic values represent the variables used in the final model.

Hardware counter ‘ Correlates with t-Stat.
» Core Width (W) related architectural parameters

I: Instruction Count Peak performance 11.36

Hdep: Data Hazards at dispatch | Instruction interdependency | 10.12
» ROB Size (ROB) related architectural parameters
Hrob: Hazards due to full ROB | ROB occupancy 6.62
Hdep: Data Hazards at dispatch | Instruction interdependency | 6.75

» Load Queue Size (LQsize) related architectural parameters

LD: Load Uops Count Load queue usage rate 26.81
Hlq: Hazards due to full LQ Load queue usage rate 18.11
» Store Queue Size (SQsize) related architectural parameters

ST: Store Uops Count Store queue usage rate 19.51
Hsq: Hazards due to full SQ Store queue usage rate 16.71
» Cache Sizes (L{1,2,3}size) related architectural parameters
L{1,2,3}miss: Cache miss Count | Memory access latency 7.80
LD: Load Uops Count Cache access rate 3.81
ST: Store Uops Count Cache access rate 4.12

To better illustrate the considered statistics, the maximum t-statistic value for a
corresponding 3-coefficient model (N = 1) is also presented, measured under the
same experimental methodology as the results that will be presented in Sect. 3.
For comparison purposes, some statistics that were left out from the proposed
model are also shown. As can be seen, their corresponding t-statistic values are
considerably lower than that of the selected HC based statistics (presented in
boldface).

To further evaluate the relationship between the architecture parameters and
the identified statistics, each of the considered architectures parameters were
varied (one at a time), and their impact on each of the considered statistics was
measured. The subsequent analysis was conducted by means of a set of scatter
plots containing the parameters variation (x-axis) and the variables of interest
(y-axis). It was then observed that some of the variables present a non-linear
correlation with the corresponding architecture parameter. To model such cases,
a Taylor series expansion was used. Hence, the following simple, but still highly
representative, 14-term LRM was obtained:

A Cross-Core Performance Model 107

log(CPliy) =00 + f1log(CPI.e) + Ba Llmiss, ALlsize +
B3 L2miss,, AL2size + (34 L3miss, AL3size +
LD, (Bs ALQsize + Bs ALQsize®) +
ST, (B ASQsize + Bs ASQsize?) +
Hdep,,(By AROB + 190 AW)+
B11 Hrob, AROB + (1o AW + 13 AW? .

Upon obtaining the above defined LRM, the §; coefficients were estimated
by training the LRM with observations obtained by running a representative set
of benchmarks on all core variations of interest, resulting in a linear number of
models (i.e., one per source core). It should be noticed that the number of terms
in (3) was chosen such as to allow an overall minimization of the estimation error
when applied to an independent group of benchmarks (i.e., different from the
dataset used to estimate the model parameters). Moreover, when considering
two models with similar error values, the one with the lowest number of terms
was chosen.

3 Experimental Results

In order to properly evaluate the developed cross-core performance model, the
Sniper Multi-Core Simulator [3] was used, to provide accurate simulations of sev-
eral x86 micro-architectures. Hence, a vast set of core variations was described
in this simulation framework, by varying several highly important micro-
architecture and cache organization parameters, as depicted in Tables3 and 4.
In accordance, a total of 81 different core variations were simulated, allowing an
effective modeling of the interaction between the considered parameters.

To ensure the representativeness of the devised model when considering mul-
tiple types of workloads, the PARSEC [2] benchmark suite was chosen for its
training and validation procedures. For such purpose, simulator-specific magic
instructions were added to each of the eleven PARSEC benchmarks, in order to
define the appropriate simulation Region of Interest (ROI) for each benchmark,
therefore excluding the initialization and shutdown phases, since these depend
almost solely on the systems outside of the processor’s control (e.g., hard drive
data access latency and bandwidth) and are therefore uninteresting from an
architectural point-of-view.

The benchmarks were then executed to completion using the predefined
“small” input set on each of the 81 different processors, with the pre- and post-
ROI sections simulated in fast-forward mode in order to reduce the processing
time. All runtime statistics required by the model were measured during the
execution and stored for later processing.

108 R. Pinheiro et al.

Table 3. Considered cache hierarchy variations (associativity, set count, and total size
in K B); The block size was set fixed and equal to 64 Bytes.

Cache level Configuration | Associativity | Set count | Total size

» L1-D » L1-I|Small 2 8 1KB
Medium 2 16 2KB
Large 4 32 8KB

» L2 Small 4 32 8KB
Medium 8 64 32KB
Large 8 256 128 KB

» L3 Small 8 1024 512KB
Medium 16 2048 2048 KB
Large 16 8192 8192 KB

Table 4. Considered architecture variations

Architecture parameter Considered values
» Load Queue size (LQsize) 1; 5; 10

> Store Queue size (SQsize) 1; 5; 10

» Re-order Buffer size (ROB) 32; 64; 128

» Core issue, dispatch and commit Width (W) |1; 4; 8

3.1 Model Validation

Since the model assumes the representativeness of the training set for all possible
applications and cores, it makes sense to use as much information as possible
during its validation. Therefore, a leave-one-out cross-validation approach was
adopted, such that one random application was removed from the training set in
each iteration, and subsequently used for model validation. Moreover, to guar-
antee correctness in the evaluation procedure, none of the applications used in
the training procedure were used for the validation procedure. Finally, in order
to further illustrate the quality of the model, multiple goodness-of-fit measures
were calculated for each of the 81 individual source core models.

Figure 1 presents the CPI normalized prediction over all considered architec-
ture variations, represented as a Tukey box-plot for each benchmark. As can be
observed, the model provides accurate predictions over a wide range of appli-
cation characteristics for all considered core parameters. On the other hand, it
can also be observed that the largest prediction error occurs for the canneal and
streamcluster applications, which is explained by the fact that these benchmarks
comprehend a larger inter-phase variation of the observed CPI. Such a variation
could be explained (in future work) by evaluating the error across application
phases, instead of evaluating across the whole application execution.

A Cross-Core Performance Model 109

2
Min | Max | B, - blackscholes

T < _ R 09191 0937} B _ podytrack
% Basl o L [| RMSE[0.157] 0.179] B. - canneal
&5 T T | T T = |B,-dedup
3 % E E E T T B, - ferret
s o 1 $ & i E 1 By - fluidanimate
B o | B, - raytrace
N -% L T e e B, - streamcluster
ED 0.5¢ B, - swaptions
8 = Bm' Vips

0 B, - x264

B, B, B, B, B, B B, By By By By

benchmark

Fig. 1. Predicted CPI (with cross-validation) for all considered architecture variations,
with the minimum and maximum values of the coefficient of determination (R?) and
of the Root Mean Square Error (RM SE) obtained for all models.

Table 5. Scheduler validation test results

of Cores N 2 3 6 11
Random Scheduler CPI 1.67 |1.67 | 1.67 |1.67
Best/Oracle Scheduler CPI 1.38 |1.22 |1.07 |1.03
Proposed Model Scheduler CPI 141 |1.28 [1.15 |1.10
Relative Error (Proposed vs. Oracle) | 2.17% | 4.92% | 7.48% | 6.80%

An F-test of overall significance [12] was also performed on all models, in
order to evaluate whether a simple intercept-only fit would be statistically indis-
tinguishable from the proposed models. The obtained results showed a p-Value
of 0 for all cases, which fulfills this basic quality requirement.

Lastly, a scheduler-specific validation test was performed, which evaluates
whether the proposed model could effectively predict the most efficient core for
each application. Hence, for each iteration of the test, a permutation of one
source core and N — 1 alternative target cores was picked at random. The model
was then used to predict the best core (minimum CPI) for each application,
out of the IV possible choices. The observed CPI in the chosen core was then
compared with the observed CPI of a scheduler using either a random or an
oracle policy. A total of 891 000 iterations of this validation mechanism were
executed using different values of N. The results, presented in Table5, show
that the model manages to estimate the correct core in a large majority of the
cases. Furthermore, when the proposed model performs an incorrect guess, only
a reduced performance loss is observed when compared to the oracle case.

110 R. Pinheiro et al.

4 Conclusions

An accurate performance predictor based on a Linear Regression Model (LRM)
is herein proposed to identify, within a heterogeneous many-core processor, the
most suitable core-architecture to execute each thread/workload. Hence, it con-
siders the co-existence of multiple cores, characterized by several different para-
meters, including the cache size, issue-width, ROB size, load/store queues size,
etc.

The devised predictor is easily integrated in most system schedulers, pro-
viding the ability to periodically determine whether a certain thread is running
under the most efficient core-architecture. Conversely, it can also be used for
design space exploration in morphable or dynamically reconfigurable structures,
not only to determine when the processing architecture should be reconfigured,
but also to determine the corresponding set of parameters.

The experimental evaluation showed that the devised model is able to identify
the correct core-architecture in a large majority of the cases, leading to average
performance differences as low as 7% when compared with the oracle solution.

The offered flexibility makes the devised model easily adaptable to other
optimization metrics besides the considered CPI. As an example, an energy
estimation model can be easily implemented, in order to obtain energy/power-
aware scheduling schemes.

References

1. big.LITTLE Technology: The Future of Mobile. Technical report, ARM (2011).
https://www.arm.com/files/pdf/big LITTLE_Technology -the_Futue_of _Mobile.
pdf

2. Bienia, C.: Benchmarking Modern Multiprocessors. Ph.D. thesis, Princeton Uni-
versity, Princeton, NJ, USA (2011)

3. Carlson, T.E., Heirman, W., Eyerman, S., Hur, I., Eeckhout, L.: An evaluation
of high-level mechanistic core models. ACM Trans. Archit. Code Optim. (TACO)
11(3), 28:1-28:25 (2014)

4. Delimitrou, C., Kozyrakis, C.: Paragon: Qos-aware scheduling for heterogeneous
datacenters. In: Proceedings of the Eighteenth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, ASPLOS
2013, pp. 77-88. ACM, New York (2013)

5. Gaspar, F., Taniga, L., Tomds, P., Ilic, A., Sousa, L.: A framework for application-
guided task management on heterogeneous embedded systems. ACM Trans. Archit.
Code Optim. 12(4), 42:1-42:25 (2015)

6. Imes, C., Kim, D.H., Maggio, M., Hoffmann, H.: POET: a portable approach to
minimizing energy under soft real-time constraints. In: Proceedings of the Real-
Time and Embedded Technology and Applications Symposium (RTAS), pp. 75-86.
IEEE (2015)

7. Kumar, R., Farkas, K.I., et al.: Single-ISA heterogeneous multi-core architectures:
the potential for processor power reduction. In: 36th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, MICRO 36, pp. 81-92. IEEE Computer
Society (2003)

https://www.arm.com/files/pdf/big_LITTLE_Technology_the_Futue_of_Mobile.pdf
https://www.arm.com/files/pdf/big_LITTLE_Technology_the_Futue_of_Mobile.pdf

10.

11.

12.
13.

14.

15.

16.

17.

A Cross-Core Performance Model 111

Kumar, R., Tullsen, D.M., et al.: Single-ISA heterogeneous multi-core architectures
for multithreaded workload performance. SIGARCH Comput. Archit. News 32(2),
64-75 (2004)

Patsilaras, G., Choudhary, N.K., Tuck, J.: Efficiently exploiting memory level par-
allelism on asymmetric coupled cores in the dark silicon era. ACM Trans. Architect.
Code Optim. (TACO) 8(4), 28:1-28:21 (2012)

Pricopi, M., Muthukaruppan, T.S., et al.: Power-performance modeling on asym-
metric multi-cores. In: 2013 International Conference on Compilers, Architecture
and Synthesis for Embedded Systems (CASES), pp. 1-10 (2013)

Saez, J.C., Prieto, M., et al.: A comprehensive scheduler for asymmetric multicore
systems. In: 5th European Conference on Computer Systems, EuroSys 2010, pp.
139-152. ACM (2010)

Seber, G.A.F., Lee, A.J.: Linear Regression Analysis. Wiley, New York (2003)
Shelepov, D., Saez Alcaide, J.C., Jeffery, S., Fedorova, A., Perez, N., Huang, Z.F.,
Blagodurov, S., Kumar, V.. HASS: a scheduler for heterogeneous multicore sys-
tems. SIGOPS Oper. Syst. Rev. 43(2), 66-75 (2009)

Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc.
Ser. B (Methodological) 58, 267-288 (1996)

Van Craeynest, K., Jaleel, A., et al.: Scheduling heterogeneous multi-cores through
performance impact estimation (PIE). In: 39th International Symposium on Com-
puter Architecture, ISCA 2012, pp. 213-224. IEEE Computer Society (2012)
Zhu, Y., Halpern, M., Reddi, V.J.: Event-based scheduling for energy-efficient QoS
(eQoS) in mobile web applications. In: Proceedings of the International Symposium
on High Performance Computer Architecture (HPCA), pp. 137-149. IEEE (2015)
Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J.
Roy. Stat. Soc. Ser. B (Statistical Methodology) 67(2), 301-320 (2005)

On the Acceleration of Graph500: Characterizing
PCle Overheads with Multi-GPUs

Mayank Daga(®™)

AMD Research, Advanced Micro Devices, Inc., Sunnyvale, USA
Mayank .Daga@amd . com

Abstract. Graphics Processing Units (GPUs) have fundamentally
altered the approach to parallel computing despite the substantial PCle
overheads that they manifest. In order to maximize performance-per-
dollar, systems are now being deployed with multiple GPUs in the same
node. However, multiple GPUs exacerbate the PCle overheads by inflict-
ing additional data-movement performance penalties when moving non-
local data.

In this paper, we first evaluate the PCle performance loss that occurs
due to improper affinity between CPUs and GPUs, using a PCleBand-
width benchmark specifically developed for systems with multiple GPUs.
Our experiments demonstrate that the performance loss can be up to
2.5x on a single GPU and up to 4.4x when four GPUs are used. We
then leverage our learnings from the PCle studies to optimize and accel-
erate the Graph500 benchmark on a 4-GPU, multi-socket system. Our
optimization techniques include binding the CPU threads to appropri-
ate cores as well as the careful partitioning of data for every GPU. We
achieve a speedup of 1.8 over a single GPU implementation.

1 Introduction

The exigent demands of emerging applications to maximize performance while
staying under power and thermal constraints have made graphics processing
systems (GPUs) ubiquitous [8,9]. Since GPUs have traditionally resided on PCI
Express (PCle), additional overheads are incurred for host-to-GPU data trans-
fers and vice versa. As a consequence, GPU applications are oftentimes bottle-
necked by the PCle data transfers [6]. Despite this fact, GPUs have achieved
immense popularity due to a unique combination of performance and energy
efficiency. GPUs have also been recognized to play an important role on the
path to extreme scale computing as evident by the fact that half of the top ten
supercomputers on the Top500 list use GPUs as accelerators [1].

In order to maximize performance-per-dollar, systems are now being deployed
with multiple GPUs. However, multiple GPUs bring in additional challenges par-
ticularly with respect to optimal PCle performance. This is because of the com-
plex mapping between the GPUs which require data across the PCle and the CPU
cores which are responsible for doing the direct memory access (DMA) of data.
In such systems, data-transfers occur at full PCle bandwidth between local CPU

© Springer International Publishing AG 2017
I. Dutra et al. (Eds.): VECPAR 2016, LNCS 10150, pp. 112-120, 2017.
DOI: 10.1007/978-3-319-61982-8_12

On the Acceleration of Graph500: Characterizing PCle Overheads 113

cores and GPUs. However, data-transfer to a remote GPU is subject to a signifi-
cantly worse bandwidth because of additional on-chip interconnects. The onus of
placing data on appropriate DMA nodes lies on the application developer.

In this paper, we first evaluate the cost of moving data from the host to
GPU at various combinations of mapping between the CPU cores and GPUs.
For doing so, we use an indigenous PCIeBandwidth benchmark which allows
us to (i) bind data to a particular DMA node, (ii) bind a CPU thread to a
particular core and then (iii) use that thread to transfer data to any particular
GPU or multiple GPUs. We then leverage our learnings from the PCle studies to
optimize the Graph500 benchmark [2]. Graph500 uses breadth-first search (BFS)
as its main kernel and tracks the fastest data-intensive supercomputers in the
world. Almost half of the total execution time in Graph500 is spent in moving
data to the GPU [5,10]. Therefore, managing the data- and thread-bindings is
imperative to achieve good performance. Our implementation of Graph500 uses
the hybrid++ algorithm which partitions the computation between CPU and
GPU and hence, good PCle performance is crucial [7,11]. We implement the
following optimization techniques: (i) partition data in chunks for each GPU,
(ii) manually map those chunks to local DMA nodes and, (iii) bind CPU threads
to a particular core which is local to the GPU.

The PCIleBandwidth benchmark demonstrates that the performance degra-
dation due to incorrect mapping between CPU cores and GPU can be up to
2.5x when a single GPU is used and up to 4.4x when four GPUs are used. Our
optimized Graph500 implementation on a 4-GPU multi-socket system achieves
a speedup of 1.8x compared to a single GPU implementation.

The rest of the paper is arranged as follows. Section 2 provides a background on
the Graph500 benchmark and the algorithm that we use to compute BF'S. Section 3
describes our experimental setup followed by the characterization studies of PCle
in Sect. 4. Section 5 presents the optimizations and evaluation of the multi-GPU
Graph500 implementation. Section 6 presents the conclusion of this work.

2 The Graph500 Benchmark

Graph500 uses a breadth-first search (BFS) kernel to rank the top data-intensive
supercomputers in the world. The benchmark provides freedom to the developers
to use any custom BFS algorithm for the purposes to computing the score in
the form of giga-transferred-edges-per-second (GTEPS). We use the hybrid4++
BF'S algorithm in our Graph500 implementation [4,7].

The hybrid++ algorithm is suitable for heterogenous processors as it enables
us to choose between a combination of traversal directions (top-down or bottom-
up) and the platform of execution (CPU or GPU). The top-down traversal is a
serial algorithm that executes best on CPUs. Whereas the bottom-up traversal
exposes immense parallelism and is suitable for GPUs. The hybrid++ algorithm
uses an online heuristic to seamlessly choose the appropriate algorithm and the
suitable core for every iteration of BFS. The heuristic leverages input graph
characteristics as well as traversal information from prior BFS iterations to make
optimal decisions. A high-level illustration of hybrid++ is shown in Fig. 1.

114 M. Daga

On Chip
_, Interconnect _
CPUO [€ > CPU1
Start BFS E E e &9
copy_data() N g g g §
s Y
A A o — o (32]
copy_data() 5 S S S
o o o o
O O O (U]
Fig. 1. High-level block diagram illus- Fig. 2. High-level block diagram illus-
trating hybrid++ BFS algorithm [7]. trating a dual socket multi-GPU system
with 4 GPUs connected across PCle x16
Gen3.

Since, hybrid++ requires a data-copy whenever there is a change in the BFS
traversal algorithm, achieving good PCle performance is imperative for an effi-
cient overall execution of Graph500. Therefore, understanding and characterizing
the PCle effects with multiple GPUs is key to the acceleration of Graph500.

3 Experimental Setup

The schematic diagram of the system we use for our experiments is shown in
Fig. 2. The system consists of a Intel® Xeon® E5-2667 v3 CPU which has two
sockets. There are four PCle Gen3 x16 lanes with two such lanes connected to
each socket. The GPUs reside on the PCle with one GPU per PCle. Therefore,
as per the figure GPUs 0 and 1 are local to CPU 0 and GPUs 2 and 3 are
local to CPU 1. Moving data to/from a remote GPU occurs over the on chip
interconnect and hence, adversely affects performance.

We performed all our experiments on an AMD FirePro™ S9150 GPU
with ECC disabled. Figure6 details its important characteristics. The host
machine uses 64 GB of DDR3-2133 SDRAM. The GPU was programmed using
OpenCL™ v2.0 with the AMD APP SDK v3.0 and AMD FirePro driver v15.20.
The operating system was a 64-bit version of CentOS 6.4, kernel version 2.6.32—
358.23.2.

The input for Graph500 is a synthetic rmat graph [3]. We vary the number
of nodes in the graph from 1- to 16-million with an edge-degree of 16.

For measuring the PCleBandwidth, we use a 512 MB buffer of float data-
type and the data is moved from host to the GPU. We used 256 threads per
workgroup, and all of the performance numbers are an average of 1000 runs.

4 PCIle Bandwidth with Multiple GPUs

We developed a PCle Bandwidth benchmark to understand the effects of map-
ping and affinity between the GPUs which need the data and the CPU cores

On the Acceleration of Graph500: Characterizing PCle Overheads 115

1 | function AllocateAndRun() {

2 // create one thread per gpu

3 for g € num_gpus do

4 std: :thread new_thread (ThreadAllocateAndRun, /#* function arguments */);
5 end for

6 |1}

7 | function ThreadAllocateAndRun(/#* function arguments x*/) {

8 // bind this thread to a CPU core

9 pthread_setaffinity np (pthread _self(), /#* core to bind */);
10 // allocate host buffer

11 TYPE xhostMem = new TYPE[SIZE];

12 // allocate device buffer

13 cl_mem devMem = clCreateBuffer(/* function arguments */);
14 // move data across PCIe and measure the bandwidth

15 clEnqueueWriteBuffer (..., devMem, hostMem, ...);

16 |}

Fig. 3. Pseudocode for PCle Bandwidth benchmark.

which DMA that data. The pseudocode for the benchmark is shown in Fig. 3.
Using PCle Bandwidth we can control the following: (i) mapping data to a par-
ticular DMA node, (ii) binding CPU threads to particular cores, (iii) which GPU
in the system to use, and (iv) the number of GPUs to use.

We compute the PCle bandwidth achieved using various mappings of CPU
cores and GPUs and characterize the effects of moving local and non-local data
across the PCle in a multi-GPU system. For example as per Fig. 2, if data is
mapped to CPU 0 and moved to GPU 0 then the transfer is local but if it is moved
to GPU 2 then the transfer is remote and occurs via the on-chip interconnect.

Figure4 demonstrates the PCle bandwidth achieved with both local and
remote data-transfers when one, two or four GPUs are used. Using a single
GPU and moving data to a local GPU, we achieve a unidirectional bandwidth of
12.3 GB/s. We normalize our results to this number, which is the best-case, and
present them in Fig. 4a. From the figure, we note that performance is consistent
no matter which GPU among the four GPUs in the system are used. The differ-
ence between local and remote data-transfers is 2.5x. This is because a remote
data-transfer adds the latency of on-chip interconnect.

Figure4b illustrates the PCle bandwidth achieved when using two GPUs
residing on two different nodes, e.g., one among GPUs 0 or 1 and one among
GPUs 2 or 3. To achieve the best bandwidth with two GPUs, both the GPUs
need to do local data-transfers. This means that the data has to be partitioned
and allocated half on each memory node. From the figure, we note that the local
bandwidth achieved with two GPUs is 91% of the bandwidth achieved with one
GPU due to inherent system overheads. When either of the two GPUs is doing
a remote transfer, its bandwidth reduces significantly just as in the case of a
single GPU. When both the GPUs are doing remote transfers, the bandwidth
achieved is 2.6x lower than the maximum possible.

Figure 4c illustrates the PCle bandwidth achieved when using two GPUs resid-
ing on the same node, e.g., either GPUs 0 and 1 or GPUs 2 and 3. Best bandwidth
is achieved when both the GPUs are doing local transfers. However, the bandwidth
achieved by both the GPUs is not equal; GPU 3 achieves 6% lower bandwidth than

116 M. Daga

,_.
o
3
xR

3
<
x

60%

40%
- []

local (loc) remote (rem)
Data Affinity

Q
xR

Percentage of PCle Bandwidth

| BGPU_O OGPU_1 BGPU_2 IGPUJI

(a) Using 1 GPU.

80%

60%

40%

1
0%

,_.
1)
3
R
o
1)
S
B

> o o
s 8 3
X X R

Percentage of PCle Bandwidth
8
x

bi.

Percentage of PCle Bandwidth
o
R

loc_loc (I_1) loc_rem(l_r) rem_loc(r_l) rem_rem (r_r) loc_loc (I_l) loc_rem (I_r) rem_loc(r_l) rem_rem (r_r)
Data Affinity Data Affinity
(b) Using 2 GPUs residing on two different nodes. (¢) Using 2 GPUs residing on the same node.

= 100%

T

3

T 80%

5

]

o 60%

o

[-%

5 40%

[

o

8 20%

<

8

T 0%

a

(WA Irlr il i Iirr rrrr

Data Affinity

| BGPU_O OGPU_1 BGPU_2 IGPUjI

(d) Using 4 GPUs.

Fig. 4. PCle bandwidth achieved as measured by the PCIeBandwidth benchmark using
various combinations of 4 GPUs. All the results are normalized to the bandwidth
achieved by a single GPU when moving data local to its node. Local (or loc (1))
means the GPU closer to data is used. Remote (or rem (r)) means that the GPU
farther away from the data is used.

GPU 2. Bandwidth achieved when either of the two GPUs is remote is also erratic.
From the figure, when GPU 3 is remote, bandwidths achieved by GPUs 2 and 3
are 81% and 41% of peak, respectively. However, when GPU 2 is remote the band-
widths achieved are only 48% and 57% of peak, respectively. The reason for this is
the contention of resources on the same memory node while carrying out the DMA
to GPUs. When both the GPUs are remote, the bandwidth achieved is 2.6 x lower
than than achieved by a single GPU. Therefore, if two GPUs are required to be

On the Acceleration of Graph500: Characterizing PCle Overheads 117

used, the application developer should ensure that both the GPUs reside on dif-
ferent sockets in a multi-socket system.

Figure 4d illustrates the PCle bandwidth achieved when using all four GPUs
in the system. As in other cases, the best bandwidth is achieved when all the
GPUs are accessing local data. The bandwidth achieved by a single GPU when
all the GPUs are active is 88% of what is achievable when only one GPU is active.
From the figure, we note that inconsistent bandwidths are achieved at different
combinations of local and remote data transfers due to the underpinnings of
the system which are hidden from the application programmer. When all the
GPUs are remote, the bandwidth achieved is worst and is 4.4x lower than that
achieved by a single GPU.

From the above results, it is clear that manually managing the data and
thread bindings is vital to extract efficient performance when using multiple
GPUs. Not controlling the data binding allows the runtime and operating system
to freely modify the bindings without programmer knowledge, thereby resulting
in suboptimal performance, as shown in Fig.4. A particular feedback to the
runtime developers is to make the process of binding threads and data easier by
providing APIs to do so.

5 Graph500: Optimization and Evaluation

In this section we describe our optimization strategies for the Graph500 bench-
mark. Graph500 requires the BFS tree that is generated as part of the search
to be preserved as final output. The buffer containing the BFS tree is copied to
and from the host in order to keep an updated copy of the resulting output.

All the GPUs computing BFS access the BFS tree. However, due to the
data-parallel nature of bottom-up BFS they access different regions of the buffer
thereby, allowing the buffer to be partitioned among the GPUs. As we note in
Sect. 4, for efficient PCle performance each chunk of the buffer should be copied
to the local GPU. Therefore, we first create as many chunks of the BFS tree
buffer as the number of GPUs and then map each chunk to the closest CPU node
which will do the DMA. For mapping the chunks on the host, we use Pthreads
to create a new host thread for every GPU and set its affinity to the core closest
to that GPU. For example, a thread t_0 is created for GPU 0 and its affinity
is set to core_0. Similarly, for GPU 2, a thread t_2 is created and its affinity is
set to core_8 because each CPU has 8 cores in our system. Hence, t_2 is bound
to CPU 1. Once the affinities are set, the same threads are used to allocate the
GPU buffers using OpenCL APIs and then DMA the data to their local GPU.
Since the threads are manually bound to CPU cores, they use the DMA engines
on the same node as the CPU thereby, ensuring that the data is moved to the
local GPU. Figureb5 illustrates this optimization process.

In Fig. 7, we plot the time taken to move the data to and from the GPU, i.e.,
the copy time, and the time taken to do the actual search on the GPU, while
varying the number of GPUs. The GPU time is measured using OpenCL event
APIs and copy time is measured using clock_gettime() on the host. From the

118 M. Daga

| buffer |

\ partitioning the buffer into 4 chunks
/

buf 1 buf 2 | buf 3 |

On Chi / . .
Inte?con;pect Thread Blndlngs
CPU1

GPU_O | t_ O | core_0O | CPU_O

GPU_1 | t_1 | core_1 | CPU_O

PCle x1

GPU_2 | t_2 | core_8 | CPU_1

buf_1
buf_2
GPU 2 PCle x1

GPU 3
buf 3

GPU_3 | t_3 | core_9 | CPU_1

Fig. 5. Partitioning and mapping of the BF'S tree buffer in Graph500 to achieve efficient
PCle performance. The buffer is divided into 4 chunks because we are using 4 GPUs
in the system.

CPU Intel® Xeon® E5-2667v3
Cores 16 (8 on each socket)

GPU AMD Firepro™ $9150
Compute Units (CU) 44

Core Clock Rate 930 MHz

GDDRS Memory Clock Rate | 1250 MHz

Memory Size 16 GB

Peak Memory Bandwidth 320 GB/s

Fig. 6. Overview of the test platform.

figure, we note that the copy time reduces by 3x when four GPUs are used. This
is because as we increase the number of GPUs, the amount of data required to
be moved becomes smaller due to partitioning of data, as shown in Fig.5. The
scaling of copy time is not perfectly linear because of the inherent runtime and
operating system overheads, as outlined in Sect.4. Similarly, the GPU time is
reduced by 3.5x when using four GPUs thereby, demonstrating almost linear
scaling. Therefore, our optimizations are quite effective in improving the perfor-
mance of multi-GPU implementation of Graph500.

In Fig. 8, we demonstrate the impact of our optimizations as we increase the
nodes and edges of the input graph, while varying the number of GPUs. For
a single GPU, both baseline and optimized numbers are the same because all
of our optimizations are targeted towards multiple GPUs. From the figure, we
note that the optimizations always improve the performance. Speedup achieved
by the optimizations alone can be up to 1.9x as shown for the 4 GPU run of
the 1M-node graph. Overall, the speedup achieved compared to a single-GPU
implementation is 1.8, on average.

On the Acceleration of Graph500: Characterizing PCle Overheads 119

BGPU Time

O Data-Copy Time

0 0.2 04 0.6 08 1
Time Taken

Fig. 7. Scaling of time spent on the GPU and to move data with increasing number of
GPUs. This data is computed using the rmat graph with 8 M nodes and 96 M edges.

1.8 - —
16 - =
1.4 e - -
1.2 e =
[}
S 1
g 0.8
L 06
Q7 .
N o4 DOBaseline
0.2 = Optimized
> N s N o T > © v | ©
- < 7« -« - < ~ o

2 GPUs
4 GPUs
4 GPUs
2 GPUs

1GPU

8M 16M

._.
<
=y
<

2M

Number of Nodes in the Graph and
the Number of GPUs Used

Fig. 8. Effect of optimizations on Graph500. Graph with 16M nodes could not be exe-
cuted on one GPU due to memory limitations. Baseline is assumed to be performance
of a single GPU but for the 16 M node-graph, baseline is performance of 2 GPUs

6 Conclusions

GPUs have become immensely popular for accelerating applications despite
the PCle overheads between the CPU and GPU. Nowadays, systems are being
deployed with multiple GPUs on a single to maximize performance-per-dollar.
However, multiple GPUs magnify the performance penalties of PCle due to the
possibility of moving data to non-local resources.

In this paper, we develop a novel PCleBandwidth benchmark to characterize
the PClIe overheads in a multi-GPU system. We also demonstrate the mecha-
nisms for the efficient use of multi-GPU systems. Our experiments portray that a
performance loss of up to 4.4x can occur while moving data to four GPUs using
incorrect data- and thread-bindings. We then optimize the Graph500 bench-
mark on a multi-GPU, multi-socket, NUMA system and achieve a speedup of
1.8% over a single GPU.

120 M. Daga

AMD, the AMD Arrow logo, FirePro and combinations thereof are trade-
marks of Advanced Micro Devices, Inc. OpenCL is a trademark of Apple, Inc.
used by permission by Khronos. Other product names used in this publication
are for identification purposes only and may be trademarks of their respective
companies.

References

1. The Top500 Supercomputer Sites. http://www.top500.org
The Graph500 Benchmark (2012). http://www.graph500.org

3. Bader, D.A., Meyerhenke, H., Sanders, P., Wagner, D. (eds.): Graph Partition-
ing and Graph Clustering -10th DIMACS Implementation Challenge Workshop,
Georgia Institute of Technology, Atlanta, GA, USA, 13-14 February 2012, Pro-
ceedings, Contemporary Mathematics (2013). http://dblp.uni-trier.de/db/conf/
dimacs/dimacs2012.html

4. Beamer, S., Asanovi¢, K., Patterson, D.: Direction-optimizing breadth-first search.
In: Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis, SC 2012, Los Alamitos, CA, USA, pp. 12:1-
12:10 (2012). http://dl.acm.org/citation.cfm?id=2388996.2389013

5. Checconi, F., Petrini, F.: Traversing trillions of edges in real-time: graph explo-
ration on large-scale parallel machines. In: IEEE 28th International Symposium
on Parallel Distributed Processing (IPDPS). IEEE (2014)

6. Daga, M., Nutter, M.: Exploiting coarse-grained parallelism in B+ Tree searches
on an APU. In: High Performance Computing, Networking, Storage and Analysis
(SCC), 2012 SC Companion, pp. 240-247, November 2012

7. Daga, M., Nutter, M., Meswani, M.: Efficient breadth-first search on a heteroge-
neous processor. In: Proceedings of the 2014 IEEE International Conference on Big
Data (Big Data), October 2014

8. Daga, M., Feng, W., Scogland, T.: Towards accelerating molecular modeling via
multiscale approximation on a GPU. In: Proceedings of the 1st IEEE International
Conference on Computational Advances in Bio and medical Sciences (2011)

9. Owens, J.D., Houston, M., Luebke, D., Green, S., Stone, J.E., Phillips, J.C.: GPU
computing. Proc. IEEE 96(5), 879-899 (2008). http://www.idav.ucdavis.edu/
publications/print_pub?pub_id=936

10. Ueno, K., Suzumura, T.: Highly scalable graph search for the Graph500 bench-
mark. In: Proceedings of the 21st International Symposium on High-Performance
Parallel and Distributed Computing, HPDC 2012, New York, NY, USA, pp. 149-
160 (2012). http://doi.acm.org/10.1145/2287076.2287104

11. Yasui, Y., Fujisawa, K., Goto, K.: NUMA-optimized parallel breadth-first search on
multicore single-node system. In: BigData Conference, pp. 394-402. IEEE (2013).
http://dblp.uni-trier.de/db/conf/bigdataconf/bigdataconf2013.html# YasuiFG13

N

http://www.top500.org
http://www.graph500.org
http://dblp.uni-trier.de/db/conf/dimacs/dimacs2012.html
http://dblp.uni-trier.de/db/conf/dimacs/dimacs2012.html
http://dl.acm.org/citation.cfm?id=2388996.2389013
http://www.idav.ucdavis.edu/publications/print_pub?pub_id=936
http://www.idav.ucdavis.edu/publications/print_pub?pub_id=936
http://doi.acm.org/10.1145/2287076.2287104
http://dblp.uni-trier.de/db/conf/bigdataconf/bigdataconf2013.html#YasuiFG13

Evaluation of Runtime Cut-off Approaches
for Parallel Programs

Alcides Fonseca®™) and Bruno Cabral

University of Coimbra, Coimbra, Portugal
amaf@dei.uc.pt, bcabral@dei.uc.pt

Abstract. Parallel programs have the potential of executing several
times faster than sequential programs. However, in order to achieve its
potential, several aspects of the execution have to be parameterized,
such as the number of threads, task granularity, etc. This work studies
the task granularity of regular and irregular parallel programs on sym-
metrical multicore machines. Task granularity is how many parallel tasks
are created to perform a certain computation. If the granularity is too
coarse, there might not be enough parallelism to occupy all processors.
But if granularity is too fine, a large percentage of the execution time
may be spent context switching between tasks, and not performing use-
ful work.

Task granularity can be controlled by limiting the creation of new
tasks, executing the workload sequentially in the current task. This deci-
sion is performed by a cut-off algorithm, which defines a criterion to
execute a task workload sequentially or asynchronously. The cut-off algo-
rithm can have a performance impact of several orders of magnitude.

This work presents three new cut-off algorithms: MaxTasksInQueue,
StackSize and MaxTasksSS. MaxTasksInQueue limits the size of the cur-
rent thread queue, StackSize limits the number of stacks in recursive
calls, and MaxTasksSS limits both the number of tasks and the number
of stacks. These new algorithms can improve the performance of parallel
programs.

Existing studies have analyzed only two cut-off approaches at a time,
each with its own set of benchmarks and machines. In this work we
present a comparison of a manual threshold approach to 5 state-of-the-art
algorithms (MaxTasks, MaxLevel, Adaptive Tasks Cutoff, Load-Based
and Surplus Queued Task Count) and 3 new approaches (MaxTasksIn-
Queue, StackSize and MaxTasksSS). The evaluation was performed using
24 parallel programs, including divide-and-conquer and loop programs,
on two different machines with 24 and 32 hardware threads, respectively.

Our analysis provided insight of how cut-off algorithms behave with
different types of programs. We have also identified the best algorithms
for combinations of balanced/unbalanced and loop/recursive programs.

Keywords: Runtime - Cut-off Mechanism - Granularity + Multicore

© Springer International Publishing AG 2017
I. Dutra et al. (Eds.): VECPAR 2016, LNCS 10150, pp. 121-134, 2017.
DOI: 10.1007/978-3-319-61982-8_13

122 A. Fonseca and B. Cabral

1 Introduction

Nowadays, making parallel programs faster is a manual process that relies on
a lengthy trial-and-error process in order to achieve the best parameters. This
process also requires a parallel programming expertise and knowledge of the
program domain. Factors like thread or task creation, memory allocation and
cache usage are fundamental in obtaining the best performance out of a multicore
machine.

Although parallel programs can be more complex, we will focus on two of
the most common parallelism patterns: for-loops and recursive programs. Par-
allelization of for-loops has been the basis of several wide-adopted frameworks,
such as OpenMP [1]. Recursive programs have been the focus of parallelization
in other frameworks such as Cilk [2] and ForkJoin [3].

In this work we consider task-based parallelization. Work is divided into
several tasks that can be executed in parallel, on top of a work-stealing runtime.
This kind of runtime executes one thread per CPU core, or hyperthread when
supported, and stores a queue of pending tasks per thread. When a thread has
no tasks to pop from the queue, it steals from the end of another thread queue.
Tasks are used because they have less scheduling overhead than threads, as they
do not require a system call, and they can be used to balance the load in irregular
unbalanced programs.

In both for-loop and recursive parallelism patterns, choosing the best granu-
larity is an important issue. In our evaluation, the same program could execute
within seconds or within days, depending on the granularity selected. The gran-
ularity is defined as how many parallel tasks are created to perform a certain
workload. Tasks are a representation of blocks of code that can execute indepen-
dently on different threads.

If tasks are too coarse, there might not be enough tasks to occupy the hard-
ware threads, resulting in unused hardware resources that could have been used
to improve performance. If parallelism is too fine-grained, too many tasks will
be created, imposing an overhead in task scheduling and management that will
increase the duration of the execution. Achieving a good balance for all kinds of
programs on different machines is thus crucial to achieve a good performance.

In this paper, we will study the most relevant state-of-the-art approaches
to control the granularity of tasks at runtime. Alongside these, three new
approaches will also be analyzed and studied. The goal of the study is to under-
stand how these algorithms perform on parallel programs with different natures
and on different machines, in order to understand which one should be used and
when.

The remaining of the paper is organized as follows: Sect.2 introduces the
topic of granularity control; Sect.3 details several approaches for controlling
the cut-off threshold for parallelization; Sect. 4 evaluates cut-off algorithms; and
finally, Sect.5 presents the final conclusions of this study.

Evaluation of Runtime Cut-off Approaches for Parallel Programs 123

2 Granularity Control

Parallelizing compilers try to match parallel tasks with the layout of the under-
lying hardware. The static scheduling divides a loop in N chunks, one for each
processor [4]. However, not all programs have this regular and static parallelism.
Some programs have a more dynamic behavior, and the number of tasks changes
across time. For these programs, runtime-based approaches are needed.

One common approach is to use a work-stealing scheduler, with Lazy Task
Creation [5](LTC) as a granularity control mechanism. Potential parallel tasks
might be executed inlined, or added to the work queue as a new task, according to
different cut-off algorithms. These cut-off algorithms will be described in Sect. 3.

Cut-off algorithms have a great impact on the performance of programs. An
OpenMP evaluation [6] has compared two approaches (MaxLevel and MaxTasks,
explained in detail in Sect. 3) and it found differences of up to 3x of speedup, but
could not provide any guidance of how to choose an ideal cut-off. Later, a second
study focused on the granularity and found that ATC, also detailed in Sect. 3, was
better than the worst approach, but not always better than the best approach [7].

Two other studies, one also within OpenMP [8] and another comparing
OpenMP to other approaches [9], have shown differences between the two cut-off
mechanisms on unbalanced task graphs. Given the random nature of the bench-
mark programs used, there was no information obtained over which of the two
(MazLevel and MazTasks) approaches was better.

3 Cut-Off Mechanisms

A cut-off mechanism is an algorithm that decides whether a task will spawn
new tasks for parallel work, or execute sequentially. Using LTC, it is possible to
introduce a condition that stops the parallel execution of the program.

Different criteria have been proposed for deciding between parallel and
sequential execution:

— LoadBased - The task will execute sequentially when all threads have work
to perform in their queues. If there is at least one empty queue, it will execute
in parallel [7].

— MaxLevel, or Maximum task recursion level - Divide-and-conquer algorithms
create tasks in a tree-shaped structure. In order to avoid the creation of too
many tasks, the cut-off limit may be defined by the depth of the recursion [6],
which can be calculated by the number of ancestors of the running task. If
the task has more than a parameterized threshold of ancestors, it will execute
sequentially. This approach is more suitable for balanced programs, where all
subtrees have the same depth.

— MaxTasks, or Maximum number of tasks - Using this approach, tasks are
created until the total number of active tasks in all worker queues reaches a
parameterized threshold [6]. After that point, all new computations are inlined
instead of spawning another tasks. When the number of active tasks is lower,

124 A. Fonseca and B. Cabral

new tasks can be created in parallel until the threshold is surpassed again.
The threshold in this approach is typically defined as the number of processor
threads on the machine, adapting to different machines, but being oblivious
to other factors such as memory and processor speed. In order to decrease the
overhead of computing the size of queues, the size of other queues is estimated
from the size of the current queue after applying a factor of (number of idle
threads/active threads), because idle threads are known to have 0 tasks in
their queue. This estimation assumes a regular distribution among threads,
which may not always happen.

— ATC, or Adaptive Tasks Cut-off - This approach is a hybrid of MaxTasks and
MaxLevel, changing the parallelization policy based on the recursion depth
[7]. Tasks are only created if two conditions are met: there are fewer tasks than
the number of threads on a parameterized recursion level; and the depth is less
than a parameterized threshold. This approach forces the tasks to be created
in breadth in the lower depths, and aggregated in the higher depths. The idea
is to improve the speed of task distribution while preventing over-sheduling
of smaller tasks in higher depths. ATC adds a profiler that saves information
regarding how much time a sub-tree takes to execute, and predicts further
subtrees (if the prediction is larger than 1 ms, the task will be created). This
is based on the assumption that all tasks inside a level have a similar behavior,
which does not happen in unbalanced programs.

— Surplus, or Suplus Queues Task Count - This approach is included in Java’s
Fork Join framework [3] and it relies on the size of work-stealing queues. Before
creating a new task, the number of queued tasks in the current thread that
exceeds the number of tasks in other queues is compared to a parameterized
threshold limit (usually 3 in existing ForkJoin benchmarks). If the surplus
tasks count is higher than the threshold, the task will be executed sequentially,
meaning that the current queue already has enough work for other threads to
steal. If the surplus tasks count is lower than the threshold, the task is created
in parallel to create more stealable work.

In this paper, we introduce three new algorithms for performing the parallel-
sequential decision for each task:

— MaxTasksInQueue, or Maximum Queue Size - If the current queue size is
lower than a parameterized threshold, the task will be executed in parallel. If
the current queue is already at its maximum capacity, tasks will be executed
sequentially. This approach is similar to MaxTasks, which limits the overall
number of tasks, but considers the local queue only in order to reduce the
overhead in accessing information from other threads.

— StackSize - Many of the fine-grained irregular programs would crash from
stack overflows using existing granularity algorithms. The crash would occur
later in the program, much after the fully sequential version of the program
would have finished. MaxLevel would consider the recursion depth of the pro-
gram, but not that of the work-stealing runtime. We propose a cut-off algo-
rithm based on the number of stack frames of the program. If the number of
stack frames is lower than a parameterized value, the task will be executed in
parallel.

Evaluation of Runtime Cut-off Approaches for Parallel Programs 125

— MaxTasksSS, or Maximum Tasks with Stack Size - Being based on depth,
the StackSize approach is not suitable for irregular programs. In order to
improve its performance, StackSize was combined with MaxTasks, resulting
in a new approach. This approach uses the StackSize criteria to prevent very
high granularity and uses MaxTasks criteria to allow for tasks to be created
at the lower depths.

4 Cut-Off Mechanism Evaluation

In this section, we begin by introducing the experimental setup and the bench-
mark suite. Then, we analyze and compare the different approaches.

4.1 Experimental Environment

Two machines (Table 1) were used in order to generalize results to more than one
machine, both running Ubuntu 14.04 and Java HotSpot(TM) 64-Bit Server VM
with Java 1.8. Programs were implemented on top of the Aminium Runtime [10].

Table 1. Details of the hardware used in the experiments.

Name | Processor CPU Cores | Threads RAM
astrid | Intel Xeon E5-2650 0 @ 2.00 GHz | 16 cores 32 threads | 32 GB
ingrid | Intel Xeon X5660 @ 2.80 GHz 12 cores 24 threads | 24 GB

To collect values, a practical statically rigorous methodology [11] was applied.
For each combination of program and cut-off, we obtained a mean and the 95%
confidence interval for the execution time in steady state from several executions
until the Coefficient of Variance was below 5% or up to 30 executions. Each
program had a timeout of 1 h. All programs were executed in the same conditions,
changing only the cut-off algorithm. There was no other load on the machine
besides the experiment and the operating system.

4.2 Benchmark Suite

In order to evaluate cut-off algorithms, we use a benchmark suite comprised of
different fork-join programs that represent the different types of programs being
written for task-based work-stealing runtimes. Table 2 shows the list of the 24
programs used, their sources and the input sizes used.

The included programs are examples of divide-and-conquer, pipelined paral-
lelism, do-all loops, do-across loops, nested parallelism and partial parallelism
in a sequential algorithm. There are balanced and unbalanced programs in the
benchmark suite.

126 A. Fonseca and B. Cabral

Except for do-all, all programs are real-world examples and some are used
in other benchmark suites, because of their heterogeneity. Compared with other
evaluations, this is the largest and most heterogeneous set of programs ever
used for evaluating cut-off algorithms. The benchmark suite is freely available
at https://github.com/AEminium/AeminiumBenchmarks.

Table 2. Description of the programs used in the benchmark suite

Program Source Input size Type Balance
BFS PBBS [12] d=26,w=2 Recursive | Regular
Black-Scholes PARSEC [13] | 100002 Loop Regular
Convex-Hull PARSEC [13] | 100002 Recursive | Regular
Do-All 100 million Loop Regular
FFT Cilk [14] 8388608 Recursive | Regular
Fibonacci ForkJoin [3] |n =47 Recursive | Irregular
Fibonacci ForkJoin [3] |n =49 Recursive | Irregular
Fibonacci ForkJoin [3] |n =51 Recursive | Irregular
Genetic Knapsack g = 100, p = 100 Loop Regular
Health BOTS [15] 1=7 Loop Regular
Heat ForkJoin [3] |4096 x 4096, it = 1024 | Loop Regular
Integrate ForkJoin [3] |error = 107° Recursive | Irregular
KDTree PBBS [12] n = 10000000 Recursive | Regular
LUD ForkJoin [3] | 4096 x 4096 Recursive | Regular
Matrix Mult ForkJoin [3] |p = 10000, ¢ = r = 1000 | Loop Regular
MergeSort ForkJoin [3] |n = 100000000 Recursive | Regular
MolDyn JGrande [16] | it = 1 size = 40 Loop Regular
MolDyn JGrande [16] |it = 5 size = 30 Loop Regular
MonteCarlo JGrande [16] | 10000 x 60000 Recursive | Regular
N-Body PBBS [12] n = 50000, it = 3 Loop Irregular
N-U Knapsack items = 30, corr = 3 Recursive | Irregular
NeuralNet it = 500000 Recursive | Regular
N-Queens Cilk [14] n =38..15 Loop Irregular
N-Queens Cilk [14] 16 Loop Irregular
Pi n = 100.000.000 Loop Regular
Quicksort ForkJoin [3] |n = 10000000 Recursive | Regular
RayTracer JGrande [16] | n = 2000 Loop Regular

https://github.com/AEminium/AeminiumBenchmarks

Evaluation of Runtime Cut-off Approaches for Parallel Programs 127

ATC

LoadBased
MaxLevel
MaxTasks
MaxTasksSS
MaxTasksInQueue
StackSize

Surplus

Cut-off Mechanism

0 10 20 30 40 50 60 70
Execution Time (s)

Fig. 1. Swarm plot of different cut-off approaches for the Do-all program on the ingrid
machine.

ATC

LoadBased
MaxLevel
MaxTasks
MaxTasksSS
MaxTasksInQueue

StackSize

Cut-off Mechanism

Surplus

2.0 25 3.0 3.5 4.0 45 5.0
Execution Time (s)

Fig. 2. Swarm plot of different cut-off approaches for the Matrix Multiplication pro-
gram on the astrid machine.

4.3 Comparison of Cut-off Approaches

In sync with findings from prior works [6,7], this section corroborates that no
cut-off approach performed better than the others for all programs. Here, the
differences in performance from the algorithms are addressed. Since the time
distribution of the algorithms is not normal, swarm plots will be used. For para-
metrized cut-off approaches, we have used the parameters that achieved the best
global time in a preliminary evaluation. MaxLevel had a depth limit of 12; Max-
Tasks had a task limit of twice the number of threads; ATC was configured with
the two limits; StackSize had a limit of 16 stacks, MaxTasksSS has the same
limits as MaxTasks and StackSize; Surplus had a limit of 3 surplus task count.

128 A. Fonseca and B. Cabral

Do-all is made of parallel loops with several iterations doing only one oper-
ation. Figurel shows the performance of different cut-off mechanisms in the
ingrid machine. MaxTasks, MaxTasksInQueue and Surplus were the most effi-
cient strategies and they are all based on having enough work on each queue
for others to steal. LoadBased has a similar approach, but does not have extra
work in queues. In this case, allowing more threads to steal work results in a
faster work distribution across the CPU cores. Recursion-depth approaches like
MaxLevel and ATC are slower because, in this case, the depth considered was too
deep and it created too many tasks. In this case a smaller depth, such as 6 would
result in fewer tasks created, and less overhead, but in other programs it would
result in worse performances. Stack-size approaches create too many tasks as
well in this case. Figure 2 shows the same behavior in the Matrix Multiplication
program, which also has lightweight tasks in a 2 dimensional loop cycle.

ATC
LoadBased
MaxTasks
MaxTasksSS

MaxTasksInQueue

Cut-off Mechanism

StackSize

Surplus

-5 0 5 10 15 20 25 30 35 40
Execution Time (s)

Fig. 3. Swarm plot of different cut-off approaches for the Fibonacci program on the
ingrid machine.

Figure 3 shows the Fibonacci program with different cut-offs. Fibonacci is a
highly irregular program that generates a skewed parallelization tree, with an
extremely lightweight computation. In this case all approaches handle the pro-
gram reasonably well, but MaxLevel is not able to finish the program within the
defined timeout, as its execution time is not shown. Figure4 shows integrate,
another highly irregular program, in which cut-off programs show the same rel-
ative performance, with MaxLevel being much slower than its counterparts.

In the N-Queens program, in Fig.5, Loadbased, MaxLevel and Surplus are
the fastest algorithms. This program has a high branching factor and a high
penalty for over-creating tasks, because it needs to allocate memory for each
parallelization. MaxLevel avoids going too deep in the recursion tree, preventing
the unwanted unnecessary memory allocation. LoadBased also prevents creating
extra tasks and performs similarly to MaxLevel.

Evaluation of Runtime Cut-off Approaches for Parallel Programs 129

ATC

LoadBased
MaxLevel
MaxTasks
MaxTasksSS
MaxTasksInQueue
StackSize

Surplus

Cut-off Mechanism

-2 0 2 4 6 8 10 12 14
Execution Time (s)

Fig. 4. Swarm plot of different cut-off approaches for the Integrate program on the
ingrid machine.

ATC
€ LoadBased
L
5 MaxLevel
S
(9}

2 MaxTasks

39: MaxTasksInQueue

5

o StackSize
Surplus

200 400 600 800 1000 1200 1400 1600
Execution Time (s)

Fig. 5. Swarm plot of different cut-off approaches for the N-Queens program on the
ingrid machine.

Figure 6 shows the cut-off performance in the FFT program. Only ATC and
MaxTasksSS have finished the program 3 times within the timeout. FFT is
a program that allocates a large amount of memory in its divide-and-conquer
process. The allocation of tasks on top of the baseline allocation of the sequen-
tial program penalize the creation of a large number of tasks. The two best
approaches have two mechanisms to limit the creation of tasks, one limiting the
queue size, and another preventing from going too deep in the recursion level.
The difference between the two is that ATC limits using the program recursion
and MaxTasksSS uses the internal recursion of the work-stealing runtime.

In Fig.7, we can see the opposite behavior in which ATC and MaxTasksSS
are the worst approaches. One reason for this is that these hybrid approaches use
two mechanisms to improve their worst-case programs, but introduce overhead
in cases where the individual algorithms are ideal.

130 A. Fonseca and B. Cabral

ATC f‘:ﬁ oi{o‘o’o’o °
MaxTasks °

MaxTasksSS e o

MaxTasksInQueue ®

Cut-off Mechanism

Surplus

6 8 10 12 14 16 18 20 22 24
Execution Time (s)

Fig. 6. Swarm plot of different cut-off approaches for the FFT program on the ingrid
machine.

ATC

LoadBased
MaxLevel
MaxTasks
MaxTasksSS
MaxTasksInQueue
StackSize

Surplus

Cut-off Mechanism

10 15 20 25 30 35
Execution Time (s)

Fig. 7. Swarm plot of different cut-off approaches for the Raytracer program on the
ingrid machine.

Figure 8 shows the same plot for the Neural Network program. In this pro-
gram, creating tasks has a relatively large overhead compared to the program and
only StackSize approaches have been able to complete the program within the
timeout, in a relatively small time. This is one example that justifies the intro-
duction of stack-size approaches, in which the workload of tasks is very light and
there is expensive work in merging the result of each recursive call. This is the
same behavior as that of the Fibonacci program with a very large input. KD-
Tree is another program where Stack-based approaches are also advantageous,
but not by a larger difference, which can be seen in Fig.9.

Evaluation of Runtime Cut-off Approaches for Parallel Programs 131

g MaxTasksSS ° 4

'S

]

ey

[$]

[}

=

&=

9

3 StackSize ° ° o0 o o

6.0 6.2 6.4 6.6 6.8 7.0 7.2 74
Execution Time (s)

Fig. 8. Swarm plot of different cut-off approaches for the Neural Network training
program on the astrid machine.

ATC

LoadBased
MaxLevel
MaxTasks
MaxTasksSS
MaxTasksInQueue
StackSize

Cut-off Mechanism

Surplus

10 20 30 40 50 60 70
Execution Time (s)

Fig. 9. Swarm plot of different cut-off approaches for the KDTree training program on
the astrid machine.

Figure 10 shows the execution time of all the programs that are a combina-
tion of a given type and balance. While previous results were specific to each
program, these plots show aggregated information from several programs. Irreg-
ular for-loop programs can be efficiently optimized using either LoadBased or
MaxLevel algorithms. In general, these two algorithms do not schedule as many
tasks as others because they are created either when there is an empty queue,
or only in the beginning of the program. In irregular loop programs, MaxTasks
is the best algorithm as it allows the creation of enough tasks to spread work
across all threads, even in later iterations. Recursive irregular programs work
best under Surplus because, similarly to MaxTasks, it allows for extra work to
be scheduled, which improves the distribution of irregular work across threads.
Finally, recursive balanced programs perform well under StackSize, which pre-
vents high levels of recursion, regardless of the nature of the algorithm.

132 A. Fonseca and B. Cabral

Type,Balance = ForLoop,lIrregular

ATC

LoadBased
MaxLevel
MaxTasks
MaxTasksInQueue
MaxTasksSS
StackSize

Surplus

Cut-off Algorithm

[l

Type,Balance = ForLoop,Regular

ATC

LoadBased
MaxLevel
MaxTasks
MaxTasksInQueue
MaxTasksSS
StackSize

Surplus

Cut-off Algorithm

i

Type,Balance = Recursive,Irregular

ATC

LoadBased
MaxLevel
MaxTasks
MaxTasksInQueue
MaxTasksSS
StackSize

Surplus

Cut-off Algorithm

IU'IIlIU

Type,Balance = Recursive,Regular

ATC
LoadBased
MaxLevel

MaxTasks
MaxTasksInQueue
MaxTasksSS
StackSize

Surplus

1

Cut-off Algorithm

|,

102 10® 10* 10°
Total execution time (s)

o

Fig. 10. Total execution time of programs that fit a certain Type-Balance pattern on
the astrid machine.

Evaluation of Runtime Cut-off Approaches for Parallel Programs 133

5 Conclusions and Future Work

In this paper we have introduced three new algorithms for dynamically manag-
ing the granularity of parallel programs. Additionally, we have evaluated new
and existing cut-off algorithms over a 24-program benchmark suite. The three
proposed algorithms were able to outperform existing algorithms in at least one
of the programs in the benchmark suite.

We have identified MaxTasks as a reasonable cut-off algorithm for a large
set of programs. In irregular loop programs, Load-based and MaxLevel can be
used to improve the performance of programs. Additionally, the proposed Stack-
Size algorithm can be used in regular recursive programs or when the memory
allocation required for parallelization is high.

For future work, we intend to analyze the structure of the source code to
infer the type of parallelism and use machine-learning techniques to predict the
best cut-off mechanism.

Acknowledgments. This work was partially supported by the Portuguese Research
Agency FCT, through CISUC (R&D Unit 326/97), the CMU|Portugal program (R&D
Project Aeminium CMU-PT/SE/0038/2008). The first author was also supported by
the Portuguese National Foundation for Science and Technology (FCT) through a
Doctoral Grant (SFRH/BD/84448/2012).

References

1. Dagum, L., Menon, R.: OpenMP: an industry standard API for shared-memory
programming. IEEE Comput. Sci. Eng. 5(1), 46-55 (1998)

2. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., Zhou,
Y.: Cilk: an efficient multithreaded runtime system, vol. 30. ACM (1995)

3. Lea, D.: A java fork/join framework. In: Proceedings of the ACM 2000 Conference
on Java Grande, pp. 36-43. ACM (2000)

4. Haghighat, M.R., Polychronopoulos, C.D.: Symbolic analysis: a basis for
parallelization, optimization, and scheduling of programs. In: Banerjee, U.,
Gelernter, D., Nicolau, A., Padua, D. (eds.) LCPC 1993. LNCS, vol. 768, pp.
567-585. Springer, Heidelberg (1994). doi:10.1007/3-540-57659-2_32

5. Mohr, E., Kranz, D., Halstead, R.: Lazy task creation: a technique for increas-
ing the granularity of parallel programs. IEEE Trans. Parallel Distrib. Syst. 2(3),
264-280 (1991)

6. Duran, A., Corbal, J., Ayguad, E.: Evaluation of OpenMP Task Scheduling Strate-
gies, pp. 100110 (2008)

7. Duran, A., Corbaldn, J., Ayguadé, E.: An adaptive cut-off for task parallelism. In:
Proceedings of the 2008 ACM/IEEE conference on Supercomputing, p. 36. IEEE
Press (2008)

8. Olivier, S.L., Prins, J.F.: Evaluating OpenMP 3.0 run time systems on unbalanced
task graphs. In: Miiller, M.S., Supinski, B.R., Chapman, B.M. (eds.) IWOMP
2009. LNCS, vol. 5568, pp. 63-78. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-02303-3_6

9. Olivier, S.L., Prins, J.F.: Comparison of OpenMP 3.0 and other task parallel frame-
works on unbalanced task graphs. Int. J. Parallel Prog. 38(5-6), 341-360 (2010)

http://dx.doi.org/10.1007/3-540-57659-2_32
http://dx.doi.org/10.1007/978-3-642-02303-3_6
http://dx.doi.org/10.1007/978-3-642-02303-3_6

134

10.

11.

12.

13.

14.

15.

16.

A. Fonseca and B. Cabral

Stork, S., Naden, K., Sunshine, J., Mohr, M., Fonseca, A., Marques, P., Aldrich, J.:
Aminium: a permission-based concurrent-by-default programming language app-
roach. ACM Trans. Program. Lang. Syst. (TOPLAS) 36(1), 2 (2014)

Georges, A., Buytaert, D., Eeckhout, L.: Statistically rigorous java performance
evaluation. ACM SIGPLAN Notices 42(10), 5776 (2007)

Shun, J., Blelloch, G.E., Fineman, J.T., Gibbons, P.B., Kyrola, A., Simhadri, H.V.,
Tangwongsan, K.: Brief announcement: the problem based benchmark suite. In:
Proceedings of the 24th ACM Symposium on Parallelism in Algorithms and Archi-
tectures, pp. 68-70. ACM (2012)

Bienia, C.: Benchmarking modern multiprocessors. PhD thesis, Princeton Univer-
sity, January 2011

Frigo, M., Leiserson, C.E., Randall, K.H.: The implementation of the cilk-5 multi-
threaded language. In: ACM Sigplan Notices, vol. 33, pp. 212-223. ACM (1998)
Duran, A., Teruel, X., Ferrer, R., Martorell, X., Ayguadé, E.: Barcelona OpenMP
tasks suite: a set of benchmarks targeting the exploitation of task parallelism in
OpenMP. In: 38th International Conference on Parallel Processing, pp. 124-131
(2009)

Smith, L.A., Bull, J.M., Obdrizalek, J.: A parallel java grande benchmark suite.
In: Supercomputing, ACM/IEEE 2001 Conference, p. 6. IEEE (2001)

Implementation and Evaluation of NAS Parallel
CG Benchmark on GPU Cluster
with Proprietary Interconnect TCA

3

)

Kazuya Matsumoto!®) | Norihisa Fujita?, Toshihiro Hanawa
and Taisuke Boku':?

! Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan
matsumoto.kazuya@jaea.go. jp
2 Graduate School of Systems and Information Engineering,
University of Tsukuba, Tsukuba, Japan
3 Information Technology Center, The University of Tokyo, Tokyo, Japan

Abstract. We have been developing a proprietary interconnect technol-
ogy called Tightly Coupled Accelerators (TCA) architecture to improve
communication latency and bandwidth between accelerators (GPUs)
over different nodes. This paper presents a Conjugate Gradient (CG)
benchmark implementation using the TCA and results of performance
evaluation on the HA-PACS/TCA system, which is a proof-of-concept
GPU cluster based on the TCA concept. The implementation is based on
the CG benchmark in NAS Parallel Benchmarks, and its parallelization is
achieved by a two-dimensional decomposition of matrix data. The TCA
utilization improves the communication performance compared with the
implementation with MPI/InfiniBand utilization for small size bench-
mark classes. This study also shows that the CG implementation with
the two-dimensional decomposition is more suitable for the TCA utiliza-
tion than a CG implementation with a one-dimensional decomposition
to make use of the interconnect.

1 Introduction

Currently, GPU clusters are widely used as high performance computing systems.
A problem of GPU clusters is that the communication speed between multiple
compute nodes is not fast enough compared to its high computation speed. In
order to address this problem, we have been researching the Tightly Coupled
Accelerators (TCA) architecture [4]. The TCA is a technology on a proprietary
interconnect network to enable direct communication between accelerators over
different nodes.

We have conducted the basic performance evaluation of the TCA [3,4,7].
In [7], a Conjugate Gradient (CG) method has been implemented by utilizing
allgather and allreduce collective communications with TCA’s communication
functions. The parallelization of the CG implementation is accomplished by a
one-dimensional decomposition of matrix data. Results of the performance eval-
uation shows that the CG method implementation using TCA outperforms the

© Springer International Publishing AG 2017
I. Dutra et al. (Eds.): VECPAR 2016, LNCS 10150, pp. 135-145, 2017.
DOI: 10.1007/978-3-319-61982-8_14

136 K. Matsumoto et al.

implementation using MPI/InfiniBand for sparse matrices whose matrix (prob-
lem) size is nine thousand or smaller; however, the communication with TCA
becomes less advantageous when either or both of the target matrix sizes and
the number of utilizing processes are larger.

In the present study, we evaluate a different CG method implementation with
the TCA utilization. The CG implementation is based on the CG benchmark
in NAS Parallel Benchmarks [1]. We apply a two-dimensional decomposition of
matrix as the enhanced implementation from [7], and present results of perfor-
mance evaluation on the HA-PACS/TCA GPU cluster. Additionally, this study
presents communication performance differences between the CG implementation
with the two-dimensional decomposition and the one-dimensional decomposition.

2 Tightly Coupled Accelerators Architecture

This section briefly explains the Tightly Coupled Accelerators (TCA) archi-
tecture (see [3-5] for detailed information on the TCA). The TCA is a novel
technology of proprietary interconnect for PC clusters. The PCI Express Adap-
tive Communication Hub ver. 2 (PEACH2) is a prototype implementation of
the TCA architecture. We can construct a cluster system by connecting the
PEACH2 boards with each other. The PEACH?2 realizes a direct data commu-
nication between GPUs beyond nodes by utilizing the GPUDirect Support for
RDMA (GDR) technology [8]. The GDR eliminates unnecessary system mem-
ory copies, lowers CPU overhead, and reduces communication latency, resulting
in performance improvements on a GPU cluster. Moreover, the communication
using the PEACH2 is conducted only with the PCle protocol, and the overhead
time for protocol conversion, which is required in the InfiniBand, is eliminated.
Consequently, the PEACH2 enables data communication with extremely low
latency. The PEACH2 provides two types of data communication functions:
PIO and DMA. In the PIO communication, the data is transferred to a remote
node by the CPU’s remote write operation. The latency of PIO is very small,
and, as a result, the PIO is useful to transfer short messages. The DMA func-
tion is achieved by the DMA controller, which has four DMA channels. While
the latency of DMA is larger than that of PIO, the DMA demonstrates higher
maximum bandwidth performance.

The HA-PACS (Highly Accelerated Parallel Advanced system for Computa-
tional Sciences) is a GPU cluster system at the Center for Computational Sci-
ences, University of Tsukuba. The HA-PACS/TCA is a proof-of-concept system
of TCA architecture concept and a performance evaluation test-bed of PEACH2
board. Every compute node of HA-PACS/TCA contains the PEACH2 as its
interconnect adapter. Table1 shows the specification of HA-PACS/TCA, and
Fig.1 depicts the block diagram of a compute node on HA-PACS/TCA. The
HA-PACS/TCA consists of four sub-clusters. Each sub-cluster is composed of
16 compute nodes. The 16 nodes are connected by the PEACH2 and configure a
2x 8 torus network. Note that the 64 nodes of HA-PACS/TCA are connected also
by two ports of InfiniBand QDR in a fat-tree configuration with full bisection
bandwidth.

Implementation and Evaluation of NAS Parallel CG Benchmark 137

Table 1. Node configuration and system configuration of HA-PACS/TCA

Node configuration

Motherboard SuperMicro X9DRG-QF

CPU Intel Xeon E5-2680 v2 2.8 GHz x 2 (IvyBridge 10 cores/CPU)

Memory DDR3 1866 MHz x 4 ch, 128 GB (=8 x 16 GB)

Peak performance | 224 Gflops/CPU

GPU NVIDIA Tesla K20X 732 MHz x 4 (Kepler GK110 2688
cores/GPU)

Memory GDDRS5 6 GB/GPU

Peak performance | 1.31 Tflops/GPU

Interconnect InfiniBand: Mellanox Connect-X3 Dual-port QDR TCA:
PEACH?2 board (Altera Stratix-IV GX 530 FPGA)

System configuration

Number of nodes |64

Interconnect InfiniBand QDR 108 ports switch x 2 ch

Peak performance | 364 Tflops

G2 x8

G2x8 | PEACH2 | G2x8 CPUO m CpPU1 ‘G3x8 Infini. /4
] Band |\

PCle

G2 x16 ﬁ

G2 x16
G2 x16
G2 x16

GPUO| [GPU1 GPU2| |GPU3

G2 x8

Fig. 1. Block diagram of compute node in HA-PACS/TCA

3 Implementation

The CG benchmark in NAS Parallel Benchmarks (NPB) [1] is a well-known bench-
mark. It measures the performance of implementation for a conjugate gradient
method that conducts typical computations on unstructured grid, and tests inter-
node communications, employing sparse matrix-vector multiplication. The per-
formance of the NPB on GPUs has been studied to evaluate different program-
ming models or different approaches for performance optimizations [2,6,11]. Lee
and Vetter [6] compared the performance differences among different program-
ming models such as OpenACC, HMPP, and CUDA on a single GPU. They ported
and optimized the OpenMP version of NPB program. Grewe et al. [2] showed
an approach that automatically generates OpenCL codes, from OpenMP pro-
grams, optimized for GPUs and the NPB are used for the performance evaluation.

138 K. Matsumoto et al.

«—N/[2— «—N/2— <N/4> <N/4>
~
T T o|1|2|3|NH4
0 1 N2 0O|1]|2]|3|N2 v
l l 4 (5(6|7
N 0 1 N N N
8191011
2 3 4|15|6|7
1213|1415
N V- -N- -N-
P=2 P=4 P=38 P =16

Fig. 2. Process distribution by two-dimensional decomposition of matrix data. The
number in each rectangular represents its process rank id.

Xu et al. [11] studied the effectiveness of a directive based programming model of
OpenACC for parallelizing NPB on GPUs.

In the present study, we modify the MPI version of CG benchmark in NPB
3.3.1 such that the main computation part (conj_grad function) is written in
C language and CUDA!, and its inter-node data communications are conducted
with the TCA/PEACH2. Let us denote a linear equation system as Az = b,
where A is an N x N symmetric positive definite matrix, and both z and b are
a vector with IV elements in the following. The modified implementation uses
the identical data distribution and communication pattern to the original MPI
version. The parallelization of CG benchmark is achieved by a two-dimensional
decomposition of the matrix A and conformable distribution of vectors. When
we define the number of processes as P, the matrix A is two-dimensionally
decomposed by P = P, x P, processes. Based on the decomposition, each process
contains (N/P,) x (N/P.) sub-matrix of A and vectors with N/P, elements.
Figure2 shows the process distribution by two-dimensional decomposition of
matrix A data for P = 2,4, 8, 16.

Almost all of computations in the implementation are carried out by GPUs.
While we implement the sparse-matrix vector multiplication (SpMV) by our-
selves, our CG implementation utilizes the NVIDIA’s CUBLAS library for vec-
tor dot product (DOT) and vector addition (AXPY) operations. Note that the
computation part is not tuned so deeply.

Three kinds of data communication are required in the implementation. The
first required communication is to send vector data for obtaining the product of
SpMV after the local SpMV computation on a GPU in each node. The communi-
cation is conducted among P, processes in the same process row in a binary tree
fashion, and thus v/P. communication steps are needed (each step needs to send
8N/ P, Bytes of vector data in double precision). The second communication is
to send a scalar (8 Bytes) value to compute the sum of local product by the
DOT computation. This communication is also made among the P, processes
and /P, steps are required. The third communication is to send 8N/P. Bytes
of a vector for data exchange. In the following, let us name the first, second

! The CG benchmark program is originally written in Fortran.

Implementation and Evaluation of NAS Parallel CG Benchmark 139

100

CPU-to-CPU
{TCA/PEACH2 PIO)

—#— GPU-to-GPU (MPI/IB)
10

Time [psec]

CPU-to-CPU (MPI/1B)

——GPU-to-GPU
(TCA/PEACH2 DMA)

———CPU-to-CPU
1 {TCA/PEACH2 DMA)

8 128 2048 32768
Message size [Bytes]

Fig. 3. Ping-pong communication performance between two neighboring nodes on the
HA-PACS/TCA.

and third communication as COMM_SpMV, COMM_DOT and COMM_EXCH,
respectively.

The COMM_DOT is scalar data communications between CPU memo-
ries of different processes and the latency for issuing communication opera-
tions occupies almost all of its communication time. The COMM_SpMV and
COMM_EXCH are block data communications of 8N/P, Bytes between dif-
ferent GPU memories and a communication bandwidth is important for high
performance communication as well as the issue latency. Considering these com-
munication characteristics, we implement the COMM_SpMV and COMM_EXCH
with the DMA communication function of TCA/PEACH2 and implement the
COMM_DOT with the PIO function. Note that, as shown in Fig.3, the DMA
communication is faster than the PIO communication when message sizes are
larger than 128 Bytes (this message size is smaller than sizes for the required
block communications in any problem classes of CG benchmark).

The TCA/PEACH2 configures a 2 x 8 torus network on a sub-cluster of
HA-PACS/TCA; thus, a way of process (node) mapping also affects the commu-
nication performance. As can be seen from Fig. 2, the CG implementation with
two-dimensional decomposition requires communication among P. processes (4
processes at most when we utilize up to 16 nodes). We use a node mapping shown
in Fig. 4. This mapping does not cause message data contentions and collisions
within the TCA/PEACH2’s communication network on a sub-cluster even when
P =16 cases.

4 Performance Evaluation

We conduct performance measurements on a sub-cluster of the HA-PACS/TCA.
A single GPU and a single CPU are utilized per node?. For comparison with the

2 This is because using two or more sub-clusters entails a hybrid utilization of the
TCA/PEACH2 and MPI/IB, and because two or more GPUs usage requires addi-
tional considerations to use the TCA/PEACH2 effectively. Both of the hybrid uti-
lization and the multi GPU usage are our future work.

140 K. Matsumoto et al.

Fig. 4. Node mapping optimized for CG benchmark implementation on a sub-cluster
of HA-PACS/TCA. The circles represent compute nodes, the lines between circles
represent data links, and the number in each circle corresponds to its process rank id.

implementation using TCA/PEACH?2, this section also presents the performance
of an implementation using MPI/InfiniBand (MPI/IB) for inter-node communi-
cations. We use the MVAPICH2 GDR 2.1a (MV2GDR) [9] as MPI library imple-
mentation. As with the TCA/PEACH2, the MV2GDR utilizes the GPUDirect
for RDMA (GDR) technology [8] for direct communication between GPUs. The
theoretical peak bandwidth of TCA/PEACH2 (PCle Gen2 x8) is twice lower
than that of MPI/IB (dual-rail InfiniBand QDR?); therefore, the implementa-
tion using TCA/PEACH2 is outperformed when message sizes become large.
On the condition where the program is compiled by Intel C compiler 15.0.2
with MV2GDR 2.1a and CUDA 6.5 usage, the GPU-to-GPU communication
with TCA/PEACH?2 is faster for message sizes up to 64 KB than the MPI/IB in
terms of the ping-pong communication performance as shown in Fig. 3.

In the CG benchmark, the problem sizes (CLASS) and the number of
processes (P) can be designated. This section presents results of perfor-
mance evaluations for CLASS=S, W, A, B and P = 2,4,8,16. The problem
(matrix/vector) size N is 1,400 for CLASS=S, 7,000 for CLASS=W, 14,000
for CLASS=A, and 75,000 for CLASS=B. We measure the time consumed for
each computation/communication operation in the conj_grad program func-
tion. Figure 5 shows the measured time breakdown on average time of ten times
calls to the function. Note that this is the breakdown of process rank 0 and
the communication time is the communication wait time. A single call of the
conj_grad function includes 261/P. of COMM_SpMV, 52v/P. of COMM_DOT,
26 of COMM_EXCH, 26 of SpMV, 52 of DOT, and 76 +26+/P, of AXPY opera-
tions. In Fig. 5, the performance is shown for the implementation in Fortran with
MPI/IB communication (original NPB-MPI code), C language with MPI/IB
communication, CUDA with TCA/PEACH2 communication, and CUDA with
MPI/IB communication.

3 The theoretical peak bandwidth of the dual-rail InfiniBand QDR is 8 GB/s, which
is equivalent to that of PCle Gen3 x8.

Implementation and Evaluation of NAS Parallel CG Benchmark 141

CLASS=S CLASS=W
7,000
10,000 1 |
6,000 - | " | I I é []
m COMM_SpMV
gsoo F ‘ ! | i i 7 8000 el I
2 4,000 m COMM_DOT 2 6,000 N 1 e I
g 3,000 1 W COMM_EXCH 2 4000 ' | ‘
Eo E 4
" 1g$ I I H ol T 2000 I I . I
’ H | I [= [
0 = DOT o
ES02E Y25 3925882 wpmy Eyyesgresyyesoe
S =2 > £ =2 > P e = £ =2 SeR =
523855253725 :3¢8 2
ccagfuegdeogaoca o cudaMemcpy g egI2 gLy
s o3 o8 o8 o3 o3 o3 o3
o o o [Others 2 2 2 =
P=2 p=4 p=g P=16 P=2 P=4 p=8 P=16
CLASS=A CLASS=B
25,000
ilt! 150,000 R
20,000 = COMM_SpMV
g] g 120,000]
£ 15,000 = = COMM_DOT 2 90000
o 2 90,
g 10000 'R | o B COMMEXCH £ 60000 .
IS] []
5,000 I I I - I I AXPY 30,000 I I i i i
0 | =DOT 0
cynmcgNmcsyNDcgNe CoNmceN@mEONDEOND
ESTSERTSERTSEETT mw ESCSERTSERSSERET S
taxet s tgaestg< £532a£35@ats38aL3y
frazeeaze EEI?-E‘KE u cudaMemcpy ngEE%’&EE%’EEB%’EE
P o2 o2 o2 o< o< o< o<
oL e Ce s} Others ©9o ©35 03 ©3
= = = = = (= [= =
p=2 P=4 p=8 P=16 p=2 p=4 p=g P=16

Fig. 5. Time breakdown on a single conj_grad function call of CG benchmark. In
each figure, the performance (time in microsecond) is shown for the implementation in
Fortran (original NPB-MPI code), C language, CUDA with TCA/PEACH2 commu-
nication, and CUDA with MPI/IB communication. The upper plot results for several
results in Fortran and C, such as CLASS=B & P = 2 case, are cut for simplicity.

The Fortran implementation is faster than the C implementation*. Com-
pared with the original Fortran implementation, the CUDA/GPU usage for
NPB implementation deteriorates the performance in several cases (particularly
in cases of smaller size class and larger number of processes utilization). This
is mainly due to that the GPU usage brings bigger overheads for invoking the
CUDA kernels and for issuing the inter-node communications between GPUs. For
instance, an invocation of a simple CUDA kernel at least takes 9.7 ws, includ-
ing the CUDA stream synchronization time, in our measurement. In the case
CLASS=W with P = 16, the implementation in CUDA with MPI/IB GPU-to-
GPU communication takes 6.75 times longer time for DOT communication and
2.43 times longer time for COMM_SpMV than the implementation in C with
MPI/IB CPU-to-CPU communication.

The TCA/PEACH2 utilization contributes the performance improvement for
the three small size classes (CLASS=S, CLASS=W, and CLASS=A) compared
with the MPI/IB utilization. Especially, the communication performance is 3.00
times higher in the case CLASS=S with P = 16, and the overall performance

4 A similar performance results were reported for the NPB-LU benchmark by Penny-
cook et al. [10]).

142 K. Matsumoto et al.

including both the computation time and communication time is 1.24 times
higher. The large performance improvement by TCA/PEACH2 is derived from
improvements of COMM_SpMV and COMM_DOT. The communication time is
2.42 times shorter for COMM_SpMV and 4.72 times shorter for COMM_DOT in
this case. In the case CLASS=A with P = 16, the communication performance
using the TCA/PEACH2 is 1.44 times higher and the overall performance is
1.12 times higher. The performance of COMM_DOT with TCA/PEACH2 is
higher in all four class cases since the communication latency mostly decides the
performance for the scalar data communication. However, the TCA/PEACH2
is not always effective. The performance for CLASS=B is almost same. In the
CLASS=B case, the COMM_SpMV and COMM_EXCH are the performance
bottleneck because the message size of each communication is 300 KB for P =
2,4 and 150 KB for P = 8,16, which are bigger than the upper limit size of 64 KB
(discussed in Fig.3); hence, TCA/PEACH2 is not advantageous to MPI/IB for
the problem class.

To see how the performance is different between the CG benchmark imple-
mentation with two-dimensional decomposition (2D-CG) in the present study
and the CG implementation with one-dimensional decomposition (1D-CG) in
our previous study [7], we additionally measure the performance of 1D-CG imple-
mentation on the equivalent condition and cases (1D-CG is implemented by our-
selves and not in the NAS Parallel Benchmarks). Figure 6 shows the measured
time breakdown of the 1D-CG. The 1D-CG utilizes allgather and allreduce col-
lective communications (see [7] for implementation details). All P processes are
involved for both the collective communications in 1D-CG, whereas P, processes

CLASS=S CLASS=W
8,000
7,000 8,000
m Allgath
g &0 B o Teuo
& 5,000 I I i o Allreduce 2>
v 4,000 m AXPY @ 4,000
£ 3,000 £
= 2,000 =pot " 5000
1,000 mSpMV ’
o Others o
TCA MPI TCA MPI TCA MPI TCA MPI TCA MPI TCA MPI TCA MPI TCA MPI
P=2 P=4 P8 P=16 P=2 P=4 P=g P=16
CLASS=A CLASS=B
12,000 40,000 I
10,000 35000 M
m Allgather 30,000
g 8000 g
2 u Allreduce 2 25,000 I
2 6,000 = 20,000 |
o HAXPY Pl
E 400 E 15,000
mDoT 10,000]
2,000 HSpMV 5,000 I I
¢ Others 0
TCA MPI TCA MPI TCA MPI TCA MPI TCA MPI TCA MPI TCA MPI TCA MPI
P=2 P=4 P=8 P=16 P2 P=4 P=8 P=16

Fig. 6. Time breakdown of CG implementation with one-dimensional decomposition

Implementation and Evaluation of NAS Parallel CG Benchmark 143

are involved at most in 2D-CG. Since the network topology of TCA/PEACH2
is 2 x 8 torus network, collisions within the communication network cannot be
avoided for P = 16 cases in 1D-CG. As shown in Fig. 6, the communication time
in 1D-CG becomes larger when P increases. In addition, the largest message size
of 1D-CG is larger than that of 2D-CG for P = 8,16 cases (the size is 8N /2
Bytes in 1D-CG and 8N/P, in 2D-CG). This fact is disadvantage for commu-
nications on large matrices (especially for CLASS=B) and relative performance
differences between TCA/PEACH2 and MPI/IB is large compared with 2D-CG
implementation.

In general, the message size of each communication in 2D-CG is shorter
than or equal to that in 1D-CG for corresponding communication. The per-
formance degradation with shorter message size is serious in MPI/IB while
TCA/PEACH2 provides a good performance thanks to its very small latency.
Thus, the combination of such short messages and avoidance of message collision
on the torus network of TCA/PEACH2 leads this performance improvement on
2D-CG benchmark. Figure7 shows the strong scaling performance of 2D-CG

2D-CG

—&— CLASS B (TCA/PEACH2)
= ® =CLASS B (MPI/IB)
—@— CLASS A (TCA/PEACH2)
— ® = CLASS A (MPI/IB)

CLASS W (TCA/PEACH2)
= ® =CLASS W (MPI/IB)

Speedup

0.5
0
2 4 6 8 0 12 14 16
#Processes [P]
1D-CG
25
- ‘.
2 =
L d
-
e — ® = CLASS B (MPI/IB)
a 15 {4
3 , ’/ — © —®— CLASS B (TCA/PEACH2)
[}
2 ﬁ! """" ==0 - & -CLASSA(MPI/IB)
& 16852 e B

T 7 7Y —@—CLASS A (TCA/PEACH2)

— ® - CLASS W (MPI/IB;
05 (MP1/1B)

CLASS W (TCA/PEACH2)

#Processes [P]

Fig. 7. Strong scaling performance of 2D-CG and 1D-CG implementations

144 K. Matsumoto et al.

and 1D-CG implementations. The 2D-CG implementation with TCA/PEACH2
scales better than that with MPI/IB while the 1D-CG implementation with
TCA/PEACH?2 scales worse.

The 2D-CG takes more overall time than 1D-CG in several cases, mostly
because the 2D-CG takes around four times more time for the SpMV computa-
tion. While the SpMV of 1D-CG is conducted with the cusparseDcsrmv routine
of NVIDIA’s cuSparse library, the SpMV of 2D-CG is performed with a routine
developed by ourselves and is less tuned. We expect that the performance of
2D-CG is equal to or higher than that of 1D-CG if the SpMV routine is tuned
in a comparable level.

5 Conclusion

The present study has utilized the TCA/PEACH2 for an implementation of
NAS Parallel CG benchmark and conducted its performance evaluation on the
HA-PACS/TCA GPU cluster. Results of the performance evaluation show that
the CG implementation with the parallelization by a two-dimensional decom-
position of matrix data does not cause message data collisions within the com-
munication network of TCA/PEACH when processes are properly mapped to
nodes; and the present CG implementation is considered to be better suited for
the TCA/PEACH2 utilization than the previous CG method implementation
with a one-dimensional decomposition [7]. The performance improvement over
MPI/IB utilization is due to the very small latency of TCA/PEACH2. We will
continue researches on the TCA with the view that reducing the latency between
accelerators by direct communication is important for strong-scaling computing.

Acknowledgements. The present study was supported by the Japan Science and
Technology Agency’s CREST program entitled “Research and Development of Uni-
fied Environment on Accelerated Computing and Interconnection for Post-Petascale
Era.” The authors would like to thank the Center for Computational Sciences, Uni-
versity of Tsukuba for allowing us to use the HA-PACS/TCA system as part of the
interdisciplinary Collaborative Research Program.

References

1. Bailey, D.H., Schreiber, R.S., Simon, H.D., Venkatakrishnan, V., Weeratunga, S.K.,
Barszcz, E., Barton, J.T., Browning, D.S., Carter, R.L., Dagum, L., Fatoohi, R.A.,
Frederickson, P.O., Lasinski, T.A.: The NAS parallel benchmarks - summary and
preliminary results. In: Proceedings of SC 1991, pp. 158-165 (1991)

2. Grewe, D., Wang, Z., O’'Boyle, M.F.P.: Portable mapping of data parallel programs
to OpenCL for heterogeneous systems. In: Proceedings of CGO 2013, pp. 1-10.
IEEE (2013)

3. Hanawa, T., Fujii, H., Fujita, N., Odajima, T., Matsumoto, K., Boku, T.: Evalu-
ation of FFT for GPU cluster using tightly coupled accelerators architecture. In:
Proceedings of Cluster 2015, pp. 635-641. IEEE (2015)

10.

11.

Implementation and Evaluation of NAS Parallel CG Benchmark 145

Hanawa, T., Kodama, Y., Boku, T., Sato, M.: Tightly coupled accelerators archi-
tecture for minimizing communication latency among accelerators. In: Proceedings
of IPDPSW 2013, pp. 1030-1039. IEEE (2013)

Kodama, Y., Hanawa, T., Boku, T., Sato, M.: PEACH2: an FPGA-based PCle net-
work device for tightly coupled accelerators. ACM SIGARCH Comput. Architect.
News 42(4), 3-8 (2014)

Lee, S., Vetter, J.S.: Early evaluation of directive-based GPU programming models
for productive exascale computing. In: Proceedings of SC 2012 (2012)
Matsumoto, K., Hanawa, T., Kodama, Y., Fujii, H., Boku, T.: Implementation of
CG method on GPU cluster with proprietary interconnect TCA for GPU direct
communication. In: Proceedings of IPDPSW 2015, pp. 647-655. IEEE (2015)
NVIDIA: NVIDIA GPUDirect. https://developer.nvidia.com/gpudirect. Accessed
25 Aug 2016

Panda, D.K.: MVAPICH2-GDR (MVAPICH2 with GPUDirect RDMA). http://
mvapich.cse.ohio-state.edu/overview/. Accessed 25 Aug 2016

Pennycook, S.J., Hammond, S.D., Jarvis, S.A., Mudalige, G.R.: Performance analy-
sis of a hybrid MPI/CUDA implementation of the NAS-LU benchmark. SIGMET-
RICS Perform. Eval. Rev. 38(4), 23-29 (2011)

Xu, R., Tian, X., Chandrasekaran, S., Yan, Y., Chapman, B.: NAS parallel bench-
marks for GPGPUs using a directive-based programming model. In: Brodman, J.,
Tu, P. (eds.) LCPC 2014. LNCS, vol. 8967, pp. 67-81. Springer, Cham (2015).
doi:10.1007/978-3-319-17473-0_5

https://developer.nvidia.com/gpudirect
http://mvapich.cse.ohio-state.edu/overview/
http://mvapich.cse.ohio-state.edu/overview/
http://dx.doi.org/10.1007/978-3-319-17473-0_5

Low Level Support

The Design of Advanced Communication
to Reduce Memory Usage for Exa-scale Systems

Shinji Sumimoto’®™), Yuichiro Ajima', Kazushige Saga!, Takafumi Nose',
Naoyuki Shida!, and Takeshi Nanri?

! Fujitsu Ltd., 4-1-1 Kamikodanaka 4-Chome,

Nakahara-ku, Kawasaki, Kanagawa 211-8588, Japan
{sumimoto.shinji,aji,saga.kazushige,nose.takafumi,shidax}@jp.fujitsu.com
2 Kyushu University, 6-10-1 Hakozaki Higashi-ku, Fukuoka 812-8581, Japan
nanri@cc.kyushu-u.ac. jp

Abstract. Current MPI (Message Passing Interface) communication
libraries require larger memories in proportion of the number of
processes, and can not be used for exa-scale systems. This paper pro-
poses a global memory based communication design to reduce mem-
ory usage for exa-scale communication. To realize exa-scale communi-
cation, we propose true global memory based communication primi-
tives called Advanced Communication Primitives (ACPs). ACPs pro-
vide global address, which is able to use remote atomic memory oper-
ations on the global memory, RDMA (Remote Direct Memory Access)
based remote memory copy operation, global heap allocator and global
data libraries. ACPs are different from the other communication libraries
because ACPs are global memory based so that house keeping memories
can be distributed to other processes and programmers explicitly con-
sider memory usage by using ACPs. The preliminary result of memory
usage by ACPs is 70 MB on one million processes.

1 Motivation

Many countries have been planning to develop exa-scale systems including Japan,
United States, EU and China around 2020-2023. Many core based systems will
be used for the exa-scale system and the number of cores will be in the 10 million
class. We have to consider not only the impacts of number of cores and nodes,
but also that of the number of processes on the system software stacks in this
situation, and we are researching high performance communication libraries that
are able to be used for 10 million process class parallel systems.

However, current communication libraries, such as Open MPI [1] and
MPICH |[2], require larger memories in proportion to the number of processes,
and, they can not be used for exa-scale systems because they eventually exhaust
the memories. Therefore, memory usage of them must be dramatically reduced.

We propose Advanced Communication Primitives (ACPs) with global mem-
ory access and management functions to reduce memory usage by communica-
tion libraries. ACPs are aimed at achieving low-level communication primitives,
and be used to implement PGAS based languages on top of ACPs.

© Springer International Publishing AG 2017
I. Dutra et al. (Eds.): VECPAR 2016, LNCS 10150, pp. 149-161, 2017.
DOI: 10.1007/978-3-319-61982-8_15

150 S. Sumimoto et al.

This paper is organized as follows, Sect.2 discusses memory usage issues
for Exa-scale systems. Section 3 proposes our approach of ACPs, and describes
global memory based communication design to reduce memory. Section 4 shows
evaluation of ACPs, and Sect. 5 discusses related work.

2 Memory Usage Issues for Exa-scale Systems

We measured and evaluated memory usage by Open MPI with an InfiniBand
network using DMATP-MPI [3] tool. The evaluation environment is as follows:

— 64 node x86_64 Cluster with Quad Core AMD Opteron 8354 2.2 GHz x 4CPUs,
16 GB RAM

— Mellanox Connect X DDR InfiniBand 4HCA

— Cent OS 6.0Kernel: 2.6.32-71.29.1.e16.x86_64

— Open MPI 1.4.5.and 1.6 MVAPICH2 1.8-r5471

InfiniBand interconnect has three types of communication protocol, i.e., Reli-
able Connection (RC) with Receive Queue (default and RC-RQ), RC with Shared
Receive Queue (RC-SRQ), and Unreliable Datagram (UD). Figure 1 plots the
results.

400

350 - —<—default

—B-RC+SRQ

300
—&—UD

IS
A
=}

memory usage [MEB]

|
0 1000 2000 3000 4000 5000 6000 7000 8000 9000

num. of procs

Fig. 1. Memory usage by Open MPI 1.4.5

Open MPI memory usage by the exa-scale system was estimated by extrap-
olating the data from Fig.1. Table1 summarizes the estimated memory usage
by up to 10 million processes, where memory usage by RC-RQ on one million
processes is 561 GB and that by RC-SRQ is 32.9 GB. These results indicate that
the connection oriented communication protocol is not scalable in essentials as
described by Sumimoto et al. [4].

We analyzed the reason and found that MPI_Init function allocated mem-
ory in proportion to the number of processes because each process had redun-
dant copies of information from the other processes’. The following sub-sections
describe the details.

The Design of Advanced Communication to Reduce Memory Usage 151

Table 1. Estimated memory usage by Open MPI

of node | RC-RQ | RC-SRQ | UD
100,000 56.23 3.33 0.29 GB
1,000,000 | 561.87 | 32.86 2.24GB
10,000,000 | 5,618.22 | 328.17 | 21.75GB

2.1 Evaluation of Open MPI Memory Usage and Analysis

We analyzed memory usage by the Open MPI 1.4.5' library by using the
Dynamic Memory Allocation Tracing Profiler for MPI (DMATP-MPI) to inves-
tigate memory usage by current communication libraries [5]. The target appli-
cation was IMB (Intel MPI Benchmarks). We measured several MPI functions
in IMB benchmarks and chose functions that used more memory.

The results from analysis revealed that the memory usage by three MPI
functions were dominant in Open MPI libraries.

— MPI_Recv: Point to Point Communication
— MPI_Init: Initializing Function
— MPI_Alltoall: Collective Communication

The following describes the results obtained from evaluating the functions,
device dependent memory usage, and the memory usage of internal functions of
the MPI_Init function.

3.0E+08

MPI_Recv

2.5E+08 |

2.0E+08 [

1.5E+08 |

Memory Usage (B)

1.0E+08 [

=o-MPI_Recv(rank = 0)
~@-MPI_Recv(rank = 1)
5.0E+07 | #+-MPI_Recv(rank = 2)

==MPI_Recv(rank = 3)

0.0E+00 Eim=tm
0 500 1000 1500 2000 2500
Number of Processes

Fig. 2. Memory usage by MPI_Recv

! Current version of Open MPI is 1.8.2, however basic memory allocation is not dif-
ferent.

152 S. Sumimoto et al.

MPI_Recv Memory Usage: Figure2 plots the results for memory usage by
the MPI_Recv function on the IMB Exchange benchmark. The X axis plots the
number of processes, the Y axis plots memory usage by MPI_Recv, and the
results indicate memory usage from ranks 0 to 3 in the number of processes.
The usage of memory by MPI_Recv in Fig.2 is around 140 MB in 1000
processes, and it is clear that only memory usage by rank 0 increased and the
other ranks did not increase. This is because rank 0 on the benchmark played
a special role that synchronized the other ranks. All ranks except for rank 0
sent messages to rank 0 to synchronize all ranks, and the messages sent to rank
0 became unexpected messages on rank 0. We also found that the unexpected
messages were never freed until MPI_Finalize called, onces they were allocated.

1.2E+07

1.0E407 [
8.0E+06 |-
@
Q
o
8
2 60406 |
]
£
Q
=
4.0E+06 |
==MPI_Init(rank = 1)
2.0E+06
-@-MPI_Alltoall(rank = 1)
0.0E+00 " N .
0 500 1000 1500 2000 2500
MPI_Init vs. MPI_Alltoall Number of Processes

Fig. 3. Memory usage by MPI_Init and MPI_Alltoall

MPI_Init vs. MPI_Alltoall Memory Usage: Figure3 plots the results
for memory usage by MPI_Init and MPI_Alltoall. Memory usage of MPI_Init
increases in the figure in proportion to the number of processes; however, that by
MPI_Alltoall increases in proportion to the log (number of processes). The figure
also indicates the memory usage by MPI_Init is larger than that by MPI_Alltoall
over 500 processes. Therefore, memory usage by MPI_Init must be reduced in
larger process systems such as node systems over 10,000.

Device Dependent Buffer Memory Usage: The result of Table 1 also indi-
cates that memory usage of the MPI program highly depends on InfiniBand
device protocol and required about 2.2 GB of memory per process even if the
UD protocol was used on one million processes. This also indicates current MPI

The Design of Advanced Communication to Reduce Memory Usage 153

libraries usually allocate o(Number of Processes) amount of memory to the MPI
buffer and control structure.
Followings are some description about device dependent memory usage:

InfiniBand uses Queue Pairs (QPs) which means send and receive queues to
communicate with other nodes. There are two kinds of communication proto-
cols: Un-reliable Datagram (UD) and Reliable Connection (RC). InfiniBand
QP has two Work Request Queues (WRQs) to store command requests for
the send queue and the receive buffer queue for the receive buffer, and the
Completion Queue (CQ) for the return status of operations. RC QP requires
WRQ and buffers for each destination, and UD QP requires single WRQ and
buffers for all destination.

Tofu interconnect is a six dimensional torus-mesh interconnect for the K com-
puter and the Fujitsu PRIMEHPC FX10 system. Tofu only supports RDMA
data transfer and does not support message passing and it is not connection
oriented. After the Tofu interconnect hardware is initialized, a program reg-
isters a memory area to a steering tag (STAG), which is the page table of
Tofu, and issues RDMA operation using six dimensional coordinates. Mem-
ory usage by Tofu does not depend on the number of destinations because
it does not have a message passing interface and is not connection oriented.
The only dependent memories are destination lists that store node IDs and
six dimensional coordinates.

Sockets are common interfaces that are widely used in current computer sys-
tems. They supports two types of communication, which are SOCK_STREAM
and SOCK_DGRAM. The TCP/IP protocol is used for SOCK_STREAM, and
the UDP/IP for SOCK_DGRAM. SOCK_STREAM requires socket buffer for
each destination, and SOCK_DGRAM requires single socket buffer for all
destinations.

1.0E+08

No. of malloc/free =

1.0E+07 |

1.0E+06 | 7710/978
3871/497
1950/258

990/138

1.0E+05 |

1.0E+04

Memory Increase (B)

1.0E+03

=o=tcp

~#=ib(1NIC)
ib(4NICs)

=>=tcp+ib(4Nics)

1.0E+02 |

1.0E+01 |

1.0E+00

1 10 100 1000 10000
Number of Processes

Fig. 4. Memory usage by MCA_PML_CALL(add_procs())

154 S. Sumimoto et al.

Table 2. Evaluation of memory allocation types in MPI_Init

Function Device dependence | Malloc increase
MCA_PML_CALL(add-procs()) | Dependent Number of calls
ompi_proc_set_arch() Dependent Number of calls
ompi_proc_init() Independent Number of calls
MCA_PML_CALL(add-comm()) | Independent Number of calls
ompi_comm_init() Independent Allocation size

Internal Memory Usage by MPI_Init: We measured and evaluated several
functions in MPI_Init to clarify how o(Number of Processes) amount of memory
in MPI_Init was allocated. Figure 4 plots one of the function MCA_PML_CALL
(add_procs()) results. The memory usage by Socket(tcp) and InfiniBand(ib) net-
works was measured, and numlI/num2 in the figure indicates the number of
malloc/free functions.

The MCA_PML_CALL(add_procs()) function in Fig. 4 allocates device inde-
pendent memory and the number of malloc calls increases in proportion to the
number of processes.

There is a summary of the evaluation results in Table 2, where several func-
tions in MPI_Init allocate memory in proportion to the number of processes,
and allocate memory according to various characteristics, i.e., device depen-
dent/independent and fixed size characteristics where the number of malloc calls
increases or are of variable size but the number of malloc calls fixed. In any case,
these functions statically have all the other process information.

3 The Design of Advanced Communication for Exa-scale
Systems

To realize high performance communication for Exa-scale system, not only reduc-
tion of memory usage of communication library but also memory reduction pro-
graming infrastructure is needed. This section discusses the design of advanced
communication for Exa-scale systems.

3.1 Advanced Communication Primitves (ACPs) Design

As discussed in Sect. 2, MPI_Init function allocates memory in proportion to the
number of processes because each process has redundant copies of information
from other processes’. To eliminate the redundant copies, such process informa-
tion should be located in the original process memory and accessed when needed
for exa-scale communication.

To realize an easy access to such distributed process data, we decided to
introduce global memory access scheme and global addresses which is able to
use an address pointer as same as address pointer in data structures in local

The Design of Advanced Communication to Reduce Memory Usage 155

memory. By providing the global memory access scheme, communication library
users can manipulate global memory pointers without taking care of the location
of the pointer.

To provide the global memory access scheme, communication library should
provide functions to handle global memory access, such as data copy, data hanle,
global memory allocation and global memory data library functions.

To realize the global memory access functions, we developed the Advanced
Communication Primitives(ACPs). ACPs provide global addresses, which are
able to use remote atomic memory operations on the global memory, and RDMA
based memory copy communication to effectively manipulate distributed struc-
ture. We chose RDMA based communication because it does not need an inter-
mediate communication buffer such as message based communication and mod-
ern interconnects such as Tofu and InfiniBand to support it.

The ACPs consist of basic layer (ACPbl) and middle layers which consist
of Communication Library (ACPcl) and Data Library (ACPdl), and all of the
functions are able to handle global address pointers as they are. Each process
on ACPs can individually register and unregister its local memory to the global
memory without inter-process synchronization. The primal data transfer func-
tion of the layer is a ’copy’ on the global memory. The initiator process for
the copy does not have to be the source nor the destination. The ‘copy’ func-
tion is directly implemented by using RDMA when network hardware, such as
InfiniBand or Tofu Interconnect, has RDMA.

3.2 ACP Basic Layer: ACPbl

The basic ACP layer consists of an infrastructure, global memory management
(GMM), and global memory access (GMA) functions to provide RDMA based
memory copy communication, remote atomic operations, and initialize and final-
ize functions. It also provides fixed-size starter memory to exchange global
addresses among processes after ACPs are initialized. The size of the starter
memory can be used to change environment variables or argument options dur-
ing execution.

ACPDI is able to provide well organized Partitioned Global Address Space
(PGAS), because the starter memory is fixed sized PGAS and each node can
allocate its local memory and register it as global memory. User can easily pro-
gram memory space allocation as PGAS.

Current global address handles of ACPs are described as 64 bit unsigned
integer type data so that they can directly use hardware atomic operation. Pro-
grams with ACPs do not have to recognize whether global address data exist
on local memories or not. They only recognize them when directly accessing
data. ACPs provide a translation function from global addresses to local logical
memory addresses, and when the function fails, the data are on other process
memories and need to be copied from the global data to local memory to access
them.

156 S. Sumimoto et al.

Table 3. ACPbl function examples

Functions Description Functions Description

acp-init() Initialization acp_register_memory() Memory registration
acp-finalize() | Finalization acp-unregister_memory() | Memory un-registration
acp-reset() Reset acp-copy() Global memory copy
acp-sync() Synchronization acp-cas[48]() Atomic compare and swap
acp-rank() Getting rank number | acp-swap[48]() Atomic swap operation
acp-procs() | Getting process group | acp-complete() Waiting completion
acp-query Query local address acp-inquire() Checking completion
_address()

Table 3 lists examples of ACPbl functions, where there are several infrastruc-
ture functions, and copy, compare and swap, swap, checking, and waiting oper-
ation functions.

3.3 Communication and Data Libraries

ACPs are also comprised of two main categories of interfaces, i.e., communica-
tion (ACPcl) and data libraries (ACPdl [6]). The communication libraries consist
of channel interface, collective and neighbor interface, and global data libraries.
These interfaces are built on the basic layer that provides a global memory model
among processes. Programmers create channels when needed in a channel inter-
face, and destroy them when communication has finished. The channel interface
reduces memory usage by creating and destroying channels only when needed.

ACPdI provides five types of data structures which are vector, list, deque,
set and map which are similar to the collection of the C++ language standard
template library. It also provides a global memory allocator function named the
acp_malloc which allocates a segment of global memory from current process on
a specified process rank. A global memory segment allocated by the acp_malloc
function can be easily freed by the acp_free function.

4 Evaluation of ACPbl and ACPdI

We are now developing ACP libraries and have finished ACPbl for UDP/IP and
Tofu and some of ACPdI to evaluate it. Fujitsu Supercomputer PRIMEHPC
FX10 was used for the evaluation on Tofu interconnect, Fujitsu Supercom-
puter PRIMEHPC FX100 for the evaluation on Tofu2 interconnect, and Fujitsu
PRIMERGY RX200 S7 for the evaluation of UDP/IP. Figure 5 plots the prelimi-
nary bandwidth performance of ACPbl for a Tofu interconnect using an acp_copy
function with local memory to remote memory in Table 3.

The Design of Advanced Communication to Reduce Memory Usage 157

5000

== ACPblI for Tofu
4500

=& MPI on Tofu

4000

3500

3000

2500

2000

1500

Communication Bandwidth (MB/s)

1000

500

0
1.0E+00 1.0E+01 1.0E402 1.0E+03 1.0E+04 1.0E+05 1.0E+06 1.0E+07
Data Size (B)

Fig. 5. Performance of ACPbl communication on Tofu

4.1 Evaluation of ACPbl Communication Performance

The performance of the communication bandwidth of MPI has also been shown
for comparison, and it can be seen ACPbl outperformed MPT in bandwidth. We
also evaluated preliminary memory usage by ACPDbl.

4.2 Evaluation of ACPbl Memory Usage

Current estimated memory usage by ACPbl for Tofu is 70 MB on one million
processes, and that for UDP/IP is 19 MB. These results are better than the
results in Table 1.

Table 4. Memory usage of ACPbl(Tofu) on 1 million processes

ACPDI(Tofu)
Memories in proportion of the | 69 MBytes@ 1 M processes
of processes Per process information
— Command receive buffer 64 bytes/process
— Tofu address table 4 bytes/process
— Tofu routing table 1 bytes/process
Memories in proportion of 9 KBytes for 128 entries
the # of memory registration
Misc. buffers 262 KBytes

Table 4 shows the detail analysis of ACPbl memory usage on Tofu. In addi-
tion to the memory usage, 2 MBytes of memories are needed for Tofu hardware
operation. Therefore, 72 MBytes of memories are needed for Tofu communica-
tion using ACPbI of Tofu. Table 5 shows the comparison of the memory usage

158 S. Sumimoto et al.

Table 5. Comparison of estimated memory usage

of node | ACP BL Tofu | MPI RC-RQ | MPI RC-SRQ | MPI UD
100,000 0.0065 56.23 3.33 0.29 GB
1,000,000 |0.0659 561.87 32.86 2.24GB
10,000,000 | 0.6581 5,618.22 328.17 21.75GB

estimation of between ACP on Tofu and MPI on InfiniBand. Memory usage of
ACP on Tofu is 44.6 times less memory than MPI on UD InfiniBand.

4.3 Evaluation of ACPdl Execution Performance

This subsection presents evaluation results of ACPdI functions. In the evalua-
tions, the acp_malloc, acp_free, acp_insert_map, and acp_find_map functions were
evaluated. Every experiment used two nodes and all functions accessed memory
of the other process on the remote node.

Figure 6 shows the evaluation results of the acp_malloc and acp_free functions.
The average execution times of the acp_malloc and acp_free functions with the
initial algorithm were around 420 and 400 wusecs using the UDP version of ACPbl,
31 and 29 wsecs using Tofu, and 24 and 24 usecs using Tofu2.

Figure 7 shows the results of the acp_insert_map and acp_find_map functions.
The average execution times of the acp_insert_map and acp_find_map functions
were around 1040 and 760 usecs using the UDP version of ACPbl, 86 and 64
usecs using Tofu, and 90 and 82 usecs using Tofu2.

These results show that ACPdI can be used effectively to handle distributed
data structures with data allocation and manipulation on global memory space.

1000

® UDP/RX200

B Tofu/FX10

= Tofu2/FX100

Average execution time (us)

local malloc local free remote malloc remote free

Fig. 6. Performance of ACPdl acp_malloc and acp_free

The Design of Advanced Communication to Reduce Memory Usage 159

B acp_insert_map
1,000 - macp_find_map |

100 -

Average execution time (us)

10 T T T
UDP Tofu Tofu2

Fig. 7. Performance of ACPdl acp_insert_map and acp_find_map

5 Related Work

There have been several related work to reduce memory usage in related work.

MPICH, MVAPICH (7] and Open MPT use memory reduction techniques for
InfiniBand. They use the UD and RC-SRQ communication protocol to reduce
memory usage. Mellanox Dynamically Connected (DC) Transport Service, which
also reduces the memory usage footprint drastically. However, DC is imple-
mented on original InfiniBand RC protocol and some performance degradation
exists when RC connections are disconnected and connected.

Open MPI only allocates a communication data buffer for communication.
Open MPI for the K computer introduces two memory consumption models,
i.e., high performance and memory saving modes [8]. It allocates the memory
saving mode on first communication to a destination, and when the number
of communications exceeds a predefined value, 16 at default, it switches the
memory saving model into high performance mode.

Balaji et al. [9] discusses MPI on a million processors on MPICH and current
implementation requires 80% (1.6 GB) of memory on 128 K BlueGene/P process
system. It points out memory usage by communicator creation.

There are several low level communication libraries that support RDMA
access and multiple networks such as UCX [10], libfabrics [11], UCCS [12], Por-
tals [13], PAMI [14], and so on. These communication libraries providle RDMA
based communication and message communication and memory usages by them
depend on how to use the message communication. They do not focus memory
usage reduction.

However, ACPs are true global memory based so that house keeping memo-
ries such as the other process’es information can be distributed to other processes
and programmers explicitly consider memory usage by using ACPs to reduce
memory usage even if for message communication.

160 S. Sumimoto et al.

6 Summary and Future Work

This paper proposed a global memory based communication design to reduce
memory usage in exa-scale communication. We analyzed memory usage by cur-
rent communication libraries and clarified issues with reducing memory usage
by house-keeping memory such as the other process’es information in communi-
cation libraries.

We proposed global memory based communication primitives called ACPs to
solve these issues. ACPs provide global addresses, which are able to use remote
atomic memory operations on the global memory, and RDMA based memory
copy communication, global heap allocator and global data libraries. ACPs are
different from the other communication libraries because ACPs are global mem-
ory based so that house keeping memories can be distributed to other processes
and programmers explicitly consider memory usage by using ACPs.

We have finished implementing ACPbl for UDP/IP, Tofu and InfiniBand, and
ACPdI including global heap memory allocation and manipulation of five types
of data structures. The preliminary evaluation results show that performance and
memory usage of ACPbl outperform current MPI libraries and the preliminary
result of memory usage by ACPs is 70 MB on one million processes. We intend
to evaluate and optimize ACPbl and apply to several libraries such as global
array, co-array and scripting languages such as python.

Acknowledgment. This research was supported by JST, CREST.

References

1. Open MPI. http://www.open-mpi.org/

2. MPICH-A Portable Implementation of MPI. http://www-unix.mcs.anl.gov/mpi/
mpich/

3. Sumimoto, S., Okamoto, T., Akimoto, H., Adachi, T., Ajima, Y., Miura, K.:
Dynamic Memory usage analysis of MPI libraries using DMATP-MPI. In: Pro-
ceedings of the 20th European MPI Users’ Group Meeting, EuroMPI 2013, pp.
149-150. ACM (2013)

4. Sumimoto, S., Naruse, A., Kumon, K., Hosoe, K., Shimizu, T.: PM/InfiniBand-FJ:
a high performance communication facility using InfiniBand for large scale PC clus-
ters. In: Proceedings of the Seventh International Conference on High Performance
Computing and Grid in Asia Pacific Region, pp. 104-113, July 2004

5. Sumimoto, S., Akimoto, H., Ajima, Y., Okamoto, T., Adachi, T., Miura, K.:
Dynamic memory usage analysis of MPI libraries using DMATP-MPI. In: Pro-
ceedings of the EuroMPI 2013 (poster) (2013)

6. Ajima, Y., Nose, T., Saga, K., Shida, N., Sumimoto, S.: ACPdl: data-structure

and global memory allocator library over a thin PGAS-layer. In: First International

Workshop on Extreme Scale Programming Models and Middleware ESPM2 (2015)

MVAPICH. http://mvapich.cse.ohio-state.edu/

8. Sumimoto, S.: The MPI communication library for the K computer: its
design and implementation. In: Traff, J.L., Benkner, S., Dongarra, J.J. (eds.)
EuroMPI 2012. LNCS, vol. 7490, p. 11. Springer, Heidelberg (2012). do0i:10.1007/
978-3-642-33518-1_3

=

http://www.open-mpi.org/
http://www-unix.mcs.anl.gov/mpi/mpich/
http://www-unix.mcs.anl.gov/mpi/mpich/
http://mvapich.cse.ohio-state.edu/
http://dx.doi.org/10.1007/978-3-642-33518-1_3
http://dx.doi.org/10.1007/978-3-642-33518-1_3

10.
11.
12.
13.
14.

The Design of Advanced Communication to Reduce Memory Usage 161

Balaji, P., Buntinas, D., Goodell, D., Gropp, W., Kumar, S., Lusk, E., Thakur, R.,
Traff, J.L.:. MPI on a million processors. In: Proceedings of the 16th Euro
PVM/MPI, pp. 20-30 (2009)

Unified Communication X. http://www.openucx.org/

OFI Libfabric. https://ofiwg.github.io/libfabric/

UCCS-Universal Common Communication Substrate. http://uccs.github.io/uccs/
Portals4. http://www.cs.sandia.gov/Portals/portals4.html

Kumar, S., Mamidala, A.R., Faraj, D.A., Smith, B., Blocksome, M., Cernohous,
B., Miller, D., Parker, J., Ratterman, J., Heidelberger, P., Chen, D., Steinmacher-
Burrow, B.: PAMI: a parallel active message interface for the Blue Gene/Q super-
computer. In: 2012 IEEE 26th International IPDPS, pp. 763-773, May 2012

http://www.openucx.org/
https://ofiwg.github.io/libfabric/
http://uccs.github.io/uccs/
http://www.cs.sandia.gov/Portals/portals4.html

A Vectorized, Cache Efficient LLL
Implementation

Artur Mariano®) | Fébio Correia, and Christian Bischof

Institute for Scientific Computing, Technische Universitat Darmstadt,
Darmstadt, Germany
artur.mariano@sc.tu-darmstadt.de

Abstract. This paper proposes a vectorized, cache efficient implemen-
tation of a floating-point version of the Lenstra-Lenstra-Lovész (LLL)
algorithm, which is a key algorithm in many fields of computer sci-
ence. We propose a re-arrangement of the data structures in LLL, which
exposes parallelism and enables vectorization. We show that in one ker-
nel, 128-bit SIMD vectorization works better than 256-bit, while in
another kernel it is the other way around. In high lattice dimensions,
this re-arrangement renders the implementation more cache friendly,
thereby further increasing performance. Our floating-point LLL imple-
mentation is slightly slower than the implementation in the Number
Theory Library (NTL) without vectorization, but 10% faster when vec-
torized, for lattices that require exhaustive computation with multi-
precision. For larger lattices, we obtain a speedup factor of 35% over
a non-vectorized implementation.

1 Introduction

Lattices are discrete subgroups of the m-dimensional Euclidean space R™, with
a strong periodicity property. A lattice £ generated by a basis B, a set of linearly
independent vectors by,...,b,, in R™, is denoted by:

LB)={xeR™:x= zn:uibi, ueZzZ}. (1)

i=1

where n is the rank of the lattice. When n = m, the lattice is said to be of full
rank. When m is at least 2, each lattice has infinitely many different bases.

Lattice basis reduction is the process of transforming a given lattice basis B
into another lattice basis B “, whose vectors are shorter and more orthogonal
than those of B and where B and B “ generate the same lattice, i.e., £L(B) =
L(B*). While there is not a formal definition of lattice reduction, the goal of
lattice reduction algorithms is to yield a nearly orthogonal basis.

The Lenstra-Lenstra-Lovasz (LLL) algorithm was the first tractable algo-
rithm to reduce bases [4]. It lays the foundation for many algorithms for problems
on lattices. LLL has applications in many fields in computer science, ranging
from integer programming to cryptanalysis [5]. Although many core concepts

© Springer International Publishing AG 2017
I. Dutra et al. (Eds.): VECPAR 2016, LNCS 10150, pp. 162-173, 2017.
DOI: 10.1007/978-3-319-61982-8_16

A Vectorized, Cache Efficient LLL Implementation 163

in the theory of lattices are already well understood, many questions regard-
ing the performance of lattice algorithms are still under investigation. Studying
the performance potential of lattice algorithms, including LLL, is of great rele-
vance, as this determines, for example, the potential of attacks to lattice-based
cryptosystems.

The original LLL algorithm was described with rational arithmetic, which
was soon realized to be overly expensive. In a breakthrough result, Schnorr
et al. [6] published a floating-point version of LLL that offers good practical
performance and moderate stability. Since then, various improvements of LLL’s
stability and its algorithmic performance have been proposed e.g. [2,3,5]. For
instance, in 2008, Backes et al. proposed a shared-memory parallel LLL imple-
mentation, with moderate scalability. In a follow-up paper, Backes et al. achieved
an improved speedup factor of 3x for 4 threads and a bit over 4x for 8 threads
[1]. However, to our knowledge, there are no studies regarding the vectorization
of LLL and the impact of its data structures and kernels on cache locality.

Our contributions. In this paper, we propose a re-arrangement of the data
structures in LLL that both leverages cache locality and enables SIMD vec-
torization. The re-arrangement of the data structures offers an immediate gain
in cache locality, while the width of the SIMD vectorization should be chosen
based on the pattern of computation in the kernel. We show that our floating-
point LLL implementation is slower than NTL’s', but outperforms it by 10%
when employing our optimizations on bases that require multi-precision support.
Moreover, the performance boost of our optimizations increases with the lattice
dimension.

Notation. Vectors and matrices are written in bold face, vectors are written in
lower-case, and matrices in upper-case, as in vector v and matrix M. The it"
coordinate of a vector v is denoted by v;. (v,p) denotes the inner product of
two vectors v and p. The Euclidean norm of v is given by ||v]|. v is called a
zero vector if ||v|| = 0. v' denotes the floating point value of an exact value v.
[x] rounds z to the nearest integer. A detailed description of the Gram Schmidt
(GS) orthogonalization, which is essential in LLL reduction, can be found in
Sect. 1.2.2 of [7].

2 A LLL Floating-Point Implementation

We implemented a variant of the floating-point LLL algorithm proposed by
Schnorr et al., described in [6]. Algorithm 1 shows the pseudo-code of our imple-
mentation. Floating-point LLL implementations are more practical than exact
versions, but errors might occur, and a mechanism to correct them must be in
place. The input of the algorithm is the lattice basis and a reduction parame-
ter &, which defines the extent of the reduction. The algorithm works with both
exact and approximate versions of the basis. An exact copy of the basis is always
available in the algorithm, since errors in the basis change the lattice and can
not be corrected, unless a copy of the exact basis is kept.

! www.shoup.net/ntl/.

www.shoup.net/ntl/

164 A. Mariano et al.

Algorithm 1. The heuristic LLL algorithm with floating point arithmetic,
proposed by Schnorr and Euchner [6]. The lines in blue differ form the
original algorithm.

Input: A basis (b, ...,by), § € (1/2,1) and all p; ;’s and ¢;’s computed by the Gram
Schmidt orthogonalization.
Output: An LLL-reduced basis with §.

1 k=2

2 //number of precision bits in double precision
3 T =2>53;

a Fc= false;

5 last_k = 0;

e fori =1, ..., mdo

| b= (b))

s while £k < m do

10 o A

11 if kK =2 then

12 | e = 1163117

13 forj =1, ..., k-1 do

14 if (b, 0%) x (b, b) < 272X7X015] [[[[b)]| then
15 ‘ s = (bx, b;)";

16 else

17 L s:(b;@,b;);

ji—1

18 B, = (s— Z§=1 Bj, itk iCi)/C55
19 | Ck = cr — Hi ;¢4
21 do
22 Fc = false;

23 for j=k-1, ..., 1 do

24 if g, ;] > 1/2 then

25 Fc = true;

26 fori=1, ..., j-1 do
27 L Bleyi = Mk,i — [Hie,j] X 1,05
28 Hk,j = Bk, — (B3]

20 b = b — [p,5] ¥ b
30 if Fc then

31 b;c = (bk)/§

32 if k > last_k then
33 L Recompute_-GS();
34 while F;

36 if dcp—1 > cp + ui k_1Ck—1 then
a7 swap (b, bp—1);

38 swap(b, b} _1);

39 if k& > last_k then
40 L last_k = k;
a1 k= max(k —1,2);
42 else
43 L k=k+1,

44 return (by,...,by) ;

A Vectorized, Cache Efficient LLL Implementation 165

The algorithm starts at stage kK = 2, by computing the Gram Schmidt orthog-
onalization (lines 10-19 in Algorithm 1), which starts with the computation of
the inner product between two vectors. If the precision loss is too high, the exact
dot product has to be computed, for which we use the exact version of the basis.
The Gram Schmidt orthogonalization outputs the approximate values of one row
of the coefficient vectors of the orthogonal basis, u, and the square norm of the
corresponding orthogonal vector.

The next step is a size reduction procedure of the vector b, with all vectors b;,
for j =k—1,...,1 (lines 21-34 in Algorithm 1), if the size reduction is possible.
This procedure consists in subtracting the coordinates of one vector by another,
whose coordinates are multiplied by a constant i.e. (b = by, — [pr,;] x b;). If
|tk 1 > 1/2 holds true, it is possible to perform a size reduction. If the reduction
takes place, we approximate the k-th row of the basis.

Finally, the reduced vector will be swapped with its predecessors unless the
Lovész condition holds (lines 36-43 in Algorithm 1). This condition ensures that
successive vectors are at least § times bigger than their respective predecessor.
The described process is repeated for each vector in the basis, until all vectors
are LLL-reduced. Once this condition is verified, an LLL-reduced basis with
¢ is returned. To improve the numerical stability and the performance of the
algorithm, we modified it as follows:

1. As in the NTL implementation, we replaced the 50% precision loss test of [6]
by another, which tolerates a loss of up to 15% in the computation of the
inner products.

2. Unlike L®FP in [6], we check whether the values fit into a double data type (to
compute the dot product in line 14 of Algorithm 1 with doubles), as we use
xdoubles to store approximate values. If they do, we use doubles to compute
the dot product as operations are more efficient than on xdoubles.

3. If a given basis vector by can be reduced, Schnorr et al. test whether the
precision loss is too high. If so, the algorithm tries to reduce b again. However,
in our implementation, by is always reduced again, even when the precision
loss is low (lines 21-34 in Algorithm 1). This is also how the algorithm is
implemented in NTL. In addition, we also recompute the Gram Schmidt
orthogonalization the first time by is reduced, since errors may occur that
are hard to correct at a later stage (lines 32-33 in Algorithm 1; note that
Recompute_GS executes the same code as lines 10-19).

2.1 Multi-precision and Data Structures

LLL requires multi-precision capability to handle large numbers that may be
present in lattices, including most lattices available from the SVP challenge?.
A viable option to implement multi-precision is the GNU Multiple Precision
Arithmetic Library (GMP) library. NTL can be compiled with either its own
multi-precision module or with GMP. The LLL function in NTL is considerably

2 www.latticechallenge.org/svp-challenge/.

www.latticechallenge.org/svp-challenge/

166 A. Mariano et al.

long e; long "e;

xdouble

Fig. 1. Original (left side) and re-arranged (right side) data structures.

faster with its own multi-precision module than with GMP, presumably because
memory can be handled much more efficiently (e.g. auxiliary variables for con-
version are not needed) in the multi-precision module. In our implementation,
we used GMP to store exact values.

The extended exponent double precision data type (xdouble), allows to rep-
resent floating point numbers with the same precision as a double, but with a
much larger exponent. It is implemented as a class, where two instance vari-
ables are used, a double x and a long e, to store the mantissa and the exponent,
respectively. For any given number in the form x x b°, x denotes the mantissa,
b the base and e the exponent.

The data structures of our base implementation consist of 2-dimensional
arrays, of either xdoubles for floating point arithmetic (GS coefficients p and
the approximate basis B "), or the GMP mpz_t data type for exact arithmetic
(exact basis B), for matrices. For vectors, we used 1-dimensional arrays contain-
ing xdoubles (square norms of the GS vectors - no vectors with exact precision
are needed). In addition, two xdouble arrays are used to store the square norms
of the approximated basis vectors (used in line 14 of Algorithm 1) and the result
of pugic; (computed in line 18 and needed again in line 19 of Algorithm 1).

2.2 Data Structure Re-organization and Vectorization

We now describe two core modifications of our LLL implementation, which
improve its performance. Figure 1 shows the re-arrangement of the data struc-
ture to store the approximate version of the lattice basis. On the left side, we
store an array of N pointers to other arrays, each of which has N elements.
Each element is stored as a xdouble object, which is a struct of two elements (a
double and a long). On the right side, we show the data structure re-arranged.
This re-arrangement results in immediate performance boost, as it is more cache
friendly.

As the original data structures are an array of structs (AoS), cache locality
is low. With the re-arrangement, multiple vectors are brought to cache with
two accesses (arrays double *x and long *e). A vector in dimension N has N
coordinates of 16 bytes each (8 bytes for the long and 8 bytes for the double).
Therefore, accessing array *x brings 8 elements to each L1 cache line, assuming
a 64 bytes L1 cache line size. This is also true for cache lines in L2, thus reducing
memory access latency in comparison to the original implementation.

A Vectorized, Cache Efficient LLL Implementation 167

doubl
00 R e s I
—»Djja jong "e; [I I]
L T

Fig. 2. Original (left side) and re-arranged (right side) data structures.

We store the GS coefficients p in an identical data structure, although it has
the shape of a lower triangular matrix. The re-arrangement is similar, as shown
in Fig.2. The major difference is index calculation. In the new format, pu; ; is
accessed at the index (i x (i — 1)/2) + j, thereby incurring in a slight overhead.

These re-arrangements also allow one to vectorize (i) the dot product between
two vectors when they fit in doubles (line 14 in Algorithm 1) and (ii) the add
and multiply (AddMul) (line 18 in Algorithm 1). Note that when vectors do
not fit into doubles, no vectorization is used in (i), as this kernel represents a
tiny percentage of the overall execution time. For (ii), we were able to partially
vectorize the operation, as it is performed exclusively with xdoubles. We split
the kernel in two steps. First, we multiply the elements (xdoubles) of one array
by the corresponding elements of a second array, which has no dependencies and
can be vectorized. In particular, the mantissas are multiplied by one another
and the exponents are summed up, and both operations are vectorized. Then,
we sum up the partial multiplications. However, there is a case statement in the
sum which impedes vectorization.

3 Experiments

As mentioned before, we used NTL’s implementation of LLL as a reference
implementation. We note that NTL’s implementation is faster than our base
implementation due to two main reasons: (1) NTL uses its own multi-precision
module, which is more efficient than GMP (which we used in our implementa-
tion), and (2) NTL’s LLL implementation is more efficient than ours in terms
of Gram Schmidt computations. However, our main goal is to propose optimiza-
tions that can be applied to any LLL implementation (including NTL’s).

Throughout this section, we refer to our implementation as either (i) base
implementation, for the non-optimized, implementation, (ii) optimized/OPT, for
the version with the data structures re-arranged or (iii) vectorized/VEC for the
version with re-arranged data structures and vectorization enabled. For 256-bit
SIMD vectorization we used AVX2, while for 128-bit SIMD vectorization SSE
4.2 was used.

We used random Goldstein-Mayer lattice bases, available on the SVP chal-
lenge website, for which we ran 50 seeds on each dimension. For tests with
Ajtai lattices from the Lattice challenge®, we run tests on a single seed for each

3 http://www.latticechallenge.org)/.

http://www.latticechallenge.org/

168 A. Mariano et al.

14

—e— SSE

AVX
SSE+AVX

12 H

Execution time (s)

4 L L L L Il Il L L L L L Il Il L L L L L L
80 81 8 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

Dimension

Fig. 3. Execution time of our LLL implementation, vectorized with SSE 4.2, AVX 2
and a mix of SSE 4.2 (for the AddMul kernel) and AVX 2 (for the dot product kernel)
on Goldstein-Mayer lattices.

dimension, as no lattice generator is available. The test platform has two Intel
E5-2698v3 chips at 2,3 GHz, each of which has 16 cores. Each core has 32 KB of
L1 instruction and data cache (a cache line has 64 bytes). L2 caches have 256 KB
and are not shared. The L3 cache is shared among all the cores, and has 40 MB.
The machine has 756 GBs of RAM.

The code was compiled with GNU g++ 4.8.4. We compiled the code with
the -O2 optimization flag, since it was slightly better than -O3.

3.1 Goldstein-Mayer Lattices (Low Dimensions)

In this section, we show the benchmarks that were carried out for lattices of the
SVP challenge. We used the lattice generator to generate 50 lattices with seeds 1—
50 and thus have a statistical significant result. We run our LLL implementation
and NTL’s implementation for lattices in dimensions 80-100. The performance
of our base implementation is comparable to NTL’s (it is about 3% slower), as
shown in Fig.4 (note the zoom-in section where the performance difference is
accentuated). We did not extend the benchmarks to higher dimensions as the
pattern seems to be fairly stable and higher dimensions require large chunks of
time to be tested (dimension 100 required about 14s x 50 seeds = ~12 min, and
dimension 150 would require about 3.5h).

Figure 3 shows a comparison of our LLL implementation using different vec-
torization technologies. The performance of the dot product kernel is higher when
using the better vectorization technology (AVX 2). However, this is not true for
the AddMul kernel, whose performance is equivalent with either AVX 2 or SSE
4.2. Since this kernel computes the values of pu;;pn ¢, for i = 1,...,5 — 1 and
j=k—1,...,1, the number of vectorized elements is higher with SSE 4.2, thus
achieving the same performance as with AVX 2.

We note that our optimized (OPT) version does not perform necessarily
better than the base version. We believe that this happens because the lattices
we tested are too small to exhibit enough cache locality gains to outweigh the
overhead incurred in this version. To prove this, we measured the cache misses
of our implementation for the L1, L2 and L3 level caches, as shown in Figs. 5,

A Vectorized, Cache Efficient LLL Implementation 169

—&— NTL

—=a— Opt
12 H —e— Base

11 H Vec

Execution time (s)

9394 95 96 97

94 95 96 97 98 99 100

Dimension

Fig. 4. Execution time of our LLL implementation and NTL’s, for lattices from the
SVP challenge. Note the zoom-in section for Base and OPT, between dimensions 93-97.

VEC
—e— Base
—=— OPT

250 H

200

150 |-
100 /ﬁ//ﬁ
50

0 L L L L L 1 1 1 1 1 1 1 1 1 L L L I L
80 81 82 83 84 8 86 87 83 89 90 91 92 93 94 95 96 97 98 99 100

Cache Misses (millions)

Dimension

Fig. 5. L1 cache misses (in millions) of our LLL implementation on Goldstein-Mayer
lattices.

6 and 7, respectively. As the figures show, the OPT version incurs much fewer
cache misses across all cache levels than the base version. In particular, the
difference increases with higher lattice dimensions. This shows that one can
effectively improve the data locality of the code by replacing Arrays of Structures
by Structures of Arrays. Ideally, we would test lattices in dimension 500-1000
but these dimensions would be impractical to solve on this type of lattices. In
the next section, we test lattices in dimensions 500-800, on a kind of lattices
that requires far less time.

Our vectorized (VEC) version obtains speedups of 9-11% over the optimized
version, when using 256-bit SIMD vectorization for the dot product kernel and
128-bit SIMD vectorization for the AddMul kernel. This version incurs, some-
what surprisingly, more cache misses than the other versions. We believe that
this happens because, as performance increases, more memory accesses are per-
formed within the same timespan, thus shortening the window opportunity for
efficient prefetching. In particular, for dimensions that are divisible by 4, the
time for prefetching is smaller, due to higher throughput and it is not possible
to load as much data beforehand, thus incurring in a higher number of L1 cache
misses. Similarly, on dimensions that are multiples of 2, the VEC version also
has a slightly higher number of L1 cache misses, due to the fact that some of the

170 A. Mariano et al.

Cache Misses (millions)

0 L L L L 1 L L L L L L 1 L L L L L L L
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

Dimension

Fig. 6. L2 cache misses (in millions) of our LLL implementation on Goldstein-Mayer
lattices.

VEC
—e— Base
—=— OPT

2000 H

1500

1000

Cache Misses

0 L L& > 2 T T ¥ b d T T T T b L L L 1 1 1
80 81 82 83 84 8 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

Dimension

Fig. 7. L3 cache misses of our LLL implementation on Goldstein-Mayer lattices.

code is vectorized with 128-bit SIMD vectorization. For L2 and L3 cache levels,
this pattern is not verified because as the latency incurred to access L2 and L3
cache levels provides enough of a time window for prefetching.

With 256-bit SIMD vectorization, we could obtain a theoretical maximum
speedup of 4x (as we vectorize 8-byte doubles) and with 128-bit SIMD vectoriza-
tion we could obtain a theoretical maximum speedup of 2x, for the same reason
(but for 8-byte longs). Thus, in theory, we could achieve an overall speedup of
19.5%, as the dot product loop takes approximately 16% of the execution time
of the base version (for a lattice in dimension 100), for which we used 256-bit
SIMD registers, while the AddMul loop takes approximately 31%, for which we
used 128-bit SIMD registers?. A 11% speedup is in our view a good result, as
the maximum number of vectorized elements is N (in this case 100, at most),
which is not sufficient to achieve the full potential of vectorization.

3.2 Ajtai Lattices (High Dimensions)

For lattices from the SVP challenge, LLL is only practical below dimension
200, as we mentioned in the previous subsection. The Lattice challenge allows
one to carry out benchmarks with larger lattice dimensions, as this kind of

4 As the number of elements that are vectorized in the loop decreases, there may not
be 4 elements, which are necessary to use 256-bit SIMD.

A Vectorized, Cache Efficient LLL Implementation 171

500 |{ —e— SSE

Execution time (s)

0 I 1 1 I 1
500 550 600 650 700 750 800

Dimension

Fig. 8. Execution time of our LLL implementation, vectorized with SSE 4.2, AVX 2
and a mix of SSE 4.2 (for the AddMul kernel) and AVX 2 (for the dot product kernel)
on Ajtai lattices.

Execution time (s)

0 i I 1 i I
500 550 600 650 700 750 800

Dimension

Fig. 9. Execution time of our LLL implementation and NTL’s LLL implementation,
for Ajtai lattices from the Lattice challenge.

lattices contain far smaller numbers and LLL-reduces them much faster. Note
that lattices from the SVP challenge have numbers with over 300 digits after a
certain dimension, while lattices from the Lattice challenge have numbers with
no more than 3 or 4 digits.

Figure 8 shows the execution time of our LLL implementation, when both
kernels are vectorized with SSE 4.2, when both kernels are vectorized with AVX
2, and when the AddMul kernel is vectorized with SSE 4.2 and the dot product
kernel with AVX 2. As the figure shows, the dot product always benefits from
AVX 2. On the other hand, the AddMul kernel does not profit from AVX 2 on
most of the tested lattices, since the number of elements to be vectorized might
not be enough to fill the 256-bit SIMD registers. Using AVX 2 on this kernel
leads to a higher number of unvectorized elements, as with SSE 4.2 one can
vectorize the operation as soon as the loop has 2 elements (while 4 elements are
necessary for AVX 2).

Figure 9 compares our implementation against NTL’s, for lattices between
dimension 500 and 800. NTL is approximately 2x faster than our base imple-
mentation, as (i) NTL saves more GS computations in higher lattice dimensions
and (ii) converting data types from/to GMP, which we use, incurs increasing
overhead with the lattice dimension. However, the key point in this subsection is
not to show how our implementation compares to NTL, but what performance

172 A. Mariano et al.

18000 8000

16000 | VEC | 7000 4 VEC
_ —e— Base : : : . —e— Base : :
2 14000 H » opr € 6000 H—=— OPT | ...
= 12000 |t = : :
€ : : £ 5000
7 10000 o e
8 ‘ ‘ & 4000
B 8000 i 8
= : ‘ = 3000
Y 6000 i i
S 3 ‘ S 2000
& 4000 |- : : 8

2000 fore et g 1000

I I I of
500 550 600 650 700 750 800 500 550 600 650 700 750 800
Dimension Dimension
(a) L1 cache misses (b) L2 cache misses

50
45 H
40 H
35
30
25
20
15
10

Cache Misses (thousands)

s~

500 550 600 650 700 750 800

Dimension

(c) L3 cache misses

Fig. 10. L1, L2 and L3 cache misses of our LLL implementation, for Ajtai lattices from
the Lattice challenge.

gain can be attained when optimizing it. As the figure shows, we obtain a 6%
speedup by simply switching to the optimized (aka with re-organized data struc-
tures) version. This backs up our claim that re-organizing the data structures
delivers higher gains for higher lattice dimensions, as the experiments in the
last subsection were only done for lattices up to dimension 100. In addition,
Fig. 10 shows that the optimized version reduces the number of cache misses
in comparison to the base version, thereby confirming that the data structure
re-organization improves the data locality of the implementation.

In addition, we obtain a speedup of as much as 35% (from which 6% is
obtained from the data structures re-arrangement). For the vectorization, we
could achieve a theoretical speedup of 36.9%, as the dot product loop takes
approximately 26.4% of the execution time of the base version (for a lattice in
dimension 100), for which we used 256-bit SIMD registers, while the AddMul loop
takes approximately 60.6%, for which we used 128-bit SIMD registers. The over-
all speedup of 35% (29%, if the speedup from the re-arrangement is deducted)
is thus closer to the maximum possible speedup of 36.9%, which backs up our
claim that the vectorization benefit increases with the lattice dimension.

A Vectorized, Cache Efficient LLL Implementation 173

4 Conclusions

Although a comprehensive body of work pertaining to LLL has been published
in the last decades, there are no studies regarding the vectorization of LLL and
the impact of its data structures and kernels on cache locality. In this paper, we
fill this gap in knowledge. We propose a re-organization of the data structures in
the algorithm, which enables the vectorization of two computationally expensive
kernels. We show that (i) our data structure re-arrangement increases perfor-
mance with the lattice dimension (ii) vectorizing the dot product and AddMul
kernels can achieve as much as 35% speedup on larger lattices and (iii) our
implementation is as much as 10% more efficient than NTL’s on smaller lattices.

References

1. Backes, W., Wetzel, S.: Improving the parallel schnorr-euchner LLL algorithm. In:
Xiang, Y., Cuzzocrea, A., Hobbs, M., Zhou, W. (eds.) ICA3PP 2011. LNCS, vol.
7016, pp. 27-39. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24650-0-4

2. Koy, H., Schnorr, C.P.: Segment LLL-reduction of lattice bases. In: Silverman, J.H.
(ed.) CaLC 2001. LNCS, vol. 2146, pp. 67-80. Springer, Heidelberg (2001). doi:10.
1007/3-540-44670-2_7

3. Koy, H., Schnorr, C.P.: Segment LLL-reduction with floating point orthogonaliza-
tion. In: Silverman, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, pp. 81-96. Springer,
Heidelberg (2001). doi:10.1007/3-540-44670-2_8

4. Lenstra, A., Lenstra, H., Lovasz, L.: Factoring polynomials with rational coefficients.
Math. Ann. 261, 515-534 (1982)

5. Nguén, P.Q., Stehlé, D.: Floating-point LLL revisited. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 215-233. Springer, Heidelberg (2005). doi:10.
1007/11426639-13

6. Schnorr, C., et al.: Lattice basis reduction: Improved practical algorithms and solv-
ing subset sum problems. Math. Programm. 66, 181-191 (1993)

7. Stehlé, D.: Floating-point LLL: theoretical and practical aspects. In: Nguyen, P.Q.,
Vallée, B. (eds.) The LLL Algorithm - Survey and Applications, pp. 179-213.
Springer, Heidelberg (2010)

http://dx.doi.org/10.1007/978-3-642-24650-0_4
http://dx.doi.org/10.1007/3-540-44670-2_7
http://dx.doi.org/10.1007/3-540-44670-2_7
http://dx.doi.org/10.1007/3-540-44670-2_8
http://dx.doi.org/10.1007/11426639_13
http://dx.doi.org/10.1007/11426639_13

Versat, a Minimal Coarse-Grain
Reconfigurable Array

Joao D. Lopes and José T. de Sousa®)

INESC-ID/IST, University of Lisbon, Lisbon, Portugal
jose.desousa@inesc-id.pt

Abstract. This paper introduces Versat, a minimal Coarse-Grain
Reconfigurable Array (CGRA) used as a hardware accelerator to opti-
mize performance and power in a heterogeneous system. Compared to
other works, Versat features a smaller number of functional units and
a simpler controller, mainly used for reconfiguration and data transfer
control. This stems from the observation that competitive acceleration
can be achieved with a smaller array and more flexible reconfigurations.
Partial reconfiguration plays a central role in Versat’s runtime reconfig-
uration scheme. Results on core area, frequency, power and performance
are presented and compared to other implementations.

Keywords: Reconfigurable computing - Coarse-grain reconfigurable
arrays * Heterogeneous systems

1 Introduction

A suitable type of reconfigurable hardware for embedded devices is the Coarse-
Grain Reconfigurable Array (CGRA) [1]. Fine grain reconfigurable fabrics, such
as FPGAs, are often too large and power hungry to be used as embedded cores.
It has been demonstrated that certain algorithms can run orders of magnitude
faster and consume lower power in CGRAs when compared to CPUs (see for
example [2]).

A CGRA is a collection of programmable functional units and embedded
memories, interconnected by programmable switches for forming hardware data-
paths that accelerate computations. The reconfigurable array is good for accel-
erating program loops with data array expressions in their bodies. However, the
parts of the program which do not contain these loops must be run on a more
conventional processor. For this reason, CGRA architectures normally feature a
processor core. For example, the Morphosys architecture [3] uses a RISC proces-
sor and the ADRES architecture [4] uses a VLIW processor.

This work started with 3 observations: (1) because of Amdah!’s law, acceler-
ating kernels beyond a certain level does not result in significant overall accel-
eration and energy reduction of the application; (2) the kernels that are best
accelerated in CGRAs do not require much control code by themselves; (3) the
compute intensive inner loops that are normally accelerated in CGRAs tend to

© Springer International Publishing AG 2017
I. Dutra et al. (Eds.): VECPAR 2016, LNCS 10150, pp. 174-187, 2017.
DOI: 10.1007/978-3-319-61982-8_17

Versat, a Minimal Coarse-Grain Reconfigurable Array 175

cluster in the code. About observation (2), note that typical target kernels are
transforms (IDCT, FFT, etc.), filter banks (FIR, IIR, etc.), and others. Obser-
vation (3) refers to loop nests and loop sequences where the data produced in
one loop is consumed in the next loop. If the hardware does not support these
constructs, the associated processor needs to reconfigure the array after each
inner loop, and the resulting time overhead may cancel the acceleration gains.
Previous work has targeted this problem by proposing CGRAs that can support
nested loops. For example, the approach in [5] supports nested loops using spe-
cial address generation units and has been successfully used in commercial audio
codec applications.

This paper extends the work in [5] to sequences of loop nests, achieving
further acceleration and increasing the granularity of the tasks handled by the
reconfigurable array. We propose a new architecture, Versat, which uses a rela-
tively small functional unit array coupled with a very simple controller. A smaller
array limits the size of the data expressions that can be mapped to the CGRA,
forcing large expressions to be broken down into smaller expressions executed
sequentially in the CGRA. Therefore, Versat requires mechanisms for handling
large numbers of configurations efficiently and flexibly.

Versat cores are to be used as co-processors in an embedded system con-
taining one or more commercial application processors. The advantage of having
one or more Versat cores in the system is to optimize performance and energy
consumption during the execution of compute intensive tasks. Application pro-
grammers can use the Versat cores by calling procedures that get executed on
the Versat cores. For that purpose, a Versat API library must be linked with
the host application. The API library is created by Versat programmers. In this
way, the software and programming tools of the CGRA are clearly separated
from those of the application processor.

A compiler for Versat has been developed. The compiler is simple as we have
restricted its functionality to the tasks that CGRAs can do well. The syntax
of the programming language is a small subset of the C/C++ language, with a
semantics that enables the description of hardware datapaths. The compiler is
not described in this paper whose main thrust is the description of the architec-
ture and VLSI implementation.

In order to make the reconfiguration process efficient, full reconfiguration of
the array should be avoided. In this work we exploit the similarity of different
CGRA configurations by using partial reconfiguration. If only a few configuration
bits differ between two configurations, then only those bits are changed. Most
CGRAs are only fully reconfigurable [3,4,6] and do not support partial recon-
figuration. The disadvantage of performing full reconfiguration is the amount
of configuration data that must be kept and/or fetched from external memory.
Previous CGRA architectures with support for partial reconfiguration include
RaPiD [7], PACT [8] and RPU [2]. RaPiD supports dynamic (cycle by cycle)
partial reconfiguration for a subset of the configuration bitstream, using smaller
stored contexts. In PACT, one of its processors has access to the configura-
tion memory of the array, but using this feature for partial reconfiguration is

176 J.D. Lopes and J.T. de Sousa

Controller mmmm Program DMA Bus
Memory
Control Bus

Host Control
|/F — REQlISter Data En ine Contig Bus_(Configuration
(AX14 slave) IHit g Module
Memory I/F DMA I I
(AX14 master)

Fig. 1. Versat top-level entity.

reportedly slow and users are recommended to avoid it and resort to full reconfig-
uration whenever possible. In RPU, a kind of partial reconfiguration called Hier-
archical Configuration Context is proposed to mitigate these problems. In this
work we propose a configuration register file using registers of variable length,
organized in configuration spaces and low-level configuration fields, where each
register corresponds to a configuration field, and we allow random access to the
configuration fields. This scheme is more flexible than the hierarchical organiza-
tion of the configuration contexts in [2].

2 Architecture

The top level entity of the Versat module is shown in Fig. 1. Versat is designed
to carry out computations on data arrays using its Data Engine (DE). To per-
form these computations the DE needs to be configured using the Configuration
Module (CM). A DMA engine is used to transfer the data arrays from/to the
external memory. It is also used to initially load the Versat program and to move
CGRA configurations to/from external memory.

The Controller executes programs stored in the Program Memory (8kB).
A program executes an algorithm, coordinating the reconfiguration and execu-
tion of the DE and the DMA. The controller accesses the modules in the system
by means of the Control Bus.

Versat has a host interface and a memory interface. The host interface is used
by a host system to command the loading and execution of programs. The host and
the Controller communicate using the Control Register File (CRF). The memory
interface is used to access data from an external memory using the DMA.

2.1 Data Engine

The Data Engine (DE) has a fixed topology using 15 functional units (FUs) as
shown in Fig.2. It is a 32-bit architecture and contains the following FUs: 4
dual-port 8 kB embedded memories, 4 multipliers, 6 Arithmetic and Logic Units

Versat, a Minimal Coarse-Grain Reconfigurable Array 177

Config Bus
|
FU1
I
Control Bus

Data Bus

Fig. 2. Data engine.

(ALUs) and 1 barrel shifter. The Controller can read and write the output regis-
ter of the FUs and can read and write to the embedded memories. In this work,
embedded memory blocks are treated like any other FU by our mapping tool.

Each FU contributes its 32-bit output(s) to a wide Data Bus of 19 x 32 bits,
and is able to select one 32-bit data bus entry for each of its inputs. The FUs
read their configurations from the Config Bus. Each FU is configured with an
operation and input selections. The coarse-grain reconfiguration means that there
is a fixed set of operations available in the accelerator. For example, an ALU
can be configured to perform addition, subtraction, logical AND, maximum and
minimum, etc.

In Fig. 3, it is shown in detail how a particular FU is connected to the control,
data and configuration busses. The FU is labeled FU5 and it is of type ALU. It is
a pipelined ALU with 2 pipeline stages. The last pipeline stage stores the output
of the ALU (output register). FU5 is selecting one of the 19 sub-busses of the
Data Bus for each of its two inputs. Although Fig. 2 shows the Config Bus going
to all FUs, in fact only the configuration bits of each FU are routed to that FU.
These bits are called the configuration space of the FU. The configuration space
is further divided in configuration fields with specific purposes. In Fig. 3, the
example ALU has a configuration space with 3 configuration fields: the selection
of the ALU’s input A (5 bits), the selection of the ALU’s input B (5 bits) and
the selection of the ALU’s function (4 bits). Our partial reconfiguration scheme
works at the field level. Fields can be reconfigured one by one by the Controller.
The ALU output (pipeline register 1) can be read or written by the Controller
as shown in the figure. This feature enables a functional unit to be used as a
shared register between the Controller and the DE.

From the explanation in the previous paragraph, one concludes there are
direct connections from any FU to any other FU. This complete mesh topology
may be unnecessary but it greatly simplifies the compiler design as it avoids
expensive place and route algorithms commonly used in CGRAs. More com-
pact interconnect may be developed in the future simultaneously with compiler
improvements. In any case, the interconnect consumes very little power since
Versat is reconfigured only after a complete program loop is executed in the
DE. Moreover our IC implementation results indicate that only 4.04% of the
core area is occupied by the full mesh interconnect, which means there is little

178 J.D. Lopes and J.T. de Sousa

data_bus[0][31:0]

data_bus([7][31:0]
data_bus[8][31:0]

data_bus[18][31:0]

Configure input A v v . v V

: ‘ Configure input B
—_— > Op A Op B ’ onfigure inpu
COnfigurm» ALU Pipeline register 0

Control BUS Pipeline register 1
FU5

data_bus[0][31:0]
data_bus[7][31:0]
data_bus[8][31:0]

data_bus[18][31:0]

Fig. 3. Functional unit detail.

motivation to optimize the interconnect. One could argue that a full mesh topol-
ogy also limits the frequency of operation. However, our IC implementation is
able to work at a maximum frequency of 170 MHz in a 130 nm process, while
many target applications that we have investigated, for example, in the multi-
media space, are required to work at even lower frequencies because of power
and energy constraints.

Each configuration of the DE corresponds to one or more hardware data-
paths. Datapaths can have parallel execution lanes to exploit Data Level Paral-
lelism (DLP) or pipelined paths to exploit Instruction Level Parallelism (ILP).
Given enough resources, multiple datapaths can operate in parallel in Versat.
This corresponds to having Thread Level Parallelism (TLP). In Fig. 4, three
example hardware datapaths that can be mapped onto the DE are illustrated.
Datapath (a) implements a pipelined vector addition. Despite the fact that a
single ALU, configured as an adder, is used, ILP is being exploited: the memory
reads, addition operation and memory write are being executed in parallel for
consecutive elements of the vector. Datapath (b) implements a vectorized version
of datapath (a) to illustrate DLP. The vectors to be added spread over memories
MO and M2, so that 2 additions can be performed in parallel. ILP and DLP can
be combined to yield very parallel datapaths such as datapath (c), whose func-
tion is to compute the inner product of two vectors. Four elements are multiplied
in parallel and the results enter an adder tree followed by an accumulator.

Each memory port is equipped with an Address Generator Unit (AGU) to
access data from the embedded memories during the execution of a program
loop. The discussion of the details of the AGU falls out of the scope of this
paper. Our scheme is similar to the one described in [9] in the sense that both
schemes use parallel and distributed AGUs. We will simply state the following

Versat, a Minimal Coarse-Grain Reconfigurable Array 179

RE T It Y Rl Vi Rl Vo AR Ve I
c 6608 &

*

A4 \
A B A
"
+
(@) (b) il ©
&
Iy
A 4
L

Fig. 4. Data engine datapaths.

properties of our AGUs: (1) two levels of nested loops are supported (reconfigu-
ration after each inner loop would cause excessive reconfiguration overhead); (2)
the AGUs can start execution with a programmable delay, so that paths with
different accumulated latencies can be synchronized; (3) one AGU can be started
independently of the other AGUs, which may be at rest or running.

The third property is instrumental for exploiting TLP, which can be illus-
trated using datapath (b) in Fig.4. Suppose one block of vector elements to be
added are placed in memory MO, and that address generators M0-A, M0-B and
MI1-A are started right away (Thread 1). In parallel, one can move the next block
to memory M2 and start AGUs M2-A, M2-B and M1-B (Thread 2). Then the
Controller can monitor the completion of Thread 1 in order to restart it with a
new vector block, and then monitor the completion of Thread 2 to also restart
it with a new block. By alternately managing Thread 1 and Thread 2, vectors
that largely exceed the capacity of the Versat memories can be processed in a
continuous fashion.

2.2 Configuration Module

The set of configuration bits is organized in configuration spaces, one for each FU.
Each configuration space may contain several configuration fields. All configura-
tion fields are memory mapped from the Controller point of view. Thus, the Con-
troller is able to change a single configuration field of a functional unit by writing
to the respective address. This implements partial reconfiguration. Configuring a
set of FUs results in a custom datapath for a particular computation.

The Configuration Module (CM) is illustrated in Fig. 5 with a reduced number
of configuration spaces and fields for simplicity. It contains a variable length con-
figuration register file, a configuration shadow register and a configuration mem-
ory. The configuration shadow register holds the current configuration of the DE,

180 J.D. Lopes and J.T. de Sousa

FUO_O

Control Bus BOUSE
— FUO 2| © 2
£—P 010 = 2
8 53 B
2 S i
3 = S Config Bus
o = <
o € & —
a [} @
T (@] =
IS
3
- Update
Configuration 0
P
Configuration 1 E
[}
Configuration 2 £
=2
— Configuration 3 kS
<}
Configuration 4 e

Fig. 5. Configuration module.

which is copied from the main configuration register whenever the Update signal
is asserted. In this way, the configuration register can be changed while the DE is
running. Figure 5 shows 5 configuration spaces, FUO to FU4, where each FUj has
configuration fields FUj_i. Note that, unlike what is suggested by the figure, the
FUj_i fields do not have necessarily the same length (number of bits). A configura-
tion memory that can hold 5 complete configurations is also shown. In the actual
implementation the configuration word is 660 bits wide, there are 15 configuration
spaces, 110 configuration fields in total and 64 configuration memory positions.

Still referring to Fig. 5, if the CM is being addressed by the Controller, the
decode logic checks whether the configuration register file or the configuration
memory is being addressed. The configuration register file accepts write requests
and ignores read requests. The configuration memory interprets read and write
requests as follows: a read request causes the addressed contents of the configura-
tion memory to be read into the configuration register file; a write request causes
the contents of the configuration register file to be stored into the addressed posi-
tion of the configuration memory. This is a mechanism for saving and loading
entire configurations in a single clock cycle with all configuration fields concate-
nated in a 660-bit word.

The CM has a special address that, when the Controller writes anything to
it, all bits of the configuration register are cleared in one clock cycle. The default
values of the configuration fields are coded with the value zero, so that this action
restores the default configuration. Building a configuration of the DE from the
default configuration is about 40% faster than writing all fields because many
fields are left with their default values. The default values have been chosen so
that they have a high likelihood of being used.

In most applications there is also a high likelihood that one configuration will
be reused again, as is or with little modifications. Thus, it is useful to save certain
configurations in the configuration memory to later load them and eventually
tweak them.

Versat, a Minimal Coarse-Grain Reconfigurable Array 181

— [: ‘ read/write
. Instruction) data_out[31:0]
&' code | Decoder >
5| Opcode
E——— 2 — RA —
>Instruct|on < . 4]
Memory j,: : data_in[31:0] 5
= I g
g I-y‘ | address[13:0] 5
g . —» PC o
2 s e
Immediate) ‘
s
RB

Fig. 6. Controller.

2.3 Controller

Versat uses of a minimal controller for reconfiguration, data transfer and simple
algorithmic control. The instruction set contains just 16 instructions for the
following actions: (1) loads/stores; (2) basic logic and arithmetic operations; (3)
branching. Versat has an accumulator architecture with a 2-stage pipeline shown
in Fig.6. The controller architecture contains 3 main registers: the program
counter (PC), the accumulator (RA) and the address register (RB), which is
used in indirect loads and stores. There is only one instruction type as illustrated
in the figure. The controller is the master of a simple bus called the Control Bus,
whose signals are also explained in the figure.

The instruction set is outlined in Table 1. Brackets are used to represent
memory pointers. For example, (Imm) represents the contents of the memory
position whose address is Imm.

Table 1. Instruction set.

Mnemonic | Opcode | Description

nop 0x0 No operation; PC = PC+1

rdw 0x1 RA = (Imm); PC = PC+1

WIW 0x2 (Imm) = RA; PC = PC+1

rdwb 0x3 RA = (RB); PC = PC+1

wrwb 0x4 (RB) = RA; PC = PC+1

beqi 0x5 RA == 0? PC = Imm: PC = PC+1; RA = RA-1
beq 0x6 RA == 0?7 PC = (Imm): PC = PC+1; RA = RA—-1
bneqi 0x7 RA != 07 PC = Imm: PC = PC+1; RA = RA-1
bneq 0x8 RA =07 PC = (Imm): PC = PC+1; RA = RA-1
1di 0x9 RA = Imm; PC = PC+1

1dih 0xA | RA[31:16] = Imm; PC = PC+1

shft 0xB RA = Imm < 0? RA = RA << 1: RA=RA >>1
add 0xC RA = RA+(Imm); PC = PC+1

addi 0xD RA = RA+Imm; PC = PC+1

sub 0xE RA = RA—(Imm); PC = PC+1

and OxF RA = RA&(Imm); PC = PC+1

182 J.D. Lopes and J.T. de Sousa

2.4 Qualitative Comparison with Other Architectures

Versat has some distinctive features which can not be found in other architec-
tures: (1) it has a small number of processing elements (PEs) organized in a full
mesh structure; (2) it has a fully addressable configuration register combined
with a configuration memory to support partial configuration; (3) it has a ded-
icated controller for reconfiguration, DMA management and simple algorithm
control — no RISC [3] or VLIW [4] processors are used.

CGRAs started as 1-D structures [7] but more recently square mesh 2-D
PE arrays are more common [2-4]. However, the problem with square mesh
topologies is that many PEs end up being used as routing resources, reducing the
number of PEs available for computation and requiring sophisticated mapping
algorithms [10]. Thus, we decided to use a rich interconnect structure and fewer
PEs. As explained before, for a small number of PEs, the silicon area occupied by
the full mesh interconnect is less than 5% and the limits placed in the frequency
of operation are not as stringent as the ones imposed by the energy budgets of
certain applications.

It is also important to keep the configuration time to a minimum. As
explained in [2], the reconfiguration time in CGRAs can easily dominate the
total execution time. To counter this effect we have decided to take partial
reconfiguration to the extreme of using a fully addressable configuration regis-
ter. This keeps the reconfiguration time to a minimum and contrasts with the
more moderate hierarchical reconfiguration scheme proposed in [2].

Since it is crucial to have the reconfigurations done quickly, we have decided
to include a small dedicated controller with just 16 instructions and low IO
latency. It turned out that this controller also proved useful in managing data
transfers and running the algorithms of interesting kernels such as the FFT
kernel. In other architectures [2—4], more comprehensive processors are used.
Our approach reduces the silicon area and power consumption of the core but
also limits the complexity of the algorithms that can be run on it. Thus, we rely
on other processors that exist in the system to run more complex algorithms,
and we restrict Versat to be a kernel accelerator only.

3 Programming

The Versat controller can be programmed using a small C/C++ subset using
the Versat compiler. Certain language constructs are interpreted as DE config-
urations and the compiler automatically generates instructions that write these
configurations to the CM. The Versat controller can also be programmed in
assembly language, given its easy to apprehend structure. To the best of our
knowledge, Versat is the only CGRA that can be programmed in assembly.
Despite its simplicity, the Versat controller is able to execute rather complex
kernels autonomously.

The purpose of this paper is to describe the Versat architecture, not the
Versat programming tools. However, after describing the Controller, it is useful
to show an example program to illustrate the features of the C++ subset that

Versat, a Minimal Coarse-Grain Reconfigurable Array 183

int main(){
//initiate data transfer into Versat using DMA
dma.config(1024, 256, 256, 1);
dma.run();

//clear configuration register and create new configuration
de.clearConfig();
for(j = 0; j < 128; j++)

mem1A[j] = memOA[j*2] + memOB[1+j*2];

//wait for data transfer to finish
dma.wait();

//run the data engine
de.run();

//configure DMA to transfer result back to memory
dma.config(2048, 2048+128, 256, 2);

//wait for data engine to finish
de.wait(memilA);

//transfer result back to memory using DMA
dma.run();
dma.wait();

Fig. 7. Example code.

can be used. The chosen example is the interleaved vector addition program
shown in Fig. 7. Comments are added to help understand the code.

Note that the Versat C/C++ dialect does not yet support object or variable
declarations. All objects and variables that can be used are predefined. For loops
with expressions involving memory ports are interpreted as DE configurations
and trigger partial reconfigurations. Two nested loops and multiple expressions
in the loop body are also supported. Whenever possible, the compiler keeps
track of the current state of the configuration register to perform a minimal
number of partial reconfigurations needed to prepare the next configuration.
Partial reconfigurations generate store instructions in the assembly code, one per
configuration field. In many practical situations, the configurations are generated
in a program loop where, in each iteration, only a few configuration fields change.
A configuration generation loop has a much smaller code footprint than storing
all the configurations in memory.

184 J.D. Lopes and J.T. de Sousa

4 Results

Versat has been designed using a UMC 130 nm process. Table 2 compares Versat
with a state-of the-art embedded processor and two other CGRA implemen-
tations. The Versat frequency and power results have been obtained using the
Cadence IC design tools. The power figures have been obtained using the node
activity rate extracted from simulating an FFT kernel.

Table 2. Integrated circuit implementation results.

Core Node (nm) | Area (mm?) | RAM (kB) | Freq. (MHz) | Power (mW)
ARM Cortex A9 [11] | 40 4.6 65.54 800 500
Morphosys [3] 350 168 6.14 100 7000
ADRES [4] 90 4 65.54 300 91
Versat 130 4.2 46.34 170 99

Because the different designs use different technology nodes, to compare the
results in Table2, we need to use a scaling method [12]. A standard scaling
method is to assume that the area scales with the square of the feature size and
that the power density (W/m?) remains constant at constant frequency. Doing
that, we conclude that Versat is the smallest and least power hungry of the
CGRAs. If Versat were implemented in the 40 nm technology, it would occupy
about 0.4 mm?, and consume about 44 mW running at a frequency of 800 MHz.
That is, Versat is 10x smaller and consumes about 11x lower power compared
with the ARM processor.

The ADRES architecture is about twice the size of Versat. Morphosys is the
biggest one, occupying half the size of the ARM processor. These differences
can be explained by the different capabilities of these cores. While Versat has a
16-instruction controller and 11 FUs (excluding the memory units), ADRES has
a VLIW processor and a 4x4 FU array, and Morphosys has a RISC processor
and an 8x8 FU array.

A prototype has been built using a Xilinx Zynq 7010 FPGA, which features a
dual-core embedded ARM Cortex A9 system. Versat is connected as a peripheral
of the ARM cores using its AXI4 slave interface. The ARM and Versat cores are
connected to an on-chip memory controller using their AXI master interfaces.
The memory controller is connected to an off-chip DDR module. This FPGA
prototype has only been used to measure the execution time in clock cycles.
The performance and energy estimates discussed in the next paragraph have
been obtained using the measured execution times combined with frequency
and power estimates extrapolated from the results in Table 2.

Results for a set of kernels are summarized in Table 3. For both ARM and
Versat, the program has been placed in on-chip memory and the data in an
external DDR memory device. The Versat Total cycle counts include data trans-
fer, processing, control and reconfiguration. The Versat Unhidden cycle counts

Versat, a Minimal Coarse-Grain Reconfigurable Array 185

means the control and reconfiguration cycles that do not occur in parallel with
the DE or DMA. The average number of FUs used and the code size are given
for each kernel. The speedup and energy ratio have been obtained assuming the
ARM is running at 800 MHz and Versat is running at 600 MHz in the 40 nm
technology. The energy ratio is the ratio between the energy spent by the ARM
processor alone and the energy spent by an ARM/Versat combined system using
the power figures in Table 2.

Table 3. Kernel benchmark results.

Kernel | ARM Cortex | Versat cycles Versat Versat code | Speedup | Energy ratio
A9 cycles Total | Unhidden | FUs used | size (bytes)

vec_add | 14726 4517 | 36 3 152 2.45 2.29

iirl 18890 7487 | 26 5 220 1.89 1.77

iir2 24488 10567 | 26 8 332 1.74 1.62

cip 25024 6673 | 26 10 408 2.81 2.63

fft 394334 16705 | 624 8.5 3028 17.70 16.55

In Table3, vec_add is a vector addition, iirl and iir2 are 1st and 2nd
order IIR filters, cip is a complex vector inner product and £ft is a Fast Fourier
Transform. This kernel set occupies only 50% of the 8 kB program memory. All
kernels operate on Q1.31 fixed-point data with vector sizes of 1024. The first 4
kernels use a single Versat configuration and the data transfer size dominates.
For example, the vec_add kernel processing time is only 1090 cycles and the
remaining 3427 cycles account for data transfer and control. The FFT kernel is
more complex and goes through 43 Versat configurations generated on the fly
by the Versat controller. The processing time is 12115 cycles and the remaining
4590 cycles is for data transfer and control. It should be noted that most of the
reconfiguration and control is done while the data engine is running. In fact, only
605 cycles are unhidden reconfiguration and control cycles in the FFT kernel. In
general, this is true for all kernels: unhidden reconfiguration and control cycles
are about 1-5% of the total time. The number of FUs used is low for simple
kernels like vec_add and iirl (which could have used a smaller array) but is
over 50% for more complex kernels. However, the simpler kernels could have
been designed in a more parallel fashion, using more FUs. For example, vec_add
can use multiple adders in parallel but only one has been instantiated. These
results show good performance speedups and energy savings, even for single
configuration kernels.

Most of the 43 FFT configurations derive from two basic configurations that
are partially changed many times. The two configurations implement a radix-2
FFT butterfly: one configuration performs the complex product and the other
configuration performs the two complex additions in a butterfly. The variations of
these configurations alternate the source and destination memories for the data
(ping-pong processing), and the address generation constraints to read and write
the data values for the various stages and blocks of the FFT. On average only 26%
of the array is reconfigured each time. When the array is being configured from

186 J.D. Lopes and J.T. de Sousa

the default values, on average 68% of the bits need be written. There is also one
configuration to copy the FFT coefficients between two memories (so that they
can be accessed from 4 memory ports simultaneously) and to reorder the data by
bit reversing the addresses. Partial reconfiguration plays a key role in the FFT
example: with full reconfiguration, the execution time grows about 7%, as there
are many short loops that are not long enough to overlap with reconfiguration. If
full reconfiguration, with all configurations produced at compile time, were used,
like in [2—4], the FFT code would be 2.2x larger, penalizing memory bandwidth
and capacity.

We can compare Versat with Morphosys since it is reported in [13] that
the processing time for a 1024-point FFT is 2613 cycles. Compared with the
12115 cycles taken by Versat, this means that Morphosys was 4.6x faster. This
is not surprising since Morphosys has 64 FUs compared to 11 FUs in Versat.
However, our point is that an increased area and power consumption is not
justified when the CGRA is integrated in a real system. Note that, if scaled to
the same technology, Morphosys would be 5x the size of Versat. Unfortunately,
comparisons with the ADRES architecture have not been possible, since we have
not found any cycle counts published, despite ADRES being one of the most cited
CGRA architectures.

It would be nice if we implemented the other approaches in our setup to have a
fairer comparison, instead of using published results. However, those are complex
cores and implementing them ourselves, besides representing a formidable effort,
would carry the risk of us missing some important details that could distort the
results. It would also be nice to study Versat’s performance in a real application,
where it has to be reconfigured periodically to different kernels. We leave that
for a more mature state of our evaluation.

5 Conclusion

In this paper we have presented Versat, a minimal CGRA with 4 embedded
memories and 11 FUs, a fine partial reconfiguration scheme and a basic 16-
instruction controller.

Versat has fewer processing elements compared to other CGRAs (eg. RPU [2])
but uses a full mesh interconnect topology. Another unique feature is a fully
addressable configuration register combined with a configuration memory to
support partial configuration. The simple Versat controller is used for recon-
figuration, DMA management and simple algorithm control, dispensing with
complex RISC or VLIW processors proposed in other approaches. The controller
generates Versat configurations on the fly, instead of using pre-compiled config-
urations like other CGRAs. This saves configuration storage space and memory
bandwidth. Versat can be programmed in a C/C++ dialect and can be used by
host processors by means of an API containing a set of useful kernels.

Results on a VLSI implementation show that Versat is competitive in terms
of silicon area (2x smaller than ADRES [4]), and energy consumption (3.6x
lower compared with Morphosys [3]). Performance results show that a system

Versat, a Minimal Coarse-Grain Reconfigurable Array 187

combining a state-of-the-art embedded processor and the Versat core can be
17x faster and more energy efficient than the embedded processor alone when
running the FFT algorithm.

Acknowledgment. This work was supported by national funds through Fundagao
para a Ciéncia e a Tecnologia (FCT) with reference UID/CEC/50021/2013.

References

1.

10.

11.

12.

13.

De Sutter, B., Raghavan, P., Lambrechts, A.: Coarse-grained reconfigurable array
architectures. In: Bhattacharyya, S.S., Deprettere, E.F., Leupers, R., Takala, J.
(eds.) Handbook of Signal Processing Systems, pp. 449-484. Springer, Heidelberg
2010

iiu, L).7 Wang, D., Zhu, M., Wang, Y., Yin, S., Cao, P., Yang, J., Wei, S.: An energy-
efficient coarse-grained reconfigurable processing unit for multiple-standard video
decoding. IEEE Trans. Multimed. 17(10), 1706-1720 (2015)

Lee, M.H., Singh, H., Lu, G., Bagherzadeh, N., Kurdahi, F.J.: Design and imple-
mentation of the MorphoSys reconfigurable computing processor. J. VLSI Signal
Process. Syst. Signal Image Video Technol. 24, 147-164. Kluwer Academic Pub-
lishers (2000)

Mei, B., Lambrechts, A., Mignolet, J.-Y., Verkest, D., Lauwereins, R.: Architecture
exploration for a reconfigurable architecture template. Des. Test Comput. 22(2),
90-101 (2005)

de Sousa, J.T., Martins, V.M.G., Lourenco, N.C.C., Santos, A.M.D., do Rosario
Ribeiro, N.G.: Reconfigurable coprocessor architecture template for nested loops
and programming tool. US Patent 8,276,120 (2012)

Hartenstein, R., Herz, M., Hoffmann, T., Nageldinger, U.: Mapping applications
onto reconfigurable KressArrays. In: Lysaght, P., Irvine, J., Hartenstein, R. (eds.)
FPL 1999. LNCS, vol. 1673, pp. 385-390. Springer, Heidelberg (1999). doi:10.1007/
978-3-540-48302-1_42

Ebeling, C., Cronquist, D.C., Franklin, P.: RaPiD — reconfigurable pipelined data-
path. In: Hartenstein, R.W., Glesner, M. (eds.) FPL 1996. LNCS, vol. 1142, pp.
126-135. Springer, Heidelberg (1996). doi:10.1007/3-540-61730-2_13

Baumgarte, V., Ehlers, G., May, F., Niickel, A., Vorbach, M., Weinhardt, M.:
PACT XPP - a self-reconfigurable data processing architecture. J. Supercomput.
26(2), 167-184 (2003)

Farahini, N., Hemani, A., Sohofi, H., Jafri, S.M.A.H., Tajammul, M.A., Paul, K.:
Parallel distributed scalable runtime address generation scheme for a coarse grain
reconfigurable computation and storage fabric. Microprocess. Microsyst. 38(8),
788-802 (2014)

Liu, D., Yin, S., Liu, L., Wei, S.: Polyhedral model based mapping optimization
of loop nests for CGRAs. In: 2013 50th ACM/EDAC/IEEE Design Automation
Conference (DAC), pp. 1-8 (2013)

Wang, W., Dey, T.: A survey on ARM Cortex A processors. http://www.cs.
virginia.edu/skadron/cs8535s11/armcortex.pdf. Accessed 6 Apr 2016

Huang, W., Rajamani, K., Stan, M.R., Skadron, K.: Scaling with design con-
straints: predicting the future of big chips. IEEE Micro 31(4), 16-29 (2011)
Kamalizad, A.H., Pan, C., Bagherzadeh, N.: Fast parallel FFT on a reconfigurable
computation platform. In: 15th Symposium on Computer Architecture and High
Performance Computing, Proceedings, pp. 254-259 (2003)

http://dx.doi.org/10.1007/978-3-540-48302-1_42
http://dx.doi.org/10.1007/978-3-540-48302-1_42
http://dx.doi.org/10.1007/3-540-61730-2_13
http://www.cs.virginia.edu/skadron/cs8535s11/armcortex.pdf
http://www.cs.virginia.edu/skadron/cs8535s11/armcortex.pdf

Environments/Libraries to Support
Parallelization

An Application-Level Solution for the Dynamic
Reconfiguration of MPI Applications

Ivén Cores!, Patricia Gonzélez!, Emmanuel Jeannot?, Marfa J. Martin'(®9,

and Gabriel Rodriguez!

! Grupo de Arquitectura de Computadores, Universidade da Coruiia,
A Coruna, Spain
mariam@udc.es

2 INRIA Bordeaux Sud-Ouest, Bordeaux, France

Abstract. Current parallel environments aggregate large numbers of
computational resources with a high rate of change in their availability
and load conditions. In order to obtain the best performance in this type
of infrastructures, parallel applications must be able to adapt to these
changing conditions. This paper presents an application-level proposal to
automatically and transparently adapt MPI applications to the available
resources. The architecture includes: automatic code transformation of
the parallel applications, a system to reschedule processes on available
nodes, and migration capabilities based on checkpoint-and-restart tech-
niques to move selected processes to target nodes. Experimental results
show a good degree of adaptability and a good performance in different
availability scenarios.

Keywords: HPC - MPI - Checkpointing - Migration - Scheduling

1 Introduction

The resources availability of large-scale distributed systems may vary during a
job execution, making malleable applications, that is, parallel programs that are
able to adapt their execution to the number of available processors at runtime,
specially appealing. Malleable jobs provide important advantages for the final
users and the whole system, like a higher productivity and a better response
time [3,9], or a greater resilience to node failures [5]. These characteristics will
allow to improve the use of resources, which will have a direct effect on the
energy consumption required for the execution of applications, resulting in both
cost savings and a greener computing.

High performance computing (HPC) is nowadays dominated by the MPI
paradigm. Most MPI applications follow the SPMD (single program, multiple
data) programming model and they are executed in HPC systems by specifying a
fixed number of processes running on a fixed number of processors. The resource
allocation is statically specified during job submission, and maintained constant
during the entire execution. Thus, MPI applications are unable to dynamically
adapt to changes in resource availability.

© Springer International Publishing AG 2017
I. Dutra et al. (Eds.): VECPAR 2016, LNCS 10150, pp. 191-205, 2017.
DOI: 10.1007/978-3-319-61982-8_18

192 I. Cores et al.

The aim of this work is to propose a solution to transform existing MPI appli-
cations into malleable jobs, that is, jobs that are capable of adapting their execu-
tions to changes in the environment. The proposed solution is based on process
migration, thus, if a node becomes unavailable, the processes on that node will
be migrated to other available ones, overloading nodes when necessary. Check-
point and restart is used to implement this migration. The state of each process
to be migrated is stored into memory and transferred to a new available node.
Afterwards, this state is recovered by a newly created process, which continues
the execution. To this end, the proposal is implemented at the application-level,
extending the functionalities of the CPPC (ComPiler for Portable Checkpoint-
ing) framework [18]. CPPC is an application-level checkpointing tool, available
under GNU general public license (GPL) at http://cppc.des.udc.es, that appears
to the final user as a compiler tool and a runtime library. At compile time, the
CPPC source-to-source compiler automatically transforms a parallel code into
an equivalent version with calls to the CPPC library to instrument the dynamic
reconfiguration.

The structure of this paper is as follows. Section 2 describes related work.
Section 3 describes the solution proposed to automatically and transparently
transform existing MPI application into malleable jobs. Section 4 evaluates the
performance of the proposal. Finally, Sect. 5 concludes the paper.

2 Related Work

There are several proposals in the literature that use a stop-and-restart approach
to implement malleable MPI applications [1,16,20]. However, stop and restart
solutions imply a job requeueing, with the consequent loss of time. Dynamic
reconfiguration [8,12,17,22], on the other hand, allows to change the number of
processors while the program is running without having to stop and relaunch the
application. Most of these solutions [12,17,22] change the number of processes
to adapt to the number of available processors, which implies a redistribution of
the data and, thus, they are very restrictive with the kind of application they
support. On the other hand, in AMPT [8] the number of processes is preserved and
the application adapts to changes in the number of resources through migration
based on virtualization.

Besides AMPI, there exist in the literature different research works that
provide process migration through the use of virtualization technologies [7,13].
However, virtualization solutions present important performance penalties due
to larger memory footprints [21]. Moreover, the performance of MPI applications
relies heavily on the performance of communications. Currently virtualization of
CPU and memory resources presents a low overhead. However, the efficient vir-
tualization of network I/0 is still work in progress. For instance, recent results
in migration over Infiniband networks [6] show very high overhead, strong scal-
ability limitations and tedious configuration issues.

http://cppc.des.udc.es

Dynamic Reconfiguration of MPI Applications 193

3 Reconfiguration of MPI Applications

The aim of this work is to build MPI applications that are able to dynami-
cally adapt their execution to changes in the resource availability. The follow-
ing subsections describe the main components of the proposed solution: (1) the
triggering of the reconfiguration operation; (2) the scheduling algorithm imple-
mented to allow the application to autonomously decide which processes should
be moved and to which target nodes; and (3) the migration operation itself. The
main steps of the reconfiguration process are depicted in Fig. 1.

Negotiation (1)

Chkpt Send&Recv (5)

Execution starts

Spawn & communicators
reconfiguration (3)

Scheduling algorithm (2)

"Time

Fig. 1. Steps in the reconfiguration operation: (1) Negotiation to select a single safe
location to trigger the reconfiguration; (2) Scheduling algorithm to decide the processes
to be migrated and the new allocations; (3) Spawning of new processes and reconfigura-
tion of the communicators; (4) Checkpointing of the migrating processes; (5) Sending of
the checkpoint files; (6) Recovering the state from the checkpoint files; and (7) Effective
recovering of the application state. Steps (4) to (6) are partially overlapped.

3.1 Triggering the Reconfiguration Operation

The proposed solution is based on dynamic live process migration. If a node
becomes unavailable, the processes on that node will be migrated to other avail-
able ones (without stopping the application), overloading nodes when necessary.
Our proposal relies on a monitoring system that provides dynamical informa-
tion about the available resources. There are in the literature many proposals for
different environments and objectives. For this work we assume that an avail-
ability file is set up for each malleable MPI job. This file contains the names
of all the nodes that are assigned to execute the MPI job together with their
number of available cores. A change in this file activates a flag in the CPPC
controller to start the reconfiguration of the execution. During this reconfigu-
ration, some MPI processes will be migrated and, thus, communication groups
must be rebuilt. The reconstruction of the communication groups is a critical
step, since replacing communicators may lead to an inconsistent global state:
messages sent/received using the old communicators cannot be received/sent
using the new ones. A possible solution to this problem is to restrict the points

194 I. Cores et al.

at which the migration can be started, making the reconstruction of the commu-
nicators, and thus the reconfiguration, in locations where there are no pending
communications, i.e., safe points. The CPPC compiler automatically detects safe
points, thus facilitating the implementation of this approach. However, conduct-
ing the reconfiguration from different safe points in different processes may lead
to inconsistencies. Therefore, a negotiation protocol is needed at runtime to
select a single safe location as the place to trigger the reconfiguration operation
to achieve a consistent global state after migration. This location will be the
next safe point to be reached by the process that has advanced the farthest in
the execution. Each process communicates to all other processes the last safe
point it has crossed. One-sided asynchronous MPI communications are used so
that processes may continue running without synchronizations during the nego-
tiation, overlapping negotiation operations with execution progress and avoiding
deadlocks.

3.2 Scheduling Algorithm

Previous to the start of the migration operation, the processes to be migrated
and their mapping to the available resources need to be selected.

In MPI applications the communication overhead plays an important role
in the global performance of the parallel application. To be able to migrate the
processes efficiently we need to know the affinity between the processes so as to
map those with a high communication rate as close to each other as possible. For
this aim TreeMatch [11] and Hwloc [2] are used. TreeMatch is an algorithm that
obtains the optimized process placement based on the communication pattern
among the processes and the hardware topology of the underlying computing
system. It tries to minimize the communications at all levels, including network,
memory and cache hierarchy. It takes as input both a matrix modeling the
communications among the processes, and a representation of the topology of the
system. The topological information, represented as a tree, is provided by Hwloc
and obtained dynamically during application execution. TreeMatch returns as
output an array with the core ID that should be assigned to each process.

An example of the output of TreeMatch is given in Fig.2. On the left, a
communication matrix representing the affinity between processes is given as
input: the darker the dot the higher the communication volume and hence the
affinity. TreeMatch computes the permutation (o) of the processes such that the
cores with high affinity are mapped close together on the tree representing the
target topology. After applying the permutation the communication matrix on
the right is obtained.

The communication matrix needed by TreeMatch is obtained dynamically,
just before the scheduling algorithm is triggered, using a monitoring compo-
nent developed for Open MPI and integrated in an MCA (Modular Component
Architecture) framework called pml (point-to-point management layer). This
component, if activated at launch time (through the mpiexec option --mca
pml monitoring enable), monitors all the communications at the lower level
of Open MPI (i.e., once collective communications have been decomposed into

Dynamic Reconfiguration of MPI Applications 195

0=(0,2,8,10,4,6,12,14,1,3,9,11,5,7,13,15)

Receiver rank

Receiver rank

Sender rank Sender rank

Fig. 2. TreeMatch example for a binary tree of 4 levels and 16 leaves (cores).

send/recv communications). Therefore, contrary to the MPI standard profiling
interface (PMPI) approach where the MPI calls are intercepted, here the actual
point-to-point communications that are issued by Open MPI are monitored,
which is much more precise. This monitoring component was previously devel-
oped by one of the authors and it will be released in Open MPI 2.0.

To evaluate the overhead of this monitoring, the execution of the LU NAS
benchmark with and without monitoring have been compared. The LU kernel
has been selected since it is the one that sends the largest number of messages.
Results for this kernel are shown in Table 1. Shown times are the average of 10
runs. Results using 16 and 64 processes using classes A, B and C show that the
overhead is very low (less than 0.7%). Moreover, it decreases with the class of
the kernel (i.e., the problem size), being the overhead to manage one message
1 s or less.

TreeMatch focuses on minimizing the communication cost in a parallel execu-
tion. Thus, if TreeMatch is directly applied to find the processes mapping during
a reconfiguration phase, it could lead to a complete replacement of all the appli-
cation processes. This would involve unnecessary process migrations and, thus,

Table 1. Monitoring overhead for the LU NAS Kernel on nodes with 2 quad-core
Nehalem Intel Xeon processors interconnected by an InfiniBand QDR network.

Class | Number of | Total Number of |Exec. time |Monitoring |Overhead
processes number of |mess. per (s) exec. time
messages processes (s)
A 16 380630 23789.375 5.696 5.72 0.42%
B 16 609542 38096.375 23.155 23.189 0.15%
C 16 970982 60686.375 90.665 90.727 0.10%
A 64 1777226 27769.156 1.732 1.744 0.69%
B 64 2845482 44460.656 6.522 6.567 0.69%
C 64 4532202 70815.656 25.335 25.374 0.15%

196 I. Cores et al.

unnecessary overheads. To avoid this behavior, a two-step mapping algorithm
was designed. The first step decides the number and the specific processes to be
migrated. The second step finds the best target nodes and cores to place these
processes. An interesting feature of TreeMatch is that the topology given as an
input can be a real machine topology or a virtual topology designed to sepa-
rate groups of processes in clusters such that communications within clusters
are maximized while communications outside the clusters are minimized.

— Step 1: identify processes to migrate. A process should be migrated
either because it is running on nodes that are going to become unavailable,
or because it is running on oversubscribed nodes and new resources have
become available. To know the number of processes that need to be migrated,
all processes exchange, via MPI communications, the numbers of the node and
core in which they are currently running. Then, using this information, each
application process calculates the current computational load of each node
listed in the availability file associated to the application. A load array is
computed, where load(7) is the number of processes that are being executed
in node n;. Besides, each process also calculates the maximum number of
processes that could be allocated to each node n; in the new configuration:

N
P i) — Vo —
max Procs(i) [nC’ores(z) X nTotalCores—‘

where nCores(i) is the number of available cores of node n;, N is the num-
ber of processes of the MPI application, and nTotalCores is the number of
total available cores. If load(i) > maxProcs(i) then load(i) — maxProcs(i)
processes have to be migrated. If the node is no longer available, max Procs()
will be equal to zero and all the processes running in that node will be iden-
tified as migrating processes. Otherwise, TreeMatch is used to identify the
migrating processes. The aim is to maintain in each node the most related
processes according to the application communication pattern. Figure 3 illus-
trates an example with two 16-core nodes executing a 56-process application
in an oversubscribed scenario. When two new nodes become available, 12
processes per node should be migrated to the new resources. To find the
migrating processes, TreeMatch is queried once for each oversubscribed node.
The input is a virtual topology breaking down the node into two virtual ones:
one with maxProcs(i) cores and the other with load(i) — maxProcs(i) cores.
TreeMatch uses in runtime this virtual topology, and a sub-matrix with the
communication pattern between the processes currently running on the node,
to identify the processes to be migrated, that is, those mapped to the second
virtual node.

— Step 2: identify target nodes. Once the processes to be migrated are
identified, the target nodes (and the target cores inside the target nodes)
to place these processes have to be found. TreeMatch is again used to find
the best placement for each migrating process. It uses a sub-matrix with the
communication pattern of the migrating processes, and a virtual topology
built from the real topology of the system but restricted to use only the

N =56
nTotalCores = 64

Dynamic Reconfiguration of MPI Applications 197

potential target nodes in the cluster. The potential targets are those nodes
that satisfy load(i) < maxProcs(i). They can be empty nodes, nodes already
in use but with free cores, or nodes that need to be oversubscribed. Since
TreeMatch only allows the mapping of one process per core, if there are
no sufficient real target cores to allocate the migrating processes, a virtual
topology will simulate max Procs(i) — load(i) extra cores in the nodes that
need to be oversubscribed. Figure 4 illustrates the second step of the algorithm
for the same example of Fig.3. In this example, the virtual topology used
consists of the new available nodes in the system, two 16-core nodes to map
the 24 processes. After executing TreeMatch, the target cores and, therefore,
the target nodes for the migrating processes obtained in step 1 are identified
and CPPC can be used to perform the migration.

| "maxProcs(0) = 16
28 p load(0) = 28

Virtual Topology

,, System level

28 p \\\ Node "remain Node "migrate"

,,, Node level

m Core level

16 processes 12 processes
(maxProcs) (load - maxProcs)

’—:> Processes IDs to

migrate from Node 0

bmmmmm e mmmememaaay

Fig. 3. Step 1: identifying processes to be migrated. Virtual topology built to migrate
12 processes from a 16-core node where 28 processes are running (16 processes remain
and 12 processes migrate).

N =56 '
nTotalCores = 64 |

12 processes IDs to migrate from Node 0
Step 1{
12 processes IDs to migrate from Node 1
T 1
' -
H P Topology

'
'
(16 cores)

\

| |[Empt

Empt:

v N TN N
[oe] [oe]
2 2 hel he]

16 processes
+ TTeeeelll (maxProcs)
y

8 processes

|
|—>Processes IDs to migrate to Node 3
Processes IDs to migrate to Node 2

Fig. 4. Step 2: identifying target nodes. Topology built to map the migrating processes
selected in step 1 to the empty cores in the system.

198 I. Cores et al.

3.3 Migration Operation

Once the mapping of migrated processes to available resources is decided, the
migration operation can start. First, new processes are spawned in the target
nodes to replace the migrating ones, and the global communicator is recon-
structed. The dynamic process management facilities of MPI-2 are used for these
operations. Then, the migrating processes save their state, storing it into mem-
ory. The checkpoint files of the terminating processes are sent using MPI commu-
nications. At this point the terminating processes can safely finalize. Then, the
new processes restart the execution by reading the checkpoint files and recover-
ing the application state. This is achieved by delegating to CPPC and employing
its native capabilities. The procedure is depicted in Fig. 1.

Initially the new spawned processes are not bound to any specific core. The
TreeMatch assignment is sent to the new processes together with the checkpoint
file and CPPC performs the binding via the Hwloc library.

To minimize the overhead associated to the I/O operations needed for the
migration, the checkpoint files are split into several chunks and transferred in a
pipelined fashion, overlapping the writing in the terminating processes with the
reading in the newly spawned ones [19].

4 Experimental Results

This section aims to show the feasibility of the proposal and to evaluate the
cost of the reconfiguration whenever a change in the resource availability occurs.
A multicore cluster was used to carry out these experiments. It consists of 16
nodes, each powered by two octa-core Intel Xeon E5-2660 CPUs with 64 GB of
RAM. The cluster nodes are connected through an InfiniBand FDR network. The
working directory is mounted via network file system (NFS) and it is connected
to the cluster by a Gigabit Ethernet network.

The application testbed is composed of six out of the eight applications in the
MPT version of the NAS Parallel Benchmarks v3.1 [14] (NPB from now on). The
IS and EP benchmarks were discarded due to their low execution times. For all
the executions the benchmark size used was class C. The Himeno benchmark [10]
was also tested. Himeno uses the Jacobi iteration method to solve the Poissons’s
equation, evaluating the performance of incompressible fluid analysis code, being
a benchmark closer to real applications.

The MPI implementation used was Open MPI v1.8.1 [15] modified to enable
dynamic monitoring. The mpirun environment has been tuned using MCA para-
meters to allow the reconfiguration of the MPI jobs. Specifically, the parameter
orte_allowed_exit_without_sync has been set to allow some processes to con-
tinue their execution when other processes have finished their execution safely.
The parameter mpi_yield when_idle was also set to force degraded execution
mode and, thus, to allow progress in an oversubscribed scenario.

To evaluate the feasibility of the proposed solution and its performance,
different scenarios have been forced during the execution of the applications.
Figure5 illustrates these scenarios. The applications were initially launched in

Dynamic Reconfiguration of MPI Applications 199

a 64-process configuration running on 4 available nodes of the cluster (16 cores
per node). Then, after a time, one of the nodes becomes unavailable. In this sce-
nario, the 16 processes running on the first node should be moved to the empty
node, and the application execution continues in a 4 node configuration. After a
while, the 4 nodes where the application is running start to become unavailable
sequentially, first one, then another, without spare available nodes to replace
them, until only one node is available and the 64 processes are running on it.
Finally, in a single step, the last node fails but 4 nodes become available again,
and the processes are migrated to return again to using 4 nodes. To demonstrate
the feasibility of the solution, the iteration time was measured across the execu-
tion in those scenarios. Measuring iteration time allows to have a global vision
of the instantaneous performance impact.

Scenarios

Fig. 5. Selected scenarios to show the feasibility of the proposal and evaluate the
migration and scheduling cost.

Figure 6 shows the results for all the benchmarks in the scenarios illustrated
in Fig. 5. These results demonstrate that, using the proposed solution, the appli-
cations are capable of adjusting their execution to changes in the environment.
The high peaks in these figures correspond to reconfiguration points. For com-
parison purposes, the compute times that would be attained if the application
could adjust its granularity to the available resources®, instead of oversubscribing
them without modifying the original number of processes are also shown (green
line). The overhead that would introduce the data distribution needed to adjust
the application granularity is not shown in the figure.

Table 2 details the main impacting steps in the reconfiguration overhead for
all the NPB applications. As shown in Fig. 1, the iteration time when a recon-
figuration is performed can be broken down into the following stages:

— Negotiation: execution time of the negotiation protocol used to reach consen-
sus on the reconfiguration point.

! This time is measured executing the application with a different number of processes
depending on the hardware available (16 processes version when only 1 node is
available, 32 processes version when 2 nodes are available, etc.).

200 I. Cores et al.

; s1 s2 s3 s4 S5 6 s s1 52 s3 s4 S5 s6
6 5
5 @
g E*
£, =
5 § 3
=1 ©
] =2
2
1 1
0 A 0
Iteration Iteration
(a) BT (b) CG
; s1 s2 s3 s4 S5 6 s s1 s2 s3 sa s5 6
6 5
5 @
2 £’
£y =
c
s S 3
g =
i) =2
2
1 TI—I 1
0 e 0
Iteration Iteration
(c) FT (d) LU
; s1 s2 s3 s4 S5 6 ; s1 s2 s3 s4 S5 6
6 6
5 5
I o
£
£, E,
5 s
g 3 g 3
11 2
T2 2
1 1
0 0
Iteration Iteration

(e) MG (f) SP

1 S1 S2 S3 sS4 S5 S6
10
9
8
2 7
'g 6
g5
L 4
3
2
1
0
Iteration
(g) Himeno

Fig. 6. Iteration execution times in the scenarios illustrated in Fig.5. (Color figure
online)

Dynamic Reconfiguration of MPI Applications 201

— Scheduling: execution time of the scheduling algorithm to identify processes
to be moved and target nodes.

— SpawnéRec: execution time of the spawn function and the reconfiguration of
the communicators.

— ChkptTransferésRead: average time to write the checkpoint files in the ter-
minating processes, transfer them to target nodes, and read them in newly
spawned processes.

— Restart: average time to complete the restart of the application once the
checkpoint files have been read.

— Compute: the computational time of the iteration where the reconfiguration
takes place.

Table 2. Execution time (s) of the reconfiguration phases.

SCeEnarios NPB applications Himeno
BT |CG |FT | LU | MG | SP
Negotiation 1—2 0.88]1.18/0.01/1.08/0.93/0.94 | 1.12

2—3 0.80{0.85|0.01|0.86|0.94 | 0.81 |0.90
3—4 0.88]0.89|0.14|0.53|0.94 | 0.86 | 0.95
4—5 1.06]1.110.02|1.15|1.07 1 1.04 | 1.09
5—6 1.86/1.940.02]1.90 | 1.881.87|1.95
Spawné Rec 1—2 1.32/1.181.44 | 1.61|1.281.29 | 1.13
2—3 1.15/1.18 | 1.11|1.08 | 1.09 | 1.14 | 0.99
3—4 1.43/1.43]1.32|/1.31|1.35/1.59 |1.48
4—5 2.2312.1412.14 1 2.172.38|2.07 | 2.12
5—6 3.2713.19/3.253.28 1 3.20 | 3.22 | 3.23
ChkptTransferéRead | 1 — 2 0.35/0.10/0.39/0.16 | 0.44 | 0.39 | 1.44
2—3 0.37]10.11/0.43/0.18 1 0.42{0.40 | 1.59
3—4 0.4810.14/0.47/0.21 | 0.54|0.54 | 1.96
4—5 0.75]0.23|0.84 | 0.36 | 0.84 | 0.93 | 2.92
5—6 1.01]0.281.41]0.471.41 |1.06 | 4.96
Restart 1—2 0.15/0.01/0.04/0.01/0.04 |0.12]0.25
2—3 0.05]0.01/0.20 1 0.02 | 0.03|0.08 | 0.46
3—-4 0.24]0.01|0.26 | 0.02 | 0.03 | 0.30 | 0.47
4—5 0.36|0.02|0.41 | 0.02 | 0.06 | 0.30 | 0.57
5—6 0.36|0.01|0.41|0.01|0.03|0.29 | 0.45

The Negotiation phase depends on the application as in this phase MPI one-
sided communications are used and the progress of these remote operations is
affected by the MPI calls inside the application. These times could be lower
using other MPT implementations and/or computer architectures [4].

202 I. Cores et al.

The largest contribution to the reconfiguration cost is due to the Spawné Rec
step. The time spent in the spawn function depends on the number of spawned
processes and the degree of oversubscription. The more processes to be migrated,
the larger the overhead of this phase. This can be observed comparing the over-
head associated to the reconfiguration from scenario 1 to scenario 2, where 16
processes are moved to an empty target node, and the overhead associated to
the reconfiguration from scenario 5 to scenario 6, where 64 processes are moved
to 4 empty target nodes. When target nodes are oversubscribed, the computa-
tion time of each process is penalized and so is the SpawnéfRec phase, specially
affected due to their collective communications. This can be observed in the
increase that the overhead of the Spawné/Rec phase suffers in the reconfigura-
tion from scenario 2 to scenario 3, from scenario 3 to scenario 4, from scenario 4
to scenario 5, and from scenario 5 to scenario 6, where 16, 21, 32 and 64 processes
are migrated each time, oversubscribing the surviving nodes. Finally, since this
phase involves different collective communications, its time depends on the total
number of processes in the application. This can be observed in Table 3, that
shows the overhead of the SpawnéRec step when migrating 16 processes to an
empty target node with a different number of processes in the application.

Table 3. Overhead (in seconds) of the SpawnéRec step when spawning 16 new
processes vs total number of processes in the application.

NPB Number of total processes
16 |32/36 |64 |128/121
BT 0.97/0.99 |1.321.57
CG 0.98]1.01 1.18|1.79

FT 0.96|1.07 1.44|1.75
LU 1.00/1.01 |1.61|1.89
MG 1.02/1.01 |1.28|1.63
Sp 0.99/1.00 1.29|1.72

Himeno | 0.991.01 |1.13|1.96

The ChkptTransferédRead step also impacts significantly the reconfiguration
overhead. The I/O operations are recognized to be one of the main impacting
factors in the performance of migration operations, specially in those associated
to checkpoint solutions. Checkpoint file sizes are critical to minimize the 1/0
time. CPPC applies live variable analysis and identification of zero-blocks to
decrease checkpoint file sizes. Table 4 shows the checkpoint sizes per process and
the total data size transferred between nodes when migrating 16, 32 and 64
processes. The total amount of data varies between 127 MB for CG migrating
a single node (16 processes) and 10.42 GB for Himeno when migrating 4 nodes
(64 processes). By means of a pipelined approach [19] that overlaps the state
file writing in the terminating processes, the data transfer through the network,

Dynamic Reconfiguration of MPI Applications 203

Table 4. Transfer size (checkpoint size in MB).

NPB Checkpoint size per process | Total data size migrated

16 proc. | 32 proc. | 64 proc.
BT 33.15 530.45 | 1060.90 |2121.80
CG 7.93 126.97 |253.95 | 507.90
FT 48.09 769.50 | 1539.01 | 3078.02
LU 15.48 247.74 1 495.48 |918.96
MG 39.26 628.19 | 1256.39 |2512.78
SP 32.12 513.99 | 1027.99 |2055.98
Himeno | 166.71 2667.36 | 5334.72 | 10669.44

and the state file read in the new processes, the proposed solution achieves to
significantly reduce this impact.

The Restart step is a small contributor to the reconfiguration overhead. An
important part of this time is derived from the negotiation protocol used. During
the negotiation phase each process specifies a memory region (window) that it
exposes to others. Since the MPI communicators of the application have been
reconfigured, at restart time the old MPI windows have to be closed and new
ones have to be created. Although not as impacting as the spawning function,
the overhead of this operation is not negligible.

Finally, the Scheduling phase is negligible for all the NPB applications, being
always smaller than 0.1 s. Thus, these times are not included in the table.

5 Concluding Remarks

In this paper a proposal to automatically and transparently adapt MPI appli-
cations to available resources is proposed. The solution relies on a previous
application-level migration approach, incorporating a new scheduling algorithm
based on TreeMatch, Hwloc and dynamic communication monitoring, to obtain
well balanced nodes while preserving performance as much as possible.

The experimental evaluation of the proposal shows successful and efficient
operation, with an overhead of a few seconds during reconfiguration, which will
be negligible in large applications with a more realistic reconfiguration frequency.

Proposals like the one in this paper will be of particular interest in future
large scale computing systems, since applications that are able to dynamically
reconfigure themselves to adapt to different resource scenarios will be key to
achieve a tradeoff between energy consumption and performance.

Acknowledgments. This research was partially supported by the Ministry of Econ-
omy and Competitiveness of Spain and FEDER funds of the EU (Project TIN2013-
42148-P), by the Galician Government and FEDER funds of the EU (consolidation
program of competitive reference groups GRC2013/055) and by the EU under the
COST programme Action IC1305, Network for Sustainable Ultrascale Computing.

204

I. Cores et al.

References

10.

11.

12.

13.

14.

15.

16.

. Agbaria, A., Friedman, R.: Starfish: fault-tolerant dynamic MPI programs on clus-

ters of workstations. Cluster Comput. 6(3), 227-236 (2003)

. Broquedis, F., Clet-Ortega, J., Moreaud, S., Furmento, N., Goglin, B., Mercier,

G., Thibault, S., Namyst, R.: hwloc: a generic framework for managing hardware
affinities in HPC applications. In: Euromicro International Conference on Parallel,
Distributed and Network-Based Processing (PDP), pp. 180-186 (2010)

. Buisson, J., Sonmez, O., Mohamed, H., Lammers, W., Epema, D.: Scheduling

malleable applications in multicluster systems. In: 2007 International Conference
on Cluster Computing (CLUSTER), pp. 372-381 (2007)

. Cores, I., Rodriguez, G., Martin, M.J., Gonzalez, P.: Achieving checkpointing

global consistency through a hybrid compile time and runtime protocol. Proce-
dia Comput. Sci. 18, 169-178 (2013). International Conference on Computational
Science (ICCS)

. George, C., Vadhiyar, S.S.: ADFT: an adaptive framework for fault tolerance on

large scale systems using application malleability. Procedia Comput. Sci. 9, 166—
175 (2012). International Conference on Computational Science (ICCS)

. Guay, W.L., Reinemo, S.A., Johnsen, B.D., Yen, C.H., Skeie, T., Lysne, O.,

Tgrudbakken, O.: Early experiences with live migration of SR-IOV enabled infini-
band. J. Parallel Distrib. Comput. 78, 39-52 (2015)

. Hacker, T.J., Romero, F., Nielsen, J.J.: Secure live migration of parallel applica-

tions using container-based virtual machines. Int. J. Space Based Situated Comput.
2(1), 45-57 (2012)

. Huang, C., Lawlor, O., Kalé, L.V.: Adaptive MPI. In: Rauchwerger, L. (ed.) LCPC

2003. LNCS, vol. 2958, pp. 306-322. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-24644-2_20

. Hungershofer, J.: On the combined scheduling of malleable and rigid jobs. In:

Computer Architecture and High Performance Computing (SBAC-PAD), pp. 206—
213 (2004)

Information Technology Center, RIKEN. HIMENO Benchmark. http://accc.riken.
jp/2444.htm. Accessed Aug 2016

Jeannot, E., Mercier, G.: Near-optimal placement of MPI processes on hierarchical
NUMA architectures. In: D’Ambra, P., Guarracino, M., Talia, D. (eds.) Euro-Par
2010. LNCS, vol. 6272, pp. 199-210. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-15291-7_20

Martin, G., Singh, D.E., Marinescu, M.C., Carretero, J.: Enhancing the perfor-
mance of malleable MPI applications by using performance-aware dynamic recon-
figuration. Parallel Comput. 46, 60-77 (2015)

Nagarajan, A.B., Mueller, F., Engelmann, C., Scott, S.L.: Proactive fault tolerance
for HPC with Xen virtualization. In: International Conference on Supercomputing
(ICS), pp. 23-32 (2007)

National Aeronautics and Space Administration. The NAS Parallel Benchmarks.
http://www.nas.nasa.gov/publications/npb.html. Accessed Aug 2016

Open MPI Team. Open MPI: Open Source High Performance Computing. http://
www.open-mpi.org/. Accessed Aug 2016

Raveendran, A., Bicer, T., Agrawal, G.: A framework for elastic execution of exist-
ing MPI programs. In: IEEE International Symposium on Parallel and Distributed
Processing Workshops (IPDPSW), pp. 940-947 (2011)

http://dx.doi.org/10.1007/978-3-540-24644-2_20
http://dx.doi.org/10.1007/978-3-540-24644-2_20
http://accc.riken.jp/2444.htm
http://accc.riken.jp/2444.htm
http://dx.doi.org/10.1007/978-3-642-15291-7_20
http://dx.doi.org/10.1007/978-3-642-15291-7_20
http://www.nas.nasa.gov/publications/npb.html
http://www.open-mpi.org/
http://www.open-mpi.org/

17.

18.

19.

20.

21.

22.

Dynamic Reconfiguration of MPI Applications 205

Ribeiro, F.S., Nascimento, A.P., Boeres, C., Rebello, V.E.F., Sena, A.C.: Auto-
nomic malleability in iterative MPI applications. In: Computer Architecture and
High Performance Computing (SBAC-PAD), pp. 192-199 (2013)

Rodriguez, G., Martin, M.J., Gonzéalez, P., Tourifio, J., Doallo, R.: CPPC: a
compiler-assisted tool for portable checkpointing of message-passing applications.
Concurr. Comput. Pract. Exper. 22(6), 749-766 (2010)

Rodriguez, M., Cores, 1., Gonzalez, P., Martin, M.J.: Improving an MPI
application-level migration approach through checkpoint file splitting. In: Com-
puter Architecture and High Performance Computing (SBAC-PAD), pp. 33-40
(2014)

Vadhiyar, S.S., Dongarra, J.J.: SRS - a framework for developing malleable and
migratable parallel applications for distributed systems. Parallel Process. Lett.
13(02), 291-312 (2003)

Wang, C., Mueller, F., Engelmann, C., Scott, S.L.: Proactive process-level live
migration and back migration in HPC environments. J. Parallel Distrib. Comput.
72(2), 254-267 (2012)

Weatherly, D.B., Lowenthal, D.K., Nakazawa, M., Lowenthal, F.: Dyn-MPI: sup-
porting MPI on non dedicated clusters. In: ACM/IEEE Conference on High Per-
formance Networking and Computing (SC), p. 5 (2003)

Scientific Workflow Scheduling with Provenance
Support in Multisite Cloud

Ji Liu'®9 | Esther Pacitti!, Patrick Valduriez!, and Marta Mattoso?

! Inria, Microsoft-Inria Joint Centre, LIRMM and University of Montpellier,
Montpellier, France
{ji.liu,patrick.valduriez}@inria.fr, esther.pacitti@lirmm.fr
2 COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
marta@cos.ufrj.br

Abstract. Recently, some Scientific Workflow Management Systems
(SW{MSs) with provenance support (e.g. Chiron) have been deployed in
the cloud. However, they typically use a single cloud site. In this paper,
we consider a multisite cloud, where the data and computing resources
are distributed at different sites (possibly in different regions). Based on
a multisite architecture of SWIMS, i.e. multisite Chiron, we propose a
multisite task scheduling algorithm that considers the time to generate
provenance data. We performed an extensive experimental evaluation
of our algorithm using Microsoft Azure multisite cloud and two real-
life scientific workflows (Buzz and Montage). The results show that our
scheduling algorithm is up to 49,6% better than baseline algorithms in
terms of total execution time.

Keywords: Scientific workflow - Scientific workflow management sys-
tem * Scheduling - Parallel execution + Multisite cloud

1 Introduction

Many large-scale in silico scientific experiments take advantage of scientific work-
flows (SWfs) to model data operations such as loading input data, data process-
ing, data analysis and aggregating output data. SWfs enable scientists to model
the data processing of these experiments as a graph, in which vertices repre-
sent data processing activities and edges represent dependencies between them.
A SWT is the assembly of scientific data processing activities with data depen-
dencies between them [5]. An activity is a description of a piece of work that
forms a logical step within a SWT representation [12] and a task is the repre-
sentation of an activity within a one-time execution of the activity. Since the
tasks of the same activity process different data chunks [12], they are indepen-
dent. We assume that the tasks have similar workloads in this paper. A Scientific
Workflow Management System (SWIMS) is a tool to execute SWis [12]. Some
implementations of SWfMSs are publicly available, e.g. Pegasus [7] and Chi-
ron [15]. A SWIMS generally supports provenance data, which is the metadata
© Springer International Publishing AG 2017

I. Dutra et al. (Eds.): VECPAR 2016, LNCS 10150, pp. 206-219, 2017.
DOI: 10.1007/978-3-319-61982-8_19

Scientific Workflow Scheduling with Provenance Support in Multisite Cloud 207

that captures the derivation history of a dataset [12], during SWf execution. In
order to execute a data-intensive SWf within a reasonable time, SWfMSs gen-
erally exploit High Performance Computing (HPC) resources obtained from a
computer cluster, grid or cloud environment.

Recently, some SW{MSs with provenance support (e.g. Chiron) have been
proposed for a single cloud site. However, the input data necessary to run a
SWf may well be distributed at different sites (possibly in different regions) and
may not be allowed to be transferred to other sites, e.g. because of big size or
proprietary reasons. Furthermore, it may not be always possible to move all
the computing resources (including programs) to a single site. In this paper, we
consider a multisite cloud composed of several sites (or data centers) of the same
cloud provider, each with its own resources and data. The difference between
multisite cloud and the environment of single-site or supercomputer is that, in
multisite cloud, the data or the computing resources are distributed at different
sites and the network bandwidths among different sites are different. Compared
with P2P, a major difference is that multisite cloud does not have many sites.

To enable SWf execution in a multisite cloud with distributed input data,
the execution of the tasks of each activity should be scheduled to cloud sites (or
sites for short). The tasks of each activity can be scheduled independently. Then,
the scheduling problem is how to decide at which sites to execute the tasks of
each activity in order to reduce execution time of a SWf in a multisite cloud.
The mapping relationship between sites and tasks is a scheduling plan. Since
it may take a significant amount of time to transfer data between two different
sites, the multisite scheduling problem should take into account the resources
at different sites and intersite data transfer, including intermediate data to be
processed by tasks and the provenance data.

Classic scheduling algorithms, e.g. Opportunistic Load Balancing (OLB) [14],
Minimum Completion Time (MCT) [14], min-min [10], max-min [10] and Het-
erogeneous Earliest Finish Time (HEFT) [19], and some others [4,17,18] are
designed to address the scheduling problem within a single site. Although some
may be used for multiple sites, they do not provide support for provenance data.
A few multisite scheduling approaches are proposed [9], but they do not con-
sider the distribution of input data at different sites and have no support for
provenance data, which may incur much time for intersite data transfer. In [16],
data transfer is analyzed in multisite SWf execution, stressing the importance
of optimizing data provisioning. However, this information is not yet explored
on task scheduling. In our previous works [11,13], we proposed the solutions of
scheduling the execution of each activity to a site, which cannot schedule the
tasks of one activity to different sites to process the distributed data.

The difference between our work and others is multisite execution with prove-
nance support. In the paper, we make the following contributions. First, we pro-
pose multisite Chiron, with a novel architecture to execute SWfs in multisite cloud
environments with provenance support. Second, we propose a novel multisite task
scheduling algorithm, i.e. Data-Intensive Multisite task scheduling (DIM), for SWf
execution in multisite Chiron. Third, we carry out an experimental evaluation,

208 J. Liu et al.

based on the implementation of multisite Chiron in Microsoft Azure using two
SWfs, i.e. Buzz [8] and Montage [2].

This paper is organized as follows. Section 2 explains the design of a mul-
tisite SWfMS. Section 3 proposes our scheduling algorithm. Section4 gives our
experimental evaluation. Section 5 concludes the paper.

2 System Design

Chiron [15] is a data-centric SWEMS for the execution of SWfs at a single site,
with provenance support. We extend Chiron to multisite, i.e. multisite Chiron,
in order to manage the communication of Chiron instances at each site and
automatically take advantage of distributed resources at each site to process the
distributed data. In the execution environment of multisite Chiron, there is a
master site (site 1 in Fig. 1) and several slave sites (Sites 2 and 3 in Fig.1). The
master site is composed of several Virtual Machines (VMs), a shared file system
and a provenance database. The synchronization among different sites is achieved
in a master-worker fashion while the intersite data transferring is realized in peer-
to-peer. A slave site is composed of a cluster of VMs with a deployed shared file
system. In the multisite environment, each VM is a computing node (or node
for short). A node is selected as a master node at each site. In this paper, we
assume that there is a Web domain at each site for SWf execution and that all
the resources related to the SWf execution are in the Web domain.

@D Master node
@ Slave node

Provenance Database

Shared File System

Fig. 1. Architecture of multisite Chiron.

First, Chiron analyzes the data dependencies of each activity. When the
input data of an activity is ready [15], it generates tasks. Then, the tasks of each
activity are independently scheduled to each site. All the previous processes are
realized at the master node of the master site. Then, the data is transferred to the
scheduled sites and the tasks are executed at the scheduled sites. Although the

Scientific Workflow Scheduling with Provenance Support in Multisite Cloud 209

input data of a SWf cannot be moved, the intermediate data can be moved. The
intermediate data is the data generated by processing the input data, which is
the input data of following activities. After the execution of tasks, the provenance
data [15] of each site are transferred to the provenance database. When the tasks
of all the activities are executed, the execution of a SWf{ is finished.
Provenance data contains the information on activities, tasks and sites. An
activity has an operator, i.e. the program for this activity and its status can
be ready, running or finished. The start and end times of an activity are also
recorded. An activity is related to several tasks, input relations and output
relations. Each relation has its own attributes and tuples. The tasks of an activity
are generated based on the input relation. A task processes the files associated
with the corresponding activity. Each task has also a status, i.e. ready, running
or finished and its start and end times are also recorded. The information about
sites, e.g. computing capacity, files stored and tasks executed at the sites, are also
stored as provenance data. The provenance data can be stored at each site first
and then transferred to the centralized provenance database asynchronously with
the execution of other tasks. In long running SWfs, provenance data needs to be
queried at runtime for monitoring. In a multisite environment, the provenance
data transfer may have a major influence on the data transfer of task scheduling.
Latency hiding techniques can be used to hide the time to transfer data but it
is difficult to hide the time to transfer the real-time provenance data generated
during execution. Overall, the multisite scheduling problem should take into
account the resources at different sites and intersite data transfer, including
intermediate data to be processed by tasks and the provenance data.

3 Task Scheduling

In this section, we propose our two Level (2L) scheduling approach (see Fig. 2)
for multisite execution of SWfs and a multisite scheduling algorithm, i.e. DIM.
In the 2L scheduling approach, the first level performs multisite scheduling,
where each task is scheduled to a site. DIM works at this level. The second
level performs single site scheduling, where each task is scheduled to a VM
by the default scheduling strategy (dynamic FAF [15]) of Chiron. A task is the
assignment of an input data element to its corresponding activity to be executed.
When an activity has n input data elements n tasks are executed independently.
Synchronization is based on data dependency between activities as defined at
the SWT specification. In these experiments we forced a synchronization so that
the next activity only starts after all tasks of the previous activity are executed.
In this paper, we focus on the first level, i.e. we consider scheduling tasks to
different sites while the process of scheduling tasks to each VM is realized by
the default scheduling approaches within the original SWfMS. The method to
estimate the total time (including the time to transfer intersite data) to execute
a bag of tasks at a single site is detailed in Sect. 3.2.

The DIM algorithm is shown in Algorithm 1. First, the tasks are scheduled
according to the location of input data (Lines 2-5), which is similar to the

210 J. Liu et al.

MultiSite
Scheduling L1
I
Single Site Single Site Single Site
Scheduling Scheduling Scheduling L2

CAES[E R EAe et Al
ﬂﬂ B E

Task (a)v™m . Site |—] Task Queue

Fig. 2. MultiSite Scheduling. The master node at the master site schedules tasks to
each site. At each site, the master node schedules tasks to slave nodes.

scheduling algorithm of MapReduce [4]. Line 3 searches Site s that stores the
biggest part of input data corresponding to task t. Line 4 schedules Task ¢ at
Site s. The scheduling order (the same for Algorithm 2) is based on the id of each
task. Line b estimates the total time to execute all the tasks scheduled at Site
s according to Formula 3.2.2, considering the time for intersite data transfer.
Then, the total time at each site is balanced by adjusting the whole bag of tasks
scheduled at that site (Lines 6-9). Line 6 checks if the maximum difference of the
estimated total time to execute tasks at each site can be reduced by verifying if
the difference is reduced in the previous loop or if this is the first loop. While the
maximum difference can be reduced, the tasks of the two sites are rescheduled
as described in lines 7-9. Lines 7 and 8 choose the site that has the minimal
total time and the site that has the maximum total time, respectively. Then, the
scheduler calls the function TaskReschedule to reschedule the tasks scheduled
at the two selected sites to reduce the maximum difference of total time.

In order to achieve load balancing of two sites, we propose T'askReschedule
algorithm. Let us assume that there are two sites, i.e. Sites s; and s;. For the
tasks scheduled at each site, we assume that the total time at Site s; is bigger
than Site s;. In order to balance the total time at Sites s; and s;, some of the
tasks scheduled at site s; should be rescheduled at Site s;. In Algorithm 2, Line 1
calculates the difference of the total time at two sites according to Formula 3.2.2
with a scheduling plan. Line 2 gets all the tasks scheduled at site s;. For each
Task ¢ in T; (line 3), it is rescheduled at Site s; if the difference of total time
at the two sites can be reduced (lines 4-8). The task that has no input data at
Site s; is rescheduled first. Line 4 reschedules Task ¢ at Site s;. Line 5 calculates
the total time at Sites s; and s;. Lines 6-7 update the scheduling plan if it can
reduce the difference of total time at the two sites by rescheduling Task t¢.

Scientific Workflow Scheduling with Provenance Support in Multisite Cloud 211

Algorithm 1. Data-Intensive Multisite task scheduling (DIM)

Input: T': a bag of tasks to be scheduled; S: a set of cloud sites
Output: SP: the scheduling plan for T in S

1: SP+— 0

2: for each t € T do

3: s « GetDataSite(t)

4: SP «— SPU{Schedule(t,s)}

5: EstimateTime(T, s, SP)

6: while MaxunbalanceTime(T, s, SP) is reduced in the last loop do
7 sMin — MinTime(S)

8: sMax — MazxTime(S)

9: TaskReschedule(sMin, sMaz, SP)
end

Algorithm 2. Task Reschedule

Input: s;: a site that has bigger total time for its scheduled tasks; s;: a site that has
smaller total time for its scheduled tasks; SP: original scheduling plan for a bag of
tasks T'

Output: SP: modified scheduling plan

1: Diff « CalculateExecTimeDif f(ss:, s5, SP) > Absolute value
2: T; « GetScheduledT asks(si, SP)
3: for each t € T; do

4: SP' «— ModifySchedule(SP,{Schedule(t, s;)}
5: Dif f' «— CalculateExecTimeDif f(si, 55, SP')
6: if Diff < Diff then
T SP «— SP’
8: Diff «— Diff’

end

3.1 Complexity

In this section, we analyze the complexity of the DIM algorithm without consid-
ering the local scheduling within each single cloud site. Let us assume that we
have n tasks to be scheduled at m sites. The complexity of the first loop (lines
2-5) of the DIM algorithm is O(n). The complexity of the T'ask Reschedule algo-
rithm is O(n), since there may be n tasks scheduled at a site in the first loop
(lines 2-5) of the DIM algorithm. Assume that the difference between maximum
total time and minimum total time is T4;7r. The maximum value of Ty, ;¢ can
be nx avg(T) when all the tasks are scheduled at one site while there is no task
scheduled at other sites. avg(T) represents the average execution time of each
task, which is a constant value. After m times of rescheduling tasks between
the site of the maximum total time and the site of the minimum total time,
the maximum difference of total time of any two sites should be reduced to
less than % Thus, the complexity of the second loop (lines 6-9) of the DIM
algorithm is O(m - n -logn). Therefore, the complexity of the DIM algorithm is

212 J. Liu et al.

O(m-n-logn). It is only a little bit higher than that of OLB and MCT, which
is O(m - n), but yields high reduction in SWf execution (see Sect. 4).

3.2 Execution Time Estimation

We now give the method to estimate the total time to execute a bag of tasks at
a single site, which is used in both the DIM algorithm and the MCT algorithm.
Formula 3.2.1 gives the estimation of total time without considering the time to
generate provenance data, which is used in the MCT algorithm.

TotalTime(T, s) =ExecTime(T, s)

, (3.2.1)
+ InputTransTime(T, s)

T represents the bag of tasks scheduled at site s. ExecTime is the time to execute
the bag of tasks T at site s, i.e. the time to run the corresponding programs.
InputTransTime is the time to transfer the input data of the tasks from other
sites to site s. In the DIM algorithm, we use Formula 3.2.2 to estimate the total
time with the consideration of the time to generate provenance data.

TotalTime(T, s) =ExecTime(T, s)
+ InputTransTime(T, s) (3.2.2)
+ ProvTransTime(T, s)

ProvTransTime is the time to generate provenance data.

We assume that the workload of each task of the same activity is similar. The
average workload (in GFLOP) of the tasks of each activity and the computing
capacity of each VM at Site s is known to the system (configured by SW{MS
users). The computing capacity (in GFLOPS) indicates the workload that can
be realized per second, which can also be configured by users. Then, the time to
execute the tasks can be estimated by dividing the total workload by the total
computing capacity of Site s, as shown in Formula 3.2.3.

|T| x AvgW orkload(T)

Execl T,
wecTime(T, s) = > v, es ComputingCapacity(V M;)

(3.2.3)

|T| represents the number of tasks in Bag T. AvgWorkload is the average work-
load of the bag of tasks.

The time to transfer input data can be estimated as the sum of the time to
transfer the input data from other sites to Site s as shown in Formula 3.2.4.

InDataSize(t;, s;)
InT Time(T,
nTransTime(T, s) tze;sze;g DataRate (s, 5) (3.2.4)

InDataSize(t;, s;) represents the size of input data of Task ¢;, which is stored
at Site s;. The size can be measured at runtime. DataRate(s;, s) represents the
data transfer rate, which can be configured by users. S represents the set of sites.

Scientific Workflow Scheduling with Provenance Support in Multisite Cloud 213

Finally, the time to generate provenance data is estimated by Formula 3.2.5.

ProvTransTime(T, s) =|T| x TransctionTimes(T')

3.2.5
x AvgTransactionTime(s) ()

|T'| represents the mnumber of tasks in Bag 7. We can estimate
AvgTransactionTime by counting the time to perform a data transfer to
update the provenance data of a task in the provenance database from Site s.
TransctionTimes(T) represents the number of data transfers to perform for
generating the provenance data of each task in Bag 7. It can be configured
according to the features of the SW{MS.

4 Experimental Evaluation

This section gives our experimental evaluation of DIM, using multisite Chi-
ron within Microsoft Azure. Azure [1] has multiple cloud sites, e.g. Central US
(CUS), West Europe (WEU) and North Europe (NEU). We instantiated three
A4 (8 CPU cores, see details in [3]) VMs at each of the three site, i.e. CUS,
WEU and NEU. We take WEU as a master site. We deploy an A2 VM (2
CPU cores) at WEU and install PostgreSQL database to manage provenance
data. We evaluate DIM by executing Buzz [8] and Montage [2]. We assume that
the input data of the SWfs are distributed at the three sites. We also assume
that the scheduling of tasks to each VM (or CPU core) is done by the default
scheduling approach of Chiron [15]. We compare our proposed algorithm with
two representative baseline scheduling algorithms, i.e. Opportunistic Load Bal-
ancing (OLB) and Minimum Completion Time (MCT). In the experiment, we
assume the input data of SWfs cannot be moved and schedule the tasks of the
activity that processes the input data to where the data is while exploiting DIM,
OLB or MCT to schedule tasks of the other activities. In the multisite environ-
ment, OLB randomly selects a site for a task while MCT schedules a task to the
site that can finish the execution first. HEFT is a heuristic scheduling approach,
which is commonly used for SWf scheduling. The difference between HEFT and
MCT is that HEFT ranks the tasks according to the dependencies and workload
of tasks before scheduling the tasks. However, since the tasks of one activity are
independent of each other, HEFT degrades to MCT in our case. In Figs. 3 and 4,
the execution time is the absolute time for SWf execution and the data-transfer
size refers to the input data of tasks, i.e. the intermediate data transferred across
different sites, which does not include the provenance data. In addition, since
the resource utilization also depends on the programs used in different SWfs and
that each SWf exploits various programs, we did not measure it.

First, we used a DBLP 2013 XML file of 60 MB as input data for Buzz
SWT in our experiments. The input data is partitioned into three parts, which
have almost the same amount of data, and each part is stored at a site while
configuration files of Buzz SWf are present at all the three sites. The centralized
provenance database is located at the master site. As shown in Fig. 3(a), DIM is

214 J. Liu et al.

15 1000 2000

"Execution Time T—— " Execution Time
80 Data-transfer Size FEEZ? Data-transfer Size %
o 800 o
o~ mMm —~ /M
s 1w 2
£ 601 10 o 5 2
£ k= £ {1000 =
s 40 =] = =1
§ S g % 400 + %
51 R “— 51 =
& g & 1500 B
20 | & 200 | =
0 [g 0 0 5 2 0
DIM MCT OLB DIM MCT OLB

(a) The amount of input data is (b) The amount of input data is
60MB. 1.29GB.

Fig. 3. Buzz SWf execution.

much better than MCT and OLB in terms of both execution time and transferred
data size. The execution time corresponding to DIM is 9.6% smaller than that
corresponding to MCT and 49.6% smaller than that corresponding to OLB. The
size of the data transferred among different sites corresponding to MCT is 38.7%
bigger than that corresponding to DIM and the size corresponding to OLB is
108.6% bigger than that corresponding to DIM.

Second, we performed an experiment using a DBLP 2013 XML file of 1.29 GB
as input data for Buzz while configuration files of Buzz are present at all the
three sites. The other configuration is the same as the first one. As shown in
Fig. 3(b), the advantage of DIM in terms of both execution time and transferred
data size compared with MCT and OLB increases with bigger amounts of input
data. The execution time corresponding to DIM is 24.3% smaller than that
corresponding to MCT and 45.9% smaller than that corresponding to OLB. The
size of the data transferred between different sites corresponding to MCT is
7.19 times bigger than that corresponding to DIM and the size corresponding to
OLB is 7.67 times bigger than that corresponding to DIM. Although OLB is a
random algorithm, it distributes the tasks to each site with the same probability
and the transferred data remains the same for the same configuration of the
SWf and cloud environment. As a result, the size of intersite transferred data
can represent the average results, which are calculated from the execution of
multiple tasks.

Since DIM considers the time to transfer intersite provenance data and makes
optimization for a bag of tasks, i.e. global optimization, it can reduce the total
time. Since DIM schedules the tasks to where the input data is located at the
beginning, DIM can reduce the amount of intersite transferred data compared
with other algorithms. MCT only optimizes the load balancing for each task,
i.e. local optimization, among different sites without consideration of the time
to transfer intersite provenance data. It is a greedy algorithm that can reduce
the execution time of a SWf by balancing the total time of each site while
scheduling tasks of each activity. However, it cannot optimize the scheduling

Scientific Workflow Scheduling with Provenance Support in Multisite Cloud 215

for the whole execution of all the tasks at each site. In addition, compared with
OLB, MCT cannot reduce much the transferred data among different sites. Since
OLB simply tries to keep all the sites working on arbitrary tasks, it has the worst
performance.

Furthermore, we executed the Montage SWf of 0.5° with three sites, i.e.
CUS, WEU and NEU. The size of input data is 5.5 GB. The input data is evenly
partitioned to three parts stored at the corresponding sites with configuration
files stored at all the three sites. The execution time and amount of intersite
transferred data are shown in Fig.4(a).

Execution Time C— Execution Time C—— 2400
Data-transfer Size =3z

800 Data-transfer Size

600 1500
2000
1200
600 1600
4
00 900
w00 1200

600

Execution time (second)
Execution time (second)

200 800

200

Transferred data size (MB)
Transferred data size (MB)

300 400

0

DIM MCT OLB

(a) 0.5 degree. (b) 1 degree.

Fig. 4. Montage SWf execution.

The execution results of Montage with 0.5° [6] reveals that the execution time
corresponding to DIM is 21.7% smaller than that of MCT and 37.1% smaller
than that corresponding to OLB. This is expected since DIM makes optimization
for a bag of tasks in order to reduce intersite transferred data with consideration
of the time to transfer intersite intermediate data and provenance data. MCT
is optimized for load balancing only with the consideration of input data of
tasks. OLB has no optimization for load balancing. In addition, the intersite
transferred data of DIM is 42.3% bigger than that of MCT. Since DIM is designed
to achieve load balancing of each site to reduce execution time, it may yield more
intersite transferred data in order to achieve load balance. However, the amount
of intersite transferred data of DIM is 28.6% smaller than that of OLB. This
shows the efficiency of the optimization for the data transfer of DIM. Moreover,
when the degree (0.5) is low, there is less data to be processed by Montage, and
the number of tasks to schedule is small. Since DIM is designed for big numbers
of tasks, the amounts of intersite transferred data are not reduced very much in
this situation.

Finally, we executed Montage SWf of 1° in the multisite cloud. We used the
same input data as in the previous experiment, i.e. 5.5 GB input data evenly
distributed at three sites. The execution time and the amount of intersite trans-
ferred data are shown in Fig. 4(b).

The execution results of Montage with 1° reveals that the execution time of
DIM is 16.4% smaller than that of MCT and 17.8% smaller than that of OLB.

216 J. Liu et al.

As explained before, this is expected since DIM can reduce the execution time
by balancing the load among different sites compared with MCT and OLB. In
addition, the intersite transferred data of DIM is 10.7% bigger than that of MCT.
This is much smaller than the value for 0.5° (42.3%), since there are more tasks
to schedule when the degree is 1 and DIM reduces intersite transferred data for a
big amount of tasks. However, the amount of intersite transferred data is bigger
than that of MCT. This happens since the main objective of DIM is to reduce
execution time instead of reducing intersite transferred data. In addition, the
amount of intersite transferred data of DIM is 33.4% smaller than that of OLB,
which shows the efficiency of the optimization for the data transfer of DIM.

Table 1. Scheduling time. The time unit is second. The size of the input data of Buzz
SWf is 1.2 GB and the degree of Montage is 1 (The advantage of DIM over MCT and
OLB is more obvious when the input data of Buzz is 1.2 GB and the degree of Montage
is 1 compared with the other cases in our experiments, i.e. when the input data of Buzz
is 60 MB and the degree of Montage is 0.5.).

Algorithm | DIM | MCT | OLB
Buzz 633 |109 |17
Montage [29.2 |28.8 |1.5

In addition, we measured the time to execute the scheduling algorithms to
generate scheduling plans. The time is shown in Table 1. The complexity of MCT
is the same as that of OLB, which is O(m - n). However, the scheduling time of
MCT is much bigger than OLB. The reason is that MCT needs to interact with
the provenance database to get the information of the files in order to estimate
the time to transfer the files among different sites. The table shows that the
time to execute DIM is much higher than OLB for both Buzz and Montage
since the complexity of DIM is higher than that of OLB and that DIM has more
interactions with the provenance database in order to estimate the total time
to execute the tasks at a site. When there are significant number of tasks to
schedule (for the Buzz SWf), the time to execute DIM is much bigger than that
of MCT because of higher complexity. However, when the number of tasks is not
very big, the time to execute DIM is similar to that of MCT. The time to execute
DIM and MCT is much bigger than that of OLB, since it takes much time to
communicate with the provenance database for the estimation of the total time
of each site. The scheduling time of the three scheduling algorithms is always
small compared with the total execution (less than 3%), which is acceptable for
the task scheduling during SWf execution. Although the scheduling time of DIM
is much bigger than MCT and OLB, the execution time of SWfs corresponds
to DIM is much smaller than that of MCT and OLB as explained in the four
experiments. This means that DIM generates better scheduling plans compared
with MCT and OLB.

Scientific Workflow Scheduling with Provenance Support in Multisite Cloud 217

100

80

60

40

% of total provenance data
% of total provenance data

20

DIM MCT OLB DIM MCT OLB

(a) Buzz with 1.2GB input data. (b) Montage of 1 degree.

Fig. 5. The distribution of provenance during the execution of SWfs.

Furthermore, we measured the size of provenance data and the distribution
of the provenance data. As shown in Table 2, the amount of the provenance data
corresponding to the three scheduling algorithms are similar (the difference is less
than 8%). However, the distribution of the provenance data is different. In fact,
the bandwidth between the provenance database and the site is in the following
order: WEU > NEU > CUS !. As shown in Figs. 5(a) and (b), the provenance
data generated at CUS site is much more than that generated at NEU site and
WEU site for DIM algorithm. In addition, the percentage of provenance data at
WEU corresponding to DIM is much bigger than MCT (up to 95% bigger) and
OLB (up to 97% bigger). This indicates that DIM can schedule tasks to the site
(WEU) that has bigger bandwidth with the provenance database (the database
is at WEU site), which yields bigger percentage of provenance data generated
at the site. This can reduce the time to generate provenance data in order to
reduce the overall multisite execution time of SWfs. However, MCT and OLB
is not sensitive to the centralized provenance data, which correspond to bigger
execution time.

Table 2. Size of provenance data. The data unit is MB. The size of the input data
of Buzz SWf is 1.2 GB and the degree of Montage is 1.

Algorithm | DIM | MCT | OLB
Buzz 301 280 |279
Montage |10 10 10

From the experiments, we can see that DIM performs better than MCT (up to
24.3%) and OLB (up to 49.6%) in terms of execution time although it takes more
time to generate scheduling plans. DIM can reduce the intersite transferred data

! For instance, the time to execute “SELECT count(*) from eactivity” at the prove-
nance database from each site: 0.0027s from WEU site, 0.0253s from NEU site and
0.1117s from CUS site.

218 J. Liu et al.

compared with MCT (up to 719%) and OLB (up to 767%). As the amount of
input data increases, the advantage of DIM becomes more important.

5 Conclusion

Although some SW{MSs with provenance support, e.g. Chiron, have been
deployed in the cloud, they are generally designed for a single site. In this paper,
we proposed a solution based on multisite Chiron.

Multisite Chiron is able to execute SWfs in a multisite cloud with geograph-
ically distributed input data. We proposed the architecture of multisite Chiron
with a centralized provenance database. Based on this architecture, we proposed
a new scheduling algorithm, i.e. DIM, which considers the latency to transfer
input data of tasks and to generate provenance data in a multisite cloud. We
analyzed the complexity of DIM (O(m -n -logn)), which is quite acceptable for
scheduling bags of tasks. We used two real-life SWfs, i.e. Buzz and Montage to
evaluate the DIM algorithm in Microsoft Azure with three sites. The experiments
show that although its complexity is higher than that of OLB and MCT, DIM
is much better than two representative baseline algorithms, i.e. MCT (up to
24.3%) and OLB (up to 49.6%), in terms of execution time. In addition, DIM
can also reduce significantly (up to 7 times) the data transferred among different
sites, compared with MCT and OLB. The advantage of DIM becomes important
with big numbers of tasks.

Acknowledgment. Work partially funded by EU H2020 Programme and
MCTI/RNP-Brazil (HPC4E grant agreement number 689772), CNPq, FAPERJ, and
INRIA (MUSIC project), Microsoft (ZcloudFlow project) and performed in the con-
text of the Computational Biology Institute (www.ibc-montpellier.fr). We would like
to thank Weiwei Chen and Pegasus project for the help in modeling and executing the
Montage SWH.

References

1. Microsoft Azure. http://azure.microsoft.com

2. Montage. http://montage.ipac.caltech.edu/docs/gridtools.html

3. Parameters of different types of vms in microsoft Azure. https://azure.microsoft.
com/en-us/pricing/details/virtual-machines/

4. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.
In: 6th Symposium on Operating System Design and Implementation (OSDI), pp.
137-150 (2004)

5. Deelman, E., Gannon, D., Shields, M., Taylor, I.. Workflows and e-science: an
overview of workflow system features and capabilities. Future Gener. Comput.
Syst. 25(5), 528540 (2009)

6. Deelman, E., Singh, G., Livny, M., Berriman, B., Good, J.: The cost of doing
science on the cloud: the montage example. In: International Conference for High
Performance Computing, Networking, Storage and Analysis, pp. 1-12 (2008)

http://www.ibc-montpellier.fr
http://azure.microsoft.com
http://montage.ipac.caltech.edu/docs/gridtools.html
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/

Scientific Workflow Scheduling with Provenance Support in Multisite Cloud 219

7.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Deelman, E., Singh, G., Su, M.-H., Blythe, J., Gil, Y., Kesselman, C., Mehta, G.,
Vahi, K., Berriman, G.B., Good, J., Laity, A., Jacob, J.C., Katz, D.S.: Pegasus: a
framework for mapping complex scientific workflows onto distributed systems. Sci.
Program. 13(3), 219-237 (2005)

Dias, J., Ogasawara, E.S.; de Oliveira, D., Porto, F., Valduriez, P., Mattoso, M.:
Algebraic dataflows for big data analysis. In: IEEE International Conference on
Big Data, pp. 150-155 (2013)

Duan, R., Prodan, R., Li, X.: Multi-objective game theoretic scheduling of bag-of-
tasks workflows on hybrid clouds. IEEE Trans. Cloud Comput. 2(1), 29-42 (2014)
Etminani, K., Naghibzadeh, M.: A min-min max-min selective algorihtm for grid
task scheduling. In: The Third IEEE/IFIP International Conference in Central
Asia on Internet (ICI 2007), pp. 1-7 (2007)

Liu, J., Pacitti, E., Valduriez, P., de Oliveira, D., Mattoso, M.: Multi-objective
scheduling of scientific workflows in multisite clouds. Future Gener. Comput. Syst.
63, 76-95 (2016)

Liu, J., Pacitti, E., Valduriez, P., Mattoso, M.: A survey of data-intensive scientific
workflow management. J. Grid Comput. 13(4), 1-37 (2015)

Liu, J., Silva, V., Pacitti, E., Valduriez, P., Mattoso, M.: Scientific workflow par-
titioning in multisite cloud. In: Lopes, L., et al. (eds.) Euro-Par 2014. LNCS, vol.
8805, pp. 105-116. Springer, Cham (2014). doi:10.1007/978-3-319-14325-5_10
Maheswaran, M., Ali, S., Siegel, H.J., Hensgen, D., Freund, R.F.: Dynamic match-
ing and scheduling of a class of independent tasks onto heterogeneous computing
systems. In: 8th Heterogeneous Computing Workshop, p. 30 (1999)

Ogasawara, E.S., Dias, J., Silva, V., Chirigati, F.S., de Oliveira, D., Porto, F., Val-
duriez, P., Mattoso, M.: Chiron: a parallel engine for algebraic scientific workflows.
Concurr. Comput. Pract. Exp. 25(16), 2327-2341 (2013)

Pineda-Morales, L., Costan, A., Antoniu, G.: Towards multi-site metadata manage-
ment for geographically distributed cloud workflows. In: 2015 IEEE International
Conference on Cluster Computing, (CLUSTER), pp. 294-303 (2015)

Smanchat, S., Indrawan, M., Ling, S., Enticott, C., Abramson, D.: Scheduling mul-
tiple parameter sweep workflow instances on the grid. In: 5th IEEE International
Conference on E-Science, pp. 300-306 (2009)

Topcuouglu, H., Hariri, S., Wu, M.: Performance-effective and low-complexity task
scheduling for heterogeneous computing. IEEE Trans. Parallel Distrib. Syst. 13(3),
260-274 (2002)

Wieczorek, M., Prodan, R., Fahringer, T.: Scheduling of scientific workflows in the
ASKALON grid environment. SIGMOD Rec. 34(3), 56-62 (2005)

http://dx.doi.org/10.1007/978-3-319-14325-5_10

Aspect Oriented Parallel Framework for Java

Bruno Medeiros and Jodo L. Sobral®)

Departamento de Informética, Universidade do Minho, Braga, Portugal
{brunom, j1s}@di.uminho.pt

Abstract. This paper introduces aspect libraries, a unit of modularity
in parallel programs with compositional properties. Aspects address the
complexity of parallel programs by enabling the composition of (multi-
ple) parallelism modules with a given (sequential) base program. This
paper illustrates the introduction of parallelism using reusable parallel
libraries, coded in AspectJ. These libraries provide performance com-
parable to traditional parallel programming techniques and enable the
composition of multiple parallelism modules (e.g., shared memory with
distributed memory) with a given base program.

1 Introduction

OpenMP and MPI are arguably the most relevant instances of the shared
memory (SM) and distributed memory (DM) parallel programming paradigms
(PPP), respectively. With the increase of clusters of multicore machines it is
common to combine MPI with OpenMP to provide a hybrid solution. However,
parallelism related concerns (PRC) are known for being crosscutting concerns
(CCCQC) [1], so it is frequent to mix them up with domain application concerns,
jeopardizing the application maintenance and evolution. The situation is even
more grotesque in some low level parallel programming codes where performance
is the primary and virtually the exclusive goal. This mixing up of concerns is
known by tangling and scattering [16]. The former refers to a chunk of code (e.g.,
class) that implements more than one concern (e.g., PRC and domain concerns),
whereas the latter refers to a concern that is spread out over multiple modules.
Although OO promotes and offers means to modularise concerns, and arguably
has better mechanisms to do so than low level languages such as C, it falls short
to modularise CCC (e.g., parallelism). Furthermore, most parallel programming
languages (e.g., OpenMP) provide high-level abstractions to deal with the paral-
lelism requirements of a specific programming model. Hence, to take advantage
of hierarchical environments, such as clusters of multicores, it might be neces-
sary to program with two different parallel programming languages and combine
them together. This not only increases the complexity of software design, learn-
ing curve, and likelihood of bugs but also leads to even more code tangling and
scattering issues.

Figure 1 presents the most time consuming function of a molecular dynamic
simulation, the force calculation among particles. This function is composed by
two nested cycles, one outer cycle for all the system particles (line 04) and one

© Springer International Publishing AG 2017
I. Dutra et al. (Eds.): VECPAR 2016, LNCS 10150, pp. 220-233, 2017.
DOI: 10.1007/978-3-319-61982-8_20

Aspect Oriented Parallel Framework for Java 221

00: void MD (..){

01: ...

02: forces = particles.getForces();

03:

04: for (pA = 0; pA < maxParticles; pA ++)
05: for (pB = pA + 1; pB < maxParticles; pB++)

06: if (distance (pA, pB) < radius){

07: forcesAB = callForcesParticles (pA,pB);

08: forces [pA] += forcesAB;

09: forces [pB] —= forcesAB; // Newton’s 3rd Law
10: }

11:}

Fig. 1. Molecular dynamic - force calculation among particles.

inner cycle, varying from the current particle to the total number of particles
in the system (line 05). For each inner cycle iteration the force between pairs of
particles, in a given radius (line 06), is updated, based on particles’ positions.
Notice that this algorithm uses the third Newton’s law (line 09), which states
that the force that a body A applies in B, in module, is equal to the force that
B applies in A. So whenever two particles are in the same radius, both particles’
forces are update, therefore reducing the number of iterations from N(N — 1)?
to w Although this optimisation reduces the sequential execution time to
half, it also makes future parallel versions harder to implement, since it imposes
both load balancing and mutual exclusion challenges that should be dealt with.

With a more in-depth analysis of the code from Fig. 1 it is possible to identify
the outer loop as a hot spot to be parallelized and that in a SM parallelisation
there would be a risk of race condition during the update of particles’ forces.

Figure 2 presents a hybrid parallelisation of the code from Fig. 1 to illustrate
the tangling and scattering issues. The iterations of the outer loop were divided
by all threads of all processes (line 04) and since the forces’ updates might cause
data races, each thread has its own local array to save the particles’ forces (lines
08 and 09). In the end threads call a local barrier and reduce their work to the
master thread (line 12). Lastly, the master thread of each process performs a force
reduction among them (line 15). The black, blue and red lines of code are related
with the sequential, multi-thread and multi-process concerns, respectively.

Figure 2 shows that adding parallelism into the sequential code made it more
complex and harder to understand. If the developer wants to change the mapping
between particles and threads/processes to improve the load balancing, he has
to rewrite the code. Moreover, if the optimisations are duplicated elsewhere this
means that any modification to its reasoning provokes code changes in different
locations of the application. This exposes the inherent problem of the lack of
modularity of such solutions. A better design solution would be to encapsulate
threads and processes parallelisation into independent modules.

222 B. Medeiros and J.L. Sobral

00: void MD (..){

01: ...
02: globallD = threadlD 4 processID % numThreads;
03: totalWorkers = numProcess * numThreads

04: for (pA = globallD ; pA < sizeP; pA 4= totalWorkers)
05: for (pB = pA + 1; pB < sizeP; pB++)

06: if (distance (pA, pB) < radius){

07: forcesAB = callForcesParticles (pA,pB);
08: threadForces [threadID] [pA] += forcesAB
09: threadForces [threadID] [pB] —= forcesAB
10: }

11: callThreadBarrier () ;
12: threadForceReduction () ;
13: callThreadBarrier () ;

14: if (threadID = masterThread)
15: processForceReduction () ;
16:}

Fig. 2. MD - Hybrid parallelisation (Threads + Processes). (Color figure online)

Dealing with the thread parallelisation by using OpenMP annotations in the
example of Fig.2 would reduce some of the its unreadability. However, those
annotations are still scattered and tangled with the sequential code. Further-
more, annotations can only be used to provide the basic parallel constructs
(e.g., parallel region). For example, the statements related with thread local
arrays (lines 08 and 09) would still remain, as well as processes parallelisation
concerns. In a Java context, a more OO approach could have been used, such as
moving the PRC into a base class, which would extend the target class. However,
in this approach the target class can not extend another class.

This paper shows an approach to develop high performance hybrid parallel
Java applications without polluting its source code. Initially Java programmers
develop their sequential base code and further on add the parallelism modules
to it. These modules are added in a non-invasive fashion and their PRC are
inserted at compile/load time. The modules are pluggable, which allows testing
different types of parallelism without rewriting the base code every time. Per-
formance portability is addressed by supporting SM and DM libraries that can
work together or separated to address the specificities of each target platform.

The next section discusses how our parallel libraries address the PRC
and presents their implementation that mimics the current mainstream PPP.
Section 3 presents performance results. Section 4 compares this work with related
work. Finally, Sect. 5 concludes the paper.

2 Parallel Libraries with AspectJ for Hybrid Parallelism

To solve the problem of PRC we provide SM and DM libraries in AspectJ to
be used as an extra layer of modularisation, promoting a modular approach.

Aspect Oriented Parallel Framework for Java 223

AspectJ [3] is a solution to provide modules that can be added to the base pro-
gram without polluting it with CCC. With AspectJ it is possible to modify the
static structure of an application (e.g., class hierarchy), as well as its execution
flow in a non-invasive fashion. This language allows the capture of join points
(using pointcuts), spread across a base program, to add behavior to them (using
advices). This behavior is explicitly added (e.g., at compile/load time) through
code transformations performed by AspectJ’s internal mechanisms, providing a
solution to deal with the tangled and scattering problems. Since multiple trans-
formations can be applied to the same base program, the language allows to
specify hybrid parallelisations. However, AspectJ restricts the granularity and
the type of join points that can be triggered. Therefore, some base programs
might need to be adapted to expose potential join points.

Our approach identifies three main components, the base program, the aspect
libraries and the concrete aspect, represented in the Fig. 3 by blue, red and black
colors, respectively. Each library is represented by an abstract aspect that is con-
nected with external APIs (e.g. Java Threads, OpenMPI ...) in a reusable and
decoupled manner. Thus, programmers can easily interchange between differ-
ent external APIs. Furthermore, since the libraries will be used with different
applications, they cannot depend on join points of a specific application. Thus,
these libraries are composed by abstract aspects that encapsulate behavior and
state transversal to their sub-aspects and abstract pointcuts without explicitly
defined join points. Later on, for each application, those abstract aspects are
extended by concrete ones that encapsulate state and behavior specific to the
target application. The mapping between the abstract pointcut and the join
points to be intercepted is defined in the concrete aspect. The concrete aspect
works as a bridge between the core of the library of aspects and the target
application, resembling the use of XML configuration files in the Spring AOP
framework [13]. Finally, from the application point of view, in some cases it is
necessary to expose join points using our design rules. This kind of approach is
known in requirements engineering as scaffolding [14].

The SM library is influenced by OpenMP and provides many of its constructs,
such as: critical, single, master, barrier, parallel for (dynamic, static ...), tasks
and so on. It is possible to specify how objects behave among threads, allowing
to declare them as private, to be reduced and so on. The SM library uses a
threads-executors pool created after intercepting the main method of the target
application. Whenever a thread reaches a parallel region requests from the initial
pool a new team of threads and becomes the master this team.

The DM library will run as many instances of the base program as the number
of processes requested using the SPMD execution model of MPI. This library
provides constructs implemented on top of MPI calls, thus offering constructs
such as: - Allreduce, gather, scatter, broadcast and many others. Moreover, offers
constructs that are not provided by the MPI standard, for example: parallel
for (with static round-robin, static by blocks and dynamic distributions) and
distribution of 2D arrays using several strategies.

224 B. Medeiros and J.L. Sobral

implements DM interface

[
Abstract DM DM external API
eﬂer‘j—) Library
) Concrete implements SM interface
/" [LDM Aspect
Base e ‘ ‘
Program | Concrete SM Abstract SM SM external API
Aspect Library
| 4
extends

Fig. 3. Aspect libraries: overview. (Color figure online)

Along with the parallel libraries, it is also provided a data API with extra
features, such as: different types of scatter of a matrix among processes (e.g.,
by lines and so on); accessing arrays with high-level abstractions (e.g., gets/sets
...); pre-programmed reduction functions for arrays and matrices and so on.

Similar to OpenMP and MPI, our libraries do not check for data depen-
dencies, race conditions or deadlocks. Nevertheless, the libraries guarantee the
correctness of its aspects and advices, and of the user concrete aspects as long as
it follows our designing rules. As far as AspectJ is concerned, with our approach
the user only specifies well defined pointcuts and/or inter-type declaration. Thus,
reducing the complexity of using our approach and facilitating its correctness.

2.1 Design Rules

AspectJ uses the concept of join point which refers to any identifiable point in
the execution control flow. However, for designing reasons, the language restricts
the granularity and the types of the join points that can be trigger. Limiting
the access to more stable constructs allows to better control the complexity,
as well as potential harmful side effects of using a broader join point model.
The AspectJ join point model is a well defined one [13] that includes among
others the call/execution of a method, object/class initialisation, set and get of
object fields and so. However, this model does not include join points such as
the interception of local variables, the body of a loop for, the accessed position
of a given array and so forth. When a programmer wants to inject additional
behavior into a point in the source code that is not part of the Aspectd join
point model, all he needs to do is to transform such point into an identifiable
AspectJ join point. Most of the times a creation of a method that encapsulates
the desirable point is enough. We offer a set of design rules that will help the
user to identify and deal with the situation where transformation to the source
code should be done in order to highlight potential parallel related join points.

In our approach domain experts develop sequential code and apply, if nec-
essary, soft design rules that enable the introduction of PRC and are a key to
enable the composition of parallelism modules. Those design rules are the same
to every application and work in compliance with our aspect libraries.

Aspect Oriented Parallel Framework for Java 225

Our first design rule states that PRC should be encapsulated around meth-
ods. In this manner, PRC can be uniquely identified and additional behavior
can be easily (un)plugged. Additionally in some cases it is necessary to expose
some context of the desirable join point using the arguments of the newly cre-
ated method. For example, if the desirable join point is a loop that we want to
parallelize the iteration range of such loop should be passed as arguments of the
created method. Performance-wise, since such methods can be declared as final,
the compiler will most-likely inline its calls.

The above method design rule, when applied to loops, can be formalized as
follows: Consider a given cycle for where a represents the number of the first
iteration, b the number of the last iteration, ¢ the incremental step and Be
the block of code that will be executed inside the loop. The programmer must
create a new method M (the name is defined by the programmer) where the first
three arguments are a, b and ¢, in that order, and the remaining are all the local
variables used by the Bc. The new method will contain the original for executing
the Bc. However, the original values of the for are replaced by the names given
to the variables a, b and ¢ passed as the M arguments. Furthermore, the original
loop for is replaced by the call to M, passing the values corresponding to a, b,
¢ and the values of the remaining necessary variables (if there is any).

AspectJ can only identify variables of instance, therefore our rule to data
states that: All the variables to become private, reducible or sendable across
processes have to be variables of instance of an object. Furthermore, the class
holding such variables have to implement our interfaces. Those interfaces are
used as marker interfaces to identify objects that our libraries should intercept
and perform actions (e.g., reductions). The declaration that an object imple-
ments our interfaces is coded in the concrete aspect instead of the target object.
In this manner objects are not polluted with PRC. This is possible using the
inter-type declaration mechanism of AspectJ. In SM this design rule is applied
to objects that require to become private to threads, whereas in DM is applied
to objects used in data communication among processes.

2.2 TIllustrative Example

In Fig. 4 the lines 02, 05 and 08 illustrate the use of the loop design rule in the
sequential code of Fig. 1. The user already dealt with the parallel task, now he
needs to deal with the mutual exclusion. Lets say the user does not know yet if
he should (1) synchronize the entire force update (line 12 and 13), (2) have a lock
per particle or (3) use local arrays and perform a reduction in the end (following
the same strategy of Fig.2). The first approach uses the critical constructor of
the library and implies the transformation of the block of code of line 12 and 13
into a method. Figure b illustrates such transformation.

The second approach (lock per particle) would not require any modification
to the code of Fig. 5, since a method (forceUpdate) was already created and the
access to the array positions is exposed in the arguments (pA and pB). Finally,
the third approach also does not require modifications to the source code, since
the forces are variables of instance of the object particles. Nevertheless, according

226 B. Medeiros and J.L. Sobral

01: void MD (..){

02: forceCalculation (0, maxParticles, 1, ...);

03:}

04: ...

05: void forceCalculation (int begin, int end, int step, ...){
06:

07: forces = particles.getForces();
08: for (pA = begin; pA < end; pA +=step)
09: for (pB = pA + 1; pB < maxParticles; pB++)

10: if (distance (pA, pB) < radius){

11: forcesAB = callForcesParticles (pA,pB);

12: forces [pA] += forcesAB;

13: forces [pB] —= forcesAB; // Newton’s 3rd Law
14: }

15:}

Fig. 4. MD - parallel for transformation

01: void MD (..){

05: void forceCalculation (....) {

06: ...

07: forces = particles.getForces();

08: ...

12: forceUpdate (pA, pB, forcesAB);

13: ...

14:} ...

15: private void forceUpdate (... pA, ... pB, ... forcesAB){
16: forces [pA] += forcesAB;

17: forces [pB] —= forcesAB; // Newton’s 3rd Law
18: }

Fig. 5. MD - transformation for critical section

to the rules the user needs to specify that particles implement our interface. This
action will be coded directly in the aspect instead.

The design rules that were applied above are also valid for the distributed
memory library, namely the parallel for method (line 07 of Fig.4) that will be
used to distribute the iterations of the outer loop among processes as well as the
join point to perform the forces reduction among processes.

Figure 6 presents the concrete aspects with the join points that will be inter-
cepted to add the requested behavior by DM and SM libraries. In the concrete
aspects the programmer expressed the intentions: - of statically dividing the
outer loop iterations within method forceCalculation() among processes (line 11
of Fig.6) and among their threads (line 19) and at the end of it performing a

Aspect Oriented Parallel Framework for Java 227

00: public aspect parallel{

01:

02: pointcut parallelRegion():(call (.. forceCalculation (...)))
03: pointcut data() :(call (... getForces()));

04: pointcut forParallel (...) :

05: (execution (void forceCalculation (int, int, int..)))...
06:

07: static aspect DM_Concrete extends abstract_DM_Library {
08:

09: declare particles.forces implements DMInterface
10:

11: pointcut staticFor (...) : forParallel (...)

12: pointcut reduction () : parallelRegion ();
13: pointcut commData () : data () ;

14: }

15: ...

16: static aspect SM_Concrete extends abstract_-SM_Library {
17: declare particles.forces implements SMInterface
18:

19: pointcut staticFor (...) : forParallel (...);
20: pointcut reduction () : parallelRegion () ;
21: pointcut privateData () : data();

22: } ...

23:}

Fig. 6. Distributed memory and shared memory concrete aspects.

data reduction among threads (line 20) and among processes (line 12); - that
particles’ forces are objects that will became private (line 17) and used during
processes communication (line 09) - that the getForces method will return a
private thread copy (line 21) and that this data will be used in processes com-
munication (line 13) as well. As we can see by the shared memory aspect the
user opted to deal with mutual exclusion by using private data instead of the
critical or lock per particle approaches.

In the Fig.6 the SM and DM libraries work together to provide a hybrid
parallel solution to the sequential code of Fig. 5. Nevertheless, if the SM aspect
was commented the DM library would work alone providing a distributed mem-
ory parallelisation and wvice versa. In the hybrid example of Fig. 6, after inter-
cepting the main method, the DM and SM libraries will create data related to
the processes and their pool of threads, respectively. Since, the object particles
implements the SM and DM interfaces, the SM library will create a copy of the
particles’ forces for each thread and the DM library will save a reference of parti-
cles’ forces of the master thread. Before entering the forceCalculation() method
the DM library will intercept its arguments and modify them in order to assign
the iterations of its loop (line 08 of Fig.4) to the processes. The SM library
will then further divide those iterations by the threads. When the getForces()
method is intercepted the SM library will caught its object reference, match this

228 B. Medeiros and J.L. Sobral

reference in a internal hashmap and return the correspondent copy assigned to
the current thread. After the forceCalculation() method finishes its work, the
SM library will internally reduce all the forces among threads and save its result
in the reference to the particles’ forces object corresponding to the thread mas-
ter. Finally, the DM library will perform, among processes, a global reduction
of each master thread result.

To better understand how the parallel for’s are composed both by
the DM and in SM libraries lets say the user chooses a static dis-
tribution with chunk = 1 for both libraries and executes the sim-
ulation with 2 processes each with 2 threads. For each process the
DM library will intercept the forceCalculation(0, maxParticles,1,...) and
change the arguments accordingly to the process id. The process 0 will
run forceCalculation(0, maxParticles,2,...) and the process 1 will run
forceCalculation(1, maz Particles,2,...), in another words the process 0 will
go through the even iterations while the process 1 over the odd iterations. Then
each thread created by the SM library will intercept the forceCalculation of
the their parent process. Thus thread 0 and thread 1 of process 0 will change
the arguments of forceCalculation to forceCalculation(0, maxParticles,4,...)
and forceCalculation(2, maxParticles, 4, ...), respectively. Finally, the thread 0
and thread 1 of process 1 will execute forceCalculation(1, maxParticles,4,...)
and forceCalculation(3, maxParticles, 4, ...), respectively.

2.3 Discussion

The strongest points of our approach are the separation of the CCC from the
source code, centralizing such concerns into modularity units called aspects,
sequential semantic and the requirement of learning only one new syntax
(AspectJ). Typically, when parallelizing with Java threads, one has to either
declare that a class extends the Thread class, overwriting the method run, or to
make a given class to implement the Runnable interface, following some restric-
tions of the Java thread model (e.g. final variables). When the programmer
wants to test multiple SM strategies (e.g., different loop distributions) normally
he writes different versions connected to the same source code with a mechanism
to choose between them (e.g., if and else). For example, in the code of Fig. 4 there
are two PRC that should be dealt, namely how the iterations of the outer loop
should be mapped to the threads and how to deal with the race condition. Dur-
ing the development process the programmer would probably develop different
versions of the same code to test which best fits. Moreover, there might be dif-
ferent strategies that work better with different machines, so different strategies
in the same code should be maintained, and so on. Things become even more
complex if the programmer then wants to build a DM version and merge it with
the SM version to build a hybrid version, making the code much more complex,
unreadable and more error-prone. However, with our libraries, testing different
approaches means just changing different pointcuts (as long as the design rules
where followed). For example, in the Fig. 6 if the user wants to test a dynamic
SM distribution he could change the pointcut from staticFor to dynamicFor and

Aspect Oriented Parallel Framework for Java 229

the same holds true for the DM for distribution as well. This flexible testing app-
roach increases productivity, reduces the introduction of bugs and improves the
code evolution.

The main disadvantages of our approach are the design rules and the code
correctness. However, most IDE (e.g., eclipse) not only help the user with code
refactoring (e.g., method refactoring) but also highlight the code points where
the pointcuts are being injected. The design rules are simply method refactoring,
which not only does not interfere with code evolution but also frequently makes
the code more readable. The unpleasant part of this refactoring is the variables
that should be passed as arguments, but this is also attenuated with IDE tools.
Concerning the data design rules, aside from some exceptions, most of the time
relevant variables are already variables of instance. Also, our design rule is similar
with the way programmers deal with data using Java threads. A secondary
advantage of the design rules is that it exposes join points that can also be used
by other AspectJ libraries as well.

Concerning correctness, when the programmer applies multiple pointcuts to
the same join point, the SM an DM libraries use aspect precedence to deal
with the composition order of their internal mechanism and of the mechanism
in a hybrid environment. For example, in the MD example the DM pointcut
for will enter first, then the SM pointcut for and thread reduction will happen
first than the DM reduction. The programmer does not need to deal with such
problems, however he is responsible for logically choosing where to inject the
mechanism. If the programmer injects the constructor single over a method and
inside this method also injects the barrier constructor it will result in a deadlock.
Nevertheless, programmers can define their precedence aspects and add them to
the library to deal with precedence between our libraries and other AspectJ
libraries.

3 Performance Evaluation

This section evaluates the libraries performance, against Java-based implemen-
tations using traditional PPP (i.e., non-modular). The test platform is a cluster
with two machines connected by a Gigabit Ethernet. Each machine has two E5-
2695v2 processors, each processor with 12 cores connected to a memory bank
(a NUMA with 24 physical cores per machine with 48 hyper-threading). The
cluster runs Cent OS 6.3, OpenJDK 1.8.0.20 and OpenMPI 1.8.4.

The first test uses JGF [2] Sects.2 and 3 multi-threaded benchmarks
(JGF_MT) as the comparison base. Performance results are the speedup relative
to the JGF sequential code and also includes a JOMP! version. In most bench-
marks the performance is comparable (Fig.7), in some cases our SM library is
faster on others is slower. This behavior happens because performance is sensible
to many platform details. Overall our library is 1.05%x slower due to overheads
introduced by aspects and the application of the design rules. The JOMP imple-
mentation is 1.2x slower and does not provide a MD implementation. The second

! The implementation of OpenMP for Java.

230 B. Medeiros and J.L. Sobral

2 HIGF MT 2
;z B Aspect SM 22 1GF MPI
18 =jomP ig B Aspect DM
16 16
14 14
Sn R
H
8
6 6
4 4
: 3 =" 1
o 0
Crypt LUFact Series SOR Sparse MD Mmc Ray Crypt LUFact Series SOR Sparse MD Mc Ray
Fig.7. JGF, JOMP vs Aspect] SM Fig.8. JGF MPI vs Aspect] DM
library. library.
=C - MPI + OpenMP “~Java Invasive - Hybrid “#=C - MPI + OpenMP “@Java Invasive - Hybrid
Aspect Libraries -Hybrid ““Java Mpi only Aspect Libraries -Hybrid “Java Mpi only

o 20 40 60 80 100 [20 40 60 80 100

Processing elements (process/thread) Processing elements (process/thread)
Fig. 9. MD MPI vs hybrid version. Fig.10. MM MPI vs hybrid version.

test uses JGF MPI benchmarks (JGF_MPI) as the base of comparison. In most
benchmarks the performance of our DM library is better (Fig.8) due to a faster
implementation than the one provided by the JGF (1.4x faster).

The last two tests are a MD with a force calculation, similar to the one pre-
sented in Fig. 1 and a matrix multiplication using a tiling approach (Fig. 11). As
presented in Fig. 11 our matrix multiplication instead of performing a multipli-
cation element by element of the matrix C, uses a tiling approach based on [15].
The matrix multiplication is sub-divided into the multiplication of smaller

A B C

L
F=y
.¥__
|
g
Fey
x

A

)+ i~ s, - - I

Fig. 11. Matrix multiplication with tiling.

LT

Aspect Oriented Parallel Framework for Java 231

matrices (tiling). Our algorithm was thoroughly developed to further sub-divided
those smaller matrices into even smaller ones in order to fully take advantage of
three levels of cache (11, 12 and 13).

The third test evaluates the impact of composing the SM and DM libraries
using two machines (24 cores each with 48 hyper-threading). The Fig. 9 compares
the performance of the base Java MD (with half a million particles simulation)
using only MPI processes against three hybrid versions using: (i) Java threads
and MPI (non-modular); (ii) our SM and DM aspect libraries (modular); (iii)
using a C version of (i) with MPI and OpenMP. The hybrid versions use one
MPI process per machine, each composed by multiple threads (from 1 to 48
threads in total). The C version presents the best speedup for 96 processing ele-
ments (48x). Our version has a small overhead compared with the non-modular
Java version, but both versions have performance close to the C. Using the full
processing available the pure MPI version has the worst performance (37x), due
to the overhead of inter-process communication. With traditional PPP, moving
from this version to a hybrid version requires changes to the base program. In our
approach changes are made by simply modifying the parallelism modules to be
composed with the base program. The hybrid version uses a static loop schedul-
ing among MPI process and a dynamic loop scheduling among the threads within
a process. After a few tests we concluded that this strategy provides the best
performance. With our approach, testing various scheduling strategies simply
required a change of the pointcut in SM and DM concrete aspects. In contrast, a
non-modular design requires invasive changes to the base program (e.g. Figure 1).
The MD case study scales well with the number of cores. However, with the last
test (Fig. 10) that evaluates the performance of a parallel matrix multiplication
(using 8192 x 8192 size matrices) it does not scale so well, since it requires more
communication among processes. In this test the C version also presents the
best performance with 11.58x speedup for 96 processing elements closely follow
up by our Java aspect version (10.71x). Finally, the performance of both Java
hybrid versions are also better than pure MPI versions.

4 Related Work

Although annotations based approaches such as OpenMP and JOMP? [4] allow
the division between domain concerns and PRC, it is restricted to the basic
PRC. Sophisticated approaches required the use of explicit constructs, such as
threads ids, object locks and so on. Furthermore, not only those annotations
are still tangled with the base code, limiting its composability and modularity
properties, but also deal only with SM PRC. Those problems are even worse with
MPT libraries where only communication functions are provided (e.g., missing
task distribution) which are explicitly added into the source code. Our SM and
DM aspect libraries overcome those limitations by providing design rules to make
the code parallel-awareness without breaking its sequential semantic. Further
on, using concrete aspects as neutral zones where PRC can be expressed using

2 A proposal OpenMP for Java.

232 B. Medeiros and J.L. Sobral

a pointcut based style language. Providing an overall approach that allows to
easily compose multiple PPP (e.g. SM and DM) without the need to learn two
different programming languages syntaxes and fully decoupling the base code
from the parallel code promoting a more cleaner and modularized approach.

Skeleton [6] frameworks, a concept proposed to encapsulate the details of
a particular parallelism exploitation pattern, provide compositional proprieties,
with Lithium [7] and JaSkel [8] being Java examples of such frameworks. In this
kind of framework, it is necessary to create classes that will represent tasks to
be done and instantiate a particular skeleton to coordinate the task execution.
This approach has three main limitations: (1) the base program is polluted with
scaffolding code to redirect execution the skeleton framework; (2) skeletons only
encapsulate simple parallelism models (e.g., farm, pipeline ..); (3) it would be
difficult to implement multiple parallelism alternatives on top of this approach,
as execution issues are delegated to the skeleton framework. The last limitation
can be ameliorated by the use of dependency injection (DI) [9].

In [1,11] aspect oriented programming was used to decouple PRC from
domain concerns and encapsulate it in separate modules, to do so [11] used a
template-based language. The work in [10] used reusable aspects to encapsulate
concurrency patterns. Our work differs from these, by providing libraries (SM
and DM) with competitive performance and easy to be composed (hybrids), that
mimic OpenMP and MPI constructs for Java. In our approach the join point
model for loops of [12] could have been used to avoid applying design rules into
parallelisable loops. However, method refactoring of loops promotes indepen-
dent development since the parallelisation modules depend on this explicit API.
Although this approach might appears drastic at first, in reality PPP like Intel
Parallel Task Library [5] follow the same strategy and some languages (e.g., R
and Haskell) have higher order functions that can be seen as loop encapsulation.
Exposing loops at the object interface level is the key to enable aspect modules
that implement loop scheduling strategies. [7] introduced the concept of asyn-
chronous advice, a technique to delay the execution of the code associated to a
pointcut. The idea is similar to delay execution of certain blocks of code, which
can also be used to introduce parallelism.

5 Conclusion

The paper presented an alternative modularisation strategy where PRC are
encapsulated as aspects modules. We use the potentialities of AspectJ to support
composition of multiple aspect libraries with the same base program to provide
efficient hybrid solutions. Performance results show that the framework provides
a competitive performance comparing with handcrafted approaches. Moreover,
the hybrid versions shown to be faster than versions using only DM.

Future work will focus on the introduction of mechanisms to support paral-
lelism using aspects for other platforms (e.g., GPUs and GRID). Furthermore,
it is expected the creation of name conventions and preprocessing tools to the
automatisation of the design rules.

Aspect Oriented Parallel Framework for Java 233

Acknowledgement. This work has been supported by FCT - Fundagdo para a
Ciéncia e Tecnologia within the Project Scope UID/CEC/00319/2013 and Search-
ON2, HPC infrastructure of UMinho, NORTE-07-0162-FEDER-000086, under NSRF
through ERDF.

References

10.

11.

12.

13.

14.

15.

16.

Sobral, J.: Incrementally developing parallel applications with AspectJ. In: IPDPS
2006 (2006)

Smith, J., Bull, J., Obdrzlek, J.: A parallel java grande benchmark suite. In: SC
2001 (2001)

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An
overview of AspectJ. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072, pp.
327-354. Springer, Heidelberg (2001). doi:10.1007/3-540-45337-7_18

Bull, J., Kambites, M.: JOMP an OpenMP-like interface for Java. In: JAVA 2000
ACM (2000)

Leijen, D., Schulte, W., Burckhardt, S.: The design of a task parallel library SIG-
PLAN Not. 44, 10, pp. 227-242 (2009)

Cole, M.: Algorithmic skeletons: structured management of parallel computation.
Pitman/MIT press, Cambridge (1989)

Ansaloni, D., Binder, W., Villazn, A., Moret, P.: Parallel dynamic analysis on
multicores with aspect-oriented programming. In: AOSD 2010, pp. 1-12. ACM
(2010)

Ferreira, J.F., Sobral, J.L., Proenga, A.J.: JaSkel: a java skeleton-based framework
for structured cluster and grid computing. In: CCGRID 2006 (2006)

Chiba, S., Ishikawa, R.: Aspect-oriented programming beyond dependency injec-
tion. In: Black, A.P. (ed.) ECOOP 2005. LNCS, vol. 3586, pp. 121-143. Springer,
Heidelberg (2005). doi:10.1007/11531142_6

Cunha, C., Sobral, J., Monteiro, M.: Reusable aspect-oriented implementations of
concurrency patterns and mechanisms. In: AOSD 2006, Bonn, Germany (2006)
Gongalves, R., Sobral, J.: Pluggable parallelization. In: Proceedings of the 18th
ACM International Symposium on HPDC 2009, Munich, Germany, pp. 11-20
(2009)

Harbulot, B., Gurd, J.: A join point for loops in AspectJ. In: Proceedings of the
5th International Conference on AOSD 2006, pp. 63-74. ACM (2006)

Laddad, R.: AspectJ in Action: Enterprise AOP with Spring Applications, 2nd
edn. Manning Publications Co., Greenwich (2009)

Chitchyan, R., Greenwood, P., Sampaio, A., Rashid, A., Garcia, A.F., da Silva,
L.F.: Semantic vs. syntactic compositions in AO requirements engineering: an
empirical study. In: Sullivan, K.J. (ed.) AOSD, pp. 149-160. ACM (2009)

Smith, T.M., van de Geijn, R., Smelyanskiy, M., Hammond, J.R., Van Zee, F.G.:
Anatomy of high-performance many-threaded matrix multiplication. In: Proceed-
ings of the 2014 IEEE 28th IPDPS 2014, Washington, USA, pp. 1049-1059 (2014)
Rajan, H., Sullivan, K.J.: Classpects: unifying aspect- and object- oriented lan-
guage design. In: Proceedings of the 27th ICSE, St. Louis, MO, USA, pp. 59-68
(2005)

http://dx.doi.org/10.1007/3-540-45337-7_18
http://dx.doi.org/10.1007/11531142_6

Gaspar Data-Centric Framework

Rui Silva®) and J.L. Sobral

Centro ALGORITMI, Braga, Portugal

ruisilva@di.uminho.pt

Abstract. This paper presents the Gaspar data-centric framework to
develop high performance parallel applications in Java. Our approach is
based on data iterators and on the map pattern of computation. The
framework provides an efficient data Application Programming Inter-
face(API) that supports flexible data layout and data tiling. Data layout
and tiling enable the improvement of data locality, which is essential to
foster application scalability in modern multi-core systems. The paper
presents the framework data-centric concepts and shows that the perfor-
mance is comparable to pure Java code.

Keywords: Java - Locality optimisations - Parallel application - Data
layout - Data tiling

1 Introduction

The high performance in modern computers is achieved by exploiting parallelism
and accessing data efficiently. The memory hierarchy of multi-core systems is
quite sophisticated whose behaviour is hard to predict. Finding the best data
locality optimisations is an arduous task as it usually requires testing different
approaches and parameters. The effectiveness of each optimisation may depend
on the particularities of a given platform, compiler and even the application
input data. Thus, programming environments should include programming con-
structs to implement common locality optimisations, since this is the key to the
development of efficient applications for many-core systems.

The Gaspar framework main goal is to deliver a software platform where
locality optimisations can be quickly tested. In the long term this is a path
to automate locality optimisations in well-known application domains. To the
authors knowledge this is the parallel programming framework that supports
the most complete set of locality optimisations and the only framework that
provides an infrastructure where programmers can develop application-specific
locality optimisations.

The framework provides a data API that enables transparent changes to the
data layout. On the other hand, the framework uses a map pattern of computa-
tion which provides an uniform mechanism to express data tiling and parallelism.
Furthermore, the user can develop application-specific locality optimisations by
using the provided data APL
© Springer International Publishing AG 2017

I. Dutra et al. (Eds.): VECPAR 2016, LNCS 10150, pp. 234-247, 2017.
DOT: 10.1007/978-3-319-61982-8_21

Gaspar Data-Centric Framework 235

The next section describes the framework data API and the map pattern
of computation and Sect. 3 provides performance evaluation. Section 4 discusses
related work and Sect. 5 concludes the paper.

2 Data-Centric Framework

The framework provides two generic approaches to enable data locality improve-
ments/tuning: (i) encapsulates the data into framework provided collections and
accesses the data using iterators that hide the concrete data layout; and (ii) com-
putation is expressed by a map & reduce pattern of computation over the frame-
work data collections enabling changes to the order of accessing the data. These
two mechanisms provide an infrastructure to implement common data locality
optimisations: (i) framework provided data collections and iterators enable flex-
ible data representations, since data is accessed using a data API that hides the
concrete data organisation; (ii) the map & reduce pattern of computation enables
changes to the order of accessing the data, since there is no explicit order in
applying a function to each datum. Both mechanisms support hierarchical data
organisation and processing, an essential feature to take full advantage of the
memory hierarchy of parallel systems: (i) a data collection can be transparently
replaced by a multi-level data representation; (ii) a map & reduce pattern of
computation can be naturally decomposed into several map & reduce functions
over subsets of the data. The next two subsections describe these mechanisms.

2.1 Data Application Programming Interface

The data layout is of extreme importance in modern computer architectures
[6,10]. Common data layouts for a collection of objects (or data structures) are
(Fig.1): Array of Pointers (AoP), Array of Structures (AoS) and Structure of
Arrays (SoA). SoA layouts store the object data fields into separate arrays and
are commonly used in GPUs to promote memory accesses coalescing [12]. AoP
and AoS are more common when running applications on CPU, since they are
closer to real world entities (e.g., programmers can work with data structures
instead of array indexes). In certain situations it is beneficial to use hybrid
layouts, where fields of a given object are stored using different layouts.

In order to achieve high performance, programmers must frequently imple-
ment data structures using rows of primitive data types (e.g., using a SoA lay-
out). Intel suggests to use the SoA layout to enable auto-vectorisation on mod-
ern compilers'. However the SoA layout makes the code less legible and conflicts
with modularity. To illustrate the programming complexity and the conflict with
modularity this paper shows the implementation of a Molecular Dynamics sim-
ulation (MD) taken from the JGF [11]. One important part of this code is the
computation of forces between two particles, which depends on each particle
position in the space (x, y, z) (see Fig. 2).

! https://software.intel.com/sites/default /files/article/392271/
aos-to-soa-optimizations-using-iterative-closest-point-mini-app.pdf.

https://software.intel.com/sites/default/files/article/392271/aos-to-soa-optimizations-using-iterative-closest-point-mini-app.pdf
https://software.intel.com/sites/default/files/article/392271/aos-to-soa-optimizations-using-iterative-closest-point-mini-app.pdf

236 R. Silva and J.L. Sobral

fields
[/ﬁ
fields e

a) b) ¢)

Fig. 1. Array of Pointers (AoP), Array of Structures (AoS) and Structure of Arrays
(SoA) data layouts

//AoP layout //S0A layout //Generic layout
forceParticle(...){ forceParticle(..., int id){ forceParticle(...){
xi = pl.x; xi = pl.x[id]; xi = pl.getX();
yi=rpl.y; yi = pl.ylid]; yi = pl.getY();
zi = pl.z; zi = pl.z[id]; zi = pl.getZ();

...
} } }

Fig. 2. Force computation using specific layouts and the generic layout supported by
the framework.

To change from an AoP layout to a SoA or a AoS layout the computeForce
method must be changed accordingly: it must receive a different kind of para-
meters and adapt its implementation (Fig.2). Moreover, the AoP layout is the
most natural implementation as the code includes a concept from application
the domain: a Particle. The change from this layout to one of the others requires
a rewrite of all places where the Particle class is used in the code. This was
indeed required in the JGF MD case study used in this paper.

An alternative is to encapsulate the particle representation into a class of par-
ticles, for instance, containing tree arrays (x, y and z). That approach requires
creating Particle objects with the sole purpose of complying to an API which
receives Particles as parameters (see Fig. 2 Generic layout). Figure 3 illustrates
this problem: it shows the creation of an object E (returned by method getFEle-
ment) that will be later de-constructed (by method setElement). There is an
object creation in order to obey a specific API based on objects of type F.

getElement setElement

geth

Fig. 3. Encapsulation example using generic get and set methods.

Gaspar Data-Centric Framework 237

One key aspect of the framework is to support changes to data layouts with-
out requiring changes to the API of methods (i.e., preserving modularity) and
avoiding additional overheads. The goal is to provide a high level interface to
access data while providing performance similar to low level implementations.

The framework provides a data API that was carefully designed to avoid
runtime overheads and to not block common compiler optimisations (e.g., loop
unrolling). The data API hides the concrete data representation making pro-
grams more portable and platform neutral.

Framework API User defined
<<interface>> <<interface>> <<interface>>
gCollection<E> glterator<gE> Particle

getX() : double
<<interface>> <<interface>> getY() : double
gCollection<E> glterator<g> ; getZ() : double
: (9
I 1
i I
1 1 I}
i]]
i i I
I 1 1
I 1 I
I I I
gCollectionParticleAoS glteratorParticleAoS
<<mter.face>> data[] : double gCollection : gCollectionParticleAoS
gMatrix<E> position : int
Framework generated
(a) Gaspar data-centric frame- (b) Example of framework generated classes

work data API

Fig. 4. Gaspar data-centric framework

The framework can generate Java classes that implement the data API for
well-known types of data collections. The framework currently supports the two
most common types of data structures (Fig.4a): (i) the gCollection is a vector
of data element; and (ii) the gMatriz is a set of data organised by rows and
columns.

The framework data API is inspired by the C++ Standard Template Library
(STL), providing a similar way to iterate over data but tuned to the Java lan-
guage. A STL-like approach was selected because it is widely used and it is
efficiently implemented by modern C++ compilers. The core of the data API
is the interface glterator (see Fig.4a), which points to an element in a gCollec-
tion. The gCollection implements the methods begin() and end(), that provide
iterators to the first and to a position over the last element of the collection,
respectively. The iterator provides an inc() method to advance to the next data
element and an isLess() method that compares two iterators. Iterators also pro-
vide the sync() operation which synchronises the position of two iterators. It is
particularly suitable when the element position is used to identify the entity (e.g.,
in Matrix Multiplication) or to access its neighbours (e.g., stencil operations) on
the some or on different data collections.

238 R. Silva and J.L. Sobral

The framework provides a data layout generator tool that uses a UML
data model of the application (e.g., the Particle specification) and generates all
required interfaces and classes (Fig. 4b). Thus, it is possible to develop a program
without details about the data layout and later select a collection implementa-
tion with the most appropriate data layout (e.g., AoP, SoA or AoS). Figure4b
provides an example from the code in the MD case study from the JGF bench-
mark. The programmer defines the interface of the data element (Particle in
this case) and writes the code using the framework API The framework gener-
ates the collection implementation (gCollectionParticleAoS and glteratorParti-
cleAoS in the specific case). Note that the glteratorParticleAoS simultaneously
implements glterator and Particle interfaces, so the iterator can be used in any
context where the type Particle is expected, using a Java (safe) type cast. STL
C'++ requires a pointer dereference for a similar goal.

Figureb illustrates the base program that a programmer needs to write in
order to compute the force between a Particle pl and the remaining particles.
Note that Particle, gCollection and glterator are Java interfaces, that will be
replaced by concrete Java classes that implement those interfaces when the pro-
gram is mapped to a specific platform. If, for instance, an AoS layout is used,
this routine will receive one instance of the class glteratorParticleAoS (which
implements both Particle and glterator interfaces) and one instance of the class
gCollectionParticleAoS.

// the same method for all data layouts
void forceParticle(Particle pl, gCollection<Particle> particleSet) {

// get coordinates of particle pl
xi = pl.getx();
yi = pl.gety();
zi = pl.getz();

// iterate over particleSet
glterator<Particle> p2 = particleSet.begin()
for(; p2.isLess(particleSet.end()); p2.inc()) {

// compute distance
xx = xi - ((Particle) p2).getx();

yy = yi - ((Particle) p2).gety();
zz = zi - ((Particle) p2).getz();
...

Fig. 5. Example of the usage of the data API

To understand the reason why there is no runtime overhead, Fig.4b also
shows the implementation of the glteratorParticleAoS and gCollectionParti-
cleAoS classes: the former contains an integer, which is an index to an array of

Gaspar Data-Centric Framework 239

doubles (the latter). In this case, the JIT is able to generate an implementation of
the forceParticle method from Fig. 5 tuned for classes glteratorParticleAoS and
gCollectionParticleAoS. Therefore, all iterators are replaced by an integer index
into an array of doubles, which is essentially a raw AoS implementation. Thus,
the JIT can generate an executable equivalent to an AoS-based hand-coded.
Note that STL iterators also rely on compiler optimisations, namely, method
inlining. The JIT compiler additionally relies on escape analysis to avoid the
creation of objects that are instances of glterators.

2.2 Map Pattern

One most common data locality optimisation is the use data tiles to improve
temporal locality [2]. Traditionally this optimisation requires the introduction of
additional loops to implement operations over data tiles, where some base kernel
is applied on data tiles in cache. It may be also beneficial to implement multiple
levels of tiling to address multiple levels of cache. Each level of tiling will require
additional loops.

The framework uses a map pattern of computation that is able to express
both tiling-based locality improvements and parallel computations over gCol-
lections of data. The map pattern is based on a map method which applies a
given function to a gCollection, by iterating over the collection elements using
glterators.

The map pattern divides a gCollection into multiple collections using a split-
Function, applies a mapMethod to each sub-collection and invokes a reduce-
Function to join the generated/processed sub-collections. The map pattern can
generate additional data copies that can lead to inefficient implementations.
The framework data API enables two mechanisms to improve performance of
map operators: virtual collections and lazy copying. The framework offers several
splitter and reducer functions in order to use these optimisations. One implemen-
tation creates a physical copy of the data, which can improve the spatial locality
(an operation also known as packing). This implementation has the option to
do the packing of all sub-collections when the split function is called or when
the each sub-collection is accessed (i.e., lazy packing). Virtual collections avoid
performing additional data copies by creating collections and iterators that are
virtual views of the original data.

The map is implemented by an high-order function introduced in Java 8
(i.e., a function that accepts pointers to methods). The map function has the
following interface: MAP (splitFunc, mapMethod, reduceFunc, gCollection).

Figure 7 illustrates the map pattern applied to the force method of our illus-
trative case (see the force method defined in Fig. 6). The tiling optimisation on
this case requires nesting of two map patterns, where the inner loop depends the
current iteration of the outer loop. The outer map (line 3) divides the collection
c1 applying the splitc! function (lines 9-20), and calls the inner map (line 4-5)
for all sub-collections. The inner map applies the same procedure for collection
¢2, but calls the original function force. Finally, the outer map applies reducec!
function (line 5) to the processed sub-collections and returns the result. The

240 R. Silva and J.L. Sobral

void force(gCollection<Particle> cl, gCollection<Particle> c2) {
glterator<Particle> pl = cl.begin();
for(; pl.isLess(cl.end()); pl.inc())
forceParticle((Particle) pl, c2);

Fig. 6. Force computation for all-particles

void forcemap(gCollection<Particle> cl, gCollection<Particle> c2) {
Object parameters = new Parameters(cl, c2);
parameters = gCollection.map(splitcl,
(Object m) -> gCollection.map(
splitc2, force, reducec2, m),
reducecl, parameters)

}

©W 00 N O W N =

gCollection<Object> splitcl(Object obj){
int threads = Integer.getInteger("threads", 2);
Parameters parameters = (Parameters) obj;
Parameters auxret[] = new Parameters[threads];
gCollection value= new parameter.pl.split(threads);
for(int i=0; i < auxret.length; i++){
Parameters newparameters = new Parameters(value.get(i),parameters.p2);
auxret[i] = newparameters;
}
gCollectionObject ret = new gCollectionObject<Parameters>(auxret);
return ret;

}

e
= O

N NN BB s e
NP, O ©O©OoWw~NO O wN

Object reducecl(Object value, Object obj){
23 return ((gCollection) obj).reduce();
}

N
=~

Fig. 7. Force computation with tiling optimization

splitcl, splitc2, reducecl and reducec?2 are defined using the framework built-in
split and reduce operations.

3 Evaluation

This section presents several case studies that evaluate the framework per-
formance. The first subsection analyses the code generated by the JIT, com-
paring versions generated with the Gaspar framework and in plain Java.
This uses a simple benchmark that sums all values in a collection of
doubles. The second subsection presents performance using two case stud-
ies: Matrix Multiplication and Molecular Dynamic Simulation. The bench-
marks were executed on a machine with two 12-core Xeon E5-2695v2, run-
ning the OpenJDK 1.8.0.25. In all tests use the following flags to optimize

Gaspar Data-Centric Framework 241

the Java Virtual Machine: -XX:LoopUnrollLimit=100; -XX:ObjectAlignmentin
Bytes=382; -XX:+UseNUMA; -XX:+UseCompressedOops. Presented values are
a median of 10 runs.

3.1 Low Level Benchmark

This benchmark compares the performance of gCollection and Java imple-
mentations. The first type of Java implementation uses Java Collections
(ArrayList<Double>) of type Double (AoP, see Sect.2.1). There are three dif-
ferent versions: fAoP uses For Each to access data; iAoP access data with get(i);
sAoP uses Java 8 streams. The second type of Java implementations uses arrays
(the arrays contains data, not pointers to data): iSoA; fSoA; sSoA. The Fig.8
shows Java Code for all AoP layout implementations, note that the framework
uses the same code for all layouts (e.g., AoP and SoA).

//Sum (£AoP) //Sum without iterators (iAoP)
for (Double value: aopy) { for (int i=0;
i < aopy.size(); i++) {
result += value; result += aopy.get(i);
} }
//Sum with stream (sAoP) //Framework Sum (gAoP or gSoA)
result = aopy.stream(). glterator it = gaopy.begin();
mapToDouble (Double: :doubleValue) for (; it.isless(gaopy.end());
.sum() ; it.inc()) {
result += ((gDouble) it).
getValue();
}

Fig. 8. Java code of different implementations for AoP layout

The benchmark analyses two array sizes (Fig. 9): 6.4 x 105(~5 MB) and 5.12x
107(~ 390 MB). In the small size the data fits into the level 3 cache, while in the
other size the data is accessed from memory. This causes an increase in the cycles
required to perform each instruction (CPI increase). Gaspar implementations
(gAoP and gSoA) are able to deliver a performance equal to the best Java
implementation (1AoP and iSoA cycles per element). The results for small and
big data size follow the same tendency, thus, Fig.10 focus on results for the
larger size.

The Fig.10a shows that SoA layouts have better performance than AoP
layouts (6 times better for fSoA, iSoA and gSoA). SoA layouts access the data
directly, while iAoP access the data through a pointer indirection (see code in
Fig. 11). This explains the lower number of instructions executed in SoA layouts.
In SoA, data is accessed more efficiently, since data is aligned in memory, which
results in less cache misses (Fig. 10b) due to better spatial locality.

242 R. Silva and J.L. Sobral

Using the For Each in layout AoP has a small impact on performance (see
fAoP). This impact results from the increase in number of instructions, because
For each in Fig. 9 implements one Cast Check per element while the iAoP per-
forms one Cast Check per 8 elements (due to more efficient loop unrolling). This
additional overhead does not exists in the fSoA layout.

The use of streams of Java 8 shows significant decrease in performance (~0.57
in fAoP, ~0.25 in the fSoA) since it uses Kahan [5] algorithm for reducing
truncation errors.

The 4S0A needs 21 instructions to process 16 elements (unroll 16 times), but
in the framework (gSoA) 23 instruction are generated to process the same ele-
ments. One additional instruction writes the position of the iterator in memory.
The other is to due bad optimization heuristics (see the assembly in Fig. 12, uses
one more register).

Although there are no performance differences in AoP layout, gAoP has less
instructions since the compiler was able to remove instructions of Java Ezception
for control the cast to Double.

So for this case our framework has no impact on performance and is able to
change data layout without development cost (it is possible change layout and
to enable performance effortlessly).

3.2 High Level Benchmark

The first case study is a Matrix Multiplication(MM), we compare code in plain
Java with use of the framework. The kernel used is the same in both implemen-
tations, as well as the tiling optimisation. The Framework with tiling is based
on the map operator described in Sect. 2.2. Figure 13a shows the relative perfor-
mance of tiling and lazy packing. The data API introduces a small overhead. In
the plain Java implementation, tiling improves the performance, but with a tra-
ditional map pattern implementation advantage of tilling is lost due to copying
overhead. The introduction of lazy packing provides a performance comparable
to a plain Java implementation. The figure also presents the execution time for

Mcycles M™instructions M cycles(big) instructions(big)
. 40
@
Qo
o 30
2
3§20
25
o
"
2 0 | B | - u | .|
>
© iAoP fAoP sAoP gAoP iSOA fSoA sSoA gSoA

Fig. 9. Sum number of instructions and cycles per element

Gaspar Data-Centric Framework 243

cycles Minstructions ™ load+stores B |1 misses ™2 misses 13 misses
10 100
8 80
c 6 c 60
S [
4 40
2 20
0 - 0 -
iAoP sAoP gAoP fSoA iSoA sSoA gSoA iAoP sAoP gAoP fSoA iSoA sSoA gSoA
(a) Relative performance (b) Cache access analysis

Fig. 10. Sum relative performance to fAoP

//Assembler for iAoP load and sum element //Assembler for iSoA load and sum element
mov 0x10 (%rbx,%r8,4) ,%rild vaddsd 0x10(%r11,%rbx,8),%xmmO0, %xmm0
vaddsd 0x10(%r10) ,%xmm0, %xmmO

Fig. 11. Differences from iAoP to iSoA (load and add element)

//Assembler for iSoA sum //Assembler for gSoA sum
vaddsd 0x80(%ri11,%r9,8),%xmm0,%xmm0 vaddsd 0x80(%r10,%r8,8) ,%xmm0, j%xmm1
vaddsd 0x88(%ri11,%r9,8),%xmm0,%xmm0 vaddsd 0x88(%r10,%r8,8) ,%xmm1,%xmm0

vmovsd %xmm0,0x70(%r10) vmovsd %xmm1,0x70 (%rbp)
ce. vmovsd %xmm0, 0x70 (%rbp)

Fig. 12. Compiler overhead problem in gSoA

lazy packing of all matrices (A, B and C) and only for matrix C, which was
tested by simply changing split functions.

Figure 13b presents the relative performance of this version against other
well-known pure Java implementations (the reference implementation is the
JBLAS implementation). The framework provides the best pure Java imple-
mentation and up to 0.95 times the performance of the JBLAS implementation
(JBLAS provides 0.70 times of the peak performance on this machine).

Tuning performance is a hard task and finding the best matrix implementa-
tion requires experimentation, since there are three nested loops in the MM. In
the framework, the experimentation can be quickly performed by adding a nested
map. Figure 13c illustrates the relative performance using the #i, tj, tk order as
reference, by changing the map nesting order. The best order also depends on
the input size. In the framework this can be addressed by using different map
nests for each input size.

A parallel version of the MM is developed by replacing the map implementing
the tiling with a parallel map. Figure 13d presents the speed-up obtained with

244 R. Silva and J.L. Sobral

16
14 mEML Jama M JBas M Math ™ Framework
. 12
Y12
5 g '
E 11 &
S £ 08
E 0.8 5
a b] -
o 06
> 06 o
K 20 B
S 04 E 0.4
[SP |
02 0.2
0 0
PureJava Framework PureJava Framework Framework Framework 1024 2048 4096
with tiling with tiling with tiling with tiling matrix size
(lazing All) (lazing C)
(a) Java vs Gaspar data-centric frame- (b) Performance of Java libraries
work
miijjkk jikkij ™ jjiikk ® jjkkii = kkiijj kkijii ===-Ideal ==e=Pure Java with tiling Framework with tiling
14 2 P
8 12 2 ”’ Ptd
£
S os ; » ;;/7
© T e
o g -
06 — 210
2
B oa — /
® s
0.2 — /
0 - . o L&
1024 2048 4096 1 3 6 9 12 15 18 21 24
matrix size threads
(c) Differents tile orders (d) Parallel versions

Fig. 13. Matrix Multiplication benchmark

this implementation and the comparison with an equivalent implementation in
plain Java. The performance of both implementations is very close and both
scale linearly up to 12 processors. However, for 24 threads there is a performance
penalty in both versions, caused by load unbalance (some threads process one
more block than the others) and caused by the NUMA architecture.

The MD benchmark from the JGF (using an AoP layout) was implemented
in the framework and tested with different data layouts (gXoX versions). The
speed-up to the sequential SoA version (the more efficient) of each version is
presented in Fig. 14b. The AoP layout scales poorly due to the lack of data
locality and because its sequential version is the slowest. The performance of
the framework AoP implementation is similar to one of JGF. The SoA version
provides the best performance.

The data layout can interplay with tiling. The framework provides a flexible
mechanism to develop custom tiling approaches by implementing case-specific
split/reduce functions for the map. A custom tiling approach is required for MD
benchmark since there is a nested loop, where the inner loop depends on the cur-
rent iteration of the outer loop. Figure 14a presents performance by composing
the different data layouts of MD with tiling.

Gaspar Data-Centric Framework 245

Mo tiling © smalltiling ™ medium tiling ™ large tiling - ldeal AoP ghop A0S A0S wmmm—Son em=GSoA
14
25
@12
S
g
g1 20
S 0s
E 215
g 06 b
H
2 0.4 F10
]
o
=02
5
0
gAoP A0S g50A gAoP 8AoS g50A
o B
Small Large 13 6 12 2
md size and layout threads
(a) Layout and tile (b) Parallel versions

Fig. 14. Molecular dynamic benchmark

For a small particle set, the AoS is the best layout and tiling improves the
performance. Performance of AoP and AoS are very close for medium tiles.
However, tiling does not improve the SoA version, which presents the worst
performance. On the larger size, the SoA is the best version and, in this case, it
benefits from applying tiling. In parallel versions, for all layouts in the Gaspar
framework the performance is similar to versions in plain Java. The SoA layout
obtains the best performance. In the plain Java the best speed-up is 20.8. The
framework has a small loss in performance, the speed-up is 19.1.

4 Discussion and Related Work

There is a number of techniques to automatically improve locality by changing
the Java Virtual Machine(JVM). Hirzel et al. [4] evaluated a technique based
on sorting objects during garbage copying, which places objects in consecutive
memory addresses to improve spatial locality. This technique still maintains the
AoP. Wimmer et al. [14] propose an improvement to the JVM to automatically
inline object fields by placing the parent and children objects in consecutive
memory places and by replacing memory accesses by address arithmetic. Nie et
al. [9] propose the Java vectorisation interface to explicitly expose data paral-
lelism in programs enabling explicit vectorisation. These works require changes
to the JVM implementation and there is no known system that supports data
tiling.

OpenACC and Mint [13] are two programming frameworks that provide
OpenMP like directives to support the loop tiling by a specific loop clause. The
Gaspar data-centric framework provides a more flexible approach, for instance,
it is easily change the tiling order or change the data layout.

There are several alternative implementations of Java generics that avoid
some of the Java overhead. The High Performance Primitive Collections? pro-
vides template generated collections for primitive data types. Trove® shares a

2 http://labs.carrotsearch.com/hppc.html.
3 http://trove.starlight-systems.com.

http://labs.carrotsearch.com/hppc.html
http://trove.starlight-systems.com

246 R. Silva and J.L. Sobral

similar goal. These works avoid generics overhead on primitive data types, but
they do not remove overheads on structured data types, thus they do not support
alternative data layouts for structured types.

The Java 8 parallel streams provide an API that resembles to map operators,
but they are based on Java iterators and do not support data tiles and different
layouts. The proposed framework uses a more sequential-like way of expressing
map operators and is part of a larger effort to provide OpenMP-like programming
in Java [7,8]. This paper shows that the map pattern is suitable to express
parallelism when the base program benefits from tiling.

The framework data API is similar to Standard Template Library(STL), but
in STL there is a difference between a pointer (iterator) and the element pointed
to. Thus, to access an element, pointer dereference must be used so it is not
possible to automatically transform an iterator to the element pointed to. This
will make it more difficult to encapsulate the data layout, without introducing
a concept similar to interfaces in Java.

Other approach is to hide the distribution and parallelism concepts in skele-
tons. STAPL [3,15] and FastFlow [1] provide skeletons to simplify the code and
improve performance. In STAPL, the skeletons express data distribution and
parallelism, it is and based in STL iterators. Although, both frameworks do not
support multiple data layout.

The map pattern of computation with iterators provides a safer way of iter-
ating over data than using the traditional loop-based approach, since, in a map,
the loop range is implicitly derived from the collection size. This avoids many
potential errors of a loop-based approach, specially when multiple levels of tiling
are required.

5 Conclusion

This paper presented a Gaspar data-centric framework and how the proposed
data API efficiently supports multiple data layouts and tiling. The performance
results show that the framework can provide implementations that compete with
pure Java implementations. Thus, the framework provides improved trade-off
between programmability and performance. The framework data API was also
designed to make it easy to introduce locality improvements in loops that iter-
ate over data in a collection. The provided infra-structure makes it easy to tests
different data layouts and tiling, as well as to develop case-specific locality opti-
misations.

In future, the tool will provide a performance analyser helping the user to
select data locality improvements. On the other side it will be included support
to more computing platforms (e.g., distribute memory).

Acknowledgements. This work has been supported by FCT - Fundag¢do para a
Ciéncia e Tecnologia within the Project Scope UID/CEC/00319/2013 and Search-
ON2, HPC infrastructure of UMinho, NORTE-07-0162-FEDER-000086, under NSRF
through ERDF.

Gaspar Data-Centric Framework 247

References

10.

11.

12.

13.

14.

15.

Aldinucci, M., Danelutto, M., Kilpatrick, P., Meneghin, M., Torquati, M.: Acceler-
ating code on multi-cores with FastFlow. In: Jeannot, E., Namyst, R., Roman, J.
(eds.) Euro-Par 2011. LNCS, vol. 6853, pp. 170-181. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-23397-5_17

Anderson, J.M., Lam, M.S.: Global optimizations for parallelism and locality on
scalable parallel machines. In: Proceedings of the ACM SIGPLAN 1993 Conference
on Programming Language Design and Implementation. PLDI 1993, pp. 112-125.
ACM, New York (1993)

Buss, A., Papadopoulos, 1., Pearce, O., Smith, T., Tanase, G., Thomas, N., Xu, X.,
Bianco, M., Amato, N.M., Rauchwerger, L., et al.: Stapl: standard template adap-
tive parallel library. In: Proceedings of the 3rd Annual Haifa Experimental Systems
Conference, p. 14. ACM (2010)

Hirzel, M.: Data layouts for object-oriented programs. SIGMETRICS Perform.
Eval. Rev. 35(1), 265-276 (2007)

Kahan, W.: Pracniques: further remarks on reducing truncation errors. Commun.
ACM 8(1), 40 (14965). http://doi.acm.org/10.1145/363707.363723

Majeti, D., Barik, R., Zhao, J., Grossman, M., Sarkar, V.: Compiler-driven data
layout transformation for heterogeneous platforms. In: Mey, D., et al. (eds.) Euro-
Par 2013. LNCS, vol. 8374, pp. 188-197. Springer, Heidelberg (2014). doi:10.1007/
978-3-642-54420-0_19

Medeiros, B., Silva, R., Sobral, J.: Gaspar: a compositional aspect-oriented app-
roach for cluster applications. In: Concurrency and Computation: Practice and
Experience (2015)

Medeiros, B., Sobral, J.L.: Aomplib: An aspect library for large-scale multi-core
parallel programming. In: 2013 42nd International Conference on Parallel Process-
ing (ICPP), pp. 270-279. IEEE (2013)

Nie, J., Cheng, B., Li, S., Wang, L., Li, X.-F.: Vectorization for Java. In: Ding, C.,
Shao, Z., Zheng, R. (eds.) NPC 2010. LNCS, vol. 6289, pp. 3-17. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-15672-4_3

Sharma, K., Karlin, 1., Keasler, J., McGraw, J.R., Sarkar, V.: User-specified
and automatic data layout selection for portable performance. Rice University,
Houston, Texas, USA, Technical Report TR13-03 (2013)

Smith, L.A.) Bull, J.M., Obdrzéilek, J.: A parallel Java grande benchmark suite.
In: Proceedings of the 2001 ACM/IEEE Conference on Supercomputing. SC 2001,
pp. 8-8. ACM, New York (2001)

Sung, I.J., Liu, G.D., Hwu, W.M.W.: DI: A data layout transformation system for
heterogeneous computing. In: Innovative Parallel Computing (InPar), pp. 1-11.
IEEE (2012)

Unat, D., Cai, X., Baden, S.B.: Mint: realizing cuda performance in 3D stencil
methods with annotated C. In: Proceedings of the International Conference on
Supercomputing, pp. 214-224. ACM (2011)

Wimmer, C., Mossenbock, H.: Automatic array inlining in Java virtual machines.
In: Proceedings of the 6th Annual IEEE/ACM International Symposium on Code
Generation and Optimization, pp. 14-23. ACM (2008)

Zandifar, M., Thomas, N., Amato, N.M., Rauchwerger, L.: The STAPL skeleton
framework. In: Brodman, J., Tu, P. (eds.) LCPC 2014. LNCS, vol. 8967, pp. 176—
190. Springer, Cham (2015). doi:10.1007/978-3-319-17473-0_12

http://dx.doi.org/10.1007/978-3-642-23397-5_17
http://doi.acm.org/10.1145/363707.363723
http://dx.doi.org/10.1007/978-3-642-54420-0_19
http://dx.doi.org/10.1007/978-3-642-54420-0_19
http://dx.doi.org/10.1007/978-3-642-15672-4_3
http://dx.doi.org/10.1007/978-3-319-17473-0_12

A Parallel and Resilient Frontend for High
Performance Validation Suites

Julien Adam!®) and Marc Pérache?

! Paratools SAS, Bruyeres-le-Chatel, France
adamj@paratools.com
2 CEA, DAM, DIF, 91297 Arpajon, France

marc.perache@cea.fr

Abstract. In any well-structured software project, a necessary step
consists in validating results relatively to functional expectations. How-
ever, in the high-performance computing (HPC) context, this process
can become cumbersome due to specific constraints such as scalability
and/or specific job launchers. In this paper we present an original vali-
dation front-end taking advantage of HPC resources for HPC workloads.
By adding an abstraction level between users and the batch manager,
our tool JCHRONOSS, drastically reduces test-suite running time, while
taking advantage of distributed resources available to HPC developers.
We will first introduce validation work-flow challenges before present-
ing the architecture of our tool and its contribution to HPC validation
suites. Eventually, we present results from real test-cases, demonstrating
effective speed-up up to 25x compared to sequential validation time —
paving the way to more thorough validation of HPC applications.

Keywords: Validation - Test-suite - HPC - Scheduling - Fault-
tolerance - Parallel + Software quality

1 Introduction

In the constantly evolving landscape of parallel supercomputers, HPC applications
must be updated to take advantage of the underlying architectures. In such a con-
text, validating parallel software features can be a real challenge. Non-regression
bases (NRB) can play an important role in such transitional process, constantly
validating results relative to expectations — matching each features with dedi-
cated tests. However, for larger projects, the growth of the non-regression base
can become troublesome, particularly if validation system is not robust enough.
A recent project with very large non-regression bases took up to several days to
run and involved thousands of tests. In such a context, modifications could take
up to one week to be validated, making test results more complex to analyze and
impacting development reactivity. Current testing frameworks do not provide a
scalable way to meet the growing validation demands of large sofware efforts.
Our goal is to simplify the continuous validation of parallel HPC applica-
tions, allowing HPC developers to constantly monitor their software quality in

© Springer International Publishing AG 2017
I. Dutra et al. (Eds.): VECPAR 2016, LNCS 10150, pp. 248-255, 2017.
DOI: 10.1007/978-3-319-61982-8_22

A Parallel and Resilient Frontend for High Performance Validation Suites 249

an efficient manner. In this paper, we present a highly modular testing frame-
work, called JCHRONOSS, that provides a convenient and consistent abstraction
layer between a parallel validation suite and a given batch-manager. This tool
is intended to be scalable on most HPC architecture, with dynamic schedul-
ing and resilient execution. As we will show, JCHRONOSS has been built in
a generic manner, without constraining the target execution model in order to
meet the requirements of any developer, conveniently replacing the commodity
test-scripts encountered in some projects. The purpose is to optimize the contin-
uous integration process by providing a quick and reliable feedback on software
quality during the development process. JCHRONOSS is built in the context of
existing integration testing utilities, thereby enhancing validation work-flows in
an HPC context, while allowing the user to rely on standard components.

This paper is organized as follows: Sect.2 describes related work, dis-
cussing the use and limitations of non-regression bases in HPC context.
Section 3.1 shortly presents JCHRONOSS’s architecture. Then, Sect.3 details
JCHRONOSS’s contributions to continuous integration in HPC context and
Sect. 4 evaluates JCHRONOSS in different configurations relatively to a real
use-case. Finally, Sect. 5 describes open issues and future work.

2 Related Work

The main focus of JCHRONOSS is to run tests in an optimized way. This process
involves two main components that we have to compare with existing work: (1)
schedulers and (2) test-frameworks.

Schedulers. Resource scheduling has been widely studied for years and a large
number of tools already covers the subject particularly in HPC context. For
example, a tool like YARN [8] from the Apache Hadoop framework is a powerful
scheduler, able to distribute multiple applications over thousands of resources,
such as those used for MapReduce [5] computations. Borg [9] from Google can
distribute applications over multiple clusters, each composed of thousands of
nodes, with a goal of supporting a huge number of requests per second. In the
HPC context, job managers such as SLURM [10] are deployed over a cluster
to efficiently manage resource allocation. Such schedulers generally need to be
deployed at the system level in order to expose computing resources. On the
contrary, JCHRONOSS is running in user space, processing a test-suite meta-
description and generating calls to such job-manager in a more efficient manner.
Indeed, running a test-suite in parallel requires more than simply submitting
executions to an existing batch manager, as we will further detail.

Test Frameworks. As testing is a key process to ensure software quality, there
are a wide range of tools and solutions. Most solutions are focused on ease of
use, especially when dealing with automatic generation and configuration aspect.
CMake [6] and Autotools [4] are two main project builder, able to handle the
configuration and generations of test suites in a convenient way through macros.

250 J. Adam and M. Pérache

Some continuous integration platform like Jenkins [3], Travis [2] or CruiseCon-
trol [1] are designed to create integrated test environments gathering several key
components in the same interface (such as version control systems and ticket
trackers) However, these solutions were not developed for HPC, as they are not
able to conveniently express the execution of their workload in parallel, this bur-
den being left to the end-user. Developers are then forced to develop their own
validation script, tailored to a given test environment. JCHRONOSS proposes
to avoid this redundant effort thanks to a simple XML formatted input driving a
parallel execution from user-defined templates (batch-manager agnostic), with-
out sacrificing portability. Our tool is not a job scheduler by itself, it is designed
to be run by a user to generate from an XML meta-model an optimized stream
of requests to an existing batch-manager (the one installed on the machine).

3 Contribution

In this section, we present the three main contributions of our tool. First, we
detail JCHRONOSS'’s architecture and its main components. Then, we explain
how tests are scheduled over a supercomputer. Eventually, we describe the fault-
tolerance mechanism. These contributions allow JCHRONOSS to use a surface-
based scheduler with resiliency to run tests in parallel and optimize validation
time.

3.1 Global Model

JCHRONOSS is designed for ease of use and interoperability. It loads a standard
validated XML input and produces a standard JUnit formated output compli-
ant with common continuous integration platforms. As depicted in Fig.1, the
master-worker architecture is based on two independent layers doing mostly the
same processing. In order to keep resources as busy as possible, layers share the
same algorithm following a “greedy” approach. Jobs are scattered in sub-pools
assigned to workers.

Workers are responsible for exe-
cuting individual sub-pools. Sub-pool master
resources are subtracted from a global wpm«[‘ P, ‘ Pz ‘ P3 . B\I]—@umr

resource allocation counter. Then,

when there are no resources left, E
. New contexy 1 iNew contei(t | New con\‘ext] New context
the master stops creating workers. | i } P :
. i | Worker | i | Worker | ii [Worker | i | Worker |
Upon completion, results are merged | ‘P 12 H ‘P Pooo ! ‘B\I
in a post-run list gathering completed 1 2L LS
tests’ results — process repeated until e, e e e

test-suite completion. The only differ-

ence between master and worker is Fig. 1. Master/Worker Architecture
their scope. The master is responsible

for the global validation system whereas a worker manages a subset of tests,
effectively running them over the system.

A Parallel and Resilient Frontend for High Performance Validation Suites 251

3.2 Job Ordering

Making requests to the job manager is as important as the scheduling itself. In
the context of overloaded supercomputers, the more requests are made by a user,
the harder it is for the job manager to satisfy them. Generally, allocation grants
are based on multiple criteria. This is why requesting 2 nodes twice is not always
equivalent to a 4 node request. Allocation rate depends on current cluster load,
past requests, quotas, and the number of resources. Given these constraints,
the most basic test runner would make a request for individual tests. This can
seriously degrade user priority, making future allocation attempts longer.

JCHRONOSS offers a way to gather jobs depending on deterministic criteria,
such as number of resources. This way, if a test requests four nodes to run,
JCHRONOSS will attempt to create a worker with multiple jobs requesting the
same number of nodes, allocating the node configuration only once. This follows
a very simple principle: if the allocation is created according to type and number
of required resources, then jobs sharing similar requirements can be dependent on
the same allocation. By gathering jobs with the same requirements in the same
allocation, this policy tries to limit the number of resource requests, leading to
larger workers (more jobs per allocation) and lowering global allocation overhead.
However, as such contexts ask for more resources, the batch-manager can be a
little longer to fulfill the request. But, if the batch-manager does not penalize
allocation following a linear allocation time formula like f(z) = axz (which is
generally the case), this algorithm will always be preferable for this kind of
configuration. This approach is less stressful, and best suited for homogeneous
validation suites. Indeed, with imbalanced job pools, one worker will have to
process more tests than the others, eventually leading to a parallelism loss.

Another approach can be considered to take advantage of a higher level of
parallelism. Another solution consists in running validation suite depending on
available resources instead of test requirements. The strategy evenly divides
resources among workers. Then, jobs are scheduled using a two-dimensional
heuristic over both resources and time, the purpose being to fill each parallel
subset as much as possible. Jobs are first sorted by resource requirements and
then by decreasing estimated time. Thanks to this ordering, larger jobs are sched-
uled first, using a classical greedy scheduling heuristic. This way, JCHRONOSS
can guarantee an efficient use of available resources at any time. Ideally, effi-
cient scheduling requires a prior knowledge of individual test duration in order
to correctly apply the “surface” scheduling heuristic. However, if not provided,
or at least bounded by individual job timeout, JCHRONOSS approximates job
duration as the mean of previous duration.

This algorithm is the most efficient for non-homogeneous test-suites in terms
of job manager requests as it allocates large subset and tries to fill them —
maximizing resource efficiency. However, if the batch-manager policy is resource-
based, allocating large buckets can lead to very long allocation time, leading to
poor performance. Nonetheless, we observed that in most cases, the best-fit
policy is a good trade-off between efficiency and execution time.

252 J. Adam and M. Pérache

3.3 Fault Tolerance

Depending on code coverage, validation suites can take a lot of time, ranging
from a few minutes up to several days. However, HPC environments are not
fully reliable with, for example, failing nodes, batch-manager and timeouts —
possibly impacting running jobs. JCHRONOSS has been designed to be fault
tolerant. It supposes that any layer can crash. If a worker is interrupted, the
master considers all jobs as not run and reschedules them, making our approach
completely resilient to failing workers. Indeed, a new worker will be created
to replace the failing one and the tests will be rescheduled. Therefore, losing a
worker has no effect on validation’s coverage. The case where the master instance
is interrupted is more problematic as job results are only merged at the end of
the test-suite. Consequently, a crash prior to this point would lead to a complete
loss of master’s state. In order to circumvent this limitation, we implemented
an asynchronous check-pointing mechanism which consists in storing current job
states in a file as the workers are running. Thanks to this approach, a validation
can be restarted from the last coherent checkpoint, even if the master instance
failed, providing a complete fault-tolerance support.

Checkpoint Time. A checkpoint is initiated when the master expects a worker
to end to maximize the overlapping. It consists in storing current jobs’ state
and their configuration. Workers do not need to be checkpointed, they will be
recreated upon restart, scheduling remaining jobs. Our backup consists of a
single JSON formatted file stored in JCHRONOSS’s build directory, alongside
other temporary files. JSON format is flexible and easy to manipulate inside
JCHRONOSS, however, for now, the JSON file is not compressed and can lead
to both IO and parsing overhead depending on validation suite size. We are
considering the use of a binary JSON (BSON) to optimize this process.

Restart Time. After an interruption, JCHRONOSS can be restarted from the
backup file. To do so, current configuration is ignored and previous one is
reloaded. Then, job manager’s state is restored from the backup JSON file.
Finally, validation can restart seamlessly. In order to save disk space, following
backup files replace previous ones. Therefore, the most recent backup is always
kept and calling the same command line over again in case of failure allows the
completion of an incomplete test-suite thanks to our fault-tolerance mechanism.

Overhead. We plan to make a deep evaluation of fault-tolerance mechanism
overhead. For now, our experiments show that it takes 1 second per worker to
back up 10,000 tests and the global overhead does not exceed 1.2%. Clearly, the
number of tests can be different and the number of workers can noticeably vary
depending on the user’s configuration. By trying to checkpoint only validation
state and not JCHRONOSS itself, we significantly decrease implied backup over-
head. It is important to say that the major part of this overhead is recovered by
workers instance currently running. However, this mechanism can become really
costly with an important number of workers, this increasing checkpoint time,
not completely recovered by shorter workers.

A Parallel and Resilient Frontend for High Performance Validation Suites 253

4 Experimental Results

JCHRONOSS has been developed for and is being used on a daily basis as MPC
[7] validation system to manage a test base of forty thousand jobs, test-suite
likely to be executed on several supercomputers, involving different environments
for portability tests. JCHRONOSS’s goal is to speedup validation processes with-
out sacrificing their portability between machines. In this purpose, the important
variability between HPC machines had to be taken into account. Indeed, as afore-
mentioned several parameters affect scheduling such as current user priority and
specific latency due to cluster load. Moreover, as the machine load is highly vari-
able, we cannot predict allocation overhead. Then, two successive JCHRONOSS
runs, with similar parameters might not lead to the same result. We were care-
ful to present tests with similar configurations while mitigating these random
effects. These benchmarks were performed on two different supercomputers. First
the Curie supercomputer, operated in the TGCC, the french CEA Very Large
Computing Center, which is heavily loaded by multiple users, leading to long
waiting queues. The batch manager, based on SLURM is configured with user
priorities. Second supercomputer is a 111 nodes x 8 cores prototype, with fewer
users and a flexible batch manager. Comparisons will be made between these two
environments, respectively with and without priority based algorithms applied
at batch manager level. The NRB used here is a suite of 39,366 jobs with fixed
execution times to allow policies comparison over multiple runs while minimizing
measurement noise. These configurations have been run with the same subset of
available resources, allowed to perform tests on 48 nodes. We compare policies
in terms of elapsed time on each of these supercomputer. These comparisons
will be made alongside CTest performance with the same set of tests. The Fig. 2
depicts these results.
Complete validation suites
were run on each of these
machines with different poli- — 00 Curie cluster
cies in order to compare 30 0o Prototype cluster
batch manager configuration
effects. The fixed number of
resources is set to 4. Verti-
cal axis represents the num-
ber of hours elapsed in the
run. CTest results have been
run sequentially (ctest -j4)

to be able to compare with HH

20

Elapsed Time (h)

10

JCHRONOSS. Indeed, the
-j option allows tests to
be run in parallel without
discrimination, implying job Fig. 2. Policies efficiency comparison between two
over-submissions and causing supercomputer job managers.

the user to violate the QoS

policy and account to be blocked if the value is too high. Each job keeps the

—

CTest Default Criteria Best fit

254 J. Adam and M. Pérache

same execution time in each execution. We consider that machine load vari-
ation did not impact test-suite duration between policies, Curie being loaded
and our test cluster almost empty. These results illustrate the need to care-
fully choose scheduling policies according to cluster, allocation overhead being
highly depending on batch manager. Default sequential policy clearly shows its
limits, providing no performance gains on the test-cluster and leading to an
important penalty on Curie. More importantly, allocation overhead even led to
poor performance relatively to a sequential execution. Default policy created
around 40,000 new allocation requests, each of them associated with a resource
allocation, explaining the overhead observed on the loaded cluster. This policy
roughly applies the same methodology as other test-runner tools, as depicted by
the sequential CTest performance results.

Our criteria-based policy shows a non-negligible time reduction with a 2.5
speedup. Packing jobs relatively to resources seems to be a good alternative to
sequential execution. Indeed, considering of IV jobs, this solution can save up to
N — 1 new allocations if they are all using the same number of resources.

Eventually, best fit algorithm shows the best speed-up of 25, independently
from the underlying batch manager. The optimizations made by this policy,
spreading jobs among resources in order to save time have proven to be effective.
More importantly, this approach seems to be less sensitive to batch-manager
policy, making it more suitable for portability. Best fit is then both the fastest
and the most portable policy — reason why it is the default one in JCHRONOSS.

5 Future Work

Optimize time to result. Currently, all tests defined by the user must be per-
formed before publishing the results. Therefore, it can happen that the whole
test suite has to be completed before the user is able to consult the results,
including intermediate ones. In order to make time to result shorter, a deamon
server, provided as a JCHRONOSS plugin and running globally on interactive
nodes, could interact directly with worker instances, periodically collecting job
results and making data accessible from a client browser. To reduce the number
of deamons, a single server would handle multiple JCHRONOSS instances.

Becoming a complete end-to-end walidation tool. For now, existing validation
processes would have to be rewritten in order to generate a suitable input for
JCHRONOSS. We suggest making our tool compliant with upstream and down-
stream tools, avoiding test specifications rewriting. JCHRONOSS should include
a job generator module, which could take data from existing build systems like
CMake or Autotools. Dealing with the output, JCHRONOSS generates it in
standard JUnit XML format. However, some other formats could be more suit-
able for post-processing. A generic output generation module would bring more
flexibility to the end-user. Our idea is to gather in one single tool all valida-
tion steps from the build system to the result mining platform, leading to an
end-to-end validation tool.

A Parallel and Resilient Frontend for High Performance Validation Suites 255

6 Conclusion

JCHRONOSS is a parallel and resilient frontend for high-performance valida-
tion suites that run distributed tests in parallel in order to reduce time to result.
Beyond just taking advantage of parallel computing resources, JCHRONOSS
looks for optimal trade-offs between efficiency and duration. Its multiple schedul-
ing policies are suitable for most use cases, allowing JCHRONOSS to be an inno-
vative agile tool designed for HPC workloads. JCHRONOSS can be adapted to
various execution environments and is compatible with existing validation tools
such as Jenkins and BuildBot. We demonstrated validation speedup up to 25x
on an actual use case of =~ 40,000 tests, clearly showing the advantage of our app-
roach. JCHRONOSS is then a convenient building block for developers willing to
apply continuous integration methods to their HPC project without developing
their own launch scripts to speedup validation. As validation system reactivity is
a critical point, the important duration associated with large NRB can be a pos-
sible explanation of why some projects are not validated regularly. The purpose
of our work is to make HPC project validation suites more efficient in terms of
both computational costs and execution time. Indeed, a faster validation system
simplifying continuous testing opens the way for better programming practices
and transitively enhances code quality.

References

1. Cruisecontrol website. http://cruisecontrol.sourceforge.net/

2. TravisCI website. https://travis-ci.org/

3. Berg, A.: Jenkins Continuous Integration Cookbook. Packt Publishing Ltd,
Birmingham (2012)

4. Calcote, J.: Autotools: A Practitioner’s Guide to GNU Autoconf, Automake, and
Libtool. No Starch Press, San Francisco (2010)

5. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107-113 (2008)

6. Hoffman, B., Cole, D., Vines, J.: Software process for rapid development of HPC
software using cmake. In: DoD High Performance Computing Modernization Pro-
gram Users Group Conference (HPCMP-UGC), pp. 378-382. IEEE (2009)

7. Pérache, M., Jourdren, H., Namyst, R.: MPC: a unified parallel runtime for clus-
ters of NUMA machines. In: Luque, E., Margalef, T., Benitez, D. (eds.) Euro-
Par 2008. LNCS, vol. 5168, pp. 78-88. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-85451-7_9

8. Vavilapalli, V.K., Murthy, A.C., Douglas, C., Agarwal, S., Konar, M., Evans, R.,
Graves, T., Lowe, J., Shah, H., Seth, S. et al.: Apache hadoop yarn: Yet another
resource negotiator. In: Proceedings of the 4th annual Symposium on Cloud Com-
puting, p. 5. ACM (2013)

9. Verma, A., Pedrosa, L., Korupolu, M., Oppenheimer, D., Tune, E., Wilkes, J.:
Large-scale cluster management at Google with borg. In: Proceedings of the Tenth
European Conference on Computer Systems, p. 18. ACM (2015)

10. Yoo, A.B., Jette, M.A., Grondona, M.: SLURM: simple linux utility for resource
management. In: Feitelson, D., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2003.
LNCS, vol. 2862, pp. 44-60. Springer, Heidelberg (2003). doi:10.1007/10968987_3

http://cruisecontrol.sourceforge.net/
https://travis-ci.org/
http://dx.doi.org/10.1007/978-3-540-85451-7_9
http://dx.doi.org/10.1007/978-3-540-85451-7_9
http://dx.doi.org/10.1007/10968987_3

A Heterogeneous Runtime Environment
for Scientific Desktop Computing

Nuno Oliveiral2®) and Pedro D. Medeiros2(®)

! ISEL - Instituto Superior de Engenharia de Lisboa, Lisboa, Portugal
no@deetc.isel.pt
2 NOVA LINCS/Department of Informatics,
Universidade Nova de Lisboa, Lisbon, Portugal
pdm@fct.unl.pt

Abstract. Heterogeneous architectures encompassing traditional CPUs
with two or more cores, GPUs and other accelerators like the Intel Xeon
Phi, are available off the shelf at an affordable cost in a desktop com-
puter. This paper describes work towards the definition, implementation
and assessment of an environment that will empower scientists and engi-
neers to develop and run their demanding applications in such personal
computers. We describe HRTE (Heterogeneous Runtime Environment)
that allows the construction of dedicated problem solving environments
(PSE) taking advantage of those powerful and local processing elements,
thus avoiding the use of remote machines through resource managers
that introduce large latencies. HRTE is tailored to the communication
and execution patterns of a PSE, efficiently mapping them to the het-
erogeneous architecture described. We also developed an API that eases
the development of modules (HModules) that support multiple parallel
implementations and are easily integrated in a traditional PSE.

HRTE functionality and performance and the API used to build
HModules are assessed in the construction of a PSE in the area of Mate-
rials Science.

Keywords: Heterogeneous architecture - GPU - PSE (Problem Solving
Environment) - Runtime environment - Accelerator -+ OpenCL

1 Introduction

Scientists have been conducted their research using increasing computational
power to run their simulation models, to analyze large experimental data, and to
compare observed and predicted data. The exploitation of the parallel hardware
that supports the required levels of performance is too complex to one that is not
a computer science expert. This complexity of hardware, middleware, software
versions and standards must be hidden from the user. The objective is that an
expert in a specific science could define his model or simulation without worrying
about the runtime environment.

© Springer International Publishing AG 2017
I. Dutra et al. (Eds.): VECPAR 2016, LNCS 10150, pp. 256-269, 2017.
DOI: 10.1007/978-3-319-61982-8_23

A Heterogeneous Runtime Environment for Scientific Desktop Computing 257

Problem solving environments (PSE) are integrated environments for solving
a target class of problems in an application domain. Typically, they encapsulate
the state of the art algorithms and problem solving strategies through an easy
interface in a way that an expert in the application domain could run his model
without specialized knowledge of the underlying computer hardware or software.
Several open source frameworks for building PSEs exist, namely OpenDX [14],
Voreen [9] and SCIRun [11].

PSE environment offers the possibility of using building blocks from a library
and interconnecting them in a network of modules that supports a dataflow
model. The runtime of the PSE toolkit supports the dataflow between modules,
the visualization of the intermediate and final results, as well as the modification
of some parameters during the execution (steering computation). The network of
modules can incorporate domain specific libraries such as numeric computation
and visualization (see Fig.1).

P

SE

Modules
Menu

PSE Runtime
Module I/O Module
port support Management

Fig.1. A PSE environment with a network of modules.

A PSE provides a diverse set of modules with specific functions and the
interface allows the user to build easily a network of modules. The execution of
this network by the PSE runtime performs the processing steps needed to achieve
the goal of the user. In each moment, the PSE scheduler determines the subset
of modules that need to be executed according to data stream dependencies.

The runtime environments of PSEs need to support high requirements of
computational power. This computational power is typically supported by cluster
machines or even through the grid infrastructure. However, the use of remote
parallel processing platforms implies the submission of requests through batch
schedulers that introduce intolerable latencies for interactive use. A change in

258 N. Oliveira and P.D. Medeiros

the technologies used for executing PSE modules is necessary in order to achieve
a significant reduction of the processing times combined with small latencies that
allows an interactive use by users. One promising way to achieve the above stated
goal is through the exploitation of the heterogeneous multi-core architectures
present in current desktop computers.

Thereby it is possible to develop new modules that take advantage of mul-
tiple CPU using frameworks as PThreads or OpenMP. For the same reason the
operation of other processing units (PU), such as GPUs, can be carried out by
the individual modules using frameworks like NVIDIA CUDA, OpenCL, etc.
Therefore there is no obstacle in develop a module to take advantage of this
type of hardware. These PUs are also known as accelerators and can share the
main memory of the main processor (CPU) or having a private addressing space.
In this work we used GPUs with its own separate address space. These types of
PUs causes the module to explicitly copy the data into the memory of the PU,
submit the code (kernel) to be executed, and finally copy of the data back to
the main system memory.

The authors of [2] claim that in many cases the coordinated use of all the
PUs of a heterogeneous architecture allows performance gains when a compar-
ison with a homogeneous solution is performed. The programmer could imple-
ment modules targeting the most suitable hardware in mind, using a specific
programming model and/or specific programming libraries.

To deal with the diversity of modules used for a given goal, we propose HRTE
(Heterogeneous Runtime Environment) to support the execution of PSE tasks
over the heterogeneous hardware available on a single desktop computer. We
want to extend a PSE with HRTE in order to be able of schedule modules to
the available hardware in the desktop computer. To follow this objective HRTE
supports another type of modules that can have several implementations for each
of the devices, e.g., CPU, Cuda, OpenCL, and so on. To the PSE user these new
modules exist like any standard modules and can be used to build a processing
network (see Fig. 2).

HRTE has two main parts that correspond to the two main contributes of
this work:

— Simplifying the development of new modules. HRTE offers the notion of Het-
erogeneous Module (HModule) supporting several implementations for each
type of PU allowing it to run on multiple hardware architectures (see Fig. 2).
Support of transparent management of data copy between main memory and
memory of the PUs is also included. The development of HModules is sim-
plified through the availability of methods that implements map and stencil
parallel control patterns [8] over HRTE.

— Optimizing the execution of the of module network: HRTE supports efficient
access to large volumes of data flowing between modules in a complex mem-
ory hierarchy (including multicore CPUs, GPUs and other kinds of PUs).
This data flow optimization between HModules is achieved through the min-
imization of the number of data transfers between CPU and PUs memories,
taking advantage of the current location of the data.

A Heterogeneous Runtime Environment for Scientific Desktop Computing 259

PSE

Modules
Menu

=
ganan

|
==

PSE Runtime
Module I/O Module
port support Management

Fig. 2. A PSE environment with a network of modules and new HModules.

Related Work. Several research efforts that allow the exploitation of hetero-
geneous architectures for building efficient applications have been successful:
OpenCL [6], HSA [5], StarPU [2], Harmony [4], and PTask [13].

OpenCL is a standard for cross-platform allowing the definition of kernels
that can be offloaded to diverse processors found in personal computers as spe-
cific accelerators like GPUs and classical CPUs. OpenCL can be directly used
to program a PSE’s module.

Heterogeneous System Architecture (HSA) is a new hardware and software
platform allowing software to use different types of processors, e.g. GPUs and
CPUs, that work together through shared memory to efficient run demanding
applications.

StarPU is runtime system providing a unified execution model together with
a data management library. As claim by authors the main objective is to provide
numerical kernel designers with a simplify way of defining task to run over the
heterogeneous hardware. StarPU scheduler will assign task to available devices
and the systems also allows the development and integration of new scheduling
policies.

Harmony is a runtime supporting a programming and execution model pro-
viding the simplification of parallelism management, dynamic scheduling of ker-
nels and monitoring the performance. Harmony supports compute kernels, anal-
ogous to imperative’s function, that may have multiple implementations for mul-
tiples processors architecture. Execution of the kernels is determined by the set
of input variables likes a dataflow approach.

PTask propose a set of operating system abstraction to support accelerators
devices like GPUs as first class computing resources. These abstractions support

260 N. Oliveira and P.D. Medeiros

a dataflow programing model built with objects managed by operating system
allowing the execution management and data movement in the hands of the
kernel.

Regarding the convergence of such efforts and PSE toolkits most of the
projects have targeted clusters and grids [10,12]. Several references exist regard-
ing the use of GPU-enabled modules in PSEs [7]. Parallel structured program-
ming projects like FastFlow [1] address both heterogeneous architectures and
support of dataflow between components (pipeline pattern).

Paper Organization. This paper is organized as follows: we begin by describ-
ing the characteristics and organization of HRTE in Sect. 2, followed by the pre-
sentation of some relevant aspects of the current implementation using SCIRun
and StarPU in Sect. 3. In Sect.4 we present a case study, namely the applica-
tion of HRTE in the implementation of a PSE in the area of Materials Science.
Finally we present the conclusions and future work in Sect. 5.

2 HRTE Organization

A PSE toolkit provides modules that can be interconnected with other modules
in a dataflow approach. Each module reads data from its inputs, executes an algo-
rithm and generates outputs to be sent to other modules. HRTE introduces a new
type of module (HModule). These modules allow the execution of an algorithm in
several platforms (hardware and software). The extensions should maintain com-
patibility with original features of PSE. Therefore all existing modules can still be
used and can be interconnected with the new HModules (see Fig. 3).

In most PSEs large volumes of data are transferred between modules. The
efficient support of these huge data transfers and the optimization of its sharing
between modules must be tailored to an environment where a hierarchy of levels
of memory exists; if we consider that some of the modules will be offloaded to
an accelerator this implies that the data must also be transferred to and from
the accelerators memory. The transfer costs must be considered by the runtime
environment, otherwise the gains of using the accelerator can be hidden by the
overheads intrinsic to data transfer between separate components of the memory
hierarchy. Another issue is related with the limited memory in some accelerators,
imposing that the accelerators memory may not accommodate all the data thus
implying its partition. Therefore, HRTE must also extend the PSEs dataflow
between HModules in order to send additional information about the locality
and partitioning of the data transferred (see Fig. 3).

To be able to incorporate HModules in an existing PSE framework one must
modify the PSE code to handle the execution of new HModules and the dataflow
between both types of modules. The HRTE organization allows the minimization
of changes of PSE code thus easing the integration of HRTE in different PSE
toolkit. These modifications allow the definition of a new HModule by defining
the methods summarize in Table 1.

A Heterogeneous Runtime Environment for Scientific Desktop Computing 261

P

Read data from input port

SE
[: Data Processing

Yite data to output port

HRTE Data HRTE Process

m Transfer API Control API
Library for Hybrid Architectures
(e.g. StarPU)

[[

1 1

1 1

PSE Runtime | |

1 1

Module I/0O Module 1 |
port support Management | 1
A A A ! !

N N 1 1

lecccaaa deccccaaa leccccccccccca- \

Fig.3. A PSE environment with standard modules and the new HModule in same
application.

Table 1. Methods need to be defined when declaring a new HModule

void getInputs() |Extract data from input ports and register it

void setOutputs() | Generate the data to the output ports of the module

void hexecute() Definition of actions performed by the HModule

A dynamic library supports all the functionalities of the runtime and is used
by the HModule code. It supports the concept of a heterogeneous function allow-
ing, in the same module, the availability of different implementations. In Table 2,
we present the method for adding an OpenCL implementation to a HModule.

Table 2. Method to register an OpenCL implementation in an HModule

void hrte_HFunction_add_opencl_code(|Register an OpenCL kernel imple-
hrte_HFunction *hf, mentation indicating the filename
char *kernelName,char *clFile) |containing the OpenCL code.

The library also supports data management allowing data registration for on
demand transfer between memory hierarchy levels and data partition (with and
without ghost zones). The registration of the data in HRTE is done using the
functions summarize in Table 3.

262 N. Oliveira and P.D. Medeiros

Table 3. Methods to register a 3D volume and set the number of partitions

void hrte_matride_register(
hrte_data_handle *handle,
void *ptr, uint32_t nx, Register a 3D matrix.
uint32_t ny, uint32_t nz,
size_t elemsize)

void hrte_matrix3d_set_partitions(|Set the number of partitions on
hrte_data_handle handle,int n) data.

Table 4. HRTE map and the stencil parallel control patterns

void hrte_task_map(hrte_HFunction *hf,
hrte_data_handle in,
hrte_data_handle out,
hrte_HFunctionArgs *ha)

Map pattern will apply the het-
erogeneous function to every el-
ement of the input data.

void hrte_task_stencil (hrte_HFunction *hf, |Stencil pattern will apply the
hrte_data_handle in, heterogeneous function to every
hrte_data_handle out) element and its neighbors.

To simplify the definition of a HModule map and the stencil parallel control
patterns [8] are available and presented in Table 4.

3 Current HRTE Prototype

At present our prototype has been developed using SCIRun [11] as the PSE
framework. As described in previous section we need to extend the SCIRun
Module and the dataflow between modules to integrated HRTE and augmented
SCIRun to support HModules.

The definition of a new module in SCIRun implies the definition of a new
C++ class extending from the Module class and the definition of the virtual
method execute() that is called when the module is executed.

We have the objective to minimize the intrusion in the source code of PSE
and allows that all the existing modules will continue to be used and to be
interconnect with the new HModules. So the integration of the heterogeneous
module in SCIRun was done by defining a class HModule that extends the native
class Module (see Fig.4).

This class defines the virtual method ezecute() that will be called when the
module starts its execution. In this case, the method will contain the HRTEs

A Heterogeneous Runtime Environment for Scientific Desktop Computing 263

Fig.4. UML class diagram representing the changes to the SCIRun source code for
adding an HModule.

support code and finalizes calling the hezecute() virtual method. This approach
allows the PSE framework to see HModules as native modules and their interface
with the user, the management of module, data flows and the scheduling of
modules is maintained as originally defined by the PSE toolkit.

Thus, the definition of a new HModule implies the development of a new C++
class that extends, not from the Module class, but instead from the HModule
class. The programmer has to define the virtual method hezecute() instead of
the method ezecute().

The optional graphical user interface associated with the module is defined in
TCL script language and finally the specification of the input and output ports
are made in a XML file. The dataflow that interconnect modules was extended
to include additional information when we have HModules interconnected.

The data binding with code with multiple implementations, support by
HRTE runtime and described in Sect. 2, is carried out with the help of StarPU
[2] environment. HModules are mapped to tasks and codelets; module input and
output uses StarPU block management interface. The modifications made to
the PSE dataflow part and the use of StarPU allows significant performance
improvements when executing a sequence of HModules. This claim had been val-
idated through the use of a network of HModules that runs an OpenCL kernel
(Fig.5) that only outputs the data received without any processing (void kernel).

The evaluation used a machine with an Intel Xeon CPU E5506 at 2.13GHz,
12 GB of RAM and two NVIDIA Tesla C1060. The operating system is Ubuntu
12.04 x86-64. The GPUs driver is the NVIDIA 340.29. The GPU SDK is CUDA
6.5.14 (OpenCL 1.1). PSE is SCIRun 4.7 and StarPU is 1.2.0rc2. In Table5 we
compare the execution times of this network with a similar one without HRTE
(same OpenCL kernel). Optimization of dataflow between HModules allows a
reduction in execution time up to 33% over the version that does not use HRTE.

264 N. Oliveira and P.D. Medeiros

SCIRun (Void_HRTE-3 Time_Group.srn)

Fle Modules Subnets Toolkits Help SCIRun v4.7 (revision

-
ReadField

m O EE

“Void_HRTE

m - @E
h

Yoid_HRTE

o e
T

Yoid_HRTE

[

- ™
Execute All 0/0 < Configure > | +|
Fig. 5. Network used to evaluate the performance of dataflow between modules.

Table 5. Evaluation time of the performance of dataflow between modules with and
without HRTE support.

Image size | Partitions | OpenCL | HRTE
100 1 29.3 23.6
2 31.0 25.0
4 27.5 26.1
200 1 55.2 31.6
2 56.2 34.5
4 67.7 314
300 1 200.9 53.3
2 176.8 60.2
4 205.6 62.4
400 1 545.3 | 188.3
2 554.0 184.6
4 556.3 | 188.5
500 1 1009.9 |339.1
2 1018.8 | 340.6
4 1023.0 342.5
600 1 1772.7 | 575.6
2 1768.8 574.1
4 1785.8 |578.1
700 1 2714.6 | 891.6
2 2636.8 | 894.5
4 2734.4 | 894.6

A Heterogeneous Runtime Environment for Scientific Desktop Computing 265

4 A Case Study in Materials Science

In the field of Materials Science, research on composite materials (comprising
two distinct materials, where one constitutes a base matrix and the other acts as
reinforcement) has a growing relevance in transportation and energy areas [3].

To forecast the characteristics of a new material, it is vital to characterize
the reinforcements population regarding aspects such as position, size and ori-
entation of the particles. X-ray computed tomography (X-ray CT) images are
used for the characterization activities.

The task of processing and analyzing such data is a complex one: not only
there is a huge volume of data to be processed but also there are noise and arti-
facts that must be removed; low contrast between the matrix and the reinforce-
ment particles, due to small density difference makes this processing computing
intensive.

Support of this processing and its easy handling by a non IT specialist
requires an environment that allows the definition of a sequence of computa-
tional processing steps as well as its parameterization values in an interactive
and real time way. In this setting, the construction of a PSE to the character-
ization of reinforcement population in 3D tomographic data is an opportunity
for assessing the functionality and performance of HRTE. The images obtained
by CT need processing to eliminate noise and allow the detection of boundaries
between the base material and the reinforcement particles.

Flle Modules Subnets Help 10w Modu Table name: Tomo Data Panels Help
lobject_ino

ReadFiold Output e name: n_vorels Objects: All
[u1]] 21/ 408241 @
= vt ito
S
2478
Excoute | Close Find oy
. anz2| |
Elle Views Help 199591}
15786 \ / \
1 ey | i | 5
ImageL abeling 7440 \ f & -
(] R 21 . N
| oo oo
= 7 22 @ = &7 @ & 1z 17 1
e = 7
[uT] el] T |

e T

“DECreator Objets sets: Attributes S
T IRt B x @3] © Unvae
[Table selection

Y [arvoxel o] ¢ Bivariate
2ndY [ia =l 1 Average Al

I

Execute All NewWindow | Autoview | GoHome | SetHome

T @ T wos T ooy [obe [mivowes [et |
o m @ 00 1508 293400 Il

Fig. 6. PSE to characterize the reinforcements population determining its dimensions,
position and orientation.

Figure 6 shows an example of the steps performed in order to obtain the
characteristics of reinforcement population. The graphic in the right shows the
particle’s size distribution; to calculate the size of each reinforcement the PSE
must segment the 3D image and this operation includes some steps that are
computationally demanding. To assess HRTE, we ported an OpenCL existing

266 N. Oliveira and P.D. Medeiros

SCIRun (Segmentation-Hysteresis-Labeling HR’

Fle Modules Subnets Toolkits Help SCIRun v4.7 (revision

eadField J
o] [
egmentation_HRTE
i) 033 JRMEIIF
EN (7151

ol

:

1
|

w

|

teresis_HRTE 3
g

'@(:l
:

‘ImageL abeling_HRTE

CIEESE 2

|
M1 =
Execute Al I 656 < configure > |+

Fig. 7. Network to process CT raw images allowing the adequate objects identification.

implementation to HRTE. Both solutions have the same organization - in fact
the OpenCL kernels are the same - that is described in the following.

We developed three HModules to process the tomographic 3D image. The
modules perform in sequence bi-segmentation, hysteresis and ImageLabeling
operations. Bi-segmentation transforms the CT 3D original grey scale image
to one with only three colors: black, grey and white. The base material is repre-
sented as white, the reinforcements objects as black and the grey color represents
voxels that due to the low contrast of the image aren’t yet classified as belonging
to the base material or to the reinforcements. The main goal of hysteresis is to
eliminate the grey voxels. The hysteresis is implemented following the majority
color of the neighbors voxels. The ImageLabeling segments the image labeling
each particle with a unique identifier. This labeling step allows the characteri-
zation of each reinforcement object (see Fig.7).

Next we present a simplified declaration of the Segmentation HModule includ-
ing the virtual method hexecute. The method begins by reading the tomographic
image from the input port of the module. After reading the input data, the map
parallel pattern is used to apply the OpenCL kernel to all the voxels of the 3D
image. After, the result image is sent to the output port of the module.

The OpenCL kernel used by bi-segmentation HModule to calculate the new
value of all the image voxels is presented next:

__kernel void Segmentation (...){
BYTE value;

value = bk[INDEX(x, y, z, nx, ny)];
if (value <= min) value = BLACK;

else if(value > max) value = WHITE;
else value = GREY;

bkO[INDEX(x , y, z, nx, ny)] = value;

A Heterogeneous Runtime Environment for Scientific Desktop Computing

3

class Segmentation:public HModule {

void hexecute() {

hrte_data_handle img;
get_input_hrte_handle(..., img,

hrte_task_map(...,img, img,

s

send_output_hrte_handle(..., img);

};

s

267

Figure 7 presents the PSE network used in the experiment; Table 6 contains
a table comparing the execution times of two networks built using the same
approach described in Sect. 3: the 3rd column corresponds to a network where
modules don’t use HRTE support while the 4th column shows the execution
time for the same kernels wrapped as HModules.

Table 6. Evaluations times of the network to process CT raw images executed with

and without HRTE support.

Image size

Partitions

OpenCL

HRTE

100

59.6

57.2

64.8

69.4

66.3

70.1

200

218.6

175.7

226.0

172.0

228.1

180.9

300

709.9

512.9

701.0

527.1

725.1

532.1

400

1717.2

1193.4

1724.4

1226.1

1732.6

1240.8

500

3266.7

2323.6

3274.5

2383.9

3261.2

2403.9

600

5986.5

4297.8

5984.0

4381.0

6018.9

4424.7

700

10195.3

8255.1

10209.3

8384.7

B N e N B N B '~ I TN B VS N3 S VG B NG T S S B NG I S S B O

10182.3

8466.8

268 N. Oliveira and P.D. Medeiros

5 Conclusions and Future Work

In this paper we presented HRTE which aims to ease the development of applica-
tions that use parallelism to tackle computational problems characterized by big
needs in computational power and processing of big volumes of data. Our target
is to help scientists and engineers that are not parallel processing specialists to
develop modules for Problem Solving Environments toolkits that make an effi-
cient exploitation of desktop computers equipped with accelerators. As far as we
know, this effort to create a framework allowing the integration in Problem Solv-
ing Environments toolkits of modules that can have different implementations
and communicate efficiently by optimizing the data transfers is original.

The case study in Materials Science showed that HRTE allowed that a net-
work of already existing OpenCL-based modules executed taking advantage of
the actual localization of data. On the other hand, details like data partitioning,
device selection, and data transfer between different levels of memory hierarchy
were hidden from the programmer.

The results obtained in our prototype using SCIRun and StarPU, assessed
through a realistic 3D image processing are promising in terms of performance
and also regarding the ease of development of new modules. The experiments
described gave us valuable insights to further developments of our research
efforts.

Our future work include the port to HRTE of other composite material
processing modules and the assessment of HRTE in other areas of application.
In our plans are also the support of HModules that support other parallel pro-
gramming frameworks like MPI.

Acknowledgments. FCT MCTES and NOVA LINCS UID/CEC/04516/2013. The
Polytechnic Institute of Lisbon (IPL) supports the 1°° author as a doctoral stu-
dent. FCT-funded Project PTDC/EIA-EIA /102579/2008 Tomo-GPU - Problem Solv-
ing Environment for Materials Structural Characterization via Tomography.

References

1. Aldinucci, M., Danelutto, M., Kilpatrick, P., Meneghin, M., Torquati, M.: Acceler-
ating code on multi-cores with FastFlow. In: Jeannot, E., Namyst, R., Roman, J.
(eds.) Euro-Par 2011. LNCS, vol. 6853, pp. 170-181. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-23397-5_17

2. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.A.: StarPU: a unified plat-
form for task scheduling on heterogeneous multicore architectures. Concurr. Com-
put. Pract. Exper. 23(2), 187-198 (2011). http://dx.doi.org/10.1002/cpe.1631

3. Cadavez, T., Ferreira, S.C., Medeiros, P., Quaresma, P.J., Rocha, L.A., Vel-
hinho, A., Vignoles, G.: A graphical tool for the tomographic characterization of
microstructural features on metal matrix composites. Int. J. Tomogr. Stat. 14(510),
3-15 (2010)

4. Diamos, G., Yalamanchili, S.: Harmony: an execution model and runtime for het-
erogeneous many core systems. In: HPDC08. ACM, Boston, Massachusetts, USA,
June 2008

http://dx.doi.org/10.1007/978-3-642-23397-5_17
http://dx.doi.org/10.1002/cpe.1631

10.

11.

12.

13.

14.

A Heterogeneous Runtime Environment for Scientific Desktop Computing 269

Hwu, W.M.W. (ed.): Heterogeneous System Architecture: A New Compute Plat-
form Infrastructure. Morgan Kaufmann Publishers Inc., Waltham (2016)
Khronos: OpenCL (2016). http://www.khronos.org/opencl

Leeser, M., Yablonski, D., Brooks, D., King, L.S.: The challenges of writing
portable, correct and high performance libraries for GPUs. SIGARCH Comput.
Archit. News 39(4), 2-7 (2011). http://doi.acm.org/10.1145/2082156.2082158
McCool, M., Reinders, J., Robison, A.: Structured Parallel Programming: Pat-
terns for Efficient Computation, 1st edn. Morgan Kaufmann Publishers Inc., San
Francisco (2012)

Meyer-Spradow, J., Ropinski, T., Mensmann, J., Hinrichs, K.: Voreen: a rapid-
prototyping environment for ray-casting-based volume visualizations. IEEE Com-
put. Graph. Appl. 29(6), 6-13 (2009). http://dx.doi.org/10.1109/MCG.2009.130
Miller, M., M.C.D.J.J.C.: Grid-enabling problem solving environments: a case
study of SCIRun and NetSolve. In: Proceedings of HPC 2001, pp. 98-103, 22—
26 April 2001

Parker, S.G., Johnson, C.R.: SCIRun: a scientific programming environment for
computational steering. In: Proceedings of the 1995 ACM/IEEE Conference on
Supercomputing. Supercomputing 1995. ACM New York (1995). http://doi.acm.
org/10.1145/224170.224354

Peterson, J., Hallock, M., Cole, J., Luthey-Schulten, Z.: A problem solving envi-
ronment for stochastic biological simulations. In: Proceedings of the 3rd Workshop
on Python for High-Performance and Scientific Computing (2013)

Rossbach, C.J., Currey, J., Silberstein, M., Ray, B., Witchel, E.: PTask: operating
system abstractions to manage GPUs as compute devices. In: Proceedings of the
Twenty-Third ACM Symposium on Operating Systems Principles. SOSP 2011, pp.
233-248. ACM, New York (2011). http://doi.acm.org/10.1145/2043556.2043579
Thompson, D., Braun, J., Ford, R.: OpenDX: Paths to Visualization, 1st edn.
Visualization and Imagery Solutions Inc, Missoula (2001)

http://www.khronos.org/opencl
http://doi.acm.org/10.1145/2082156.2082158
http://dx.doi.org/10.1109/MCG.2009.130
http://doi.acm.org/10.1145/224170.224354
http://doi.acm.org/10.1145/224170.224354
http://doi.acm.org/10.1145/2043556.2043579

Adam, Julien 248
Agullo, E. 11
Ajima, Yuichiro 149
Anzt, Hartwig 35

Baboulin, Marc 35
Bischof, Christian 162
Boku, Taisuke 135
Byrnes, Joseph 89

Cabral, Bruno 121
Cools, S. 11
Cores, Ivan 191
Correia, Fabio 162

Daga, Mayank 112
de Sousa, Jos¢ T. 174
Dongarra, Jack 35

Ferro, Mariza 7
Fonseca, Alcides 121
Fournier, Yvan 35
Fujii, Akihiro 52
Fujita, Norihisa 135

Ghattas, Omar 3
Giraud, L. 11
Gonzalez, Patricia 191
Guivarch, Ronan 44

Hanawa, Toshihiro 135
Hasegawa, Hidehiko 21
Hishinuma, Toshiaki 21
Hulsemann, Frank 35

Isaac, Tobin 3

Jeannot, Emmanuel 191
Joslin, Guillaume 44

Keever, Erik 89
Khabou, Amal 35

Author Index

Liu, Ji 206
Lopes, Jodo D. 174

Malony, Allen D. 89
Mariano, Artur 162
Marques, Osni 52, 64
Martin, Maria J. 191
Martins, Paulo 75
Matsumoto, Kazuya 135
Mattoso, Marta 206

Mc Evoy, Giacomo 7
McCumsey, Stephanie 89
Medeiros, Bruno 220
Medeiros, Pedro D. 256
Moreau, A. 11

Nakajima, Kengo 52
Nanri, Takeshi 149
Nomura, Naoya 52
Nose, Takafumi 149

Oliveira, Nuno 256

Pacitti, Esther 206
Pérache, Marc 248
Perrussel, Ronan 44
Petra, Noémi 3
Pinheiro, Rui 101

Rasmusen, Craig 89
Rasmusen, Soren 89
Rodriguez, Gabriel 191
Roma, Nuno 101

Ruiz, Daniel 44

Saga, Kazushige 149
Salas, P. 11

Schulze, Bruno 7
Shida, Naoyuki 149
Silva, Rui 234
Sobral, J.L. 234
Sobral, Jodo L. 220

272 Author Index

Sousa, Leonel 75
Stadler, Georg 3
Sumimoto, Shinji 149

Tanaka, Teruo 21, 52
Tomas, Pedro 101
Toomey, Doug 89
Tshimanga, Jean 44

Unfer, Thomas 44

Valduriez, Patrick 206
Vanroose, W. 11
Vasconcelos, Paulo B. 64

Wang, Yushan 35

Yetkin, EF. 11

Zounon, M. 11

	Preface
	Organization
	Contents
	Invited Talks
	Scalable Algorithms for Bayesian Inference of Large-Scale Models from Large-Scale Data
	References

	Analysis of High Performance Applications Using Workload Requirements
	1 Introduction
	2 Methodology Based on Requirements
	2.1 Description of Methodology Phases

	3 Multi-dimensional Analysis on Virtual Clusters
	4 Summary
	References

	Hard Faults and Soft-Errors: Possible Numerical Remedies in Linear Algebra Solvers
	1 Introduction
	2 Interpolation Policies
	3 Numerical Experiments
	4 Concluding Remarks
	References

	Applications
	SIMD Parallel Sparse Matrix-Vector and Transposed-Matrix-Vector Multiplication in DD Precision
	1 Introduction
	2 Related Work
	3 Implementation of DD-SpMV and DD-TSpMV Using AVX2
	3.1 DD Arithmetic
	3.2 Intel SIMD AVX2

	4 Performance Degradation Factors of DD-SpMV and DD-TSpMV in CRS Using AVX2
	4.1 DD-SpMV
	4.2 DD-TSpMV in CRS Using AVX2

	5 Implementation and Evaluation of DD-SpMV and DD-TSpMV in Other Storage Formats
	5.1 DD-SpMV
	5.2 DD-TSpMV

	6 Experimental Results
	6.1 DD-SpMV and DD-TSpMV Overheads
	6.2 Convert Costs of BCRS4x1 from CRS
	6.3 BCRS4x1 Effect

	7 Discussion
	8 Conclusion
	References

	Accelerating the Conjugate Gradient Algorithm with GPUs in CFD Simulations
	1 Introduction
	2 Problem Setting and Software Framework
	3 Sparse Linear Algebra on GPUs
	4 Experimental Results
	5 Summary and Future Work
	References

	Parallelisation of MACOPA, A Multi-physics Asynchronous Solver
	1 Context
	2 Parallelisation
	2.1 Multi-threading
	2.2 Mesh Partitioning
	2.3 Hybrid OpenMP/MPI Parallelisation

	3 Performance Results
	3.1 OpenMP Results
	3.2 Domain Decomposition Results

	4 Future Work
	References

	Performance Analysis of SA-AMG Method by Setting Extracted Near-Kernel Vectors
	1 Introduction
	2 SA-AMG Method
	3 Near-Kernel Vector
	4 Near-Kernel Vector Extraction
	5 Numerical Experiments
	5.1 Experimental Environments and Problem Setup
	5.2 Experimental Results

	6 Conclusion
	References

	Computing the Bidiagonal SVD Through an Associated Tridiagonal Eigenproblem
	1 Introduction
	2 Mapping Singular Values into Eigenvalues
	3 Splitting: Special Cases
	4 Reorthogonalization of Vectors
	5 Numerical Experiments
	6 Conclusions
	References

	HPC on the Intel Xeon Phi: Homomorphic Word Searching
	1 Introduction
	2 Homomorphic Encryption
	2.1 Ring Arithmetic
	2.2 Homomorphic Word Matching

	3 Parallel Algorithms
	4 Experimental Results
	5 Related Work
	6 Conclusion
	References

	A Data Parallel Algorithm for Seismic Raytracing
	1 Introduction
	2 Stingray
	3 Stingray Iterative Constraint Convergence Algorithm
	4 Parallelization Design Strategy
	5 Implementation Approach
	6 Experimental Results
	7 Discussion
	8 Related Work
	9 Conclusion
	References

	Performance Modeling and Analysis
	A Cross-Core Performance Model for Heterogeneous Many-Core Architectures
	1 Introduction
	2 Performance Modeling
	3 Experimental Results
	3.1 Model Validation

	4 Conclusions
	References

	On the Acceleration of Graph500: Characterizing PCIe Overheads with Multi-GPUs
	1 Introduction
	2 The Graph500 Benchmark
	3 Experimental Setup
	4 PCIe Bandwidth with Multiple GPUs
	5 Graph500: Optimization and Evaluation
	6 Conclusions
	References

	Evaluation of Runtime Cut-off Approaches for Parallel Programs
	1 Introduction
	2 Granularity Control
	3 Cut-Off Mechanisms
	4 Cut-Off Mechanism Evaluation
	4.1 Experimental Environment
	4.2 Benchmark Suite
	4.3 Comparison of Cut-off Approaches

	5 Conclusions and Future Work
	References

	Implementation and Evaluation of NAS Parallel CG Benchmark on GPU Cluster with Proprietary Interconnect TCA
	1 Introduction
	2 Tightly Coupled Accelerators Architecture
	3 Implementation
	4 Performance Evaluation
	5 Conclusion
	References

	Low Level Support
	The Design of Advanced Communication to Reduce Memory Usage for Exa-scale Systems
	1 Motivation
	2 Memory Usage Issues for Exa-scale Systems
	2.1 Evaluation of Open MPI Memory Usage and Analysis

	3 The Design of Advanced Communication for Exa-scale Systems
	3.1 Advanced Communication Primitves (ACPs) Design
	3.2 ACP Basic Layer: ACPbl
	3.3 Communication and Data Libraries

	4 Evaluation of ACPbl and ACPdl
	4.1 Evaluation of ACPbl Communication Performance
	4.2 Evaluation of ACPbl Memory Usage
	4.3 Evaluation of ACPdl Execution Performance

	5 Related Work
	6 Summary and Future Work
	References

	A Vectorized, Cache Efficient LLL Implementation
	1 Introduction
	2 A LLL Floating-Point Implementation
	2.1 Multi-precision and Data Structures
	2.2 Data Structure Re-organization and Vectorization

	3 Experiments
	3.1 Goldstein-Mayer Lattices (Low Dimensions)
	3.2 Ajtai Lattices (High Dimensions)

	4 Conclusions
	References

	Versat, a Minimal Coarse-Grain Reconfigurable Array
	1 Introduction
	2 Architecture
	2.1 Data Engine
	2.2 Configuration Module
	2.3 Controller
	2.4 Qualitative Comparison with Other Architectures

	3 Programming
	4 Results
	5 Conclusion
	References

	Environments/Libraries to Support Parallelization
	An Application-Level Solution for the Dynamic Reconfiguration of MPI Applications
	1 Introduction
	2 Related Work
	3 Reconfiguration of MPI Applications
	3.1 Triggering the Reconfiguration Operation
	3.2 Scheduling Algorithm
	3.3 Migration Operation

	4 Experimental Results
	5 Concluding Remarks
	References

	Scientific Workflow Scheduling with Provenance Support in Multisite Cloud
	1 Introduction
	2 System Design
	3 Task Scheduling
	3.1 Complexity
	3.2 Execution Time Estimation

	4 Experimental Evaluation
	5 Conclusion
	References

	Aspect Oriented Parallel Framework for Java
	1 Introduction
	2 Parallel Libraries with AspectJ for Hybrid Parallelism
	2.1 Design Rules
	2.2 Illustrative Example
	2.3 Discussion

	3 Performance Evaluation
	4 Related Work
	5 Conclusion
	References

	Gaspar Data-Centric Framework
	1 Introduction
	2 Data-Centric Framework
	2.1 Data Application Programming Interface
	2.2 Map Pattern

	3 Evaluation
	3.1 Low Level Benchmark
	3.2 High Level Benchmark

	4 Discussion and Related Work
	5 Conclusion
	References

	A Parallel and Resilient Frontend for High Performance Validation Suites
	1 Introduction
	2 Related Work
	3 Contribution
	3.1 Global Model
	3.2 Job Ordering
	3.3 Fault Tolerance

	4 Experimental Results
	5 Future Work
	6 Conclusion
	References

	A Heterogeneous Runtime Environment for Scientific Desktop Computing
	1 Introduction
	2 HRTE Organization
	3 Current HRTE Prototype
	4 A Case Study in Materials Science
	5 Conclusions and Future Work
	References

	Author Index

