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Abstract 

We present a novel model for the characterization of musical rhythms that is 

based on the pervasive rhythmic phenomenon of syncopation. Syncopation is felt 

when the sensation of the regular beat or pulse in the music is momentarily 

disrupted; the feeling arises from breaking more expected patterns such as pickups 

(anacrusis) and faster events that introduce and bridge the notes articulated on the 

beats. Our model begins with a simple pattern that articulates a beat consistent with 

the metrical expectations of a listener. Any rhythm is then generated from a unique 

combination of transformations applied on that simple pattern. Each transformation 

introduces notes in off-beat positions as one of three basic characteristic elements: 1) 

syncopations, 2) pickup rhythmic figures and 3) faster notes that articulate a 

subdivision of the beat.  The characterization of a pattern is based on an algorithm 

that discovers and reverses the transformations in a stepwise manner. We formalize 

the above transformations and present the characterization algorithm, and then 

demonstrate and discuss the model through the analysis of the main rhythmic 

pattern of the song “Don’t stop ‘till you get enough” by Michael Jackson.  
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1 Introduction	

Many musical rhythms elicit a sense of periodicity and regularity in listeners. 

Simple or complex music, even when it is not repetitive, often evokes the sensation 

of a regular pulse (Parncutt, 1987, 1994) which is evident when we tap in synchrony 

with music. These pulses feature accents where some are perceived as stronger than 

others. These structured, accented pulses form our expectations about the timing of 

the rhythmic events and are at the foundation of musical meter (Honing, 2012; Jones, 

2008; Jones, Moynihan, MacKenzie, & Puente, 2002; McAuley, 2010, p. 168).  

Besides meter, the perception of musical rhythm involves another mechanism: 

the grouping of events, referred to also as serial grouping or “figural coding” 

(Parncutt, 1994, p. 412). While the strong and weak pulses of meter group non-

adjacent events in a periodic way, figural coding groups adjacent events primarily 

based on their proximity in time. When we listen to a rhythm, strong interactions 

between these mechanisms and the pattern of physical durations occur in our mind 

as we interpret the rhythm by inferring a metrical context (Clarke, 1987a, 1987b; 

Fraisse, 1982; Honing, 2012). Manifestations of the interaction between our metrical 

expectations and the pattern of durations are the feeling of syncopation (Huron, 

2006, p. 295) and anacrusis or “pickup” (Lerdahl & Jackendoff, 1981, p. 500).  

According to Huron (2006, p. 295), an event in a relatively weak metrical pulse 

(off-beat) creates a higher expectation for an event in the following stronger pulse 

(on-beat). Our expectation can either be confirmed by a following event resulting in 

the proper binding of the two (London, 2012, p. 107), or be violated when the 

expected event does not occur, in which case a syncopation is felt (see also Huron & 

Ommen, 2006). In this sense, an event in a weak position is bonded to the following 

event in the strong position, or it syncopates when this bond is broken. 
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In this article, we present a model for the systematic analysis and 

characterization of musical rhythms based on Huron’s (2006, p. 295) metrical 

expectation principle of weak-strong bonds described above. The model identifies 

the characteristic relations of music events to a given beat, by codifying their 

deviations from the on-beat positions as: 1) syncopations, 2) anacrusis or pickups, or 

3) the mere articulation of a metrical subdivision. 

Sioros and Guedes (2014) generate and analyse syncopation by anticipating 

events in weaker metrical positions. Such shifts of events were introduced in a 

qualitative manner by Temperley in his study of syncopation in rock music (1999). 

Here, we extend both approaches to include two more transformations besides the 

syncopation shifts: 1) figural shifts that generate anacruses (pickups) and 2) density 

transformations that insert new events. The three transformations together form a 

complete model for the characterization of a rhythmic pattern, in a manner similar 

to a Schenkerian analysis. The model is able to generate any rhythm starting from a 

metronome-like pattern articulating only beat positions. Each transformation brings 

a particular element to the rhythm. Thus, characterizing the pattern centers on the 

discovery of the unique set of transformations that generates it. 

Our model is primarily motivated by its analytical applications in computer 

algorithms. The approach to rhythm analysis through transformations is well 

established. Several models are based on abstract mathematical transformations 

(Louboutin & Meredith, 2016; Meredith, 2014; Paiement, Grandvalet, Bengio, & Eck, 

2007) or properties particular to a certain class of rhythms (G. Toussaint, 2002; G. T. 

Toussaint, 2013). Most noticeably, Lewin (2007) formalized generalized algebraic 

transformations that can be applied to various musical dimensions including the 

timing of events. Although, the transformations we present here could be expressed 

as Lewin’s generalized transformations, we do not pursue an integration of our 

model into Lewin’s theory. Our approach is different. We formulate 
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transformational definitions for music phenomena, such as syncopation, based on 

theories and cognitive principles of rhythm and meter perception. In this way, we 

aim to create a model that reflects a listener’s interpretation of a rhythm in a metrical 

context and, thus, provide a musically meaningful codification of the patterns 

We formalize the transformations as generative processes that introduce new 

elements to a rhythm but we do not explicitly define their inverse. Instead, our focus 

is in the characterization method that we developed which effectively reverses the 

transformations. For instance, while we define a transformation that introduces new 

syncopation to a pattern, we do not define an inverse de-syncopating 

transformation. Instead, all instances of syncopation are identified and the 

respective de-syncopated patterns are generated during the characterization of the 

pattern.  

The characterization provided by the model is unique and unambiguous with 

respect to a regular beat upon which weak—strong bonds of the musical events are 

expected. Yet, the model does not exclude the interpretation of the same pattern 

according to a different beat. For example, a pattern might be understood as 

syncopated or not, depending on the placement of the beat duration relative to the 

pattern. Different listeners may infer different metrical contexts to interpret a 

rhythm (London, 2012), depending on a variety of factors, such as cultural 

background, music style, or other elements of the music besides the timing of the 

events. Often, the meter itself is intentionally ambiguous, so that such metrical 

ambiguity will be inherent in the characterization. Our systematic approach to 

rhythm analysis does not imply a unique interpretation based on the ‘correct’ meter 

of the music. In fact, the proposed model can serve as the basis for comparisons of 

different interpretations of a single rhythm that are based on different metrical 

expectations.  
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The remainder of the paper is structured as follows. In section 2, we present the 

transformations and the characterization algorithm upon which the rhythm model is 

based. In section 3, we demonstrate the model in practice using the example of the 

Michael Jackson song “Don’t stop ‘till you get enough”. Finally, in section 4, we 

discuss important aspects of the model and of its similarities and differences to other 

relevant approaches.  

2 Rhythm	generation	model	

The rhythm generation model consists of a set of three generative 

transformations that, given the beat, can generate any rhythmic pattern and a 

characterization algorithm that identifies the previously applied transformations 

and reverses them. In subsection 2.1, we formalize the transformations and define 

the transformation vector, i.e. a consistent way of representing them. Subsequently, 

in section 2.2, we present the characterization algorithm. For the algorithm to 

effectively characterize a rhythm, the transformations need to be reversible in a 

unique and unambiguous way. To this end, we impose two reversibility constraints 

that we discuss in the final subsection 2.3.  

The transformations are derived from the definition of syncopation as a cognitive 

mechanism related to metrical expectations and the weak-strong bonds between 

events articulated in weak-strong metrical positions (Huron, 2006, p. 295). 

Consequently, their formalization first requires a formalized representation of 

metrical expectations, i.e. a metrical template. We base our metrical templates on the 

stratification of meter by Yeston (1976) and on the similar definition of meter by 

Lerdahl and Jackendoff (1983). We use the algorithm devised by Barlow and Lohner 

(Barlow, 1987; Barlow & Lohner, 1987), which was adapted by Sioros and Guedes 

(2014) for the purpose of defining syncopation, to automatically generate the 



 

A generative model of rhythm 7 

 

 

template of any given meter. A metrical template consists of hierarchically grouped 

pulses as in the example of Figure 1. 

A lower and upper threshold for the duration of the metrical subdivisions 

included in the template is set based on the metrical salience of the subdivisions 

(Parncutt, 1994). The lower threshold has been estimated in numerous studies to be 

around 100ms since faster durations are not perceived as metrical subdivisions 

(London, 2012, p. 29; Parncutt, 1994; Repp, 2006). The upper threshold for the 

template is set to the most salient subdivision, which we will hereafter call the beat, 

and is estimated around 1s (Parncutt, 1994). The prominent role given to the beat in 

our model follows from the weakening of the syncopation feel and of the weak-

strong bond for slow metrical levels as discussed in detail by Sioros and Guedes 

(2014). In the example of Figure 1, the sixteenth-note and the bar levels are omitted 

as they fall outside of the above thresholds.  

The characterization of rhythms presented here is only based on the quantized 

onsets of the musical events. As each onset in the rhythm belongs to a metrical 

position, the metrical template reduces a rhythm into a binary string. In the 

examples of this section we use binary rhythm representations. However, in the 

more musical example of section 3, the events have other properties besides their 

timing, such as pitch or lyrics. The transformation and characterization process 

preserve these properties.   

The model consists of three main transformations: 1) the syncopation 

transformations, which we denote with the letter “S”, that place events in weak 

metrical positions that are not properly bound to following events in strong 

positions and therefore syncopate (Sioros & Guedes, 2014), 2) the figural 

transformations, which we denote with “F”, that result in the binding of events in 

weak-strong rhythmic figures of an anacrustic character, and 3) density 
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transformations, which we denote with “D”, that insert events in weak metrical 

positions surrounded by events in stronger pulses.  

Examples of the transformations are shown in Figure 2. Accordingly, 

syncopation is the result of the anticipation of an event from a strong metrical 

position to a preceding weaker one. In a similar manner, a weak-strong rhythmic 

figure is generated by delaying an event from a strong metrical position to a 

following weaker one, in order for it to approach a later stronger event. Density 

transformations do not involve the shifting of events. Instead, a new event is 

inserted between two existing events so that it articulates a faster metrical level.  

In the framework of this model, we call a metronome any pattern that articulates 

only beat positions i.e. that comprises events only at the slowest metrical level 

included in the metrical template. Departing from a metronome, the transformations 

can generate any binary rhythmic pattern in a step-wise process, introducing a 

single new element of the rhythm with each step—either a syncopation, an 

anacrusis, or a new event. Conversely, given the metrical expectations that derive 

from a metronome, one can characterize a rhythmic pattern by identifying and 

reversing those transformations. 

2.1 Transformation	vectors	

Each elementary transformation is characterized by the metrical level difference 

between the two positions comprising a weak-strong bond. In the case of 

syncopation, even though the bond is not realized, it is expected. For example, the 

syncopations of Figure 2 a) on half note level (pulse 8) are produced by the previous 

quarter (pulse 4), eighth (6) or sixteenth (7) notes. In fact, the difference of the 

metrical levels has been used as a means to quantify the feeling of syncopation 

(Longuet-Higgins & Lee, 1984). The anacruses of the figural transformations in 

Figure 2 b) are characterized by the same level differences; an event in the quarter, 
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eighth or sixteenth notes (pulses 4, 6 or 7) preceding an event in the half note 

position (pulse 8). Similarly, the inserted events of the density transformations in the 

last column of Figure 2 c) are placed a quarter, eighth or sixteenth note (pulses 4, 6 

or 7) before the following half note (in pulse 8). 

In general, given a metrical template, any of the generative transformations 

presented here, can be completely and uniquely defined by two components that 

together constitute the transformation vector: 1) a relatively strong pulse on which 

the transformation is applied, and 2) the metrical level difference from a preceding 

weaker pulse that can form a weak-strong bond. A weak-strong bond always 

consists of consecutive metrical positions, that is, all pulses between them must 

belong to weaker metrical positions (faster metrical levels) otherwise they would not 

correspond to the expected proper binding of events (London, 2012, p. 107). If we 

assign indices and metrical levels to the pulses as in the Figure 2, then a vector can 

be formed as: {pulse index i, metrical level difference d}. The symbol S, F or D should 

be used in front of the vector to distinguish between syncopation, figural, and 

density transformations respectively. 

Syncopation 

Generating the syncopation described in the vector S {i, d} consists in finding the 

first pulse k preceding pulse i that belongs to the weaker metrical level l(k) = l(i)-d 

and shifting (anticipating) the event from pulse i to pulse k (Sioros & Guedes, 2014). 

In the example in Figure 2 a), the syncopation S {8, 1} is generated by finding the 

pulse that belongs one metrical level faster than pulse 8 and shifting the event of 

pulse 8 to that position. Since pulse 8 belongs to the half note metrical level, the 

event is shifted to the previous quarter note position. In the S {8, 2} example, the 

same event is shifted to the previous eighth note position. 

Figural 
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Generating the weak-strong rhythmic figure described in the vector F {i, d} 

consists in finding the first pulse k preceding pulse i that belongs to the weaker 

metrical level l(k) = l(i)+d, in the same manner as in the syncopation transformation. 

However, instead of anticipating the event of pulse i, we delay the event preceding 

pulse k. The transformation takes place only if the event is shifted to a pulse weaker 

than the one it initially belonged to. In the F {8, 1} example of Figure 2 b), pulse k is 

the previous quarter note position (4) and the event preceding k is found at the 

previous downbeat (0). The event is therefore delayed from pulse 0 to 4. Similarly, in 

the F {8, 2} example, the event is delayed to the eighth-note position preceding the 

second bar. In this way, the figural transformations create a weak-strong rhythmic 

figure with the event in the following beat.  

Density 

The density transformation D {i, d} inserts a new event in pulse k preceding an 

event in pulse i. Pulse k is determined by the metrical level difference d as in the 

other two transformations. However, the event is inserted under two conditions: 1) 

the event preceding pulse k must belong to a stronger pulse m, and 2) pulse k must 

be the strongest pulse between pulses i and m. These two conditions ensure that the 

inserted event will not constitute a simultaneous syncopation or figural 

transformation; an essential requirement for the characterization algorithm and the 

reversibility of the transformations as discussed in sections 2.2 and 2.3. 

Two important remarks should be made. First, the vector S {i, d} in syncopation 

transformations coincides with the actual shift of an event from pulse i to a 

preceding weaker position. However, in figural transformations, the shifted event is 

not found in the vector but it is obtained indirectly as the previous event from the 

weak position determined by the vector. In the example of Figure 2, the solid arrows 

representing the vectors and dotted arrows representing the shifts coincide for 

syncopation but not for the figural transformations. Regardless, the way the 
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transformations and vectors are formalized ensures that each vector always 

describes a unique shift. 

The second remark is related to the special case of ternary subdivisions of the 

beat as in the example in Figure 3. By definition, the transformation vectors refer to 

the relation of two positions of different metrical strength. While the two ternary 

subdivisions of a beat belong to the same weak metrical level, Palmer and 

Krumhansl provide evidence that there is a difference in their metrical strength. 

They found that the frequency of musical events in the different metrical positions 

(Palmer & Krumhansl, 1990, fig. 1) coincide with the theoretical strength of the 

corresponding positions for common time signatures. However, musical events 

were significantly more probable in the third and sixth eighth-note positions of a 

6/8 meter than in the second and fifth positions. In other words, the second of the 

two ternary subdivisions of the beat was found to be metrically stronger than the 

first even though they both belong to the same metrical level. Furthermore, their 

results agree with goodness-of-fit judgments of temporal patterns (Palmer & 

Krumhansl, 1990, fig. 3) and with theoretical calculations (Barlow, 1987; Barlow & 

Lohner, 1987).  

This finding suggests that a note articulated in the first of the two positions of a 

ternary subdivision of the beat is normally followed by a note in the subsequent 

second weak position, as in pattern E, forming a weak-weak rhythmic figure. 

Therefore, such a weak-weak rhythmic binding of events is of the same nature as the 

weak-strong binding of events discussed by Huron (2006) and London (2012, p. 107) 

so that it can be generated by a figural (pattern E, transformation F {4, 0}) or density 

(pattern F, D {4, 0}) transformation and that in the absence of the second note a 

syncopation is felt (pattern B, transformation S {4, 0}). 

In addition, Povel and Okkerman (1981) argue that a rhythmic pattern as in 

Figure 3B —although it does not constitute a typical example of syncopation—is 
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“creating a special rhythmical tension” because of the ambivalence between the 

metrical accents and the accent caused by the short-long durations. In contrast, a 

long-short figure (as in Figure 3A) does not create any tension and agrees with the 

meter. The evidence from Palmer and Krumhansl (1990) and the syncopation 

transformations presented here suggest that this “special tension” is of the same 

nature as the more typical examples of syncopation with the difference that it is, 

perhaps, felt less strongly.  

2.2 Characterization	algorithm	

The characterization of a rhythm is based on identifying and reversing any 

previously applied transformations, one by one, by shifting or removing the 

appropriate events. By identifying, we mean determining in a unique way the kind 

of transformation—whether it describes a syncopation, figural, or density—and the 

corresponding vector. The process of identifying and reversing a transformation on 

pulse i of a given pattern is shown in the flow diagram of Figure 4. 

The first step in the algorithm (marked 1 in the flow chart) determines the second 

component of the vector that corresponds to a potential transformation. The weak-

strong pair of pulses k and i must comply with the definition of the transformation 

vector so that all pulses between them must belong to faster metrical levels. If a 

valid weak event is found, then the algorithm proceeds in determining whether the 

vector corresponds to a syncopation, figural or density transformation. In the 

absence of an event in pulse i, a syncopation is identified.  

In the opposite case, the algorithm distinguishes between a potential figural and 

density transformation. It looks for the strong pulse m that precedes the weak event 

and which would be its original position (marked 2 in the flow chart). If no such 

valid “origin” for the event is found, then a density transformation is identified.  
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The last step in all the above cases is the reversing of the identified 

transformation (marked S, F or D in the flow chart) and the output of the 

corresponding vector. This step is restricted by the reversibility constraints 

described in section 2.3. If reversing is not possible the algorithm outputs NR 

signifying the identified transformation cannot be reversed without first reversing a 

transformation on another pulse.  

In our model, it is possible for a single pulse to undergo more than one 

transformation. All transformations in the pattern will be identified and reversed by 

applying the above algorithm recursively to all the pulses until no transformation is 

found. 

2.3 Reversibility	constraints	

Reversibility is essential and, in many ways, shaped how the transformations are 

formalized, whereby any elementary transformation should always be reversible in 

a unique way. This ensures that, given a metrical template, any rhythm can be 

uniquely represented by a series of transformations. Conversely, it guarantees that a 

series of transformations can only generate a single pattern when applied to a 

metronome. Reversing a transformation is essentially a process of characterizing it. 

For example, de-syncopating is equivalent to characterizing the syncopation that is 

to be reversed. Having more than one way to reverse a transformation would mean 

that there is more than one way to characterize it, and thus the analysis of the 

pattern would be subject to interpretation. Therefore, the reversibility rule makes for 

a consistent model.  

We impose two constraints on the transformations presented above to ensure 

that the above reversibility requirement is always met:  

1) The order of events must always be preserved.  

2) Each shift must correspond to a single transformation and a single vector.  
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In the following, we discuss the implications of the above constraints using 

appropriate examples.  

The first constraint, which requires that for a shift of an event to be possible 

between two pulses, all in between pulses must be silent (i.e. not carrying an event) 

is discussed in detail by Sioros and Guedes (2014). In Figure 5, we provide an 

example of how reversibility is broken if this constraint is not adhered to. If we 

imagine the transformation S {4, 1} on pattern A of the figure, the event of pulse 4 

would be shifted to pulse 2 over the event in pulse 3. However, pattern B can be the 

result of the S {4, 2} transformation on pattern C. The reversibility constraint requires 

that pattern C be the result of only one of the two transformations. As the 

syncopation found in pattern B is de-syncopated to pattern C, the S {4, 1} 

transformation must be forbidden, else it would break the reversibility constraint. 

The second constraint dictates that generating or reversing a transformation 

should neither generate nor reverse another transformation simultaneously. If such 

a step were allowed, then the transformations would not correspond to a single 

vector. It is precisely this constraint which ensures that each transformation 

introduces a single distinct element in the rhythm. The conditions under which the 

figural and density transformations can take place are the result of this constraint. 

We demonstrate the way it is applied and discuss some of its implications in the 

context of the two examples presented in Figure 6 and Figure 7. 

Figure 6 is an example of a figural transformation that would simultaneously 

generate a syncopation. If the F {4, 2} transformation were allowed, the weak-strong 

bond between the events in pulses 2 and 3 would be broken. In our model, such 

improper binding can only be the result of a syncopation transformation, which in 

this example could only be the transformation S {2, 1} applied on pattern C. In 

contrast, a weak-strong bond between two events can arise from either a figural or a 

density transformation. In pattern B, the bond between the two last events can be 
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generated through the density transformation D {4, 2} instead of a figural prior to 

introducing the syncopation S {2, 1}. In this way, each element in the rhythm 

corresponds to a unique weak-strong bond. When trying to characterize a potential 

figural transformation, the constraint takes an equivalent form: reversing a figural 

transformation is not allowed if it simultaneously removes an existing syncopation.  

The second example, which is shown in Figure 7, refers to the potential masking 

of syncopations. In this case, the second constraint dictates that de-syncopating one 

instance of syncopation should not generate another, or in its reverse form, that 

generating a syncopation should not de-syncopate another syncopation. Pattern C 

contains a syncopation (felt on pulse 4) that could be de-syncopated as shown in the 

right side of the figure. However, this would result in the generation of a 

syncopation on pulse 2 (pattern E). Instead, we should first reverse the figural 

transformation (pattern B) and then reverse the syncopation on pulse 4, leading to 

pattern A. Conversely, the syncopation S {4, 1} cannot be generated on pattern E as it 

would mask the existing syncopation S {2, 1}. 

The last example addressed the issue of applying a series of transformations to a 

pattern. We will demonstrate the process of characterizing a rhythm that has 

undergone a series of transformations using the example of Figure 8. In the figure, 

besides the detailed transformation vectors shown on the binary representation of 

the patterns, a simplified representation of the vectors is shown on the staffs above 

the corresponding metrical positions. In this representation, the symbol depicts the 

kind of transformation (F: figural, S: syncopation, D: density) and the number the 

metrical level difference (e.g. F {4 ,1} -> F1, or D {4, 2} -> D2). The pulse index is 

omitted as it is implied by the placement of the vector at the corresponding metrical 

position.  

Starting with pattern A in Figure 8, we scan the pulses from left to right and 

reverse the transformations following the process detailed in section 2.2: 



 

A generative model of rhythm 16 

 

 

• Pulses 0 to 3 have not undergone any transformations since they are not 

preceded by events in weaker metrical positions.  

• Pulse 4 carries an event which is preceded by an event in the weaker pulse 

3. As the preceding stronger pulse 2 is not empty, a density 

transformation is identified and reversed. 

• The next pulse preceded by a weak event is pulse 10. In this case, the weak 

event in pulse 9 is preceded by an empty stronger position (8) so that the 

event is shifted there reversing the figural transformation F {10, 1}. 

• Next, a syncopation is found in pulse 12: the silent pulse 12 is preceded by 

the event in the weaker pulse 10. The syncopating event is shifted to pulse 

12 yielding the vector S {12, 1}. This shift is only possible because the 

figural transformation F {10, 1} has already been reversed in the previous 

step. Had it been otherwise, reversing the syncopation would violate the 

second constraint as it would simultaneously generate a new syncopation 

in pulse 10.  

• Continuing in the same fashion to the following pulses, the syncopation S 

{16, 2} is identified and reversed, followed by the density transformation 

D {20, 1}.  

• Starting the process again from the beginning, pulse 4 is now preceded by 

the weaker event in pulse 2. This time, the transformation is identified as 

figural because of the lack of an event on the previous stronger beat (pulse 

0).  

• Reaching pulse 16, the weak event between the fourth and fifth beat is 

removed yielding the density transformation D {16, 1}.  

• Now all events in the pattern belong to beat positions and the algorithm 

cannot identify any further transformations. The characterization of the 

pattern is therefore complete.   
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In Figure 8, a pattern labelled “Reduced” is shown. This pattern is obtained by 

only generating the possible density transformations on the metronome without 

generating any figural or syncopations resulting in the events of the two voices 

being aligned in their metronomic positions. The reduced pattern is an intermediate 

step between the initial pattern and the metronome, which preserves non-explicit 

rhythmic features (e.g. harmony or melodic intervals) while discarding the 

syncopations and pickups. A further reduction of the density transformations may 

remove essential non rhythmic features in many patterns. For instance, removing a 

chord from a weak metrical position could drastically change the harmonic structure 

of the phrase.  

The characterization process can be followed for any pattern until the 

metronome corresponding to the given metrical template is reached. The order in 

which the pulses are scanned and the transformations are found and reversed does 

not affect the final outcome. The recursive nature of the process together with the 

reversibility constraints ensure that the given pattern can be generated only by the 

set of transformations found during the characterization.  

However, when generating the initial pattern from the metronome, some 

transformations depend on others and must be performed in the order they were 

found. In Figure 8, the syncopation S{12, 1} must be performed before the figural 

F{10, 1} which depends on the existence of the syncopating note on pulse 10. On the 

other hand, other transformations, such as the D{20, 1}, can be applied in any order 

without affecting the outcome. In general, transformations that share at least one 

event in their weak-strong pairs form compound transformations and their shifts 

must be performed in a certain order to ensure the reconstruction of the pattern. 

Another type of dependence between transformations that do not share a common 

event is found between D{16, 1} and S{12, 1}. Although each transformation does not 

depend on the existence of the other, when both are generated, they must be in the 
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correct order, otherwise the density transformation would not be possible. Because 

of the reversibility constraints, the characterization algorithm can only reverse a 

transformation if no other transformation depends on it, thus ensuring that the 

result of the characterization process will always respect the order of the 

dependence of the transformations. 

All the patterns that originate from the same metronome will lie on a tree-like 

lattice similar to the syncopation branches and trees presented by Sioros and Guedes 

(2014). In Figure 9 we present an example of such a “rhythm” tree. The example 

illustrates in practice two important aspects of the model and how the reversibility 

constraints result in a unique characterization of the patterns. First, all patterns that 

can be generated by a metronome will be found on the same tree. Second, certain 

patterns can be generated through more than one branch. Nevertheless, these 

branches always share the exact same transformations in a different order. 

All the allowed transformations are represented by arrows connecting two 

patterns. Generating the transformations follows the direction of the arrows; 

characterizing a pattern follows the opposite direction. As some patterns can be the 

result of more than one independent transformations, which transformation is 

reversed first depends on which pulse we chose to characterize first. In any case, a 

complete characterization of a pattern follows the entire path until the metronome is 

reached and all transformations are reversed. These properties are general to the 

model and not specific to the example; they are common for trees constructed for 

metronomes with any metrical subdivisions (binary, ternary etc.) and for any 

concatenation of beat durations.  

 Sioros and Guedes (2014) presented an algorithm for de-syncopating any pattern 

and obtaining its non-syncopating counterpart, called the root. Similarly, the 

characterization process presented here generates a branch of a tree connecting the 

pattern to a metronome. The rhythm tree resembles the syncopation tree of Sioros 
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and Guedes with two important differences: 1) the root of the tree is not merely a 

non-syncopating rhythm but a metronome that articulates only the beat positions of 

the given meter, and 2) the branches hold every possible pattern with the same 

number of beats and not a small collection of patterns with same number of events 

and similar rhythmic figures. 

3 Don’t	stop	till	you	get	enough	

In this section, we demonstrate some of the strengths of the model by 

characterizing and discussing the main rhythmic pattern of the song “Don’t stop ‘till 

you get enough” by Michael Jackson. The piece has several interesting properties 

which make it well suited for demonstrating the strengths of our approach. In 

Figure 10, the transformations of the original pattern to the metronome are shown, 

passing through the reduced pattern that contains only density transformations. For 

clarity, only the simplified transformation vectors are used in the figure, in which 

the single numerical component is the metrical level difference. The pulse index is 

implied by the positioning of the vector at the corresponding metrical position (e.g. 

D {12, 1} -> D1 above the third beat of the melody). 

The two bars of the melody share several similarities and some important 

differences. Examining the melody, we can see three repetitions of a pattern of two 

sixteenth notes on weak metrical positions (marked with a circle on pulses 6, 22 and 

30). The two first repetitions are identical in both their metrical positions and note 

durations. The third repetition differs only in the duration of the second note. The 

characterization of the transformations tells us that each repetition has a different 

character. In the first one, the notes are regarded as an anacrusis of the eighth note 

position leading to the following beat (transformation F1). The second repetition has 

the character of a metronome that speeds up as it runs on faster metrical levels as we 

approach the following beat. The two density transformations D1 and D2 articulate 
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the two faster metrical levels but no other elements are introduced. The third 

repetition is regarded different as well, this time as a syncopation (S2) to the “one” 

following on the next downbeat. It is notable that the third repetition is not an 

anacrusis even though the previous beat position (pulse 28) does not carry an event 

(in contrast, in the first repetition the same lack of event in the previous beat leads to 

the characteristic pickup feel). The above differences in the character of each 

repetition are encoded as the different transformations that generate each repetition.  

Examining the short melodic figure (A-C#-F#) that appears twice, once in each 

bar, we can observe how figural transformations and syncopations have the 

characteristic effect of emphasizing the corresponding strong positions while density 

transformations have a less characteristic effect. The first time the melodic figure 

appears, emphasis is put on the second beat of the bar through the pickup rhythmic 

figure F{8,1}. At the same time, the density transformations resemble a slowing 

down metronome that runs on slower and slower levels during the second half of 

the bar (D2 -> D1 -> No transformation). In the second bar, the syncopation on pulse 

28 and the lack of a pickup in the previous beat (pulse 24) take the emphasis 

towards the third beat of the bar. In other words, replacing the figural 

transformation with a density transformation on the second beat and introducing a 

syncopation in the third beat, effectively shifts the stress from one to the other.   

The bass line emphasizes each beat in a different way (except the last beat in each 

bar which is not transformed), giving no clear evidence on where the downbeat is 

located; a feature characteristic of the “disco” feeling (Danielsen, 2012, pp. 156–157). 

The melody on the other hand, has a strongly emphasized downbeat more 

characteristic of funk (Danielsen, 2012, pp. 158–159). The syncopation S2 on the 

downbeat of the first bar is followed by the pickup F1 two beats later, in the middle 

of the bar, resulting in a clear and strongly felt metrical hierarchy. Beats are 

emphasized in a complementary way in the bass and melody. When there is a 
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syncopation in one, there is a figural (or no transformation) in the other, but no 

syncopation coincides in both rhythmic layers, resulting in a very clear metrical feel. 

The same principles could easily be applied to other pieces of music. Conclusions 

such as the above can be directly and systematically drawn through the 

transformation vectors without the need to examine the actual rhythmic patterns. 

The transformation vectors show the characteristic elements of the rhythm, on which 

beats and metrical positions emphasis and stress is put and how the rhythmic layers 

relate to each other throughout the duration of the music. 

4 Discussion	

In this paper, we have presented a model for the analysis and the 

characterization of rhythms that codifies patterns as transformations of a simple 

metronome that articulates only beat position. The transformations are categorized 

as 1) syncopation, 2) figural, which create anacruses, and 3) density, which insert 

events. The formalization of the transformations was based on the transformation 

vector, a concept previously introduced by Sioros and Guedes (2014). The 

characterization of a rhythm is done by reversing the transformations found in a 

pattern, through an algorithm that identifies them and outputs the corresponding 

vectors. The algorithm ensures that a single series of transformations describes a 

unique rhythmic pattern.     

The model consists of transformations that take the form of shifts of events. 

While these shifts are not intended to reflect the composer’s or performer’s methods 

and intentions, they serve as a means to characterize and interpret a rhythmic 

pattern with regard to the metrical expectations of a listener. Each shift in the model 

introduces a specific musical phenomenon in the rhythm which contributes to its 

character. For instance, anticipating an event in a weak metrical position introduces 

a syncopation. In this way, the shifts are used as an effective technique to reach a 
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meaningful reduction of the rhythm. At the same time, they preserve other 

properties and qualities of the events besides the timing, such as the pitch, timbre or 

lyrics.  

The transformations were inspired by the syncopation model proposed by 

Temperley (1999). In his model, a pattern is represented by a music surface that is a 

transformation of an underlying deep structure. The two are connected by shifts of 

certain notes, from their metronomic positions in the deep structure to offbeat 

syncopating positions in the music surface. According to Temperley, 

transformations such as the syncopation shifts have a local character and a strong 

cognitive ground in comparison to other Schenkerian approaches to rhythm 

reduction (Komar, 1971; Schachter, 1980). Temperley draws evidence from music 

theory, harmonic analysis and rhythm perception to suggest that an unsyncopated 

deep structure and a syncopated musical surface correspond to actual cognitive 

representations of rhythm. In our model, the cognitive mechanism of weak-strong 

bonds described by Huron (2006, p. 295) lies behind such shifts. 

On the same grounds, we speculate that the transformations, the metronome and 

the reduced pattern provide meaningful rhythm representations that correspond to 

listeners’ interpretations of rhythms. Different listeners form different metrical 

expectations in response to a rhythm that affect and determine their experience of 

music. In our model, the listener’s metrical expectations are modelled in metrical 

templates that constraint the transformations and determine the characterization of a 

rhythm. Thus, several characterizations for the same pattern are possible that reflect 

different listeners’ expectations. The automatic construction of templates of section 2 

is limited to common time signatures, nevertheless any well-formed meter, 

including non-isochronous meters (London, 2012), can be expressed in a metrical 

template. However, a systematic evaluation of the model with respect to rhythm 

perception is outside the scope of this article and is left for a future study. 
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Our model also shares similarities with the generative models developed by 

Temperley (2009, 2010) and his metrical anchoring principle. Anchoring 

characterizes events in weak metrical positions depending on the existence of events 

in their surrounding stronger pulses as: 1) both-anchored when events exist in both 

the previous and the following stronger pulses, 2) post-anchored when only the 

following pulse contains an event, 3) pre-anchored when only the preceding pulse 

contains an event and 4) unanchored when neither the receding nor the following 

stronger pulses contain events. Accordingly, a syncopation transformation generates 

a pre- or an unanchored event, a figural transformation a post-anchored event and a 

density transformation a both-anchored event. 

However, the two models are not equivalent as they focus on different aspects of 

rhythm. Temperley (2010, p. 372) views pre- and unanchored notes as modelling the 

syncopation in patterns, but syncopation itself is as an overall quality of the rhythm 

related to the likelihood of a rhythm to appear in a certain metrical context. A 

pattern is felt as more syncopated than another due to a higher number of 

unanchored notes, but those notes do not necessarily correspond to instances of 

syncopations. Similarly, post- and both-anchored notes contribute to the overall 

metrical feel but are not viewed as instances of a rhythmic phenomenon. In contrast, 

our transformations model and generate specific phenomena that have a local 

character. Syncopations and anacruses are felt at particular moments and have short 

durations. The overall metrical and syncopation feel could be attributed to their 

combinations in a rhythm, but such a mapping would depend on cultural factors or 

the musical context and style. 

For instance, the sixteenth-note found on pulse 30 of “Don’t stop ‘till you get 

enough” is unanchored as it is not surrounded by events in the stronger metrical 

positions. A direct equivalence between anchoring and syncopation would lead to 

the wrong conclusion that the note on pulse 30 is syncopated. In our model, this is 
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attributed to the syncopations on the surrounding beats. The note simply happens to 

occur between two syncopating sixteenth notes at pulses 27 and 31 which are pre-

anchored. 

 The set of transformations that correspond to a rhythm carry all its characteristic 

features with respect to the given beat. On the one hand, the combination of 

syncopations and pickups describe the timing of the events in relation to certain 

metrical expectations. On the other hand, the density transformations articulate fast 

metrical levels as a metronome that varies its speed running at different metrical 

levels. The reduced pattern represents such a variable metronome. The specific 

combination of the three elements makes each pattern unique. For instance, in the 

“Don’t stop ‘till you get enough” example presented in Section 3, the two different 

bars of the melody originate from the exact same metronome. Their differences are 

encoded into the different sets of transformations that generate them. Motifs with 

similar inter-onset intervals on the musical surface, such as the repeated sixteenth 

notes, become distinct as their individual feel and character is brought to the 

foreground through the characterization process.  

The encoding in transformation vectors gives the model and the representation 

of transformations great flexibility. On the staffs of Figure 8 and Figure 10, the 

transformation vectors are simplified by omitting the pulse index and showing only 

the metrical level difference. The pulse is implied by their placement above the 

corresponding metrical position. This simplification of the vector reveals an 

important aspect of its nature. After the characterization of a pattern is complete, the 

transformation vectors can be separated from the metrical template. Their metrical 

position can be referenced using appropriate references for each music material such 

as the beat number together with phrase boundaries or simply placing them in a 

time line as in Figure 8 and Figure 10. 
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A similar encoding based on syncopation transformations alone was initially 

developed by Sioros and Guedes (2014). Our model is based on the same concept of 

transformation, extending it to include the density and figural transforms, and thus 

resulting in a complete model for binary or quantized musical rhythms. The 

introduction of the two transformations has a strong impact on the syncopation 

transformations as well which is evident in the example in Figure 7. This earlier 

syncopation model allowed for consecutive syncopations to mask or hide one 

another, which posed no problem considering the focus on generative applications. 

However, in our complete model, the focus is shifted towards a more meaningful 

and accurate characterization of rhythms, and such “hidden” syncopations are 

avoided using a combination of figural and syncopation transformations. 

  While this paper introduces the model and its general aspects as a method for 

the analysis of musical rhythms and not any of its specific applications, we now 

present some of potential uses and future developments. The automatic and 

systematic encoding of each rhythmic pattern into a unique set of transformations 

can be of great value in musicological analysis. A systematic and automatic 

comparison and classification of music excerpts as well as measures of similarity or 

distance between patterns can be based on the common transformation vectors the 

excerpts share. As opposed to the more abstract mathematical properties used in the 

measures compared by Toussaint (2004), the transformation vectors describe music 

elements such as syncopations and pickups, rather than distance and statistical 

properties of binary rhythmic representations. Their comparison should depend on 

the intended applications and appropriate weights should be used according to the 

music material in question. On the other hand, the vectors and tree structures are 

not designed to describe an optimal transformational path between two patterns in 

the fashion of the edit distance measure proposed by Post and Toussaint (2011). As 

we discuss in section 2.3, the reversibility constraints impose a certain order for the 
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transformations which could force the path between rhythms to pass through 

unnecessary intermediary patterns, but with the advantage of providing a unique 

characterization for each pattern.  

Prototypical transformations characteristic of a style or genre can be modelled 

and used in the classification of rhythms according to whether they share the same 

branch. Even the relation between different styles can be explored by examining the 

transformation path between style prototypes.  

The rhythmic variations that are generated as a by-product of the 

characterization of a pattern can assist the automatic analysis and comparison of 

other properties of the events. For instance, in the “Don’t stop till you get enough” 

example, we can directly observe in the metronome and reduced pattern that the 

harmony and melodic structure of the two bars is identical. Their differences are the 

result of a different rhythmic interpretation of the melody. Such analyses and 

comparisons can be facilitated and automated for any multi-layered rhythm. The 

notes of the various rhythmic layers are aligned in the generated metronomes and 

reduced patterns, so that their relations are simplified. A systematic analysis of these 

simplified patterns instead of the complex and often idiosyncratic original rhythms 

is easier and more effective.  

In conclusion, the model presented here effectively combines powerful features 

and has a great potential in music analysis. It codifies rhythms in a systematic and 

flexible way, while at the same time provides with a musically and perceptually 

meaningful and detailed characterization, and the generative nature of the model 

has added value beyond the scope of rhythm analysis.  
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6 Figures	

 

 

Figure	1.	Example	of	metrical	templates	and	binary	representation	of	rhythms.	Left:	A	rhythmic	pattern	in	

4/4	at	150bpm.	Above	the	pattern,	the	meter	is	stratified	to	its	metrical	subdivisions.	Right:	The	

binary	representation	of	the	pattern	(X	=	event,	.	=	silent	pulse).	Above	it,	the	metrical	template	is	

shown	according	to	the	stratification	of	the	meter	on	the	left.	Metrical	levels	slower	than	1s	or	faster	

than	100ms	are	ignored	as	described	in	detail	by	Sioros	and	Guedes	(2014)	and	London	(2012,	Chapter	

2).	
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Figure	2.	Definition	of	Syncopation,	Figural,	and	Density	transformations.	Each	transformation	corresponds	

to	a	vector	(solid	arrows)	consisting	of	the	metrical	position	on	which	the	transformation	is	applied	

(pulse	8)	and	the	metrical	level	difference	to	preceding	weaker	pulse.	The	syncopation	and	figural	

vectors	point	to	the	pulse	an	event	is	shifted	to,	while	the	density	vectors	point	to	the	pulse	on	which	

a	new	event	is	inserted.	The	dotted	arrows	represent	the	shift	of	an	event.	
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Figure	3.	Example	of	vectors	with	0	metrical	level	difference.	
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Figure	4.	Flow	diagram	of	the	process	of	characterizing	and	reversing	a	single	transformation	previously	

applied	on	pulse	i.	The	processes	and	decisions	made	are	subject	to	the	reversibility	constraints	

described	in	the	section	2.3.	The	NR	outputs	indicate	that	no	transformation	is	reversed	because	

either	no	transformation	was	found	(step	1)	or	a	transformation	on	another	pulse	must	be	reversed	

first	(step	2).	
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Figure	5:	Example	of	the	first	reversibility	constraint.	The	strikethrough	transformation	S	{4,1}	is	forbidden	

since	it	does	not	respect	the	initial	order	of	events.	Pattern	B	is	generated	through	the	S	{4,2}	

transformation.	
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Figure	6.	The	strikethrough	transformation	F	{4,	2}	violates	the	second	constraint.	It	simultaneously	

generates	the	weak-strong	rhythmic	figure	between	pulses	3	and	4	and	the	syncopation	S	{2,	1}	

between	pulses	1	and	2.	
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Figure	7.	Example	of	the	second	reversibility	constraint.	The	bottom	pattern	is	the	result	of	the	left-side	

(correct)	transformations	rather	than	the	right-side	ones	(wrong).	Introducing	the	syncopation	S	{4,	1}	

on	pattern	E	“masks”	the	previous	syncopation	S	{2,	1}	and	therefore	is	not	allowed.	
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Figure	8:	An	example	of	a	pattern	of	five	beats,	starting	with	an	anacrusis,	is	characterized	by	the	

transformations:	D{4,2}	F{10,1}	S{12,1}	S{16,2}	D{20,1}	F{4,1}	D{16,1}.	Only	the	events	(X)	are	shown	in	

the	binary	representation;	the	dots	(.)	corresponding	to	the	silent	pulses	are	omitted	for	clarity.	On	

the	Initial	and	Reduced	staffs,	a	simplified	representation	of	the	vectors,	which	does	not	contain	the	

pulse	index	but	only	the	kind	of	transformation	(F:	figural,	S:	syncopation,	D:	density)	and	the	metrical	

level	difference	(e.g.	F{4	,1}	->	F1),		is	shown	above	the	corresponding	metrical	positions.	
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Figure	9:	An	example	of	a	tree	structure	consisting	of	all	the	patterns	generated	by	a	metronome	of	a	single	

beat	duration	corresponding	to	the	metrical	template	shown	with	bold	lines	above	the	root	of	the	

tree.	
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Figure	10.	Analysis	of	the	main	rhythmic	pattern	(bass	line	and	voice)	of	“Don’t	stop	till	you	get	enough”	by	

Michael	Jackson.		On	the	staffs,	a	simplified	representation	of	the	vectors	is	shown	where	the	pulse	

index	is	omitted	as	it	is	implied	by	the	positioning	of	the	vector	at	the	corresponding	metrical	position	

(e.g.	F	{8	,2}	->	F2	at	the	third	beat	of	the	bass).	
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