Exploiting Universal Redundancy

Ali Shoker
HASLab, INESC TEC & University of Minho
Braga, Portugal
Email: ali.shoker @inesctec.pt

Abstract—Fault tolerance is essential for building reliable
services; however, it comes at the price of redundancy, mainly the
“replication factor” and “‘diversity”’. With the increasing reliance
on Internet-based services, more machines (mainly servers) are
needed to scale out, multiplied with the extra expense of replica-
tion. This paper revisits the very fundamentals of fault tolerance
and presents ‘‘artificial redundancy’’: a formal generalization of
“exact copy” redundancy in which new sources of redundancy
are exploited to build fault tolerant systems. On this concept, we
show how to build ‘“artificial replication” and design “artificial
fault tolerance” (AFT). We discuss the properties of these new
techniques showing that AFT extends current fault tolerant
approaches to use other forms of redundancy aiming at reduced
cost and high diversity.

Keywords—Atrtificial fault tolerance, redundancy, replication.

I. INTRODUCTION

Fault tolerance (FT) is the central pillar of reliable ser-
vices [1]-[5]. A fault tolerant system must employ some form
of redundancy Redundancy in space is often used against a
specific pre-defined class of faults, like fail-stop, fail-recovery,
Byzantine [1], [4], and employs a fault tolerant protocol that
ensures the correctness of the system through replication and
agreement techniques, e.g., TMR, consensus, failure detec-
tors [1], [6], [7]. Unfortunately, these techniques are costly
and their effectiveness are questionable due to the replication
factor and diversity.

In particular, in order to tolerate f faults, a FT protocol
requires a minimum number of redundant components (i.e.,
replicas), called the replication factor, which is often 2f + 1
and can spans up to 5f 41 in some fault models [3], [8]-[10].
The thorough reliance on Internet services nowadays amplifies
these costs as more machines (either virtual of physical) are
required to cope with the increasing demand on services; due
to replication, this cost is multiplied by (at least) a factor of
two or three. On the other hand, independence of failures
between replicas is a major assumption for the correctness
of FT protocols: a common fault among system replicas
can bring them to fail unanimously, rendering the replication
factor useless [5], [11]-[13]. This is usually mitigated by
introducing some software and hardware diversity in the repli-
cated components on different axes and levels [5], [14]-[20].
Although these approaches improve the FT of systems through
diversity, they are costly and not always effective [5], [11],
[15]. For instance, N-version programming [1], [15] introduces
diversity into software through coding it in multiple versions
by different independent teams and programming languages.
In addition to its high cost in practice, it has been shown
that dependency still exists since (1) developers often fall
in the same mistakes and (2) as long as different versions

originate from a common specification [11], [15]. Another
interesting approach is proactive recovery between diverse
obfuscated components that are generated to be semantically
equivalent using a secret key [16], [17]; though interesting, it
is only effective in transient failures and when the key is kept
secret [14], [21]. BASE [5] introduces design diversity using
Components Off-The-Shelf (COTS). The idea is to employ
pre-existing diverse components that have similar behavior,
and then write software wrappers to mimic the state machine
behavior. Although this approach is promising, it is limited to
the existence of COTS in various programming languages.

In this paper, we revisit the very fundamentals of fault
tolerance and introduce artificial redundancy considering the
“redundant information” inferred through the “action on a
component” rather than the “component” itself: a component
is artificially redundant to another one if there is a strong
correlation between them, even if they are non similar in
behavior or semantics. For example, two always opposite
buffers A = —B are artificially redundant since there is
a perfect (though negative) correlation between them, as if
they are exact copies. On the other hand, “the presence of
ice” is artificially redundant, with some uncertainty, to “the
atmospheric temperature is low” since they are strongly (but
not perfectly) correlated.

Artificial replication can then be achieved by making an
artificially redundant component an artificial replica, artira
for short. The idea is to wrap the component by an adapter
to code (resp., decode) the input (resp., output) of an artira
as needed using component-specific (mathematical or proba-
bilistic) transformation functions. Adapters are similar to the
conformance wrappers used in BASE [5]; however, we apply it
to completely independent, but correlated, components instead
of those of similar behaviors allowing for some uncertainty (if
needed). Artificial fault tolerance (AFT) is therefore achieved
using replicas and artira, e.g., using voting or agreement, in
a similar fashion to current FT protocols. When artira are
perfectly correlated, existing FT protocols can be used with
higher reliability due to the increased diversity of artiras. On
the other hand, if artiras include some uncertainty (bounded
or unbounded), new variants of AFT protocols are needed; in
Section V, we only give some recommendations on how to
build such protocols (due to size limitation).

Our work is complementary to existing FT models (in fact,
AFT subsumes FT); and it is important for three main reasons:
(1) it exploits new forms of redundancy to reduce the cost
of replication that can, optionally, include some uncertainty;
(2) it achieves equivalent or better tolerance to faults than
classical FT being built on highly diverse components in terms
of behavior, specification, providers, geographic location, etc.;

and (3) it makes it possible to achieve lower levels of fault
tolerance, e.g., detection, if some uncertainty is accepted by
the application and when extra “exact copy” replicas do not
exist or are not affordable; or if the service could not be
easily replicated (e.g., redundant medical instruments, large
scale social networks, etc.).

AFT may be criticized in two main ways. First, although
AFT achieves high reliability in the case of perfect correlation,
uncertainty in fault tolerance does not seem reasonable in
other cases. Our argument is that, uncertainty even exists
(under the hood) in current FT protocols; in fact, there is
no evidence that FT protocols achieve 100% certainty due to
dependence of failures [12]. On the other hand, the uncertainty
we introduce here is agreed upon beforehand (e.g., in the
SLA), and thus caution can be planned a priori. In addition,
uncertainty in fault tolerance also do exist in literature as in [7],
[22]. The second criticism is how practical is AFT. In fact,
similar concepts have been studied and used in specific areas
like automotive systems [23], clock synchronization [24], [25]
and Byzantine approximate agreement [26], and we believe
that these concepts can be generlized to a wider spectrum of
distributed applications and services where even new forms
of redundancy can be exploited as we do here. We show
in Sections IV and VII that AFT can be applied to a large
span of applications as in webservices, multithreading, HPC,
etc. On the other hand, several applications can accept some
uncertainty in FT to reduce the cost of replication or when
additional replicas do not exist [27], [28].

To the best of our knowledge, this subject has not been
studied in literature as we generlize here, and we believe that
it is worth more investigation and empirical study in the future.

II. ARTIFICIAL REDUNDANCY
A. Notations

Consider a component X that is associated with a set of
possible actions in A. In general, an action can modify the
state of X; however, for ease of presentation, we assume that
actions are read-only and we explicitly mention writes when
needed. We denote by a(z) the output of an action a € A
on a state z € X, and by X the range (i.e., output domain
set) of a on any state in X; we read this “X subject to action
a”. Related, X* denotes the range of any action in A on any
state in X, we read this “X subject to actions in A”. In addition,
we denote by Dxa the domain of X“. We also assume that
(Dxa,d) is a metric space with a defined distance d. We argue
that any meaningful component output falls in this category.
If = is in a metric space S, a “closed ball” N, (x) of center
2 and radius 7 is the set: N.(z) = {y : y € S,d(z,y) <r};
then we say that x is in the neighborhood of y.

B. Artificial Redundancy

Definition 1 (Artificial Redundancy). A component X subject
to action a (i.e., X?) is artificially redundant to component Y
subject to action b (i.e., Y?), denoted X@ = Y, iff there is a
correlation ¢ €]0, 1] between them.

The above definition is very relaxed as it makes any two
components redundant to each other regardless of their behav-
ior or semantics provided that there is a correlation between

them. For instance, the atmospheric “temperature forecast”
component on action getTemperature() is strongly correlated
to the “snow forecast” component on action isFalling(), and
hence, they are artificially redundant. Although, artificial re-
dundancy often makes sense when there is strong or perfect
correlation (whether +ve or —ve), we do not explicitly mention
the strength of correlation ¢ to keep the definition general.
The definition does not specify a correlation method to use;
however, in general, any statistical correlation model can be
used. Definition 1 is fine-grained to an individual action of
a component (e.g., a function in a service API); however, in
practice, services may not be equivalent (i.e., have different
APIs); consequently, only parts of a service might be artifi-
cially redundant; this is captured by the following definition.

Definition 2 (Partial Artificial Redundancy). A component X
subject to actions in A (X4), is partially artificially redundant
to component Y subject to actions in B (Y P) iff there exist at
least one action b € B and a corresponding action a € A such
that X is artificially redundant to Y'°. In particular, if this is
true Vb € B (a surjection) then we say that X is artificially
redundant to Y, and denoted by X4 < Y5 or X &Y when
A=B.

Definition 2 governs the entire component when actions A
and B are similar (e.g., if X and Y have the same API) as
well as a subset of actions of the component (e.g., only some
API functions are redundant). Artificial redundancy is often
one-way relation as explained in Lemma 3.

Lemma 3 (Symmetry of Artificial Redundancy). If X¢ = Y?
then X¢ < Y?, therefore we say X = Y. To the contrary,
if X4 =YP5 then X4 Z Y? is not necessarily true.

Proof: First part: If X* > Y?, then there exists a
correlation between X and Y?; since correlation is symmetric
by definition, then X % Y follows from Definition 1. Second
part: follows from Definition 2 since there may exist an action
a’ € A without any correlation to any action in B (i.e., no
surjection from YB to X4 exists). [|

Since the goal of artificial redundancy is to establish (ar-
tificial) replication, we introduce the following lemma which
makes this task easier.

Lemma 4 (Probabilistic Artificial Redundancy). If X & Y?
then 38 € [0, 1] and at least two predicates: R defined on X
and Q defined on Y such that: P(R | Q) > B.

Proof: If X = Y with correlation ¢, then 38 € [0,1]
such that for any state y € Y there exists a corresponding
state € X“ with probability > (. Let the predicate R ="z
exists” and Q ="y exists”, then the probability that R occurs
given that Q occurs is > (3. Therefore, P(R | Q) > /5. [|

Lemma 4 says that if there are two correlated services, one
can probably find two correlated predicates that are bounded
(e.g., by (). This lemma will make it easier to establish
correlations and lookup new redundancy forms in the next
section.

Adapter
Cx L]
Artira Replica

Fig. 1: Artira vs. Replica.

III. ARTIFICIAL REPLICATION
A. Definitions

Artificial redundancy remains useless without the ability
to transform artificially redundant components to replicas that
can be used in practice. We make this possible by introducing
artificial replication in Definition 5.

Definition 5 (Artificial Replication). A component X¢ is
said to be an artificial replica (artira for short) of Y? iff
there exists « € [0,1], ¢ € Dys, and a transformation
function F : X — Dy such that Vy € Yb Jz € X@
such that P (& = F(z) € Nc(y)) > «. We denote this by:
X e FXY?).

Informally, this means that a component X (subject to an
action a) is an artira of Y (subject to an action b) if we can
find a function F such that for every state y € Y there is
a state z € X® such that F(z) is in the neighborhood of y
with some accuracy € (i.e., the error is bounded) and certainty
« (i.e., the bound is precise). An artira is defined in a triple
(F, o, €) whose values must be defined a priori. Notice that, X
is an artira of Y means that Y is a reference replica and need
not to be an artira of X. In principle, F is used to transform
the output a(x) of an action a € A on x € X to a value
Z = F(a(x)) € Dy» such that Z is close, with distance €, to
some y € Y’ with certainty . The two metrics a and ¢ are
strongly related and should be adjusted together: e = 0 reflects
100% accuracy of F whereas « tells if this is correct all the
time. Increasing € makes the accuracy of F lower but with
better certainty cv. We show in Section IV how can tuning o
and e bring interesting benefits.

B. Building an Artira

Lemma 6. Artificial redundancy is necessary, but not suffi-
cient, for artificial replication.

Proof: Necessary condition: consider the two predicates
(e, events): Q={y=v|veY’land R ={r =u € X |
Z = F(u) € Nc(y)}. From Definition 5, if X is an artira
of Y? then Vy € Y* 3z € X such that P (& € N.(y)) > a
for some « € [0, 1]; hence, if Q occurs then P(R) > a, i.e.,
P(R | Q) > a. Therefore, X¢ is artificially redundant to Y
as per Lemma 4.

Sufficient condition: trivial from Definition 5 since F does not
always exist. []

Lemma 6 means that artiras can be built from artificially
redundant components if the transformation F exists. We
argue that such a transformation can often be defined if a

TABLE I: An abstraction of a simple component and the
relation between two possible components.

Component: A;

val: a value of any type.

expose(val): a read-only function that exposes the value of val.
modify(val): an update function that modifies the value of val.

Relation A; and Aj
Correlation threshold above which ¢ > 7 is accepted.

a relation upon which a transformation function F is defined.

T
T (valg, valy):

strong correlation exists either by using accurate mathematical
formulas or through using probabilistic prediction techniques
(e.g., using Machine Learning), in which some uncertainty
must be accepted by the application.

Building an artira X® of an existing replica Y starts
by defining the accepted accuracy e and certainty « by the
application. Then, if some strong correlation between X¢
and Y? exists, X% can likely be an artira of Y?. Then, if
a transformation JF can be defined with some accuracy € and
certainty o/, € and o' are adjusted by incrementing €' to get a
higher certainty o/. Finally, X is accepted as an artira of Y*
with the triple (F,a/,€¢’) if: @/ > « and € < e. Building an
artira XA of Y, ie., considering multiple actions in A and B,
is done in a similar way by individually defining corresponding
triples as (F, a, €).

Adapters. The transformation logic is then implemented
in a wrapper on top of X, called adapter. Fig. 1 shows the
architecture of an artira with an adapter versus a replica. An
adapter can be state-full or stateless as conformance wrappers
which were explained thoroughly in BASE [5], and therefore
we skip this discussion here. Read operations use a decoder
that implements F to transform outgoing values from the
artira. Update operations, however, use a coder to write into the
artira, which requires an inverse function 7! to be defined.
In this case, the parameters ¢ and o' must be adjusted to
consider the uncertainty of 71 if it is not a perfect inverse of
F, since a read value will be affected twice by the uncertainty
of both F and F~!. However, this is not required when F -1
is a perfect inverse (e.g., mathematical inverse function) of F,
since a value will be read exactly as it was previously written
via the adapter (e.g., if F(z) = 1/z and F~1(z) = 1/z,
then F(F~1(z)) = z). A reasonable cost must be paid while
building an artira as discussed in Section V.

IV. ARTIFICIAL REDUNDANCY AND REPLICATION
MODELS

We discuss the different artificial redundancy and replica-
tion models and their theoretical feasibility by considering a
simple abstraction A; in Table I. More complex abstractions
can intuitively be built on top of it, but this is enough to
serve for explanation. A; is composed of a single value val
that represents the state of A;; whereas expose and modify
represent the read and write actions, respectively, that are
accessible by any other abstraction A; (which may have
different val type and actions). We also represent the relation
between A; and A; by the correlation threshold 7 and the
relation 7, where 7 is the minimum correlation coefficient
above which (inclusive) a service accepts components to be

E D
< <>
ve +ve

- Feasibility

}B
—+ + } >

-1 -T 0 +1 +1

Correlation {
B: Perfect +ve correlation

D: +ve correlation
F: No correlation

A: Exact copy
C: Perfect -ve correlation
E: -ve correlation

Fig. 2: Feasibility space of artificial redundancy.

artificially redundant, whereas 7 materializes the correlation
between two components be defining a transformation function
F that may comprise some uncertainty as described. Based on
this, we distinguish between interesting artificial replication
and redundancy models summarized in Table II.

For ease of presentation, we explain the different models
and feasibility with the help of an “imaginary” feasibility
spectrum depicted in Fig. 2. Since the ultimate goal is to build
fault tolerant systems, which is often the basic defense layer in
a service, critical services tend to adopt very strong correlation
(e.g., 7 is close to 1) and, gradually, fewer ones accept
lower correlation coefficients. Therefore, our conjecture argues
that the number of applications decreases (resp., increases)
exponentially to T (resp., —7) as the correlation coefficient
¢ approaches zero. Notice that, theoretically, 7 can be close to
zero; however, it is merely meaningful only when 7 > 0.5, i.e.,
when a strong correlation exists. Now, we discuss the different
models.

A. Perfect Artificial Redundancy and Replication (PAR)

Perfect artificial redundancy refers to the case in which
application FT requirements only accept perfect positive cor-
relations between components, i.e., 7 = *1; meaning that the
information inferred by one component through the adapter
is the exact information of the other with zero error. Conse-
quently, PAR is the most interesting and desirable model to
achieve fault tolerance. The feasibility is depicted in locations
A, B, and C on Fig. 2. This is mapped to Table II. A
refers to EC case which is the unique acceptable case in
current FT. Artificial redundancy expands this case to use other
redundancy sources as in PC+ (corr., B) and PC- (corr., C)
with the same confidence as if they were exact replicas, as
in A. From the perspective of artificial replication, this case
refers to the configuration: (F,a = 1,e = 0). As shown in
the use-cases of settings EC, PC+, and PC—, the function F
transforms val; to val; without any error (¢ = 0) and with
100% certainty (o = 1).

B. Strong Artificial Redundancy and Replication (SAR)

Strong artificial redundancy (SAR) refers to the case in
which a small bounded error is tolerable as in BSC case in
Table II. Though SAR is weaker than PAR, it is useful for some
applications to avoid high costs of exact copies when high
certainty is acceptable. Of course, such applications are much

fewer than those of PAR; however, they do exist in practice
as we explain in Section VII. In Fig. 2, this is depicted in
the gradient color regions D and E. The dense color indicates
more applications, showing that the more interesting cases are
those when 7 is closer to 1. In general, artificial replication
is represented by (F,« # 1,¢ # 0) in SAR case; however,
the parameters o and e can be tuned since the inaccuracy
is bounded. Thus, it may be suitable to increase € so that a
greater certainty o = 1 can be achieved and thus SAR becomes
(F,a = 1,e # 0). To explain this, consider the use-case in
BSC settings in Table II. In this case, the medical instruments
A; and A; can infer slightly different cardiac pulse val that is
bounded by §. Then, setting € := ¢ such that « = 1 can be a
good choice to get high certainty. This actually means that, the
artificial replication is 100% accurate with an allowed error of
0 cardiac pulses. We show how this is useful in Section V.

C. Weak Artificial Redundancy and Replication (WAR)

Weak artificial redundancy (WAR) refers to USC settings in
Table II. It is similar to SAR in the correlation threshold 7 and
in feasibility (regions D and E in Fig. 2). However, in WAR, the
transformation error could not be bounded, and thus certainty
is never 100%. Consequently, weak artificial replication has
the configuration: (F,a # 1,e¢ # 0) where « and € could
not be tuned to have o« = 1 (though tuning is possible in
general). Note that, it is not always required to use artificial
redundancy to make decisions, but to help making decisions
like the use-case in USC settings. For instance, a fault raised
by an artira can give an alert to do some “external” action
(e.g., to explicitly verify correctness). Of course, WAR case is
not suitable for sensitive applications that do not accept any
uncertainty; however, it can be used in situations that are not
critical to reduce the overhead of replication.

V. ARTIFICIAL FAULT TOLERANCE (AFT)
A. Definitions

Definition 7 (Artificial fault tolerance). Artificial fault toler-
ance (AFT) is the approach used to achieve fault tolerance in a
system of redundant components where at least one component
is artificially redundant.

Definition 7 is general as it covers any sort of artificial
redundancy. The use of redundancy is important since it is
necessary to achieve fault tolerance [2]. Note that requiring at
least one artificial redundant component means that there may
exist other components that are not necessarily artificial (since
artificial redundancy is not symmetric, as in Lemma 3).

In the rest of this paper, we focus on artificial replicas
(artiras) as redundant components since it can be used to
build AFT protocols. Due to size limitations, we address AFT
protocols that can be used in active replication as in fault
correction (or fault omission) through consensus [1], [3], [4],
[29]. This is the dominant approach in practice since it gives
the user an illusion that no faults occurred despite their actual
presence. The main purpose of the protocols is to maintain
a consistent system state and ensure that a single value is
reported by the system to the client. Other forms of fault
tolerance, like fault detection, can easily be derived from this
study. In the following, we show how current FT protocols can

TABLE II: The different models, settings, an use-cases of artificial replication and based on Table I.

Model Correlation Description Use-case
EC Exact Copy. A replicated process having 7 = {F(val;) = val;}.
PAR
PC+ Perfect +ve Two weather forecast processes where A; returns temperature in Celsius val; = C° and Aj in Fahrenheit
Corr. 7 = +1 val; = F°; then T = {F(val;) = (val; —32) x 5/9}.
PC- Perfect —ve Two processes A; and A; having a shared buffer or token and using val as a flag; thus 7 = {F(val;) = —val;}.
Corr. 7 = —1
SAR BSC Bounded Two medical diagnosis instruments: cardiac pulse meter A; and Electrocardiogram A; with sensors val; and
Strong Corr. val; (resp.); since both monitor heart activity, val; and val; are strongly correlated with some acceptable error e
|7]>0.5 bounded by J; therefore, 7 = {F(val;) = val; +e | e < 4}
WAR USC Unbounded Two social-media profile recommender services that are statistically correlated but not bounded due to the tradeoff
Strong Corr. between accuracy and over-fitting. If the prediction function has an acceptable unbounded error e and accuracy
|7|>0.5 p; then T = {F(val;) = svr(val;) = val | P(] val} —val; |[< +e) > p}.

be adjusted to support artiras, which are the building blocks of
AFT protocols. We also discuss the properties of the system
in this case and the differences to FT protocols.

B. Recall FT Protocols

In order to cover a wide range of FT protocols, we focus
on the common concepts across existing protocols and we
explicitly address any protocol-specific properties.

Consider a system of n nodes (e.g., replicas) where f of
them can be faulty (regardless of the fault model). In general,
a client can send requests to one or more nodes and collect
the received replies from one or more nodes too. To ensure
correctness, consensus (or agreement) between nodes must be
achieved. Many FT protocols assume network-partition faults
which may split the nodes into two or more partitions [4],
[30]. Therefore, they only require a quorum of nodes to reply
correctly. To ensure correct Write and Read requests, the
intersection of a Read quorum and a Write quorum must be
correct (non-faulty). A common approach is to choose the
quorum to be the majority of nodes (also called majority
consensus), €.g., 5 + 1; however, to support other protocols
too, like 2PC and 3PC [31], we simply refer to this quorum
as gq. A FT protocol achieves consensus through three main
phases: Propose, Accept, and Learn.

e Propose: a value is proposed to agree upon.

e Accept: a proposed value is accepted by nodes if a
quorum ¢ of nodes agree on it after following some
message exchange pattern.

e Learn: the learner (often the requester) accepts the
request if a quorum ¢ of replies match, and learns
the matching value.

This notation is analogous to the phases used in the well-
known protocols in literature as Paxos and BFT [4], [30];
however, it also covers other protocols regardless of which
node is acting as proposer, acceptor, or learner, and how these
phases are designed. We do not discuss message exchange
patterns and delivery assumptions of an FT protocol since
they are often the same as in AFT protocols (explained next).
Committing a request is also protocol-dependent as it can occur
in the Accept or Learn phases. In some protocols, Reads may
not follow these phases except for the Learn phase in which a
requester sends the request directly to all nodes and collects
enough matching responses. In existing FT protocols, the

matching logic ftmatch to approve a request by the acceptors
and the requester simply requires a quorum ¢ of responses ry
to be equal:

ftmatch = card(Rq) > q; Ry={i#j|ri=r} (@

Obviously, since all the quorum’s responses are equal,
the committed value ftvalue by the acceptors, as well as the
learned value by the learner (or requester), is a single value
which corresponds to any response in the quorum:

ftvalue = rand(r;) where i € R,)

C. Designing AFT Protocols

Designing an AFT protocol starting from a FT protocol is
reasonably not hard since the mechanics of the three phases
is almost the same. The only sensitive parts are those which
require deterministic behavior. Since in AFT at least one node
will be an artira, this can incur some inaccuracy in the response
returned by the decoder (as explained in Section III) which
can induce indeterminism in some cases. This can require
modifications in the three phases depending on the artificial
replication model used. In general, the phases in an AFT
protocol are defined as follows:

e Propose: one value is proposed to agree upon.

e Accept: one or more proposed values are accepted by
nodes if a quorum q of nodes agree on them after
following some message exchange pattern.

e Learn: the learner (often the requester) accepts the
request if a quorum ¢q of replies match with some
uncertainty, and learns a chosen value according to
some policy.

The uncertainty induced by the artiras require different
matching logic to that in Eq. 1 as well since responses may
not always be equal. For an AFT model defined by FZ, the
general matching criteria is as follows:

aftmatch = card(R) > q; R, = {i #j | P(d(ri,rj) <€) > a}
3
Equation 3 says that if the distance d (defined in the metric

space) between two responses is bounded by e with probability
o then these responses are considered matching. On the other

hand, choosing a value by the requester in AFT follows an
application-dependent policy (e.g., priority, mean value, etc.):

aftvalue = poIicy(Rg) 4)

Next, we discuss the properties of the system and how
aftmatch and aftvalue change according to the replication
model used (PAR, SAR, or WAR) together with the classical
fault models.

1) Benign Fault Models: A fault is considered “benign”
if the corresponding faulty node either follows its correct
specification or it crashes; examples are: crash-stop and crash-
recovery, as in 2PC, 3PC, and Paxos [30], [31]. When only
benign faults are assumed, we distinguish between the follow-
ing cases:

a) PAR model: In the PAR replication model, an AFT
protocol has the same design as a FT protocol. This is the most
desired case since it is at least as robust as the existing FT
case. (Additional robustness follows from the higher diversity
of artiras). In PAR, the AFT system is defined by F2 where
€ = 0 and o = 1; thus, the adapter’s coding/decoding is
perfect which makes the artiras deterministic, and equivalent
to replicas in behavior. Therefore, the matching logic and the
learned value become as follows:

aftmatch = card(R}) > q; R; = {i #j | d(ri,r;) = 0}

aftvalue = rand(r;) where r; € Ry

Notice that the above equations are exactly equivalent to
ftmatch and ftvalue in Eq. 3 and Eq. 4. This makes the AFT
protocol phases (Propose, Accept, and Learn) exactly the same
as those defined the FT case in Section V-B. Therefore, in PAR
replication model, existing FT protocols can be used.

b) SAR model: In the SAR replication model, the AFT
system is defined by F® where ¢ # 0 and v = 1. This
means that the error induced by the adapter’s coding/decoding
is bounded by e with probability 1. Consequently, the matching

logic becomes as follows:

aftmatch = card(Rq) > q; Ry’ = {i #j | d(ri,rj) < €}

Due to this bounded indeterminism, we distinguish between
Read and Write requests. In Write requests, the proposer node,
in the Propose phase, proposes a request value reg,. In the
Accept phase, a quorum ¢ of nodes accept req, (regardless
of the messaging patterns); the request is then committed by
having all non-faulty nodes execute reg, in the same order.
However, since artiras are indeterministic, the local state of
artiras can vary upon execution of reg, within the bound
defined by e. This does not affect the Learn phase since an
ACK is enough to be sent to the requester.

A pedantic detail is to explicitly check if the bound e is
respected by having the proposer piggyback its state to the
acceptors. This allows the acceptors to assert that aftmatch is
satisfied by comparing their local states to that of the proposer
upon executing the request. In the protocols where a state
value must be piggybacked along with the Write response to
the requester, two options are possible to choose the learned
value: (1) The proposer node that received the request from
the requester can piggyback its state back to the requester

after the Accept phase terminates successfully and the request
has been executed by the proposer. This however limits the
choices of the requester to the state of one node (the proposer
in this case). This might be OK for some applications, but
it might not be desired in others that prefer choosing a
value according to a certain policy (e.g., learn a value that
corresponds to a replica instead of an artira). (2) All the
states of all nodes are piggybacked to the requester in which
case the latter can choose the preferred value according to
its policy. This requires all nodes to share their states in the
Accept phase. In particular, each node executes the request
and replies back to the proposer or other nodes (depending on
the message exchange pattern) with its state after execution.
Since these states are possibly different, due to the uncertainty
of artiras, the consensus problem is actually transformed to
a multi-value or Vector consensus. Many consensus protocols
of this class do exist in literature as Interactive Consistency
(IC) Vectors [32], Approximate Agreement [26], and Vector
Consensus (VC) [33]. In these approaches, the replicas, and
artiras in our case, need to agree on a vector (or sub-vector)
of correct proposed values instead of a single value. Using
such consensus protocols guarantees that at least a quorum of
q values in the vector V' are accepted by acceptors. When V is
sent to the requester in the Learn phase, it can apply its policy
to choose a value from V.

Executing Read requests is similar to those of Write re-
quests case. In some protocols, however, the requester directly
sends its Read request to all nodes, which reply back with their
local values to the client, without passing through the phases of
the protocol described above. In this case, the received values
can be treated as a vector, and then a value is chosen depending
on the policy.

A policy is application-dependent. In some cases, it is
enough to choose: one value randomly, based on some cri-
teria (like max or min), or even an aggregate value (e.g.,
sum, mean). We show in Section VII that these policies are
sometimes more interesting than choosing a single value.

¢) WAR model: In the WAR replication model, € # 0
and « # 1 since the error of the adapter coding/decoding could
not be bounded. In this case, the matching policy remains the
same as in Eq. 3. Consequently, it is not recommended to use
this model for fault omissions since there is some probability
to report a wrong value to the client. This can rather be used in
fault detection when the application accepts some uncertainty
and the service could not (or costly to) be easily replicated.
We do not discuss this case as it is less interesting and we
only discuss its possible applications in later sections.

2) Non Benign Faults: A fault is said to be “non benign”
if the corresponding faulty node may not behave according to
its specification even without crashing. Well known examples
are Byzantine and Rational faults [4], [34]. Since this can be
seen as a form of indeterminism, we distinguish between the
following cases.

a) PAR model: In PAR replication model (£ where
€ # 0 and @ = 1), an artira behaves exactly as a replica.
Therefore, similar to the PAR case of benign faults above,
there are no differences in the design of existing non benign
FT protocols and those of AFT.

b) SAR model: In the SAR replication model, the
inaccuracy of the adapter coding/decoding is bounded by
€ # 0. Therefore, the AFT protocol phases are different
from those of an FT protocol in a similar way to the above
discussion of benign FT protocols. However, since a non
benign faulty node can have some indeterminism like an artira,
this leverages important questions about how to distinguish
between a correct behavior of an artira, due to uncertainty,
and a faulty replica/artira as defined in the fault model like
Byzantine, BAR, etc. [34], [35]. This can cause problems
under the hood since faulty nodes could skew the results of
the consensus depending on the policy used. For instance, if
the policy = max, then a Byzantine node can always try to
reply with the maximum possible value that does not violate
the bound e. Notice that even if this is within the acceptable
limits of AFT, it may not be desired. We believe that this
requires a dedicated research.

c) WAR model: This case is similar to that of the benign
FT protocols described above.

VI. THE CoST OF AFT

The discussion made in Sections I and V shows that the
replication factor raises the cost of fault tolerance to many
folds. This urges the majority of services to use FT techniques
that require minimal number of replicas. Therefore, the norm
is often to use the rule n = 2f + 1 and n = 3f 4+ 1 for
benign and non benign faults, respectively, and assuming f =
1. Even in this best case, the cost of replication is two or
three replicas. With the growth of computer-based services, the
number of servers needed for replication will increase faster
which imposes more cost on the service owner. This is not even
consistent with the recent sustainability efforts of communities.
The AFT approach we introduce here makes it possible to take
advantage of existing resources to reduce the replication cost.
This can stimulate designers to build their services keeping in
mind their potential use as artiras.

However, there is some cost to pay due to: building artiras,
new protocols, and uncertainty. For instance, as discussed in
Section III, building artiras requires the existence of strongly
correlated components. Although this depends on the appli-
cation, it is costly to lookup synergies in a huge space of
components, and thus it is recommended to designate a fairly
small set of candidate components to verify correlations. This
cost can also be reduced through using correlation tools as
those used in Machine Learning and Data Analytics. This
tradeoff is also required while implementing the adapter of
an artira which shall not require a large investment in time
and resources; otherwise, the cost will be similar to N-version
programming [15]. Moreover, using artiras from other vendors
can impose additional subscription and accessibility costs as in
the cases of web-services (refer to Section VII). On the other
hand, although AFT can use existing FT protocols as in the
PAR model, other models require different protocol variants to
consider the induced tolerable uncertainty. The cost of these
protocols can be referred to the new forms of agreement (e.g.,
vector agreement), uncertainty handling, sending full replies
instead of digests (since replies are not exact), etc. We argue
that these costs are low compared to the benefits AFT brings in
terms of using existing components and improving diversity;
this also needs a dedicated empirical cost study in the future.

VII. FEASIBILITY AND APPLICATIONS

a) AFT Webservices: An interesting observation is that
the web (e.g., web-services, crowdsourcing, BigData, etc.)
contains lots of redundant information that is not being used
in fault tolerance. For instance, the leading Web API directory
in [36] shows that dozens of web-services exist in each API
category (e.g., currency, weather, dictionaries, BigData, etc.).
Given this, it would be interesting to exploit these redundant
sources and use them as PAR artiras to design other more re-
liable service (rewarded by the increased diversity and distinct
geographic locations of artiras). In addition, the SAR model
can be used for webservices that can trade some bounded
uncertainty for reduced cost. Moreover, if using web-services
of different behaviors is possible (e.g., weather forecast and
sea level elevation) more reliable webservices can be designed
using the SAR and WAR models (if statistical correlations
exist), provided that some uncertainty is accepted. We think
that this can introduce a new business model in which webser-
vices are provided to clients which in their turn can build more
reliable webservices based on various ones. For instance, many
weather forecast webservices are now available through the
SOAP web programming model [37]. A more robust weather
forecast webservice can be built, by using other webservices as
artiras, and the new service is again sold to clients. Notice that
the overhead of implementing such a webservice is low, using
SOAP for example, and reduces the administrative cost of
maintaining the whole system (since individual artira providers
will take care of their webservices). The above concept can
also be applied within the same company. For instance, SAR
and WAR can be used through using two Google’s social media
services, e.g., Youtube and Google+, as artiras to detect failures
in recommender systems, e.g., through matching a user profile,
interests, preferences, etc.

b) AFT in Distributed Programming: With the intro-
duction of multicore systems, most programming languages
support multithreading and multiprocessing which significantly
increases the complexity of software designs. This makes
software more prone to errors due to concurrency, shared
resources, memory leaks, etc. Modern programming languages
provide methods and techniques for error handling and pro-
cesses recovery. For instance, Erlang allows processes to
monitor each other for error handling [38]. If an exception
is raised by one process, a linked trapping process can catch
that exception and recover the failing process. The exception
can comprise useful information about the reasons of the crash.
The same concept can be used in AFT between processes by
making some of them artiras to others (e.g., a supervisor parent
process). In this way, processes can raise useful information
that can be redundant to those in other processes even without
failure and without necessarily using the exception. Following
this approach, AFT can be used among different correlated
processes and threads that share the same resources (drives,
tokens, ports, folders etc.), e.g., as in NFS systems. Another
example is to use AFT for Virtual Machines (like JVM)
to detect faults as in a shared memory prefetching between
correlated threads as in [39].

c) AFT by Design in HPC: High Performance Com-
puting (HPC) has recently become a very hot area due to the
high processing power required by Science, Social Network,
and in general Big Data. In HPC, MapReduce is often used

to break down a problem into Map and Reduce processes in a
supercomputer, or simply a large number of processors [40].
Maps usually run in parallel over different processors and
Reduce aggregates the final output emitted by Maps. Since
it is costly to replicate the processes for better fault tolerance,
it can be interesting to construct the problem in such a way
that different processes can serve as artiras for others, even if
they are different [41]. A simple example is the multiplication
of huge matrices in which Map processes are assigned parts
of a matrix like rows/columns/blocks. If there are patterns in
the matrix (e.g., sorting), it is not difficult to detect a failure
of a Map process if the values emitted by the adjacent Map
processes are captured. Another option is to design the problem
in a way to use processes as artiras, e.g., like using multi-
level MapReduce steps [42]. In general, naturally redundant
algorithms can intuitively be split into different processes
that work in parallel in which they infer some redundant
information (e.g., computing on the sub-trees of a binary tree)
as described in [43].

d) Fault Detection: On the other hand, AFT can be
used for fault detection (even in the WAR model). In fact,
uncertainty and accuracy in failure detectors is well-studied
in the literature; Failure Informers and Impact FD [7],
[22] are few examples. These works support our idea that
fault tolerance can accept some uncertainty as in SAR and
WAR models. Moreover, SAR and WAR can also be used
for diagnosis. The BSC use-case in Table II is an example
for detecting failed medical instruments. Similar applications
can also accept some error like medical imaging [27], video
streaming, self correcting applications (as genetic algorithms).

VIII. RELATED WORK

Von Neumann introduced the idea of redundancy in soft-
ware by showing how reliable “organisms” can be synthesized
from unreliable components via majority “organs” [44]. Most
modern fault tolerance approaches used this concept through
designing protocols with Active Replication as in [1], [3],
[4], [29]. In order to tolerate f, faults, a number of extra
components (i.e., replication factor) is required, based on f,
with the assumption that replicas fail independently. In this
paper, the AFT concept is based on artificial redundancy where
replicas may not be exact-copies. This allows for other relaxed
FT models that can be useful to reduce the cost of replication.

Fault tolerance protocols assume that replicas fail indepen-
dently. To improve independence of failures, different forms
of diversity can be introduced across different components on
different axes and levels [14]: N-version programming [15],
obfuscated software components [16], Components off-the-
shelf (COTS) [5], various hardware [18], diverse OS [19],
instruction sets [45], memory obfuscation [46], execution
and compilation [21], etc. The most popular among these
are N-version programming, “proactive recovery”, and using
COTS to include design diversity to the system. N-version
programming requires implementing a software by different
independent teams which is very expensive [11], [13]. The
second approach uses semantically equivalent generated (using
a secret key) obfuscated components in proactive recovery
fashion; this approach is only effective in “fast” failures and
when the key is kept secret as described in [14], [21]. Finally,
using COTS, as in BASE [5] is a promising approach as it

uses already existing components of similar behaviors, which
reduces the diversity cost (as in N-version programming).
The approach uses conformance wrappers for components to
achieve a similar behavior to state machines [29]. Our work
generalizes this idea to use components of different behaviors,
which has a larger application space and improved diversity.
In addition, the logic and design of adapters in this paper is
very similar to conformance wrappers in BASE.

Our idea is close to using diverse assistant systems in
automotive systems [23] where a different system can take
over when a critical system fails; however, we generalize this to
span generic redundant system that can be used in distributed
systems. On the other hand, clock synchronization [24], [25]
and Byzantine approximate agreement [26] tried to strengthen
the validity property through choosing approximate or aver-
age values. However, these works addressed systems where
replicas (or clocks) are identical. Our work exploits the case
where distributed componenets are different in behaviour and
semantics; it looks up new redundancy forms even through op-
posite components in nature and functionallity, which ensures
validity through using the “adapters”.

IX. CONCLUDING REMARKS

This paper introduces a new form of artificial redundancy
that is based on the correlations among components rather
than on exact copies or similar behaviors. This allows to
exploit new sorts of redundancy aiming at reducing the cost
of replication and improving independence of failures. We
described how to build artificial replicas, i.e., artiras, using
artificial redundancy and explained the possible models de-
pending on the correlations. Then, artificial fault tolerance
(AFT) was introduced based on artiras instead of replicas,
which induces some uncertainty in some cases. Our work is
complementary to previous FT approaches and obviously does
not replace them. AFT PAR model allows to use artiras in a
similar fashion and certainty as conventional FT models use
replicas, but with higher tolerance to faults due to the increased
diversity by artiras. Other AFT SAR and WAR models can be
used if the application tolerates some degree of uncertainty.
In such cases, conventional FT protocols must be adjusted
to include uncertainty. This imposes some cost as explained
in Section V. We discussed the feasibility and applications
(refer to Section VII) of our approach and explained that new
business models can even be introduced on this concept. We
beleive that is interesting to empirically study the tradeoffs
between FT and AFT in terms of fault tolerance, efficiency,
and cost in the future.

REFERENCES

[1] J. Gray and D. P. Siewiorek, “High-availability computer systems,”
Computer, vol. 24, no. 9, pp. 39-48, Sep. 1991.

[2] E C. Girtner, “Fundamentals of fault-tolerant distributed computing in
asynchronous environments,” ACM Comput. Surv., vol. 31, no. 1, pp.
1-26, Mar. 1999.

[3] T. D. Chandra, R. Griesemer, and J. Redstone, “Paxos made live: An
engineering perspective,” in Proceedings of the Twenty-sixth Annual
ACM Symposium on Principles of Distributed Computing, ser. PODC
’07. New York,NY,USA: ACM, 2007, pp. 398-407.

[4] M. Castro and B. Liskov, “Practical byzantine fault tolerance,” in
Proceedings of the Third Symposium on Operating Systems Design
and Implementation, ser. OSDI ’99. Berkeley,CA,USA: USENIX
Association, 1999, pp. 173-186.

[5]

[6]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

M. Castro, R. Rodrigues, and B. Liskov, “Base: Using abstraction to
improve fault tolerance,” ACM Trans. Comput. Syst., vol. 21, no. 3, pp.
236-269, Aug. 2003.

R. Lyons and W. Vanderkulk, “The use of triple-modular redundancy
to improve computer reliability,” IBM Journal of Research and Devel-
opment, vol. 6, no. 2, pp. 200-209, April 1962.

T. D. Chandra and S. Toueg, “Unreliable failure detectors for reliable
distributed systems,” J. ACM, vol. 43, no. 2, pp. 225-267, Mar. 1996.

K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop dis-
tributed file system,” in Proceedings of the 2010 IEEE 26th Symposium
on Mass Storage Systems and Technologies (MSST), ser. MSST ’10.
Washington,DC,USA: IEEE Computer Society, 2010, pp. 1-10.

M. Abd-El-Malek, G. R. Ganger, G. R. Goodson, M. K. Reiter, and
J. J. Wylie, “Fault-scalable byzantine fault-tolerant services,” SIGOPS
Oper. Syst. Rev., vol. 39, no. 5, pp. 59-74, Oct. 2005.

R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong, ‘“Zyzzyva:
Speculative byzantine fault tolerance,” SIGOPS Oper. Syst. Rev., vol. 41,
no. 6, pp. 45-58, Oct. 2007.

J. C. Knight and N. G. Leveson, “An experimental evaluation of
the assumption of independence in multiversion programming,” IEEE
Trans. Softw. Eng., vol. 12, no. 1, pp. 96-109, Jan. 1986.

D. E. Eckhardt and L. D. Lee, “A theoretical basis for the analysis of
multiversion software subject to coincident errors,” IEEE Trans. Softw.
Eng., vol. 11, no. 12, pp. 1511-1517, Dec. 1985.

D. E. Eckhardt, A. K. Caglayan, J. C. Knight, L. D. Lee, D. F.
McAllister, M. A. Vouk, and J. J. P. Kelly, “An experimental evaluation
of software redundancy as a strategy for improving reliability,” IEEE
Trans. Softw. Eng., vol. 17, no. 7, pp. 692-702, Jul. 1991.

R. R. Obelheiro, A. N. Bessani, L. C. Lung, and M. Correia, “How
practical are intrusion-tolerant distributed systems?” 2006.

L. Chen and A. Avizienis, “N-version programming: A fault-tolerance
approach to reliability of software operation,” in Digest of Papers
FTCS-8: Eighth Annual International Conference on Fault Tolerant
Computing, 1978, pp. 3-9.

T. Roeder and F. B. Schneider, “Proactive obfuscation,” ACM Trans.
Comput. Syst., vol. 28, no. 2, pp. 4:1-4:54, Jul. 2010.

F. B. Schneider and L. Zhou, “Distributed trust: Supporting fault-
tolerance and attack-tolerance,” Cornell University, Tech. Rep., 2004.

R. Hughes, “A new approach to common cause failure,” Reliability
Engineering, vol. 17, no. 3, pp. 211-236, 1987.

M. Garcia, A. Bessani, I. Gashi, N. Neves, and R. Obelheiro, “Os diver-
sity for intrusion tolerance: Myth or reality?” in Dependable Systems
Networks (DSN), 2011 IEEE/IFIP 41st International Conference on,
June 2011, pp. 383-394.

A. Baumann, P. Barham, P-E. Dagand, T. Harris, R. Isaacs, S. Peter,
T. Roscoe, A. Schiipbach, and A. Singhania, “The multikernel: A new
os architecture for scalable multicore systems,” in Proceedings of the
ACM SIGOPS 22Nd Symposium on Operating Systems Principles, ser.
SOSP ’09. New York, NY, USA: ACM, 2009, pp. 29-44.

B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu, J. Davidson, J. Knight,
A. Nguyen-Tuong, and J. Hiser, “N-variant systems: A secretless
framework for security through diversity,” in Proceedings of the 15th
Conference on USENIX Security Symposium - Volume 15, ser. USENIX-
SS’06. Berkeley,CA,USA: USENIX Association, 2006.

J. B. Leners, T. Gupta, M. K. Aguilera, and M. Walfish,
“Improving availability in distributed systems with failure informers,”
in Proceedings of the 10th USENIX Conference on Networked
Systems Design and Implementation, ser. nsdi’13. Berkeley,CA,USA:
USENIX Association, 2013, pp. 427-442. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2482626.2482667

W. Ren and R. W. Beard, Distributed consensus in multi-vehicle
cooperative control. Springer, 2008.

L. Lamport and P. M. Melliar-Smith, “Synchronizing clocks in the
presence of faults,” Journal of the ACM (JACM), vol. 32, no. 1, pp.
52-78, 1985.

S. R. Mahaney and F. B. Schneider, “Inexact agreement: accuracy,
precision, and graceful degradation,” in Proceedings of the fourth
annual ACM symposium on Principles of distributed computing. ACM,
1985, pp. 237-249.

[26]

[27]

[28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

D. Dolev, N. A. Lynch, S. S. Pinter, E. W. Stark, and W. E. Weihl,
“Reaching approximate agreement in the presence of faults,” J. ACM,
vol. 33, no. 3, pp. 499-516, May 1986.

J. Montagnat, V. Breton, and I. Magnin, “Partitionning medical image

databases for content-based queries on a grid,” Methods of Information
in Medicine, vol. 44, no. 2, pp. 154-160, 2005.

L. F G. Sarmenta, “Sabotage-tolerance mechanisms for
volunteer computing systems,” Future Gener. Comput. Syst.,
vol. 18, no. 4, pp. 561-572, Mar. 2002. [Online]. Available:

http://dx.doi.org/10.1016/S0167-739X(01)00077-2

F. B. Schneider, “Implementing fault-tolerant services using the state
machine approach: A tutorial,” ACM Comput. Surv., vol. 22, no. 4, pp.
299-319, Dec. 1990.

L. Lamport, “The part-time parliament,” ACM Trans. Comput. Syst.,
vol. 16, no. 2, pp. 133-169, May 1998.

P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency Control
and Recovery in Database Systems. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 1987.

M. Pease, R. Shostak, and L. Lamport, “Reaching agreement in the
presence of faults,” J. ACM, vol. 27, no. 2, pp. 228-234, Apr. 1980.

M. Correia, N. F. Neves, and P. Verissimo, “From consensus to atomic
broadcast: Time-free byzantine-resistant protocols without signatures,”
The Computer Journal, vol. 49, no. 1, pp. 82-96, 2006.

A. Aiyer, S., L. Alvisi, A. Clement, M. Dahlin, J.-P. Martin, and
C. Porth, “Bar fault tolerance for cooperative services,” SIGOPS Oper.
Syst. Rev., vol. 39, no. 5, pp. 45-58, Oct. 2005.

L. Lamport, R. Shostak, and M. Pease, “The byzantine generals
problem,” ACM Trans. Program. Lang. Syst., vol. 4, no. 3, pp. 382—
401, Jul. 1982.

ProgrammableWeb, ‘“Programmableweb website,”
Available: http://www.programmableweb.com

F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S. Weer-
awarana, “Unraveling the web services web: an introduction to soap,
wsdl, and uddi,” IEEE Internet computing, no. 2, pp. 86-93, 2002.

F. Cesarini and S. Thompson, Erlang programming. O’Reilly Media,
Inc.”, 2009.

Y. Solihin, J. Lee, and J. Torrellas, “Using a user-level memory thread
for correlation prefetching,” SIGARCH Comput. Archit. News, vol. 30,
no. 2, pp. 171-182, May 2002.

J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107—
113, 2008.

B. Schroeder, G. Gibson et al., “A large-scale study of failures in high-
performance computing systems,” Dependable and Secure Computing,
IEEE Transactions on, vol. 7, no. 4, pp. 337-350, 2010.

M. Hall, “Two-step matrix multiplication with hadoop,” 2013. [Online].
Available: http://magpiehall.com/two-step-matrix-multiplication-with-
hadoop/

2015. [Online].

L. Laranjeira, M. Malek, and R. Jenevein, “On tolerating faults in
naturally redundant algorithms,” in Reliable Distributed Systems,1991.
Proceedings.,Tenth Symposium on, Sep 1991, pp. 118-127.

J. Von Neumann, “Probabilistic logics and synthesis of reliable organ-
isms from unreliable components,” Automata Studies, p. 4398, 1994.
G. S. Kc, A. D. Keromytis, and V. Prevelakis, “Countering code-
injection attacks with instruction-set randomization,” in Proceedings of
the 10th ACM Conference on Computer and Communications Security,
ser. CCS "03. New York,NY,USA: ACM, 2003, pp. 272-280.

J. Xu, Z. Kalbarczyk, and R. Iyer, “Transparent runtime randomization
for security,” in Reliable Distributed Systems,2003. Proceedings. 22nd
International Symposium on, Oct 2003, pp. 260-269.

