On the Efficient Implementation of
Mode-Directed Tabling

Joao Santos and Ricardo Rocha

CRACS & INESC TEC and Faculty of Sciences, University of Porto
Rua do Campo Alegre, 1021, 4169-007 Porto, Portugal
{jsantos,ricroc}@dcc.fc.up.pt

Abstract. Mode-directed tabling is an extension to the tabling tech-
nique that supports the definition of modes for specifying how answers
are inserted into the table space. In this paper, we focus our discus-
sion on the efficient support for mode-directed tabling in the YapTab
tabling system, which uses tries to implement the table space. We dis-
cuss 7 different modes and explain how we have extended and optimized
YapTab’s table space organization to provide engine support for them.
Experimental results, in the context of benchmarks taking advantage of
mode-directed tabling, show that our implementation compares favor-
ably with the B-Prolog and XSB state-of-the-art tabling systems.

1 Introduction

Tabling [1] is a recognized and powerful implementation technique that solves
some limitations of Prolog’s operational semantics in dealing with recursion
and redundant sub-computations. Tabling based models are able to reduce the
search space, avoid looping, and always terminate for programs with the bounded
term-size property!. Tabling consists of saving and reusing the results of sub-
computations during the execution of a program and, for that, the calls and
the answers to tabled subgoals are stored in a proper data structure called the
table space. The tabling technique can be viewed as a natural tool to implement
dynamic programming algorithms. Dynamic programming is a general recursive
strategy that consists in dividing a problem in simple sub-problems that, often,
are really the same. Tabling is thus suitable to use with this kind of problems
since, by storing and reusing intermediate results while the program is executing,
it avoids performing the same computation several times.

In a traditional tabling system, all the arguments of a tabled subgoal call
are considered when storing answers into the table space. When a new answer is
not a variant? of any answer that is already in the table space, then it is always
considered for insertion. Therefore, traditional tabling is very good for problems

1 A logic program has the bounded term-size property if there is a function f : N — N
such that whenever a query goal @ has no argument whose term size exceeds n, then
no term in the derivation of @ has size greater than f(n).

2 Two terms are considered to be variant if they are the same up to variable renaming,.

that require storing all answers. However, with dynamic programming, usually,
the goal is to dynamically calculate optimal or selective answers as new results
arrive. Writing dynamic programming algorithms can thus be a difficult task
without further support. Mode-directed tabling [2] is an extension to the tabling
technique that supports the definition of modes for specifying how answers are
inserted into the table space. The idea is to use the modes to define the arguments
to be considered for variant checking and to define how variant answers should
be tabled regarding the remaining arguments. Mode-directed tabling has proved
its viability for applications areas such as Machine Learning [3], Justification [4],
Preferences [5], Answer Subsumption [6], among others.

To evaluate a predicate p/n using traditional tabling, we just need to declare
it as ‘table p/n’. With mode-directed tabling, tabled predicates are declared using
statements of the form ‘table p(my,...,my)’, where the m;’s are modes for the
arguments. Implementations of mode-directed tabling are already available in
ALS-Prolog [2] and B-Prolog [3], and a restricted form of mode-directed tabling
can also be reproduced in XSB Prolog by using answer subsumption [7].

In this paper, we focus our discussion on the efficient implementation of
mode-directed tabling in the YapTab tabling system [8], which uses tries [9] to
implement the table space. Our implementation uses a more general approach to
the declaration and use of modes and, currently, it supports 7 different modes:
index, first, last, min, maz, sum and all. To the best of our knowledge, no other
tabling system supports all these modes and, in particular, the sum mode is not
supported by any other system. Experimental results, using a set of benchmarks
that take advantage of mode-directed tabling, show that our implementation
compares favorably with the B-Prolog and XSB state-of-the-art tabling systems.
This work is already fully integrated with the latest development version of Yap?.

The remainder of the paper is organized as follows. First, we introduce some
background concepts about tabling. Next, we describe the modes and we show
examples of their use. Then, we introduce YapTab’s table space organization and
describe how we have extended it to efficiently support mode-directed tabling.
At last, we present experimental results and outline some conclusions.

2 Tabled Evaluation

In tabling, variant calls to tabled subgoals are not re-evaluated against the pro-
gram clauses, instead they are resolved by consuming the answers already stored
in the corresponding table entries. During this process, as further new answers
are found, they are stored in their tables and later returned to all variant calls.

Figure 1 illustrates the execution of a tabled program. The top left corner
shows the program code and the top right corner shows the final state of the
table space. The program defines a small directed graph, represented by two
edge/2 facts, with a relation of reachability, defined by a path/2 tabled predicate.
The bottom of the figure shows the evaluation sequence, numbered in order of
evaluation, for the query goal path(a,Z).

3 http://www.dcc.fc.up.pt/~vsc/Yap

- table path/2. Tabl e

path(X 2) :- path(X Y), edge(Y,Z). subgoal s answer s
path(X 2) :- edge(X 2).

3. Z=b
edge(a, b) . 0. path(a, 2) 5. Z=a
edge(b, a) .

2. edge(a, 2)

1. path(a,Y), edge(Y,2)

4. edge(b, 2) 6. edge(a, 2) 3. Z=b

5. Z=a 7. Z=b
(fail)

Fig. 1. An example of a tabled evaluation

First calls to tabled subgoals correspond to generator nodes (nodes depicted
by white oval boxes) and, for first calls, a new entry, representing the subgoal,
is added to the table space (step 0). Next, path(a,Z) is resolved against the first
matching clause, calling in the continuation path(a,Y) (step 1). Since path(a,Y)
is a variant call to path(a,Z), we do not evaluate the subgoal against the program
clauses, instead we consume answers from the table space. Such nodes are called
consumer nodes (nodes depicted by black oval boxes). However, at this point,
the table does not have answers for this call, so the computation is suspended?®.

The only possible move after suspending is to backtrack and try the second
matching clause for path(a,Z) (step 2). This produces the answer {Z=b}, which
is then stored in the table space (step 3). At this point, the computation at
node 1 can be resumed with the newly found answer (step 4), giving rise to
one more answer, { Z=a} (step 5). This second answer is then also stored in the
table space and propagated to the consumer node (step 6), which produces the
answer {Z=b} (step 7). This answer had already been found at step 3. Tabling
does not store duplicate answers in the table space and, instead, variant answers
fail. This is how tabling avoids unnecessary computations, and even looping in
some cases. Since there are no more answers to consume nor more clauses left
to try, the table entry for path(a,Z) is then marked as completed.

3 Mode-Directed Tabling

Traditional tabling can be viewed as a composition of two procedural opera-
tions: Generate() and Aggregate(). The Generate() operation corresponds to
performing tabled evaluation from where a bag of answers is generated, i.e., we

4 We are assuming a suspension-based tabling mechanism, where a tabled evaluation
can be seen as a sequence of computations that suspend and later resume. Alterna-
tively, linear tabling mechanisms use iterative computations to compute fix-points
and for that they maintain a single execution tree (no suspension is needed).

may have duplicate (and infinite) answers as in Prolog. The Aggregate() oper-
ation then defines the criterion for specifying how answers are tabled which, for
traditional tabling, is to eliminate variant answers.

Mode-directed tabling can be thought of as an extension to the Aggregate()
operation that allows to define alternative criteria for specifying how variant
answers (the index arguments) should be tabled (the output arguments). Index
arguments are represented with mode index, while arguments with modes first,
last, min, maz, sum and all represent output arguments. Given the generic dec-
laration p(ma,...,mj, mj41,...,my), where for 1 <=1 <= j, m; is an index ar-
gument and for j+1 <=4 <= n, m, is an output argument, the Aggregate(p/n)
operation can be defined as the set of answers:

{p(@1, .y zn) | I(Zjt1, 0 20) 1 D(T1, o0, T, Zjg1-oo, 2n) € Generate(p/n)
ANxjy1 € ij(Outh(a:l, ...,LL’j))
AN
A Ty, € My (Outy (21, ..oy Tn-1))}
where Outj(x1,...,zj—1) = {y | Izj41,..,2n) :
P(T1y s Tj—1, Yy Zj41--, 2n) € Generate(p/n)}

For example, consider a p/3 predicate declared as p(index, min,all) and the
set of answers {p(a,2,2),p(b,2,1),p(b,1,2),p(b,1,1)}. The Aggreg(p/3) opera-
tion is then:

{p(a}l,x27x3) | H(ZQ,ZS) :p(mlaz2az3) S {p(a5272)’p(b7271>7p(ba 1a2)7p<b7 1a 1)}
A xg € min(Oute(z1)) A x3 € all(Outs(z1,x2))}

Since min(Outa(a)) = min({2}) = {2}, all(Outs(a,2)) = maz({2}) = {2}
and min(Outs(b)) = min({2,1}) = {1}, all(Outs(b,1)) = all({2,1}) = {2,1}
then Aggreg(p/3) = {p(a,2,2),p(b,1,2),p(b,1,1)}.

3.1 Index/First/Last Modes

Starting from the example in Fig. 1, consider now that we modify the program
so that it also calculates the number of edges traversed in a path. As we can see
in Fig. 2, the program does not terminate. Such behavior occurs because there
is a path with an infinite number of edges starting from a, thus not satisfying
the bounded term-size property necessary to ensure termination. In particular,
the answers found at steps 3 and 7 and at steps 5 and 9 have the same answer
for variable Z ({Z=b} and {Z=a}, respectively), but they are both inserted in
the table space because they are not variants for variable N. For programs with
an infinite number of answers, traditional tabling is thus not enough.

In Fig. 2, the problem relies on the fact that the third argument gener-
ates an infinite number of answers. We can thus define the path/3 predicate as
path(indez,index,first) meaning that only the first and second arguments must
be considered for variant checking and that, for the third argument, only the first
answer must be tabled. With this declaration, the answer {Z=b, N=3} found at
step 7 is no longer inserted in the table space and execution fails.

- table path/3. Tabl e

path(X, Z, N :- path(X Y,Nl), edge(Y,2), subgoal s answers
Nis NI+1.
3. Z=b, N1
path(X, Z,1) :- edge(X 2). 5. z=a N=2
dge(a, b) 0. path(a,zZ, N 7. Z=b, NE3
edge(a, b) . =
edge(b, a). 9. Z=a, N=4

1. path(a,Y,N1), edge(Y,Z), Nis NL + 1 2. edge(a, 2)

4. edge(b, 2), 6. edge(a, 2), 8. edge(b, 2), L. 3. Z=b, N=1
Nis 1+1 Nis 2+1 Nis 3+1 (infinite answers)
5. Z=a, N=2 7. Z=b, N=3 9. Z=a, N=4

Fig. 2. A tabled evaluation with an infinite number of answers

The last mode implements the opposite behavior of the first mode, i.e., it
always stores the last answer being found and discards the previous one, if any.
Remember that with tabling, the order of answers is not important. However,
in a particular implementation, the order of answers may depend on the tabling
mechanism and on the evaluation strategy being use. Hence, we may question
the necessity and/or correctness of the first and last modes.

The first mode can be seen as a way to prune the search space, once an
answer is found. This mode can also be read as any, don’t care or none. We
adopted the name first mainly to reflect the fact that, at the implementation
level, we are storing the first answer as a way to represent a justification for that.

On the other hand, the last mode can be seen as a way to dynamically
compute preferable answers. It is usually used in conjunction with a preferable
predicate that is responsible for computing the preferable answers as new results
arrive or fail if no preferable answer exists. In particular, all the other modes can
be reproduced by using the last mode with appropriate preferable predicates.
Please refer to [5, 6] for examples where the last mode has shown to be very useful
for implementing problems involving Preferences and Answer Subsumption.

3.2 Min/Max Modes

The min and max modes allow to specify a selective criterion that stores, re-
spectively, the minimal and maximal answers for an argument. At the implemen-
tation level, we assume that when using the min and/or maz modes, a tabled
predicate is monotonic. Figure 3 shows an example using the min mode. The
program’s goal is to compute the paths with the shortest distances. The path/3
predicate is declared as path(indez,index,min), meaning that the third argument
should store only the minimal answers for the first two arguments.

By observing the example in Fig. 3, the most interesting part happens at
step 8, where the answer {Z=d, C=3} is found. This answer is a variant of

- tabl e path(index,index, mn).

Tabl e
path(X zZ,C :- pcait 2(élrczCl) , edge(Y, z C2), subgoal s Answer s
path(X zZ,C :- edge(X Z O). 3 70, o1
edge(a, b, 1). 0. path(a,z 0 5. Z=c, C=2

——Ft———

edge(b, c, 1). =6
edge(b, d, 4). 8. Z=d, C=3
edge(c,d, 1).

0. path(a, Z, O

Cis Cl+C2 2. edge(a, z O

1. path(a,Y,Cl), edge(Y,Z C2),

4. edge(b, Z,C2), 7. edge(c, z C2), 9. edge(d, z,C2), 3. Z=b, C=1
Cis 1+C2 Cis 2+C2 Cis 3+C2
5. Z=c, C=2 6. Z=d, C=5 8. 7Z=d, C=3 10. fail

Fig. 3. Using the min mode to compute the paths with the shortest distances

the answer {Z=d, C=5} found at step 6. In the previous example, with the first
mode, the old answer would have been kept in the table. Here, as the new answer
is minimal on the third argument, the old answer is replaced by the new answer.

The max mode works similarly, but stores the maximal answer instead. For
programs without the bounded term-size property, we must be careful when
using these two modes as they may not ensure termination. For instance, this
would be the case if, in Fig.3, we used the max mode instead of the min mode.

3.3 Sum/All Modes

Two other modes are the sum and the all. The sum mode allows to sum all
the answers for an argument and the all mode allows to store all the answers.
Consider now the example in Fig. 4 where a path/j predicate is declared as
path(indez,index,min,all) meaning that, for each path, we want to store the
shortest distance (third argument) and, for the paths with the same shortest
distances, the number of edges traversed (fourth argument). By following the
example, the most interesting part happens when the answer {Z=b, C=2, N=2}
is found at step 8. This answer is a variant of the answer found at step 3 and al-
though both have the same minimal value (C=2), the new answer is still inserted
in the table space since the number of edges (fourth argument) is different.

Notice that when the sum or all modes are used in conjunction with another
mode, like the min mode in the example, it is important to keep in mind that
the aggregation of answers made for the sum or all argument depends on the
corresponding answer for the min argument. Consider, for example, that in the
previous example we had found one more answer {Z=b, C=1, N=4}. In this
case, the new answer would be inserted and the answers {Z=b, C=2, N=1} and
{Z=b, C=2, N=2} would be deleted because the new answer corresponds to a
shorter distance, as defined by the value C=1 in the min argument.

- table path(index,index,mn,all).

Tabl e
path(X zZ, C N :- path(XY,Cl, N1), subgoal s answer s
edge(Y, Z, C2),
Cis C1+C2, Nis Ni1+1.

.) 3. Z=b, C=2, N1
path(X Z C 1) :- edge(X Z C). 0. path(a, z C N 4 Z=c, C=1 N1
edge(a, b, 2). 8. Z=b, C=2, N=2
edge(a,c,1).
edge(c, b, 1).

0. path(a,z,C N

1. path(a,Y,Cl,N1), edge(Y,Z C2), Cis Cl+C2, Nis Ni+1 2. edge(a, z,0)

5. edge(b, Z, C2), 7. edge(c,Zz C2), 9. edge(b,z C2), 3. Z=b, C=2 4. Z=c, C=1
Cis 2+C2, Cis 1+C2, Cis 2+C2,
Nis 1+1 Nis 1+1 Nis 2+1
6. fail 8. Z=b, C=2, N=2 10. fail

Fig. 4. Using the all mode to compute the paths with the shortest distances together
with the number of edges traversed

3.4 Related Work

The ALS-Prolog [2] and B-Prolog [3] systems also implement mode-directed
tabling but using a different syntax. For example, the indexr and first modes
are known as + and - and in ALS-Prolog the all mode is known as @. The
sum mode is not supported by any other system and B-Prolog also does not
implement the last and all modes. On the other hand, B-Prolog includes an
extra mode, named nt, to indicate that a given argument should not be tabled
and, thus, not considered to be inserted in the table space. B-Prolog also extends
the mode-directed tabling declaration to include a cardinality limit that allows
to define the maximum number of answers to be stored in the table space [3].

Mode-directed tabling can also be reproduced in the XSB system by using
two answer subsumption mechanisms [7]. One is called partial order answer sub-
sumption and can be used to mimic, in terms of functionality, the min and maz
modes. Consider that we want to use it with the program in Fig. 3 that com-
putes the paths with the shortest distances. Then, we should declare the path/3
predicate as path(_, _,po(< /2)) meaning that the third argument will be evalu-
ated using partial order answer subsumption, where < /2 implements the partial
order relation. The other two arguments are considered to be index arguments.

The other XSB’s mechanism, called lattice answer subsumption, is more pow-
erful and can be used to mimic, in terms of functionality, the other modes. Con-
sidering the same example, we only need to change the path/3 declaration to
path(_, _, lattice(min/3)). The min/3 predicate has three arguments since, with
this mechanism, we must generate a third answer starting from the new answer
and from the answer stored in the table:

min(Old, New, Res) : — Old < New — Res = Old ; Res = New.

4 Implementation

In this section, we start by presenting some background about the table space
organization in YapTab and then we discuss in more detail how we have extended
it to efficiently support mode-directed tabling.

4.1 YapTab’s Table Space Organization

Like we have seen, during the execution of a program, the table space may be
accessed in a number of ways: (i) to find out if a subgoal is in the table and, if
not, insert it; (ii) to verify whether a newly or preferable answer is already in
the table and, if not, insert it; and (iii) to load answers from the tables.

With these requirements, a careful design of the table space is critical to
achieve an efficient implementation. YapTab uses tries which is regarded as a
very efficient way to implement the table space [9]. A trie is a tree structure where
each different path through the trie nodes corresponds to a term described by the
tokens labeling the traversed nodes. For example, the tokenized form of the term
path(X,1, f(Y)) is the sequence of 5 tokens path/3, VAR, 1, f/1 and VAR,
where each variable is represented as a distinct V AR; constant. Two terms with
common prefixes will branch off from each other at the first distinguishing token.
Consider, for example, a second term path(Z,1,b). Since the main functor, token
path/3, and the first two arguments, tokens VAR and 1, are common to both
terms, only one additional node will be required to fully represent this second
term in the trie, thus allowing to save three nodes in this case.

YapTab implements tables using two levels of tries. The first level, named
subgoal trie, stores the tabled subgoal calls and the second level, named answer
trie, stores the answers for a given call. More specifically, each tabled predicate
has a table entry data structure assigned to it, acting as the entry point for
the predicate’s subgoal trie. Each different subgoal call is then represented as a
unique path in the subgoal trie, starting at the table entry and ending in a subgoal
frame data structure, with the argument terms being stored within the path’s
nodes. The subgoal frame data structure acts as an entry point to the answer trie.
Contrary to subgoal tries, answer trie paths hold just the substitution terms for
the free variables that exist in the argument terms of the corresponding call [9].

An example for a tabled predicate p/3 is shown in Fig. 5. Initially, the table
entry for p/3 points to an empty subgoal trie. Then, the subgoal p(X,1,Y)
is called and three trie nodes are inserted to represent the arguments in the
call: one for variable X (VARp), a second for integer 1, and a last one for
variable Y (V AR;). Since the predicate’s functor term is already represented by
its table entry, we can avoid inserting an explicit node for p/3 in the subgoal
trie. Then, the leaf node is set to point to a subgoal frame, from where the
answers for the call will be stored. The example shows two answers for p(X,1,Y):
{X=V ARy, Y=f(VAR;)} and {X=V AR, Y=b}. Since both answers have the
same substitution term for argument X, they share the top node in the answer
trie (VARy). For argument Y, each answer has a different substitution term and,
thus, a different path is used to represent each.

When adding answers, the leaf nodes are (table entry for)
chained in a linked list in insertion time or- p/3
der, so that the recovery may happen the 1st

subgoal
same way. In Fig. 5, we can observe that the argument Ll
leaf node for the first answer (node VAR;) 2nd
points (dashed arrow) to the leaf node of the arourent
second answer (node b). To maintain this list, ar et
two fields in the subgoal frame data structure
point, respectively, to the first and last an- (subgoal frame for)
swer of this list (for simplicity of illustration, o DD L)
these pointers are not shown in Fig. 5). When Sufztr'mt?f)',of] ,,,,,,,
consuming answers, a consumer node only st argument

. . substitution
needs to keep a pointer to the leaf node of its termfor -------

last loaded answer, and consumes more an- Srd argument
swers just by following the chain. Answers are
loaded by traversing the trie nodes bottom-
up (again, for simplicity of illustration, such
pointers are not shown in Fig. 5).

Fig. 5. Table space organization

4.2 Mode-Directed Tabled Subgoal Calls

In YapTab, mode-directed tabled predicates are compiled by extending the table
entry data structure to include a mode array, where the information about the
modes is stored. In this mode array, the modes appear in the order in which the
arguments are accessed, which can be different from their position in the original
declaration. For example, indexr arguments must be considered first, irrespective
of their position. Or, if using the all and min modes in a declaration, all min
arguments must be considered before any all argument, since the all means that
all answers must be stored, making meaningless the notion of being minimal in
this case. As we will see in Section 4.3, changing the order is also strictly neces-
sary to achieve an efficient implementation. In YapTab, the mode information is
thus stored in the order mentioned below, together with the argument’s position:

. arguments with index mode;

. arguments with min and maz mode;

. arguments with all mode;

. arguments with last or first or sum (only one sum argument is allowed)
mode (the combination of different modes is not allowed).

=W N

Figure 6 . shows an example for a e ey Tor) Thaex 1 2
p(allindex,min) mode-directed tabled pred- (p(all,index min) J mn |3
icate. The indexr mode is placed first in the all |1
mode array, then the min mode and last the

all mode. With traditional tabling, tabled Fig. 6. Mode array

calls are inserted in their own subgoal tries
by following the order of the arguments in the call. With mode-directed tabling,

we follow the order defined in the corresponding mode array. Figure 7 shows the
difference between the resulting subgoal tries with and without mode-directed
tabling for the subgoal call p(X,1,Y). The values in the mode array indicate that

0660

we should start by inserting first the second argument of the subgoal call (1),

then the third argument (Y or VARy) and last the first argument (X or VARy).
The mode information is used (tabl e entry for) (table entry for)

when creating the subgoal frame as- p(all. index, mn) ; p/3

sociated with the subgoal call at subgoal subgoal

hand. With mode-directed tabling, trie m trie

subgoal frames were extended to in-

clude a new array, named substitu- q

tion array, where the mode infor-

mation is stored, together with the

number of free variables associated (Supb(gl"’i'/AFfm‘i/":le)‘”) (Supb(g\j’:‘éo”lril”:le)°r)

with each argument in the subgoal (3 (b)

call. The argument’s order is the

same as in the mode array. Figure 8 Fig. 7. Subgoal tries for p(X,1,Y) consid-

shows the substitution array for the ering p/3 declared (a) with and (b) with-

subgoal call p(X,1,Y). The first po- out mode-directed tabling

sition, corresponding to the argu-

ment with constant 1, has no free variables and thus we store a 0 in the substitu-

tion array. The other two arguments are free variables and, thus, they have a 1

in the substitution array. It is possible to optimize the array by removing entries

that have 0 variables and by joining contiguous entries with the same mode. As

we will see next, the substitution array plays an important role in the process of

inserting answers in the answer trie.

4.3 Mode-Directed Tabled Answers

Like in traditional tabling, tabled answers Tndex T 0
K R (subgoal frame for \

are only represented by the substitution P(1, VARD, VARL) mn | 1

terms for the free variables in the arguments all |1

of the corresponding subgoal call. However,

for mode-directed tabling, when we are con- Fig. 8. Substitution array

sidering the substitution terms individually,
it is important to know beforechand which mode applies to each, and for that,
we use the information stored in the corresponding substitution array.
Consider again the substitution array for the subgoal call p(X,1,Y). Now, if
we find the answer { X=f(a), Y=5}, the first binding to be considered is { Y=5}
with min mode and then {X=f(a)} with all mode. Please note that the substi-
tutions are considered in the same order that the variables they substitute have
been inserted in the subgoal trie. Since the answer trie is initially empty, both
terms can be inserted as usual. Later, if another answer is found, for example,
{X=b, Y=8}, we begin the insertion process by considering the binding { Y=3}
with min mode. As there is already an answer in the table, we must compare
both accordingly to the min mode. Since the new answer is preferable (3 < 5),

the old answer must be invalidated and the new one inserted in the table. The in-
validation process consists in: (a) deleting all intermediate nodes corresponding
to the answers being invalidated; and (b) tagging the leaf nodes of such answers
as invalid nodes. Invalid nodes are only deleted when the table is later completed
or abolished. Figure 9 illustrates the aspect of the answer trie before and after
the invalidation process.

Invalid nodes are opaque to (subgoal frame for j (subgoal frame for j
subsequent subgoal calls, but can p(1, V2RO, VARL) p(1, VARD, VARL)

be still visible from the consumer ST . . @
calls already in evaluation. Hence, P g @ @

when invalidating a node, we may m ° @
have consumers still pointing to it. »

By deleting leaf nodes, this would e @

make consumers unable to follow
the chain of answers. An alternative (@ (o
would be to traverse the stacks and
update the consumers pointing to
invalidated answers, but this could
be a very costly operation.

Notice also that the mode’s order in the substitution array is crucial for the
simplicity and efficiency of the invalidation process. When, at a given node N,
we decide that an answer should be invalidated, the substitution array’s order
ensures that all nodes below node N (including N) are the ones we want to
invalidate and that the upper nodes are the ones we want to keep.

This might not be the case if we used a bad order. For (subgoal frame for]
example, Fig. 10 illustrates the aspect of the answer trie inARO' L, VARL)

Fig. 9. Aspect of the answer trie (a) before
and (b) after the invalidation process

before the invalidation process if we considered the orig- °_'
inal arguments order for p(X,1,Y). In Fig. 10, to detect m
that the second answer is preferable (3 < 5), we need to ST

navigate in the trie until reaching the leaf node 5 for the Teneee ’ ’gq
first answer. Thus, the invalidation process may require EIIELSTY "'*
deleting upper nodes (as the example in Fig. 10 shows)

and/or traverse several paths to fully detect all preferable

answers (this would be the case if we had two interme- Fig. 10. Before the
diate answers with the same minimal values, for instance invalidation process
{X=f(a), Y=5} and {X=h(c), Y=5}), making therefore if using a bad order
the invalidation process much more complex and costly.

4.4 Scheduling and Mode-Directed Tabling

In a tabled evaluation, there are several points where we may have to choose
between continuing forward execution, backtracking, consuming answers or com-
pleting subgoals. Such decision is determined by the scheduling strategy. The two
most successful strategies are batched scheduling and local scheduling [10].
Batched scheduling evaluates programs in a depth-first manner as does the
WAM. When new answers are found for a particular tabled subgoal, they are

added to the table space and the evaluation continues with forward execution.
Only when all clauses have been resolved, the newly tabled answers will be
forwarded to the consumers. Batched scheduling thus tries to delay the need to
move around the search tree by batching the consumption of answers.

Local scheduling is an alternative strategy that tries to complete subgoals
sooner. The key idea is that whenever new answers are added to the table space,
the execution then fails. Local scheduling thus explores the whole search space
for a tabled predicate before returning answers for forward execution.

To the best of our knowledge, YapTab is the only tabling system that sup-
ports the dynamic mixed-strategy evaluation of batched and local scheduling
within the same evaluation [10]. This is very important, because for mode-
directed tabled predicates, the ability of being able to use local evaluation can
be crucial to correctly and/or efficiently support some modes.

This is the case for the sum . — table num_links(index, sum).
mode, that we discuss next in more num_links(A,0) : — edge(_, A).
detail. As it sums all the answers num_links(A,1) : — edge(4,).
for a given argument, we might

end with wrong results if we re- : — table num_nodes(sum).
turn partial results instead of ag- num_nodes(0).
gregating them and only return- num_nodes(1) : — num_links(_, _).

ing the aggregated result. Consider,
for example, the two mode-directed edge(a,b). edge(a,c). edge(b, c).
tabled predicates num_links/2 and
num_nodes/1 in Fig. 11 and Fig.11l. A cascade of two mode-directed
the query goal num_nodes(N). If tabled predicates using the sum mode
num_links/2 is evaluated using lo-
cal scheduling, we get the right result (N=3) but, with batched scheduling, we
end with a wrong result (N=6). This occurs because, with batched evaluation,
the num_links(_,-) call in the second clause of num_nodes/2 succeeds 2 times
for each edge/2 fact. Moreover, with batched scheduling, there is no means to
return the partial sums while the table is being computed. With local scheduling,
since the result is only returned at the end, this problem does not apply.
Batched evaluation can also yield useless computations for mode-directed
tabled predicates. Consider a p(mazx) tabled predicate and the query goal:

i — p(Max), do_work(Mazx, Res).
With batched evaluation, the call to do_work(Maz, Res) will be executed for

each Max partial result computed by p(Maz), hence producing many useless
computations as the number of non-maximal results.

5 Experimental Results

In this section, we present some experimental results for a set of benchmarks that
take advantage of mode-directed tabling. The environment for our experiment

was a machine with a AMD FX(tm)-8150 8-core processor with 32 GBytes of
main memory and running the Linux kernel 64 bits version 3.2.0. To put our
results in perspective, we compare our implementation, on top of Yap Prolog
(development version 6.3), with the B-Prolog (version 7.8 beta-6) and the XSB
(version 3.3.6) systems, both using local scheduling. For XSB, we adapted the
benchmarks to use lattice answer subsumption (as discussed in Section 3.4)°.
For benchmarking, we used the following set of programs:

short(N) uses the min mode to determine all-pairs shortest paths in a graph
representing the flight connections between the N busiest commercial air-
ports in USS.

short_first(IN) uses the first mode to extend the all-pairs shortest paths pro-
gram to also include the first justification for each shortest path.

short_all(IN) uses the all mode to extend the all-pairs shortest paths program
to also include all the justifications for each shortest path.

short_pref(IN) uses the last mode to solve the all-pairs shortest paths program
using Preferences [6].

knapsack(N) uses the maz mode to determine the maximum number of items
to include in a collection, from N weighted items, so that the total weight is
equal to a given value.

les(IN) uses the maz mode to find the longest subsequence common to two
different sequences of size N.

matrix(N) uses the min mode to implement the matrix chain multiplication
problem that determines the most efficient way to multiply a sequence of N
matrices.

pagerank(N) uses the sum mode to measure the rank values of web pages in
a realistic dataset of web links called search engines”, using N iterations.

Table 1 shows the execution times, in milliseconds, for running the bench-
marks with YapTab, B-Prolog and XSB. In parentheses, it also shows the ex-
ecution time ratios against YapTab with local evaluation. The execution times
are the average of 3 runs. The entries marked with n.a. correspond to programs
using modes not available in B-Prolog. The ratios marked with (—) mean that
we are not considering them in the average results (they correspond either to
n.a. entries or to execution times much higher than YapTab).

In addition to these results, we also collected some statistics for YapTab when
running with local and batched evaluation. Table 2 shows the number of answer
trie nodes (column #nodes) and the number of tabled answers (column #ans)
present in the table space for YapTab at the end of the execution (columns
Final) and the respective differences for the full execution with local and batched
evaluation (columns Extra/Deleted). These differences represent the extra trie
nodes and answers that were allocated/found during the evaluation and later
deleted and, thus, are not present in the final tables.

® For programs using min/maz modes, we also tried with partial order answer sub-
sumption but, unexpectedly, we got worse results.

S http://toreopsahl.com/datasets

" http://www.cs.toronto.edu/~tsap/experiments/download/download.html

Table 1. Execution times, in milliseconds, for YapTab, B-Prolog and XSB and the
respective ratios when compared with YapTab’s local evaluation

Programs LocalYaI])3rI:1‘:lzhe d B-Prolog XSB

short(300) 1,088 | 1,261 (1.16) 2,000 (2.75) 2,922 (2.69)
short (400) 1,544 | 1,785 (1.16) 4,216 (2.73) 4,321 (2.80)
short(500) 2,170 | 2,472 (1.14) 5,792 (2.67) 6,218 (2.87)
short_first(300) 1,304 | 2,641 (1.89) 3,225 (2.31) 5,013 (3.60)
short_first(400) 2,052 | 3,432 (1.67) 4,614 (2. 25) 7,257 (3. 54)
short_first(500) 2,866 | 4,488 (1.57) 6,379 (3) 10,328 (3.60)
short_all(300) 4,324 | 8,383 (1.94) @ () 61,803 ()
short_all(400) 5,861 |10,590 (1.81) a () 122,985 ()
short_all(500) 8,337 |13,598 (1.63) a. (—) 239451 (—)
short_pref(300) 2,882 | 4,241 (1.47) a. (—) 6,666 (2.31)
short_pref(400) 4,152 | 5,621 (1.35) a. (—) 9,932 (2.39)
short_pref(500) 5,773 | 7,473 (1.29) a. (—) 14,129 (2.45)
knapsack(1000) 1,013 | 998 (0.99) 837 (0 83) 2,681 (2.65)
knapsack(1500) 1,581 | 1,561 (0.99) 1,220 (0.78) 3,977 (2.52)
knapsack(2000) 2,037 | 2,040 (1.00) 1,582 (0.78) 5,473 (2.69)
1cs(1000) 1,196 | 1,170 (0.08) 2,000 (2.42) 3,060 (2.56)
les(1500) 2,768 | 2,722 (0.98) 5,784 (2.09) 7,128 (2.58)
les(2000) 4,864 | 4,804 (0.99) 10,116 (2.08) 13,338 (2.74)
matrix(100) 102 | 224 (L17) 582 (3.03) 396 (2.06)
matrix(150) 925 | 1,076 (1. 16) 2,549 (2. 76) 1,610 (1. 74)
matrix(200) 3,005 | 3,534 (8) 7.816 (0) 4,688 (1.56)
pagerank(1) 365 a. (—) a. (—) 128,377 (—)
pagerank(16) 813 a. (—) a. (—) > 10 min (—)
pagerank(36) 1,260 a. (—) a. (—) > 10 min (—)
Average ratio (1 31) (2 15) (2.63)

In general, the results show that, for all combinations of experiments and sys-
tems, there is no clear tendency showing that the execution time ratios increase
or decrease as we increase the size of the corresponding set of programs.

Comparing the results for local and batched evaluation, they show that, on
average, batched evaluation is around 31% worse than local evaluation. These
results are confirmed in Table 2, where we can observe that batched evalua-
tion always allocates/deletes more trie nodes and inserts/deletes more tabled
answers than local evaluation. In particular, batched evaluation gets worse the
more answers are inserted into the table space. This affects in particular the
short_first(), short_all() and short_pref() set of programs, which confirms
our discussion regarding the fact that, in general, local evaluation is more suit-
able to reduce the search space for mode-directed tabled predicates.

Regarding the comparison with the other systems, YapTab’s results clearly
outperform those of B-Prolog and XSB. On average, B-Prolog and XSB are, re-
spectively, around 2.15 and 2.63 times worse than YapTab using local evaluation.
Please note that for B-Prolog and XSB we do not include the performance of
some programs into the average results. For B-Prolog, this is because these pro-

Table 2. Number of answer trie nodes and tabled answers for YapTab at the end of
the execution and the respective differences (extra nodes and answers allocated /found
that were later deleted) for the full execution with local and batched evaluation

Final Extra/Deleted
Programs Local Batched
#nodes #ans #nodes #ans #nodes #ans
short(300) 179,401 89,401 77,911 77,911 586,488 586,488
short(400) 317,618 157,618 122,435 122,435 706,060 706,060
short(500) 500,000 250,000 196,831 196,831 877,913 877,913

short_first(300) 661,458 89,401 | 586,348 77,911 16,476,991 586,488
short_first(400) 1,213,352 157,618 | 947,584 122,435 18,733,939 706,060
short_first(500) 1,997,262 250,000 | 1,609,053 196,831 21,760,014 877,913
short_all(300) 2,615,740 690,614 | 5,609,890 1,584,000 30,418,627 4,740,397
short_all(400) 4,351,566 1,084,942 | 8,129,237 2,172,438 35,762,267 5,632,706
short_all(500) 6,806,102 1,611,082 |12,039,458 3,017,929 43,281,969 6,835,251
short_pref(300) 179,401 89,401 77,011 77,911 586,488 586,488
short_pref(400) 317,618 157,618 | 122,435 122435 706,060 706,060
short_pref(500) 500,000 250,000 | 196,831 196,831 877,913 877,913
knapsack(1000) 1,960,131 973,453 87,816 87,816 307,055 307,055
knapsack(1500) 2,963,665 1,475220 | 109,613 109,613 450,276 450,276
knapsack(2000) 3,960,969 1,973,872 | 127,957 127,957 584,980 584,980

1cs(1000) 1,980,191 989,118 101,997 101,997 206,485 206,485
les(1500) 4,445,865 2,221,466 234,713 234,713 484,700 484,700
lcs(2000) 7,917,402 3,956,741 420,051 420,051 866,027 866,027
matrix(100) 10,100 5,050 11,089 11,089 14,862 14,862
matrix(150) 22,648 11,324 17,791 17,791 39,775 39,775
matrix(200) 40,194 20,097 36,325 36,325 68,848 68,848
pagerank(1) 85,111 30,896 | 1,825,175 1,240,703 n.a. n.a.
pagerank(16) 378,783 104,314 | 3,237,305 1,711,413 n.a. n.a.
pagerank(36) 741,343 194,954 | 4,828,085 2,241,673 n.a. n.a.

grams use the all, last and sum modes, which are not supported in B-Prolog. For
XSB, the execution times for the short_all() and pagerank() are much higher
than YapTab and including them would have distorted the comparison between
the three systems. To the best of our knowledge, YapTab is thus the only system
that supports the all, last and sum modes and handles them efficiently.

6 Conclusions

We discussed how we have extended YapTab’s table space organization to pro-
vide engine support for mode-directed tabling. In particular, we presented how
we deal with mode-directed tabled subgoal calls and answers and we discussed
the role of scheduling in mode-directed tabled evaluations. Our implementation
uses a more general approach to the declaration and use of modes and, currently,
it supports 7 different modes. To the best of our knowledge, no other tabling sys-
tem supports all these modes and, in particular, the sum mode is not supported
by any other system.

Experimental results on benchmarks that take advantage of mode-directed
tabling, showed that our implementation clearly outperforms the B-Prolog and
XSB state-of-the-art tabling systems. In particular, YapTab is the only system
that efficiently handles programs that use the all mode.

Further work will include extending our implementation to support multi-
threaded mode-directed tabling and explore the impact of applying mode-directed
tabling to other problems.

Acknowledgments

This work is partially funded by the ERDF (European Regional Development
Fund) through the COMPETE Programme and by FCT (Portuguese Foundation
for Science and Technology) within projects LEAP (FCOMP-01-0124-FEDER-
015008) and HORUS (FCOMP-01-0124-FEDER-010074). Joao Santos is funded
by the FCT grant SFRH/BD/76307/2011.

References

1. Chen, W., Warren, D.S.: Tabled Evaluation with Delaying for General Logic Pro-
grams. Journal of the ACM 43(1) (1996) 20-74

2. Guo, H.F., Gupta, G.: Simplifying Dynamic Programming via Mode-directed
Tabling. Software Practice and Experience 38(1) (2008) 75-94

3. Zhou, N.F., Kameya, Y., Sato, T.: Mode-Directed Tabling for Dynamic Program-
ming, Machine Learning, and Constraint Solving. In: IEEE International Con-
ference on Tools with Artificial Intelligence. Volume 2., IEEE Computer Society
(2010) 213-218

4. Pemmasani, G., Guo, H.F., Dong, Y., Ramakrishnan, C.R., Ramakrishnan, I.V.:
Online Justification for Tabled Logic Programs. In: International Symposium on
Functional and Logic Programming. Number 2998 in LNCS, Springer-Verlag (2004)
24-38

5. Guo, H.F.,; Jayaraman, B., Gupta, G., Liu, M.: Optimization with Mode-Directed
Preferences. In: 7th ACM SIGPLAN International Conference on Principles and
Practice of Declarative Programming, ACM (2005) 242-251

6. Santos, J., Rocha, R.: Mode-Directed Tabling and Applications in the YapTab
System. In: Symposium on Languages, Applications and Technologies. (2012) 25—
40

7. Swift, T., Warren, D.S.: Tabling with Answer Subsumption: Implementation, Ap-
plications and Performance. In: European Conference on Logics in Artificial Intel-
ligence. Number 6341 in LNAI, Springer-Verlag (2010) 300-312

8. Rocha, R., Silva, F., Santos Costa, V.: On applying or-parallelism and tabling
to logic programs. Theory and Practice of Logic Programming 5(1 & 2) (2005)
161-205

9. Ramakrishnan, I.V., Rao, P., Sagonas, K., Swift, T., Warren, D.S.: Efficient Access
Mechanisms for Tabled Logic Programs. Journal of Logic Programming 38(1)
(1999) 31-54

10. Rocha, R., Silva, F., Santos Costa, V.: Dynamic Mixed-Strategy Evaluation of
Tabled Logic Programs. In: International Conference on Logic Programming. Num-
ber 3668 in LNCS, Springer-Verlag (2005) 250-264

