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Abstract
Lung cancer is considered one of the deadliest diseases in the world. An early and accurate diagnosis aims to promote the
detection and characterization of pulmonary nodules, which is of vital importance to increase the patients’ survival rates. The
mentioned characterization is done through a segmentation process, facing several challenges due to the diversity in nodular
shape, size, and texture, as well as the presence of adjacent structures. This paper tackles pulmonary nodule segmentation
in computed tomography scans proposing three distinct methodologies. First, a conventional approach which applies the
Sliding Band Filter (SBF) to estimate the filter’s support points, matching the border coordinates. The remaining approaches
are Deep Learning based, using the U-Net and a novel network called SegU-Net to achieve the same goal. Their performance
is compared, as this work aims to identify the most promising tool to improve nodule characterization. All methodologies
used 2653 nodules from the LIDC database, achieving a Dice score of 0.663, 0.830, and 0.823 for the SBF, U-Net and SegU-
Net respectively. This way, the U-Net based models yield more identical results to the ground truth reference annotated by
specialists, thus being a more reliable approach for the proposed exercise. The novel network revealed similar scores to the
U-Net, while at the same time reducing computational cost and improving memory efficiency. Consequently, such study may
contribute to the possible implementation of this model in a decision support system, assisting the physicians in establishing
a reliable diagnosis of lung pathologies based on this segmentation task.
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Introduction

Pulmonary nodules can be associated with several patholo-
gies, among them lung cancer, which is the main cause of
cancer death in men and the second cause in women world-
wide [14]. For this reason, providing an early detection and
diagnosis to the patient is crucial, considering that any delay
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in cancer detection might result in lack of treatment effi-
cacy. The advances of technology and imaging techniques
such as Computed Tomography (CT) have contributed to
nodule identification and monitoring; more specifically, the
segmentation process within a Computer-Aided Diagnosis
(CAD) system has facilitated their location and characteri-
zation, thus differentiating the nodule from other structures.
However, this task is quite complex considering the het-
erogeneity of the size, texture, position, and shape of the
nodules, and the fact that their intensity can vary within
the borders. When it comes to biomedical image segmen-
tation, early methods (generally described as conventional)
followed a set of principles and logical rules to deduce
new information [4]. Among other conventional techniques,
lesion segmentation often implies the use of filters, such
as the Sliding Band Filter, which has previously been used
e.g. to develop an automated method for optic disc [2]
and cell segmentation [10]. Machine Learning approaches
have then appeared and lately have been preferred over the
conventional ones. They became a trend by extracting fea-
tures and feeding them to a statistical classifier. Support
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Vector Machines, Decision Trees and K-Nearest Neigh-
bors are common techniques implemented within this trend
for lesion segmentation [9]. More recently, Deep Learning
established its dominant role in CAD systems and segmen-
tation tasks [5], by automatically extracting knowledge from
a large quantity of data. Convolutional Neural Networks
and, more specifically, Fully Convolutional (FC) Networks
are a frequent example that is usually applied for medical
imaging segmentation [12], encompassing e.g. encoder-
decoder structures for semantic segmentation tasks such as
the SegNet [1], or the U-Net, a particular example of an
encoder-decoder network initially developed for biomedi-
cal segmentation [11]. More recently, hybrid networks have
appeared, where the SegNet and the U-Net can be combined
to achieve a more memory-efficient model, which is also
able to capture fine details. That is the case of the hybrid
networks proposed for knee bone tumor segmentation [3],
and brain tissue segmentation [7]. Both these algorithms
proved to perform better than the SegNet and the U-Net
individually.

This work aims to precisely segment pulmonary nodules
using not only a conventional approach based on the
Sliding Band Filter, but also two Deep Learning based
approaches focused on FC encoder-decoder networks, as is
the case of the U-Net and the SegU-Net, a novel hybrid
network introduced in the current paper. Therefore, this
paper presents the evaluation and comparison of the selected
methodologies.

Conventional approach

The conventional approach selected for this paper is based
on a Local Converge Filter (LCF) since these tend to work
well for noisy low-contrasted images, which is often the
case of biomedical images. LCFs estimate and maximize
the convergence degree of the gradient vectors within a
support region R, toward a central pixel of interest P(x, y),
assuming that the studied object has a convex shape and
limited size range. The overall convergence degree is
obtained by averaging the individual convergences at all
points in R - each of them minding the orientation angle
θi(k, l) of the gradient vector at point (k, l) with respect to
the line with radial direction i [2]. Being a member of the
LCFs, the SBF is not influenced by gradient magnitude, nor
by the contrast with the surrounding structures. Instead, the
band of fixed width d which comprises the support region
is adapted in each one of the N radial directions leading out
of P , minding the gradient orientation in order to maximize
the convergence degree. Such feature makes this filter more
versatile when it comes to detecting different shapes, since

the support region can be molded. More specifically, the
support region is adapted in each direction i along a radial
length that varies from a minimum (Rmin) to a maximum
(Rmax) values, originating the filter’s response minding
the angle of the gradient vector at the point m pixels
away from P . The coordinates of the band’s support points
(X(θi), Y (θi)) are obtained, assuming that the center of the
object is known [13].

Deep learning based approaches

The state of the art has been greatly improved when it
comes to object detection and segmentation, and overall
region recognition thanks to Deep Learning [8]. This work
involves semantic segmentation in the context of a binary
classification problem, where a pixel is either nodular
or non-nodular. To complete the task, two FC encoder-
decoder style architectures are implemented: the U-Net,
and a novel hybrid between the SegNet and the U-Net,
designated as SegU-Net. Both structures include an encoder
and decoder components, ending with a classification layer
whose output is a pixel-wise segmentation mask. The
encoder receives the input image and downsamples it into
features maps with different levels of abstraction (low-to-
high level features), while the decoder receives those feature
maps and upsamples them until the output has the same
resolution as the input, ensuring a precise pixel location of
the object.

The U-Net is an improved FC Network specially devel-
oped for biomedical image segmentation, thus requiring a
smaller amount of parameters and computing time [11]. The
architecture of the U-Net was defined as follows: an encoder
block comprises two 3×3 unpadded convolutions, each fol-
lowed by a ReLU with batch normalization, a 2 × 2 max
pooling layer with stride equal to 2, and a dropout layer;
while a decoder block includes a upconvolution layer with
stride equal to 2, a concatenation with the corresponding
cropped feature map from the encoder block, and two 3× 3
convolutions, each followed by ReLU with batch normal-
ization. This way, the U-Net has four encoder blocks, a
bottleneck, and four decoder blocks, ending with an end-
most layer that includes a 1 × 1 convolution with sigmoid
activation. The number of feature channels is doubled with
each downsampling phase of the encoder, and then doubled
again in each upsampling of the decoder, creating a sym-
metric architecture. The skip connections at the same depth
level in the U-Net are an extremely important and effective
way to transfer the low-level features from the encoder to
the decoder, where these are concatenated with high-level
features, generating precise spacial information.
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Fig. 1 SegU-Net’s model schematics

The SegU-Net was developed and applied to the same
dataset, by replacing the U-Net’s upsampling method by
the SegNet’s. In other words, the previous description of
the U-Net still applies, in the sense that the SegU-Net has
four encoder blocks, a bottleneck, and four decoder blocks.
However, the encoder block performs downsampling using
max pooling and storing the max pooling indices, while
the decoder block uses the SegNet’s 2 × 2 max unpooling,
instead of the U-Net’s upconvolution operation. Figure 1
outlines the SegU-Net’s architecture. The skip connections
of the U-Net are kept in this new hybrid network, to
ensure the concatenation between the encoder and decoder
features. This way, the SegU-Net takes advantage of distinct
characteristics from the SegNet and the U-Net, combining
both into a new architecture dedicated to restoring pixel
position information and ideally achieve finer edge details,
while at the same time reducing computational cost and
increasing memory efficiency.

Methodologies for nodule segmentation

The ground truth for this exercise consisted of segmentation
masks from the LIDC database, which is publicly available
and consists of lung cancer screening thoracic CT scans
from 1010 patients. The following algorithms were applied
on 2653 nodule candidates from that database, whose
images are the output of a detection scheme. For each
nodule, the 3D volume around its center was split into three
anatomical planes (sagittal, axial, and coronal), resulting in
three 80×80 pixel images per nodule. For clarity and brevity
reasons, the conventional method will be explained for a
single plane.

Sliding band filter

The conventional methodology can be split into three main
steps. The SBF is first applied to get a better estimation

Fig. 2 Exemplification of the
conventional methodology steps,
where the blue mark is the center
of the image, the green mark is
the ground truth center of the
nodule, and the red mark is the
estimated center of the nodule
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of the nodule’s center coordinates, as shown in Fig. 2a.
Considering that most nodules have an overall uniform
intensity, a truncated binary mask is generated (Fig. 2b),
containing exclusively the pixels with similar intensity of to
the nodule’s. The SBF receives the original nodule image
and the truncated mask, and calculates its response for each
pixel, defining as the estimated nodule’s center the pixel
which maximizes that response. With those coordinates,
the SBF then evaluates the corresponding set of support
points, returning theN border coordinates marked in Fig. 2c
with yellow. To ensure the SBF is as precise as possible,
a condition was added to force the cosine of the gradient
vector’s orientation angle to be null when the pixel which is
being evaluated in a certain direction is null in the truncated
mask. Ideally, this keeps the SBF from including in the
segmentation non-nodular regions within the Rmin and
Rmax limits. The calculations for the SBF were obtained
with the parameter values N = 64, d = 7, Rmin = 1,
and Rmax = 25, which were established empirically to
maximize the algorithm’s performance.

To refine the initial segmentation, only the intersection of
the SBF segmentation mask and the truncated nodule mask
is considered. Any cavities within the intersected binary
masks are filled. By labeling all the different regions present
in the intersected masks, which are identified by their
connected components, it is possible to eliminate any region
that has no connection to the nodule and specifically select
the nodular area. After this step, the final segmentation mask
is achieved, as exemplified in Fig. 2d.

U-Net and SegU-Net

Both Deep Learning algorithms presented in this work are
implemented using Keras, with a TensorFlow backend. The
2D images are imported and split into training, validation,
and test sets, as described in Table 1. Real-time data
augmentation is applied to the training set, replicating
tissue deformations through affine transformations (e.g. 0.2
degrees of shear and random rotation within a 90 degree
range), and generating more training data with horizontal
and vertical flips.

It was necessary to take into consideration the class
imbalance within a sample (generally, there are more non-
nodular pixels in an image than nodular ones), and so a Dice
based loss function was selected. The training stage of the

Table 1 Composition of the train, validation and test sets

Train set Validation set Test set Total

#Nodules 1591 (60%) 531 (20%) 531 (20%) 2653

model is guided by two evaluation metrics: accuracy and
Jaccard Index.

The networks were trained with the Adam optimizer
to achieve a faster stable convergence, using the default
hyperparameter values [6]. While training the model,
callbacks were included. First, early stopping ensures the
training ends when the validation loss stops improving. At
the same time, the learning rate also reduces on plateau,
meaning that it is reduced when the validation loss cannot
reach a lower value. More specifically, the initial learning
rate value was the default for the Adam optimizer, and
will be reduced by a factor of 0.1 (new learning rate =
learning rate × 0.1), having a minimum accepted value of
0.00001. The model is fit on batches with real-time data
augmentation (using a batch size of 64 samples for the U-
Net and 32 samples for the SegU-Net), allowing a maximum
of 100 epochs and minding a dropout regularization of 50%.
After analyzing the validation loss for every epoch, the
training weights which maximize the evaluation metrics and
minimize the loss are stored, to get the predictions of the
test set. The pixel-wise probabilities that resulted from the
sigmoid activation faced a 50% threshold to decide whether
a pixel is nodular or not.

Results and discussion

Several adversities are encountered when evaluating medi-
cal segmentation, and for this reason it is very important to
establish an adequate standard evaluation system, and con-
sequently select which evaluation metrics to use as a mean
of comparison of the algorithms. This comparison is also
done using plots, present in Figs. 3 and 4, which directly
assess how close the segmentation is to the ground truth by
marking the True Positives (yellow pixels), False Positives
(red pixels), and False Negatives (green pixels). The scores
for the selected approaches are exhibited in Table 2.

The SBF needed approximately 5 hours to run, while
the U-Net and SegU-Net had a reasonable training time of
roughly 8 and 7,5 hours respectively on an NVidia GeForce
GTX 1080 GPU (8 GB). This indicates that the SBF
requires less computational power, followed by the SegU-
Net. Each Deep Learning model, i.e. its trained parameters,
was stored in a .h5 format file - the U-Net’s file required
121.5 MB and the SegU-Net’s required 52.5 MB. Taking
these values into consideration, one can confirm that the
SegU-Net translates to a smaller number of parameters and
consequently higher memory efficiency.

Both the U-Net and SegU-Net models exhibited fast
convergence and did not overfit to the training data,
considering the validation loss is similar to the training loss.
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Fig. 3 Comparison between the SBF and the U-Net: in nodule a both
methodologies are successful, in nodule b the SBF outperforms the U-
Net, in nodule c the U-Net outperforms the SBF, and finally in nodule
d none of the methodologies have a satisfying result

Fig. 5 displays the convergence curves for the loss and the
accuracy of the models.

The conventional approach exhibits a highly satisfactory
performance when dealing with well-circumscribed solid
nodules, with overall defined sharp margins. In these cases,
both smaller and larger nodules tend to be segmented
in accordance with the specialists. The algorithm also
deals very well with nodules whose intensities vary within
their border (i.e. cavitary and calcific nodules), as it is
able to ignore the cavities and calcific regions during
the segmentation process. Vascularized nodules have the
potential to pose a challenge, considering the inherent
difficulty in distinguishing the nodule from the attached
vessels. However, the SBF based approach is frequently able
to separate them and create a mask which does not include
the vessels. Such feat is possible thanks to the truncated

a

b
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d

Fig. 4 Comparison between the SBF and the SegU-Net: in nodule a
both methodologies are successful, in nodule b the SBF outperforms
the SegU-Net, in nodule c the SegU-Net outperforms the SBF, and
finally in nodule d none of the methodologies have a satisfying result

mask, which guides the SBF and consequently is able to
remove vascular structures from the segmentation.

The main flaws of the SBF algorithm appear when
dealing with juxtapleural nodules: since these lesions are
attached to the pleural wall and do not exhibit a sharp
margin, the algorithm often does not know where the nodule
ends and the pleura begins. In some cases, it is able to
estimate to some extent where the nodule ends, while in

Table 2 Evaluation metrics achieved by the conventional and Deep
Learning based methods. The number of nodules used to evaluate each
method is presented in the last column

Dice coefficient Precision Recall #Nodules

SBF 0.663 0.710 0.732 2653

U-Net 0.830 0.792 0.898 531

SegU-Net 0.823 0.787 0.858 531
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Fig. 5 Loss and accuracy convergence of the U-Net (left) and SegU-Net (right)

other cases part of the pleural wall is included in the
segmentation. The less satisfying results are also due to the
unexpected irregular shape of the nodule, or because the
nodule does not have a clear margin (non-solid).

Similarly to the SBF based approach, the U-Net is
able to clearly segment well-circumscribed solid nodules,
independently of their size. It also functions correctly
with cavitary and calcific nodules, as well as vascularized
nodules. In this last case, the U-Net is able to exclude
the vessels from the segmentation. However, unlike the
SBF, the U-Net demonstrates a great skill when segmenting
juxtapleural nodules, being able to tell almost perfectly
where the nodule ends and the pleura begins. The U-Net
experiences some degree of difficulty when segmenting
irregular shapes and non-solid lesions, but even in such
cases this approach is still able to clearly outperform the
first. In general, the U-Net segmentation results are very
similar to the ones given by the specialists, hence its great
performance. In some measure, the U-Net even achieves
a more uniform detailed segmentation in comparison to
the specialists’, which may be justified by its pixel-wise
perspicacity. The SegU-Net displayed similar scores to the
U-Net, being able to precisely segment solid nodules with
defined margins, with or without vasculature and other

structures near them. The same can be stated when working
with cavitary and calcific nodules. The algorithm’s slightly
inferior performance in comparison to the U-Net is mostly
due to an increase of difficulty when segmenting irregular
shapes, or non-solid lesions. Implementing a U-Net based
model has clear advantages - among them, the need for
fewer training images and the skip connections which allow
the merging of the encoder’s coarse contextual information
with the more precise spatial information achieved in
the decoder, ultimately leading to higher accuracy values.
One may argue that in this particular exercise the U-
Net’s upconvolutions proved to be slightly more efficient
due to their learnable parameters, but the SegU-Net’s
difference in terms of performance is not significant. In
fact, applying the SegU-Net’s max unpooling also reveals
an improved boundary delineation, while at the same time
decreasing the amount of parameters needed for end-
to-end training (values of the max pooling indices are
kept and the rest of the feature map values are zeroed).
Additional efforts can be done in future work to improve the
algorithms’ performance, namely develop a more adequate
pre-processing for the input images, in order to promote
the accuracy of the segmentation process. More specifically,
in the conventional approach, the border coordinates may
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be refined for the juxtapleural nodules by establishing a
more efficient post-processing stage. In the Deep Learning
approaches, the most straightforward way to enhance its
performance in non-solid or irregular shaped lesions would
be to add more of these examples to the training set,
promoting a more advanced and perceptive learning.

Conclusions

The segmentation of pulmonary nodules contributes to their
characterization, which makes it a key to assess the patient’s
health state. This way, a segmentation step implemented
within a CAD system can help the physician to establish a
more accurate diagnosis. However, the automation of such
task is hampered by the diversity of nodule shape, size,
position, lighting, texture, etc. The proposed conventional
approach deals with these challenges by implementing the
Sliding Band Filter to find the coordinates of the borders,
and achieves a Dice score of 0.663 when tested using the
LIDC database. On the other hand, the Deep Learning based
approaches go even further and yield a Dice score of 0.830
and 0.823 for the U-Net and the SegU-Net respectively. All
the approaches perform as expected for well-circumscribed
obvious nodules, with sharp margins and/or solid texture,
and tend to fail when segmenting non-solid or irregular
shaped lesions. The conventional approach exhibited the
lowest performance scores, which may be justified by
its difficulty segmenting juxtapleural nodules, unlike the
other algorithms. Based on previous work referenced in
the state-of-the-art revision, it was expected for the SegU-
Net’s hybrid network to outperform the U-Net. The SegU-
Net was not able to outperform it, but the difference
between their performance is not significant, meaning that
they have the same ability to segment pulmonary nodules.
Taking into consideration that the main distinction between
these two models are their upsampling method, one may
highlight that the SegU-Net’s max unpooling can be quickly
integrated into any encoder-decoder structure in order to
achieve fine detail in a segmentation task. By doing so,
the computational cost of the operation is reduced and the
memory efficiency of the training process is increased, in
opposition to the higher number of learnable parameters
required in an upconvolution. For these reasons, it can
be considered beneficial to choose the SegU-Net over the
U-Net.

As mentioned above, the presented methods can be
promising segmentation tools for well-circumscribed, solid,
cavitary, calcific, and vascularized nodules, and so future
work includes the refinement of these methods to deal
with their particular challenges. When it comes to the
most successful techniques, it would be wise to focus

on non-solid or irregular shaped nodules in order to
improved the models’ ability to precisely segment them,
for example by collecting more of these examples for
the training set and consequently adjust their parameters
to succeed in these types of lesions. To conclude, the
comparison of the conventional and Deep Learning based
approaches explored the advantages and disadvantages of
each technique, establishing the U-Net based models as the
most efficient methods in this case - particularly efficient
for obvious lesions, and able to overcome to a certain extent
the high variability of nodular structures. Comparing the
similar performance of both Deep Learning approaches,
it is possible to state that the SegU-Net is a promising
novel network, since it translates to a lower computational
cost and higher memory efficiency. Consequently, the
satisfactory segmentation results achieved by the U-Net
based models in this work lead to further insights on
nodule characterization, contributing to the development of
a decision support system, which may be able to assist the
physicians in establishing a reliable diagnosis based on the
analysis of such characteristics.
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