
Journal of Systems Architecture 63 (2016) 16–32

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

A safe-by-design programming language for wireless sensor networks

Luís Lopes a,∗, Francisco Martins b

a CRACS/INESC-TEC & Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 1021, 4169-007 Porto, Portugal
b LASIGE & Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal

a r t i c l e i n f o

Article history:

Received 29 November 2013

Revised 17 January 2016

Accepted 18 January 2016

Available online 28 January 2016

Keywords:

Programming language

Compiler

Virtual machine

Type safety

Wireless sensor network

a b s t r a c t

Wireless sensor networks are notoriously difficult to program and debug. This fact not only stems from

the nature of the hardware, but also from the current approaches for developing programming languages

and runtime systems for these platforms. In particular, current systems do not place enough stress on

providing formal descriptions of the language and its runtime system, and on proving static properties,

like type-safety and soundness. In this paper, we present the design, specification, and implementation of

a programming language and a runtime system for wireless sensor networks that are safe by design. We

say this in the sense that we can statically detect a large set of would-be runtime errors, and that the

runtime system will not incorrectly execute an application, once the latter is deployed. We have a full

prototype implementation of the system that supports SunSPOT devices, the simulation tool VisualSense,

and local computer networks for fast deployment and testing of applications. Development is supported

by an IDE implemented on top of the Eclipse tool that embeds both the compiler and the virtual machine

seamlessly, and is used to produce software releases.

© 2016 Elsevier B.V. All rights reserved.

m

n

p

t

c

g

t

u

t

b

t

T

d

R

s

l

r

l

t

m

1. Introduction

Wireless sensor networks (WSN) are one of the most challeng-

ing hardware platforms to program. They are gatherings of large

numbers of small physical devices, commonly referred to as sen-

sors or motes, capable of sensing the environment. The commu-

nication infra-structure is based on low-power wireless technolo-

gies and uses ad-hoc networking protocols [1]. The difficulty in

programming WSN results from the unique characteristics of these

platforms, especially when compared with other ad-hoc networks

such as MANETs. The sensor devices are extremely limited in terms

of hardware resources, namely CPU and memory, and energy, typ-

ically provided by batteries. Their deployment at remote locations

makes physical access to the devices, e.g., for maintenance and de-

bugging, in many cases difficult if not impossible, or simply not

practical.

There are many proposals for programming languages for WSN

providing the programmers with distinct levels of hardware and

network awareness and distinct programming abstractions [2].

Given the aforementioned restrictions, programming languages for

wireless sensor networks are often tightly coupled with the un-

derlying operating system, which is typically very lightweight and
∗ Corresponding author. Tel.: +351 960376714.

E-mail addresses: lblopes@dcc.fc.up.pt (L. Lopes), fmartins@di.fc.ul.pt

(F. Martins).

n

r

c

o

m

http://dx.doi.org/10.1016/j.sysarc.2016.01.004

1383-7621/© 2016 Elsevier B.V. All rights reserved.
odular [3–7]. At the very lowest level of programming, run-

ing on the bare hardware, we have languages such as Push-

in [8], and languages such as TinyScript and Mottle that use a

hin abstraction layer for the hardware provided by a virtual ma-

hine [9,10]. Abstracting away from the hardware there are lan-

uages like the (ubiquitous) component-based language nesC [11]

ightly coupled with its host operating system TinyOS [7]. Higher

p in the abstraction level we find macroprogramming languages

hat allow programmers to abstract away, not only from devices,

ut also from the network infra-structure, by resorting to sophis-

icated compilers to automate code generation and deployment.

hey provide abstractions such as: streams, e.g., Regiment [12];

atabases, e.g., TinyDB [13] and Cougar [14]; regions, e.g., Abstract

egions [15]; agents, e.g., Sensorware [16] and Agilla [17]; web-

ervices, e.g., IrisNet [18].

Despite the diversity of proposals, applications for wire-

ess sensor networks are difficult to debug and often produce

untime errors. The problem stems from the fact that most

anguages are built in a fairly ad-hoc way, typically by first iden-

ifying a set of adequate programming abstractions and imple-

enting a compiler that maps the high-level syntax directly into

ative code or, more commonly, into an intermediate language

epresentation, nesC code for example, or some form of byte-

ode. Macroprogramming languages are illustrative of this state

f affairs. Regiment [12], for example, a strongly typed functional

acroprogramming language, is compiled into a low-level token

http://dx.doi.org/10.1016/j.sysarc.2016.01.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sysarc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2016.01.004&domain=pdf
mailto:lblopes@dcc.fc.up.pt
mailto:fmartins@di.fc.ul.pt
http://dx.doi.org/10.1016/j.sysarc.2016.01.004

L. Lopes, F. Martins / Journal of Systems Architecture 63 (2016) 16–32 17

m

m

m

t

o

a

r

p

e

I

(

l

d

q

b

I

d

r

b

m

m

c

r

t

a

i

a

r

e

t

s

e

p

s

l

T

p

s

p

(

t

W

o

p

a

t

o

t

E

f

e

s

s

p

o

t

p

a

s

r

t

r

s

w

o

c

w

o

a

l

t

o

a

i

t

t

m

a

c

s

i

p

o

i

c

p

i

d

p

o

v

b

t

p

s

E

l

n

s

2

f

t

g

a

s

t

a

a

p

S

r

2

a

s

g

u

a

achine language, which is then itself compiled into a nesC imple-

entation of the runtime based on the distributed token machine

odel. The complex compilation scheme makes it rather difficult

o establish a link between the semantics of the language and that

f the corresponding runtime system, especially in the absence of

formal specification for the programming language and for the

untime system.

Runtime errors in sensor network applications can have multi-

le origins: (Type I) device malfunction or interference from the

nvironment; (Type II) semantic errors in the application; (Type

II) the runtime system does not preserve the language semantics;

Type IV) the compiler generates code that does not preserve the

anguage semantics.

Errors of Type I are difficult or impossible to eliminate in most

eployments. Type II errors can be controlled by imposing an ade-

uate programming discipline, e.g., enforced by a type system, and

y carefully testing the application before deployment. Type III and

V errors are far more subtle but very important, as they may un-

ermine a deployment with seemingly unexplainable errors and

esult in significant extra costs. Type III errors can be eliminated

y proving that the specification of the runtime preserves the se-

antics of the source language. This of course still leaves some

argin for errors in the programming of the runtime, but these

an be weeded out through conventional tests. Finally, Type IV er-

ors can be eliminated by proving that the compiler generates code

hat preserves the semantics of the original program. This is usu-

lly called a certified compiler.

In short, errors of types II to IV can be eliminated by provid-

ng a formal specification for the programming language semantics

nd for the runtime semantics, and proving static properties that

elate them, e.g., type-safety and soundness. Language type-safety

nsures that well-typed programs do not give rise to runtime pro-

ocol errors. A compiler for a type-safe programming language can

tatically type-check code and identify would-be runtime protocol

rrors, before the application is deployed over the network. This is

ossible since the full application, including the code to be run at the

ink(s) and the code to be run at the nodes, is compiled as a unit, al-

owing for communication protocol errors to be prematurely detected.

his addresses errors of Type II. On the other hand, the soundness

roperty ensures that the underlying runtime system preserves the

emantics of the programming language. This is achieved by im-

lementing the runtime system based on an abstract specification

e.g., a virtual machine) that can be proved to preserve the seman-

ics of the programming language. This addresses errors of Type III.

e do not address Type IV errors in this paper. This is the subject

f current research.

To illustrate the design and implementation principles that we

ropose, we present the step by step development of Callas [19],

programming language for WSN. The language and its seman-

ics are specified using a formal model, based on concurrency the-

ry [20,21]. The runtime system for the language was specified in

he form of a virtual machine, defined as a state transition system.

lsewhere we proven that the language is type-safe and that there-

ore well-typed programs do never produce a large set of runtime

rrors [22]. Moreover, we also proved that the runtime system pre-

erves the semantics of the language, a property also known as

oundness, and thus correctly executes Callas applications. In this

aper we overview the design of the programming language and

f the runtime system, and describe a full prototype implemen-

ation of this framework. The prototype includes a language com-

iler, a modular virtual machine that supports multiple hardware

nd software platforms, e.g., SunSPOT networks [23] and the Vi-

ualSense simulator [24] for deployment, and a development envi-

onment based on an Eclipse plugin that seamlessly embeds both

he compiler and the runtime system and is used for software

eleases.
 t
To our knowledge the use of process calculi to model and de-

ign languages for sensor networks is a novel approach. Previous

ork on process calculi for wireless systems is scarce and focuses

n communication protocols. Prasad [25] established the first pro-

ess calculus approach to modeling broadcast based systems. Later

ork by Ostrovský et al. [26] established the basis for a higher-

rder calculus for broadcasting systems. More recently, Mezzetti

nd Sangiorgi [27] discuss the use of process calculi to model wire-

ess systems, again focusing on the details of the lower layers of

he protocol stack (e.g., collision avoidance) and by establishing an

perational semantics for the networks.

In the recent past the Internet of Things (IoT) gained a lot of

ttention both from the Academia and from the Industry. The IoT

s a network of physical objects or “things” embedded with elec-

ronics, software, sensors, and network connectivity, which enables

hese objects to collect and exchange data. This paper focus on a

ore restricted scenario, that of wireless sensor networks. WSN

ggregates a myriad of devices with similar hardware and software

haracteristics that autonomously collect, eventually process, and

end data to gateways. From the IoT perspective, the data emanat-

ng from the gateway would be thought of as a single resource. IoT

oses interesting challenges of its own, like, for instance, the inter-

perability between things. On the other hand, programming WSN

s by itself difficult, error-prone, and correcting bugs can be diffi-

ult if not impossible after deployment in the field. It is this last

roblem that we tackle in this paper and propose a solution that

nvolves a language that is demonstrably correct, thus significantly

iminishing the sources of error for WSN applications.

The remainder of the paper is structured as follows. Section 2

resents the Callas language: its syntax, semantics, and briefly

verviews the language safety results. Section 3 presents the Callas

irtual machine: the bytecode format, the reduction rules, and

riefly describes the soundness result. Sections 4 and 5 describe

he prototype implementation that includes: the language com-

iler, the virtual machine with support for several hardware and

oftware platforms, and a development environment based on the

clipse tool [28]. Section 6 describes related work on programming

anguages and virtual machines for wireless sensor networks. Fi-

ally, Section 7 ends the paper with some conclusions and per-

pectives for future work.

. The programming model

This section aims at describing Callas, a programming language

or sensor networks that offers constructs to describe local compu-

ations, communications, code mobility, and code updates. The lan-

uage is based on a calculus [19,22] with the goal of establishing

foundation for developing programming languages and runtime

ystems for sensor networks.

We start by presenting the language with a running example

o illustrate the programming style of Callas (Section 2.1). There-

fter, we introduce an abstract core language (Section 2.2) suit-

ble for defining its formal semantics (Section 2.3), of which we

resent only an excerpt to emphasize the foundations of Callas. In

ection 2.4 we state informally a type safety result—the interested

eader may refer to [22] for the details.

.1. The Callas programming language

We introduce the Callas language by example, programming

device that periodically reads the ambient’s temperature and

ends it over the network, as presented in Listing 1. A Callas pro-

ram is a sequence of type declarations followed by a code mod-

le that implements the type for the devices in a WSN, known

s Device. Other declared modules arise as submodules of this

op-level module. We adopt Python’s line-oriented syntax, where

18 L. Lopes, F. Martins / Journal of Systems Architecture 63 (2016) 16–32

Listing 1. A program for periodically transmitting the sensed temperature to the network.

1 # type declarations
2 defmodule N i l :
3 pass
4
5 defmodule Sampler :
6 N i l sample ()
7
8 defmodule Dev ice (Sampler) :
9 N i l i n i t ()

10
11 # terms: declare module Node, init contains the intial code to run
12 module node of Dev ice :
13 def i n i t (s e l f) :
14 sample () every 60∗10
15 def sample (s e l f) :
16 curTemp = sys . getTemp ()
17 send l o g (curTemp)

d

i

g

f

s

T

v

a

t

g

f

L

c

t

s

n

o

r

t

f

i

B

i

d

s

t

F

t

i

t
u

c

m

i

i

v

t

i

l

a

v

m

a

m

indentation (the number of spaces in the beginning of a line) de-

marcates syntactic terms.

The program starts with three type declarations (lines 2–3,

5–6, and 8–9). The first type declaration begins with the key-

word defmodule, followed by a type identifier Nil (must be cap-

italized) that binds and introduces the declared module type. The

body of a module type is a sequence of function signatures, which

declare the type of the result, the function name, and the types of

the parameters. In line 3, we define an empty module type (with-

out functions). Keyword pass defines an empty sequence of syn-

tactic terms, used to declare an empty syntactic block. In lines 5–6,

we find the declaration of a type Sampler, a module with a func-

tion named sample that expects no arguments and returns empty

modules. Finally, in lines 8–9, we declare the type for the device,

Device, that extends that of Sampler. Thus, any implementa-

tion of Device must provide an implementation for its own init
function, and also for a sample function.

The program ends with the definition of the Device mod-

ule, lines 12–17. The first line holds the module header and then

the module body follows. The module header begins with the

keyword module, succeeded by a variable node that binds the

module—variables must begin with a lower-case letter—, followed

by the keyword of, then the type identifier Device that specifies

the type of the declared module, and terminates with a colon (:).

Similarly to a module declaration, a function declaration com-

prises a function header and a function body. The header (e.g., in

line 13) starts with the keyword def, followed by the name of the

function init, and by one or more (comma-separated) parameters

in parenthesis. The first parameter in any function is the module

itself, denoted as self , e.g., to allow for recursive calls. The func-

tion body is a sequence of terms. Functions are second-class val-

ues, meaning that they cannot be handled directly, e.g., passed as

an argument of another function. Note that, as in Python, when a

line ends with a colon the remaining lines are a syntactic group

with an increased indentation. Function init is the first function

to be executed in a Callas program and must always be defined,

with the given signature, in the Device module. In this case, the

body of function init simply starts a timer that invokes the func-

tion sample every 10 min (the time unit is the second). This al-

lows the device to perform periodic tasks and moreover conserve

energy between samplings. The body of function sample consists

of two terms. The first assigns to variable curTemp the result from

an operating system call that gets the ambient temperature from a

sensor in the device. The second term is a network call to func-

tion log, passing the value of variable curTemp as an argument.

Expression send is an asynchronous function call to neighboring
evices. This expression yields as a result an empty module (that

s propagated as the outcome of function sample). There are no

uaranties that any device in the network picks up these remote

unction calls. The programmer must develop protocols for making

ure messages are delivered or to recover in case messages are lost.

he syntax of values comprises two categories: built-in values and

ariables. We adopt the Python’s syntax for built-in values as well

s for unary and binary operations.

To conclude our first example, a network of devices executing

he code in Listing 1 needs one or more devices that are pro-

rammed to receive the data and process it. Devices responsible

or collecting the data generated by a WSN are usually called sinks.

isting 2 presents the Callas code for recording the maximum re-

eived temperature in the memory of the sink. Line 8 declares

ype Device by extending the type MaxTemp. Line 9 defines the

ignature of the function init, followed, in line 10, by the sig-

ature of a function log with a typed parameter named temp
f type float . Finally, line 11, defines a function that will be

esponsible for handling incoming data from the devices. Each

yped parameter consists of a type and a name (the latter used

or documentation proposes only). Types are any of the built-

n types—the integer type int, the float type float, and the

oolean type bool—and the module types, given by (capital-

zed) type identifiers. After the type declarations, we have the

efinition of the Device module, here associated with an in-

tance variable sink, lines 14–30. Function init programs a

imer that executes a function listenForData every 10 min.

unction log expects two parameters: the module itself and the

emperature temp. The function loads the previous known max-

mum temperature by invoking function maxTemp. Then, in case

emp is greater than maxTemp, the function builds a new mod-

le, bound to variable newMax (lines 21–23), and updates the re-

eived temperature by storing module newMax in the devices’s

emory, which updates function maxTemp to hold the new max-

mum sensed value (lines 24–26). Note that when the else branch

s omitted, its value is the empty module.

Some additional detail is required here. The memory of a de-

ice contains a code module that may be updated dynamically, by

he application, throughout the lifetime of the device. For access-

ng the memory of a device we use expressions load and store . In

ine 24, we load the code of the device and save it in variable m,

ssign to variable m a new module, by composing the modules in

ariables m and newMax (line 25), and store the new module in

emory (line 26). Expression x || y merges the functions of both x

nd y into a new module, giving preference to the functions of

odule y in case of name clashes (i.e., the same function signature

L. Lopes, F. Martins / Journal of Systems Architecture 63 (2016) 16–32 19

Listing 2. A program for storing the maximum temperature received.

1 # type declarations
2 defmodule N i l :
3 pass
4
5 defmodule MaxTemp :
6 f l o a t maxTemp()
7
8 defmodule Dev ice (MaxTemp) :
9 N i l i n i t ()

10 N i l l o g (f l o a t temp)
11 N i l l i s t e n F o rDa t a ()
12
13 # terms: declare module sink, init contains the code to be executed at startup
14 module s i n k of Dev ice :
15 def i n i t (s e l f) :
16 l i s t e n F o rDa t a () every 60∗10
17 def l o g (s e l f , temp) :
18 maxTemp = s e l f . maxTemp()
19 needsUpdate = temp > maxTemp
20 i f needsUpdate :
21 module newMax of MaxTemp :
22 def maxTemp(s e l f) :
23 temp
24 m = load
25 m = m | | newMax # update function maxTemp
26 store m
27 def l i s t e n F o rDa t a (s e l f) :
28 rece i ve
29 def maxTemp(s e l f) :
30 0 # initial minimum temperature is 0

a

a

f

r

i

t

b

u

t

(

f

t

t

w

o

e

t

i

t

d

s

o

m

b

m

p

p

t

p
p
t

p

p

v

t

l

a

2

g

s

a

l

t

c

t

f

t

F

t

p

e

t

f

p

p

t

t

F

t

t

2

t

ppearing on both modules). It allows for dynamic code update

s long as the types of both modules are compatible. The syntax

or operator || is based on the asymmetric merge operator of the

ecord calculus [29].

Function listenForData (lines 27–28) checks the device’s

ncoming queue for messages, reads one, if available, and returns

he empty module. A message that is read is eventually executed

y the device by calling the appropriate function in the mod-

le stored in its memory. Finally, function maxTemp sets the ini-

ial value for the maximum temperature, in the present case zero

lines 29–30).

Note that, although we use the terms function and asynchronous

unction call, the Callas programming model is conceptually similar

o event-based programming models. In fact, asynchronous func-

ion calls and timed calls l(�v) can be seen as asynchronous events

here function name l is the event identifier and also the name

f the call-back. Thus, sending a message l(�v) is like generating an

vent in some network neighborhood. A receiving device captures

he event and calls the corresponding call-back l that must reside

n its memory.

This simple example can be made more sophisticated by in-

roducing the possibility of dynamically patching the code in the

evices from within the application, avoiding major network boot-

traps. This capability is interesting both for allowing the evolution

f applications without disrupting their execution, and for instru-

enting the code for online debugging. The example is supported

y the fact that in Callas modules are first class values, that is, they

ay be passed as arguments to calls and in particular they may be

ropagated by messages in the network.

The implementation of the new code for the devices is de-

icted in Listing 3. The main difference lies in the defini-

ion of a new module, Patcher, that defines two functions,

atch and listenForPatches. As the names imply, function

atch replaces a function currently in the device by another

hat it receives from the network. Function listenForPatches
eriodically checks the network for patching messages. The im-

lementation of the Device module is very similar to the first

ersion. Function init, lines 15–17, starts an extra timer that lis-

ens for patches. The implementation given for function sample,

ines 18–20, is the same as in Listing 1, but may be replaced at

ny time if a patching message arrives. Function patch, lines 21–

4, receives a patching message with a Sampler module as an ar-

ument and uses it to replace the current implementation of that

ub-module in the device (in this case only function sample is

ffected). Finally, function listenForPatches, lines 25–26, just

istens for patching messages from the network. Listing 4 displays

he corresponding code for the sink, adapted from Listing 2. The

ode starts with the declaration of the type Patcher and of the

ype Device that extends both Sampler and Patcher. Hence-

orth the main differences occur in the implementation of func-

ions init and of functions patch and listenforPatches.

unction init, lines 22–28, first builds a new Sampler module

hat captures the temperature from an hypothetical second tem-

erature sensor in the devices, lines 23–26. This could be inter-

sting, e.g., if some sort of hardware calibration or debugging was

aking place. Another option would be to implement the sample
unction in such a way that it returns a synthetic stream of tem-

erature values that may be used to diagnose problems in the ap-

lication or in the hardware. This Sampler module is then sent

o the device using an asynchronous message in line 27. As usual,

he sink sets up a listener for data, line 28.

The complete (concrete) grammar for Callas is depicted in

ig. 1. We use boldface fonts to identify terminal symbols. Nota-

ion �x denotes a (possibly empty) sequence of elements of syntac-

ic category x.

.2. Abstract syntax

To define the semantics of our language we need to distil

he concrete syntax into a core language containing the necessary

20 L. Lopes, F. Martins / Journal of Systems Architecture 63 (2016) 16–32

Listing 3. A program for sending the sensed temperature over to the network periodically.

1 defmodule N i l :
2 pass
3
4 defmodule Sampler :
5 N i l sample ()
6
7 defmodule Patche r :
8 N i l patch (Sampler samp le r)
9 N i l l i s t e n F o r P a t c h e s ()

10
11 defmodule Dev ice (Sampler , Patche r) :
12 N i l i n i t ()
13
14 module node of Dev ice :
15 def i n i t (s e l f) :
16 sample () every 60∗10
17 l i s t e n F o r P a t c h e s () every 60∗10
18 def sample (s e l f) :
19 curTemp = sys . getTemp ()
20 send l o g (curTemp)
21 def patch (s e l f , s amp le r) :
22 m = load
23 m = m | | samp le r # update sampler function
24 store m
25 def l i s t e n F o r P a t c h e s (s e l f) :
26 rece i ve

�t

2

f

c

f

d

p

a

e

t

a

t

c

I

t

d

c

r

r

t

S

a

l

n

v

s

p

b

i

b

constructs to express Callas and that abstracts away from concrete

details (e.g., end of lines, spaces, blocks).

Fig. 2 describes this core Callas. We retain just three syntac-

tic categories: expressions, e, modules, m, and values, v. In what

concerns expressions, we add let and if constructs. The let ex-

pression handles the binding constructs uniformly (variable assign-

ment and module definition), makes the scope of the bindings ex-

plicit, and enforces an evaluation order on expressions. Recall that

in the concrete syntax of Callas, assignments and module defini-

tions introduce new variables that are visible until the end of the

current block, and that a block is defined by the indentation level

of lines. The let construct, let x = e1 in e2, first evaluates expres-

sion e1, binds its result to the new variable x, whose scope is e2,

and then uses this value when evaluating expression e2. The con-

ditional if e1 then e2 else e3 that evaluates condition e2 when ex-

pression e1 is true, and evaluates expression e3 otherwise. Mod-

ules, m, are collections of functions, as before, but the new syntax

allows for explicitly treating modules as values, and the module

construct module x of T : ¶ �f is expressed as a let for binding the

module with variable x in a given scope.

In Fig. 3 we formalize the translation rules from concrete to

core Callas syntax. We skip module type declarations when trans-

lating programs. The translation of a conditional at the head of a

sequence of terms �t3 is directly mapped into a conditional expres-

sion; we compose the new conditional with the translation of each

branch, and use a let to enforce sequential execution of the con-

ditional and then of the continuation (the translation of �t3). Note

that variable x plays no role in the continuation expression. A mod-

ule module x of T : ¶ �f at the head of a sequence of terms �t be-

comes a binding of module {[[�f]]} to variable x in the scope of the

translation of [[�t]]; the new module results from the translations of

functions �f ; assignment x = e ¶ at the head of a sequence of terms

is represented as a binding of expression e to x in the continua-

tion [[�t]]. Note that expressions are not translated at all. If a term is

the last in the program, then there is no need to introduce a new

binding, and therefore the term is represented just as its value. For

instance, assignment x = e ¶ is translated as e (the result of the

assignment term). Applying function [[·]] to the program listed in

Fig. 1 we obtain its core representation in Fig. 5.
 p
.3. Semantics

The runtime environment for Callas is presented in Fig. 4 and

ocuses on the devices and on the network. Sensor networks, S, are

oncurrent compositions of devices, represented as terms of the

orm [e, R � m, T]I,O
t , and of the empty network, denoted by ε. Each

evice is composed of an expression e being evaluated, a queue of

ending expressions R, a module m with the installed functions,

set of timers T for periodically calling functions in the installed

code, queues for incoming/outgoing messages from/to the network

(I/O), and the current time t. Messages are passivated function calls

denoted as 〈l(�v)〉, sometimes abbreviated as q, and are the moving

ntities in the network.

The meaning of programs in Callas is defined using an opera-

ional semantics, in particular a reduction system combined with

structural congruence relation (omitted) defined over S. Struc-

ural congruence identifies programs that are considered syntacti-

ally equivalent even when their textual representation is different.

t allows semantically equivalent networks to be rewritten so that

he reduction rules may be applied. We give an excerpt of the re-

uction relation rules in Figs. 5 and 6 that, in our opinion, is suffi-

ient for giving a flavor of how reduction is defined. The interested

eader should refer to [22] for the complete specification of the

eduction relation. In general the rules have the form

assumption1 . . . assumptionn

S → S′

hat is read as: network S evolves in one reduction step to network
′ (runs in one step) provided that assumption1, . . . , assumptionn

re satisfied. In order to control the evaluation order, we only al-

ow reduction to happen within the let construct. To simplify the

otation we write 〈e′〉 as an abbreviation for let x = e′ in e, where

ariable x and expression e are arbitrary, but are chosen to be the

ame in the context of a reduction rule. Alternatively, we could

resent the semantics using evaluation contexts, as we did in [22],

ut the current approach is more amenable to be used as the spec-

fication for a run-time system. The reduction steps are controlled

y an internal clock t. The time for the next activation of every

rogrammed timed call is checked against the current clock time

L. Lopes, F. Martins / Journal of Systems Architecture 63 (2016) 16–32 21

Listing 4. A program for storing the maximum temperature received.

1 # type declarations
2 defmodule N i l :
3 pass
4
5 defmodule MaxTemp :
6 f l o a t maxTemp()
7
8 defmodule Sampler :
9 N i l sample ()

10
11 defmodule Patche r :
12 N i l patch (Sampler samp le r)
13 N i l l i s t e n F o r P a t c h e s ()
14
15 defmodule Dev ice (MaxTemp , Sampler , Patche r) :
16 N i l i n i t ()
17 N i l l o g (f l o a t temp)
18 N i l l i s t e n F o rDa t a ()
19
20 # terms: declare module sink, init contains the code to be executed at startup
21 module s i n k of Dev ice :
22 def i n i t (s e l f) :
23 module dbgSampler of Sampler :
24 def sample (s e l f) :
25 # using hypothetical secondary temperature sensor
26 curTemp = sys . getTemp2 ()
27 send l o g (curTemp)
28 send patch (dbgSampler)
29 l i s t e n F o rDa t a () every 60∗10
30 def l o g (s e l f , temp) :
31 maxTemp = s e l f . maxTemp()
32 needsUpdate = temp > maxTemp
33 i f needsUpdate :
34 module newMax of MaxTemp :
35 def maxTemp(s e l f) :
36 temp
37 m = load
38 m = m | | newMax # update function maxTemp
39 store m
40 def l i s t e n F o rDa t a (s e l f) :
41 rece i ve
42 def maxTemp(s e l f) :
43 0 # initial minimum temperature is 0

Listing 5. The abstract syntax of the sampling node.

{
i n i t = (s e l f)

sample () every 60∗10
sample = (s e l f)

l e t curTemp = sys . getTemp () i n send l o g (curTemp)
}

u

p

c

n

m

t

c

w

R

w

i

a

p

r

i

l

i

c

t

fi

e

l

n

t

sing the predicate noEvent . Reduction is driven by running ex-

ression e, which executes the associated action and advances the

lock. We assume that each instruction consumes an unspecified

umber of processor cycles and in most of the rules the clock

oves forward from some t to some t′.
Rule (1) makes a synchronous call to a function l provided by

he underlying operating system or a library, and immediately re-

eives a value v. These calls are typically used to access the hard-

are of the device, e.g., to read sensors or to activate actuators.

ule (2) handles the interaction between a device and the net-

ork by packing a call l(�v) into a message 〈l(�v)〉 and placing it

n the outgoing queue, O. The receive operation (Rule (3)) takes

message 〈l(�v)〉 from the incoming queue, I, unpacks it, and ap-

ends the corresponding call to function x.l(�v) to the device’s
un queue, R :: let x = load in x.l(�v). The code for l is installed

n the device in m and will be loaded when the function is se-

ected for execution, as the expression inserted in the run-queue

mplies.

Rule (4) handles calls to functions in modules. It selects the

ode for the function, m2(l) = (self �x)e, replaces the parame-

ers by the arguments, passing the current module m2 as the

rst argument in variable self, and runs the resulting expression,

[m2 �v/self �x].

Rule (5) allows modules to be merged, with functions in the

eft-hand module, m1, being replaced with functions of equal

ame in the right-hand module, m2. For example, given m1 = {l1 =
(�x1)P1 l2 = (�x2)P2} and m2 = {l2 = (�x2)P′

2}, the result of m1||m2 is

he module m3 = {l1 = (�x1)P1 l2 = (�x2)P′
2
}. This rule is pivotal since

22 L. Lopes, F. Martins / Journal of Systems Architecture 63 (2016) 16–32

Fig. 1. The syntax of Callas.

Fig. 2. The syntax for core Callas.

Fig. 3. Abstraction rules.

Fig. 4. The syntax of Callas runtime environment.

i

t

t

f

t

n

t

c

a

c

t

c

t

i

h

o

i

t

d

w

m

t

o

t

t

O

m

a

b

t

(

c

m

w

t allows the dynamic reprogramming of a device without violating

he type of the running application.

Rule (6) programs a timer for a call to a function l installed in

he device, i.e., whose code is in m. Note that T′ includes the in-

ormation of the new timer, namely, the information to call the

riggered function, l(�v), the time interval between calls, v, and the

ext point in time that the trigger should be fired, t + v. The nota-

ion A�B, for sets A and B, means A ∪ B for A ∩ B = ∅. When predi-

ate noEvent evaluates to false, rule (7) comes into action, placing

timed function call l(�v) in the run-queue. The execution of the

all is delegated to rule (4). Note that Rule (7) needs to trigger all

he calls to the timers that are due, hence it does not advance the

lock (t remains the same after the reduction step).

The reduction semantics for networks (Fig. 6) is orthogonal to

hat for in-device processing. Communication occurs by broadcast-

ng messages over wireless channels to devices in the neighbor-

ood of the broadcasting device. Rule (8) handles the distribution

f outgoing messages by delivering such messages to the incom-

ng queues of receiving devices. The semantics abstracts away from

he lower level protocol layers that are responsible for message

elivery, i.e., the networking, MAC, and physical layers. In other

ords, it simply assumes that a message from a sending device

ay eventually reach the target devices. A broadcast starts with

he formation of an initially empty membrane, denoted by {ε} (rule

mitted). Multiple applications of the rule for broadcast (Rule 8)

hen distribute a message to the destination devices. The rule says

hat a sending device, with a message q in its outgoing queue

1, and with a subnetwork S of neighboring devices within this

embrane, eventually transfers q to the incoming queue, I2, of

nother device, which is then absorbed by the membrane. The

roadcast ends with the dissolution of the membrane created by

he sending device (rule omitted). It is important to note that:

a) the membrane is not a physical entity, rather it is a formal

onstruct that guarantees that a device never receives the same

essage twice directly from the sending device; and (b) devices

ithin the membrane are not allowed to proceed with reduction,

L. Lopes, F. Martins / Journal of Systems Architecture 63 (2016) 16–32 23

Fig. 5. Reduction semantics for devices (some rules omitted).

Fig. 6. Reduction semantics for sensor networks (some rules omitted).

m

c

2

v

i

t

t

t

g

t

s

w

l

T

w

n

t

t

s

r

t

i

t

a

a

p

f

o

T

“

T

k

d

T

a

w

C

S

o

t

t

3

p

c

a

t

eaning that, from the point of view of these devices, communi-

ation is instantaneous.

.4. Type safety and absence of runtime errors

The static semantics of the Callas programming language is pro-

ided in the form of a type system [22], whose details we omit

n the current paper. In the sequel we describe the formal results

hat we have proved for the type system and reduction rules of

he operational semantics. The first result, subject reduction, states

hat types are invariant under reduction, i.e., the type of a pro-

ram does not change as it executes. Therefore, if a program is well

yped (denoted by sequent � � S) and it performs a computational

tep (S → S′), the remaining program to execute (S′) must also be

ell typed (� � S′). Formally, this intuition is captured by the fol-

owing theorem.

heorem 1 (Subject reduction). If � � S and S → S′, then � � S′.

We also proved the type safety of the language, meaning that

ell-typed programs do not produce a class of runtime errors,

amely: (a) any given function call is always made in a module

hat contains that function and that such a call matches the func-

ion’s signature; (b) the same validations as in (a) apply to mes-

ages traveling the network, in the sense that whenever a device

eceives a message from the network it has a local function (in

he device’s memory) that can be correctly called; and (c) updat-

ng a module always preserves its type, that is, the signatures of

he functions it contains. Since this verification is done statically by
compiler, with the full code for the application available - both sink

nd node sides, it is possible to detect prematurely communication

rotocol errors. These applications will not be type-checked success-

ully. We write S
err�−→ to denote networks that are “stuck” due to

ne of the problems described above, and write S for ¬(S
err�−→).

he type safety result ensures that well-typed networks never get

stuck” and is stated as follows:

heorem 2 (Type safety). If � � S, then S .

A corollary of this result is the absence of runtime errors of the

inds described. In other words, well-typed networks do not pro-

uce runtime errors at any time during the execution of a program.

herefore, if a program is well typed (denoted by sequent � � S)

nd if, after performing an arbitrary number of reductions (→ ∗),

e get a network S′ that is never “stuck” (S′).

orollary 3 (Absence of runtime errors). If � � S and S → ∗S′, then
′ .

These results show that an appropriate type discipline imposed

n Callas applications allows us to ensure statically, at compile

ime, that a class of common runtime errors will never arise, in

his case errors of Type II.

. The Callas virtual machine

To execute Callas applications we wanted a runtime system that

rovides an abstraction for the hardware platforms. We designed a

ustom bytecode format and a virtual machine specification that

llowed the execution of Callas applications. A runtime represen-

ation of the bytecode may be seen in Fig. 7.

24 L. Lopes, F. Martins / Journal of Systems Architecture 63 (2016) 16–32

Fig. 7. The byte-code format.

Fig. 8. The syntactic categories of the virtual machine.

α
t

o

3

e

i

f

n

s

s

T

i

P

l

b

l

i

fi

t

i

c

c

o

3

t

m

g

t

A bytecode program, P, is composed of an array of module

definitions. A module definition, D, in the array is a map from

strings (the function names) onto tuples representing the func-

tions. A function, F , is represented by a tuple that contains: tree

integers that hold the number of parameters, of free variables, and

of local variables for the function; a bytecode array B that holds

the code for the function; and an array U that contains constants

present in the source code. Every byte-code array for a function

ends with a return statement. The virtual machine manipulates

values that can be basic data types (Booleans, integers, and floats)

and modules, M. The latter are dynamic instances of module def-

initions created by constructing a closure, which involves collect-

ing the free variables for each of the functions in the module def-

inition, in the given execution context, and storing them together

with the module’s byte code. The instruction-set includes instruc-

tions for manipulating modules, making calls, moving data, net-

work I/O, control-flow and basic arithmetic, and logic operations.

The virtual machine is stack-based and thus expects operands at

the top of the operand stack. Load and store instructions are used

to move values between the environment frame and the operand

stack. Constant values are loaded onto the operand stack with spe-

cial load instructions. This allows for a simple and compact in-

struction set with few addressing modes.

3.1. The virtual machine data-structures

The state of the virtual machine is given by the pair

P, 〈Int ,M, T , C,R〉IO . Besides the byte-code for the program, P,

the elements of the state proper have the following informal

meaning, in order:

Int an integer value representing an internal clock for the ma-

chine;

M is a module containing the functions that have been in-

stalled in a sensor. The module can be updated during the

execution of the device. Functions cannot be added or be re-

moved, they can just be replaced by already existing ones;

T is a set of programmed timed function calls. Each timed-call

is composed of an operand-stack, holding the environment

for the call, and two integers, which represent the period of

the call and the time of the next call , respectively;

C is a call-stack. Each component, a call-frame, is composed of a

program counter, an environment frame E, an operand-stack

S, a bytecode array B, and a constant array U . The environ-

ment frame is an array that stores the values for the param-

eters, the free variables, and the local variables of a function.

R is a queue of pending function calls l(�v). These calls are

loaded onto the call-stack when the previous call returns;

I/O are input-output queues of passivated function calls. These

are used by the virtual machine to interact with the lower

layers of the sensor network protocol stack.
The items in arrays, stacks, and queues of a syntactic category

are written 〈α1, . . . , αn〉, α1 : · · · : αn and α1 :: · · · :: αn, respec-

ively. Empty arrays, stacks, and queues are denoted ε. A summary

f the components of the virtual machine is given in Fig. 8.

.2. The initial state

Every program P has an entry point, the function that is first

xecuted when the program starts. This function is called init and

s part of the top level module of the program, at offset 0. The

unction has no parameters and no free variables. The module does

ot have free variables also, since it is the top level module in the

ource program and there are no global variables. Thus, the initial

tate of the virtual machine is obtained by loading the program P .

his operation is performed by a function boot() with the follow-

ng result:

, 〈0,M0, {}, (0, ε, ε, 〈loadc 0, call2, return〉, 〈′′init′′〉), ε〉εε
← boot(P)

The function builds a closure, M0, for the top level module,

oads it into the virtual machine, and installs a short sequence of

yte-code that starts the program by calling init. The byte-code

oads the identifier for the function from the constant array using

nstruction loadc 0 and then calls the function, using call2. The

nal return instruction ends the byte-code sequence and clears

he frame from the call-stack. Naturally, in the initial state, the

ncoming-, outgoing-, and run-queues are empty. The set of timed

alls is also empty. Henceforth, the execution of the program pro-

eeds through a series of state transitions designed to match the

perational semantics given in Section 2.

.3. Reduction rules

The reduction rules describe the state transitions of the vir-

ual machine as the bytecode instructions are executed. An assort-

ent of these rules is presented in Table 1 to give the reader a

rasp of the complete specification. It is used not only to guide

he implementation of the prototype, but also to allow proving its

L. Lopes, F. Martins / Journal of Systems Architecture 63 (2016) 16–32 25

Table 1

An assortment of transition rules for the virtual machine.

B[i] Assumptions Transitions

loadm j P[j] = {lk �→ Fk}k∈I t → t′ (time)

∀k,Fk = (_, 0, _,B,U) i → i + 2 (instruction pointer)

S → S : {lk �→ (Fk, ε)}k∈I (operand stack)

loadm2 j P[j] = {lk �→ Fk}k∈I t → t′
Fk = (_, jk, _,B,U) i → i + 2

jk = |�vk| S : �vn : ln : · · · : �v0 : l0 → S : {lk �→ (Fk,�vk)}k∈I

call |�v| = arity(l) t → t′
v = sysCall(l,�v) i → i + 1

S : �v : l → S : v
call2 M(l) = (F,�v2) t → t′

F = (j1, j2, j3,B′,U ′) i → i + 1

E ′ = 〈M�v1�v2
�0〉 C : (i, E,S : �v1 : l : M,B,U) (call stack)

j1 = |�v1|, j3 = |�0| → C : (i + 1, E,S,B,U) : (0, E ′, ε,B′,U ′)
merge M3 = merge(M1,M2) t → t′

i → i + 1

S : M2 : M1 → S : M3

send M0(l) = (F,�v2) t → t′
F = (j1, j2, j3,B,U) i → i + 1

j1 = |�v1| S : �v1 : l → S
O → 〈l,�v1〉 :: O (outgoing queue)

receive t → t′
i → i + 1

I :: 〈l,�v〉 → I (incoming queue)

R → l(�v) :: R (run queue)

timer M0(l) = (F,�v2) t → t′
F = (j1, j2, j3,B,U) i → i + 1

j1 = |�v1| S : j : �v1 : l → S
T → T ∪ {(l(�v1), j, t + j)} (timers)

(interrupt) t = t ′ T � {(l(�v), j, t ′)} → T ∪ {(l(�v), j, t ′ + j)}
R → l(�v) :: R

s

g

t

l

i

p

m

n

t

v

r

i

s

s

a

t

T

f

f

{
C

w

t

g

c

m

w

a

T

i

t

t

g

T

l

t

a

r

t

v

w

c

t

o

h

i

t

m

m

f

i

u

f

i

a

a

t

c

T

a

e

t

s

u

T

g

r

a

|

oundness with respect to the operational semantics of the lan-

uage. Where appropriate, I = {0 . . . n}, is a set of consecutive in-

eger indexes. Before making a call to a function we must first

oad a copy of the corresponding module on to the stack. Load-

ng the jth module in the bytecode for a program involves some

reparatory work. First, the map containing the bytecode for the

odule is collected in P[j] = {lk �→ Fk}k∈I, where lk is the function

ame and Fk = (j1, j2, j3,B,U) is a tuple that contains informa-

ion about function lk, namely, the number of parameters (j1), free

ariables (j2), local variables (j3), and its bytecode and constant ar-

ays. The case for which none of the functions has free variables

s handled by the instruction loadm and results in a particularly

imple closure for the module. The general case is handled by in-

truction loadm2 and differs in that the resulting module includes

rrays of values, captured from the current environment, that are

he values for the free variables for each of the module’s functions.

hese values are placed at the top of the operand stack, listed per

unction, �vk representing the values of the free variables for the

unction named lk. The execution of loadm2 results in a module,

lk �→ (Fk,�vk)}k∈I, that is left on top of the operand stack. System

alls, handled by the call instruction, allow programs to interact

ith the basic hardware functionality (true or simulated), namely

o access sensors and actuators. The function name, l, and the ar-

uments to the call, �v, are placed on top of the operand stack and

onsumed. The call is handled by a built-in function of the virtual

achine that interfaces with the underlying operating system or

ith a library. The virtual machine has internal information on the

rity of the function l and uses it to prepare the call to sysCall(l,�v).

he returned value is placed on the top of the operand stack. Call-

ng a function in a module is one of the most fundamental opera-

ions of the virtual machine. The relevant instruction, call2, expects

he name of the function, l, the module it belongs, M, and the ar-

uments to the call, �v1, to be placed on top of the operand stack.

he instruction consumes these values and, while doing so, it col-

ects runtime information on M and l: the function’s bytecode, B′,
he function’s constants, U ′, the values for the free variables, �v2,

nd the size of the environment frame, j1 + j2 + j3. A new envi-

onment frame, E, is built with the arguments to the call, M�v1,

he values of the free variables, �v2, and extra space for the local

ariables, �0, with size j3. The instruction builds a new call-frame

ith the aforementioned information and pushes it on top of the

all-stack, C. As would be expected, the new frame has 0 instruc-

ion counter and empty, ε, operand stack. Merging modules is an-

ther important trait of the Callas programming language. As we

ave described, it allows for the dynamic update of code modules

n a disciplined way, i.e., the update (M2) must respect the type of

he module to update (M1). The instruction, merge, expects both

odules at the top of the stack and produces a new module that

erges both and is left at the top of the stack.

Sending a message over a wireless channel involves building it

rom information obtained from the top of the operand stack. The

nstruction send inspects the definition of function l in the mod-

le M0 to find out its arity, and thus the number of values to be

etched from the stack. In a well-typed program, this arity will co-

ncide with that of whatever function l that exists in other devices,

lthough the implementations may differ. The function name, l,

nd the call arguments, �v, are fetched and a message is built, 〈l,�v〉,
hat is then added to the end of the output queue, O, to be pro-

essed. Receiving a message involves checking the input queue, I .

he instruction receive takes the message at the head of the queue

nd transfers it to the end of the run-queue where it waits for

xecution as a pending call. All the information required to build

he pending call is contained in the message. If I is empty the in-

truction returns immediately without side-effects, other than the

pdates of the program counter and of the system time. Periodic

asks are first programmed using the instruction timer. The pro-

ramming of such a task involves storing the call, l(�v1), the pe-

iod, j, and the next invocation time, t + j, in a tuple in T . As

bove, to find out the number of values to extract from the stack,

�v |, the instruction inspects M , more specifically, the entry for
1 0

26 L. Lopes, F. Martins / Journal of Systems Architecture 63 (2016) 16–32

Fig. 9. The compilation process.

S

c

v

s

t

p

t

t

w

(

t

s

m

o

a

a

e

t

a

t

u

4

S

p

T

a

c

d

v

a

T

i

b

u

c

i

T

t

t

o

t

t

a

t

t

t

function l. Triggering Periodic Tasks at a given instant t′ evolves

an interrupt-like mechanism: the execution halts, a pending call,

l(�v) is placed at the end of the run queue, and the execution re-

sumes. The timer is updated for the next invocation at t ′ + j. This

process does not involve the execution of an instruction and any

progress in time, since more than one timer may be triggered at

the same time instance.

3.4. Soundness of the virtual machine

We have proved that the specification of the CVM given in

this section preserves the semantics of Callas programs. More pre-

cisely, we proved that, assuming a compilation function C as de-

fined in [30], if we start with a bytecode program C(e) that is the

result of the compilation of a Callas expression e, and that this pro-

gram, as it is executed by the virtual machine, evolves through a

sequence of transitions into another expression C(e′), which also

corresponds to the compilation of a Callas expression e′, then there

exists a one step reduction using the Callas semantics from e to e′.
Formally, this result could be stated as follows:

Theorem 4 (Runtime Soundness). If C(e) → ∗C(e′), then e → e′.

This theorem establishes a deep link between the operational

semantics of the Callas programming language and the operational

semantics for the runtime. It implies that bytecode programs gen-

erated by the Callas compiler (and thus free of runtime protocol

errors) will be executed by the runtime system in accordance with

the operational semantics for the language as given in Section 2.

4. Prototype implementation and deployment

As a proof-of-concept we have built a Software Development

Kit (SDK) for programming WSN with Callas that supports three

different platforms, one for real life SunSPOT devices, on for the Vi-

sualSense simulator, and one that runs on personal computers over

LANs (Callas UDP). Since we abstract the devices with the CVM, the

same compiler is used for all three platforms. Each platform, how-

ever, must provide its own implementation of the CVM.

The compilation process is composed of two steps (Fig. 9). In

the first step, the source code for each file is transformed into a

corresponding Callas bytecode file. The second step embeds the

bytecode files in a .jar or .suite file, as appropriate for the target

platform (see below), at a specific point within the package hierar-

chy. This bundle is then deployed in the target platform and exe-

cuted. When the application starts to execute, e.g., startApp()
for SunSPOT MIDlets, the virtual machine loads the embedded

bytecode into runtime data structures (see below), which are used

thereafter. To give some flavor of the size of the source (Java), the

code generation component consists of eight classes that represent

1400 lines of code, half of these represent test cases.
All versions of the CVM target a Java runtime system (JVM).

unSPOT applications run on top of the Squawk [31] virtual ma-

hine, an optimized JVM for embedded systems. The simulated de-

ices in VisualSense are Java classes themselves that run on the

tandard JVM (Hotspot or equivalent), which also runs the simula-

or itself [32]. The same JVM is also used in Callas UDP. To im-

rove maintenance, most of the code for the CVM implementa-

ion is shared between platforms. The platform specific code for

he CVM in the SDK is limited to the components that interact

ith the network (communication) and with the operating system

hardware). The shared codebase is divided into two parts: the in-

erpreter and the bytecode manipulation. The former consists of data

tructures representing the state of the virtual machine, and imple-

ents the reduction rules presented in Section 3. We rely entirely

n Java’s garbage collector for memory management. This choice is

dequate for a proof-of-concept implementation. The interpreter is

switch statement on the next instruction being executed, where

ach case implements a different rule from the operational seman-

ics. The bytecode manipulation part includes a parser that loads

bytecode program to create the runtime data structures needed

o start the interpreter, and is also responsible for marshaling and

n-marshaling Callas values for network communication.

.1. Support for the SunSPOT platform

We have implemented a Callas virtual machine on top of the

quawk virtual machine [31] for SunSPOT devices [23] that sup-

orts the execution of Callas applications in this WSN platform.

he basic SunSPOT device has a three-axis accelerometer, temper-

ture and light sensors, eight multicolored LEDs, two push-button

ontrol switches, five digital I/O pins, six analog inputs, and four

igital outputs. ZigBee is used for wireless communication. The

irtual machine is modular so that only the networking and the

ccess to the sensor board is distinct from the other instances.

he code specific for implementing the CVM in SunSPOT devices

s about 400 lines of Java code. The network layer is responsi-

le for: marshaling and broadcasting messages; and receiving and

nmarshaling messages. We expose the operating system/library

alls that allow the access to the existing sensors and actuators

n SunSPOT devices.

The architecture of the runtime system can be seen in Fig. 10.

he full program includes three threads, one that runs the in-

erpreter, one that receives messages from the network, and one

hat sends messages to the network. The communication model

f the virtual machine is very akin to middleware systems except

hat calls are obviously asynchronous. The main thread interleaves

he execution between: (a) the interpreter, that evaluates terms

nd triggers timed-calls, (b) placing function calls produced by the

hread receiving data in the input queue of the interpreter; and (c)

ransferring all function calls in the interpreter’s output queue to

he thread transmitting data. The thread responsible for receiving

L. Lopes, F. Martins / Journal of Systems Architecture 63 (2016) 16–32 27

Fig. 10. The Callas runtime.

d

a

q

t

d

a

n

Z

p

4

t

U

c

e

V

u

t

i

e

a

u

a

s

u

s

n

t

p

9

fi

w

w

t

w

C
P
n

t

p

m

t

a

r
t

c

ata uses the network infrastructure to accept bytecode messages,

nd unmarshals them into passivated function calls that are subse-

uently consumed by the main thread. Finally, the thread transmit-

ing data to the network consumes passivated function calls, pro-

uced by the main thread, marshals them into bytecode messages,

nd broadcasts them. As we have said, low-level network commu-

ication is handled by the Squawk virtual machine that uses the

igBee 802.15.4 wireless protocol intended for low-speed and low-

ower communication between devices.

.2. Support for the VisualSense platform

One of these supports the execution of Callas applications in

he WSN simulation tool VisualSense [24], developed as part of the

.C. Berkeley’s project Ptolemy.

The SDK for simulating Callas applications using VisualSense

onsists of two applications (besides the Callas compiler): a gen-
Fig. 11. Callas depl
rator of simulation models, and the runtime system that extends

isualSense to support Callas applications. Our compiler currently

ses a deployment file, called the network file, to describe the code

hat runs on each category of devices, the signature of the exist-

ng remote function calls, and the signature of the available op-

rating system interface. The network file is an extensible format

nd allows for more metadata to be included. The model generator

ses a network file with simulation specific parameters to gener-

te a MoML file, the XML-based format used by VisualSense, with a

imulation model. In VisualSense, adding specific support for sim-

lated devices running the CVM requires an implementation work

imilar to the one performed for SunSPOTs, namely, writing the

etwork-related code, the operating system interface, and the in-

ermediary code that executes the CVM in the simulator. The com-

onent that exposes the CVM as a simulation element amounts to

00 lines of code.

Fig. 11 shows an example of a Callas deployment file. The

le defines network level and device level directives. The net-

ork directives include, for instance, the network interface type,

hich specifies the signature of the functions devices may con-

ain, or the CallasPowerLossChannel.lossProbability,

hich redefines the lossProbability parameter of the

allasPowerLossChannel, itself an extension of VisualSense’s

owerLossChannel (an abstraction for a type of wireless chan-

el). Each device definition encloses a set of parameters that de-

ermines the common properties of a group of devices. The code
arameter specifies the file with the Callas program that imple-

ents the behavior of this type of devices; the size parame-

er tells the generator how many devices run the specified code,

nd the template is used to get the device’s MoML model. The

ange parameter determines the device’s transmission range and

he position specifies how they are distributed in the field. It

an have three forms:

• explicit x1, y1 ... [xn, yn], explicitly defines the positions for all

the devices;
oyment file.

28 L. Lopes, F. Martins / Journal of Systems Architecture 63 (2016) 16–32

Fig. 12. Snap-shot of Callas application running on VisualSense. (For interpretation

of the references to colour in the text, the reader is referred to the web version of

this article.)

Fig. 13. Snap-shot of Callas application running on VisualSense.

Fig. 14. Duration of simulation and memory usage (horizontal axis) given the num-

ber of sensors in the network (vertical axis).

s

F

t

m

o

r

i

a

d

p

v

T

P

e

a

s

w

w

t

n

4

c

m

i

p

5

i

w

d

n

v

t

t

h

T

u

t

v

i

c

i

• uniform x1, y1 to x2, y2, uniformly distributes devices within a

bounding box defined by the arguments;

• random x1, y1 to x2, y2, like the former, but with a random

distribution.

In Fig. 12 we present a network model consisting of a Wire-

less Director and a PowerLossChannel. Each device is represented

in the GUI by a (blue) box with a (red) spot on the center mark-

ing its exact position, and a row of (black) squares, modeling a LED

array. The wide (light-blue) circle around the device represents its

transmission range. In this representation, it is possible to perceive

that the lowermost device is isolated from the other devices: its

transmission range is insufficient to reach any of them, and the

others cannot reach it as well.

Each device is represented in VisualSense as a composite actor

containing a set of (atomic) actors that define its behavior, as de-

picted in Fig. 13. Next we describe briefly each actor. A device has

an input port in, and an output port out, bound to the channel

simulating signal transmission in VisualSense, mimicking the de-

vice’s antenna. The VisualSenseVM actor is a wrapper for the

CMV, parameterized by: the Callas VM; the set of supported oper-

ating system calls; and the path to a Callas bytecode file. It con-

verts the tokens received in its in port to the CVM message for-

mat and places them in the CVM’s input queue. Conversely, the

messages on the CVM output queue are converted to VisualSense

tokens and sent to the actor’s out port. This actor also receives in-

put from a clock that sets the pace of the device. Each device has

its own clock, allowing to simulate a network where devices run

at different clock rates. Each clock tick period may be set in the

deployment file and, for instance, setting the tick period to 0.01 s

yields a 100 Hz hardware clock. Operating system calls may have
ide effects, i.e., they may influence other hardware components.

or that, we included a Dispatcher that receives tokens from

he VisualSenseVM externalOut port and forward these infor-

ation to the actors that simulate each side effect from the native

perations. We decided to include an actor, LED, that graphically

epresents a set of LEDs that can be turned on and off, simulat-

ng in this way a hardware side effect from the CVM. The Log
ctor writes messages to, for instance, a GUI window, a file, or a

atabase. It is included only for debugging purposes.

We performed a sequence of simulations of the running exam-

le presented in Section 2 for 10 min (device time), in which we

aried the amount of devices in the network, as depicted in Fig. 14.

he results were obtained with VisualSense 7.01 on a Linux based

C with an Intel QuadCore 2.66 GHz CPU and 3.4GB of RAM. Our

xperiments show that the simulation duration grows polynomi-

lly while the memory footprint grows linearly. We believe that

imulation duration is not a critical factor, as one would expect to

ait for a few hours before having results for a 5000 device net-

ork. Moreover, an inspection of the simulated application reveals

hat the number of messages flowing on the network grows expo-

entially with the increase of the number of devices.

.3. CallasUDP

The final Callas instance supports the execution of Callas appli-

ations over LANs, using processes to simulate devices and UDP/IP

essaging with software filters to simulate wireless channels. This

s intended as a fast prototyping and debugging tool for Callas ap-

lications that also has potential as a pedagogical tool.

. An integrated development environment for Callas

From the beginning of the Callas project, we felt the need to

mplement applications within a programming environment that

ould make the development cycle shorter [33]. We envisioned

eploying Callas applications over many distinct platforms, and not

ecessarily just physical sensor networks. This programming en-

ironment would then ideally integrate the Callas compiler and

he Callas virtual machine seamlessly and provide for applica-

ion deployment with minimal hassle. The IDE we had in mind

ad the following functional requisites: (a) Editing and re-factoring.

he usual functionality such as syntax highlight, line and col-

mn number annotation, re-factoring, finding occurrences of iden-

ifiers; (b) Project management. Creating, configuring, managing,

iewing/browsing multiple file projects; (c) Building and Deploy-

ng. Automatic and on-demand compilation of projects, viewing

ompilation errors, “one-click” deployment of executable files, full

ntegration with the Callas compiler and with the Callas virtual

L. Lopes, F. Martins / Journal of Systems Architecture 63 (2016) 16–32 29

Fig. 15. The architecture of the Callas Eclipse Plugin (from [33]).

m

S

l

t

m

t

c

d

c

p

i

p

g

u

s

p

m

r

t

a

t

p

o

p

m

t

t

i

f

o

c

t

b

g

h

i

i

s

p

b

t

p

(

p

o

f

Fig. 16. Snapshot of the Callas Editor (with new version of the syntax, from [33]).

t

p

p

a

o

m

i

T

g

p

c

i

t

p

i

o

p

p

l

a

u

t

achine, support for multiple target platforms (c.f., Fig. 9); and (d)

oftware Releases. Support the release of the Callas programming

anguage and targets as a single Eclipse plugin, with all the func-

ionality, demos, and documentation embedded.

The Eclipse IDE [28] was used as the basis for the develop-

ent as it provides a rich set of abstractions, templates, and tools

hat enable the fast prototyping of plugins. Moreover, the Callas

ompiler and virtual machine had been, up to that moment, fully

eveloped within Eclipse, something that also weighted in the de-

ision. Eclipse is structured around a core runtime system that im-

lements all the basic functions of the IDE, and uses plugins to

ntroduce new functionality. It also includes its own tool to aid in

lugin development.

The structure of the plugin is straightforward (Fig. 15). It

rows from the core Eclipse IDE by extending appropriate mod-

les/plugins, e.g., Wizards, Properties, Editor, to name a few, to

upport the Callas programming language. Each of these plugins

rovides an extension point that allows its functionality to be

odified or extended by user defined plugins. The Callas plugin

egisters itself as an Eclipse plugin by writing an appropriate en-

ry in a XML configuration file. The file is read when Eclipse starts

nd context information (e.g., workspace location) is passed on to

he Callas plugin Activator class. This information is used by all the

lugin modules. These are activated, as required, at runtime, based

n the type of project or file extension being used.

Wizards provide graphical interfaces that help users to create

rojects, files, or folders. When projects are created the plugin

arks them as Callas projects, which allows the appropriate plugin

o be called when these projects or files are manipulated. Proper-

ies is a component that is responsible for associating and manag-

ng attributes for each project. The attributes contain relevant in-

ormation for the execution of the plugin, e.g., the identification

f a Callas project’s target platform. Preferences provides graphi-

al tools to manipulate editor attributes, e.g., the color or size of

he language reserved keywords or the periodicity of the project

uilder. The Editor is a fundamental part of the plugin, since pro-

rammers will use it exhaustively (Fig. 16). It takes care of syntax

ighlighting, automatic completion, block skeletons, and search for

dentifiers in a project. It also interacts with the builder by signal-

ng changes to the source code and issuing build requests.

The main novelty is in the way the Callas compiler and runtime

ystem are embedded in the Callas plugin and the modular sup-

ort for multiple target platforms. The Builder extends the Eclipse

uilder plugin to allow the compilation of Callas applications and

o provide instant compiler feedback to the programmer, the out-

ut being redirected to the “Problems View” window in Eclipse

Fig. 16, bottom). The compiler has been integrated into the Callas

lugin through the class CallasBuilder. Fig. 17 shows a sample

f the relevant code for the plugin. This class uses an abstraction

or the Callas compiler and virtual machine, interface CallasAPI,
 l
o get access to some modules of the Callas compiler, namely the

arser and the type-checker. The build method accesses some

roperties of the current Callas project, namely its description file

nd the corresponding path, and runs the parser and type-checker

n the project’s source files.

The build method can be called in two different ways. First, it

ay be used on demand by the programmer, by simply select-

ng the option from a menu or clicking on the appropriate icon.

he Builder can also be configured to run periodically in the back-

round checking for changes in the source files of the current

roject. This is implemented as a lightweight Java TimerTask
lass with a user configurable period. The task periodically checks

f the project is “dirty” and, if so, it invokes the build method on

he modified sources.

The Launcher extends the functionality of the Eclipse “launch”

lugin and deploys the Callas application resulting from build-

ng a project on a configurable target platform, e.g., a network

f SunSPOT devices. When the launcher is activated for a Callas

roject, the Eclipse “launch” plugin passes the control to the Callas

lugin launcher. The latter also provides an extension point, to al-

ow for multiple platforms to be supported. Adding support for

new platform works exactly like extending Eclipse plugins. The

ser provided, platform specific, launchers register themselves in

he Callas plugin launcher as new modules and are automatically

oaded when a Callas project exhibits the appropriate properties.

30 L. Lopes, F. Martins / Journal of Systems Architecture 63 (2016) 16–32

Fig. 17. Integration of the Callas compiler in the Callas plugin.

Fig. 18. Part of the SunSPOT specific launcher implementation.

n

(

o

b

s

t

t

c

t

i

a

e

s

b

t

t

r

v

d

u

c

t

s

t

p

Fig. 18 shows a sample of the code for a platform specific

launcher for the SunSPOT devices. When the programmer selects

the “Run” option, Eclipse detects that it is a built Callas application

and loads the Callas plugin launcher. In turn, this launcher asks

the programmer to specify the target from a list of registered plat-

forms. With this information at hand, it then redirects the opera-

tions to the platform-specific launcher that implements the inter-

face ICallasRuntimeEnv featuring the main method launch.

When the method is called we get the properties of the project

with the bytecode and the target and execute appropriate com-

mands to deploy the application. The DebugPlugin class is used

to run the aforementioned commands and to redirect their output

to the Eclipse console.

6. Related work

There are many proposals for programming languages for WSN

in the literature. Such languages provide different levels of abstrac-

tion from the hardware as well as different views of the network

and of the computational agents. A compromise between abstrac-

tion level and resource availability is always implicit in the pro-

posals with, in general, higher level programming languages re-

quiring more hardware and energy resources from the nodes in

an WSN. At the lower range of resource availability one finds sys-

tems like Pushpin [8]. This is an extremely lightweight system as

there is not even an abstraction layer for programming. Pieces of
ative code called pfrags are transferred and executed in the nodes

called pushpins). A tiny operating system provides a shared mem-

ry address space for communication between pfrags and a few

asic system calls. Mottle [10] provides powerful primitive data

tructures and first class functions. It is implemented on top of

he MatÃ©virtual machine, developed for TinyOS based WSN. Mot-

le programs, called capsules, are compiled into MatÃ©assembly

ode and, as such, may be injected in the network at any time

o perform specific tasks. Capsules have the capability of mov-

ng between sensor nodes, a form of code mobility. nesC [11] is

programming language developed on top of the TinyOS [7] op-

rating system. Programs are nested collections of components,

ome of which may be provided by TinyOS itself. An application is

uilt from several components that are linked into an executable

hat is run by the underlying TinyOS engine as a non-preemptive

asks. Besides running tasks, TinyOS also captures events and di-

ects them to the appropriate handling code.

Some languages provide programmers with very high-level

iews of the network by hiding all networking and communication

etails. The programmer implements a distributed application that

sually is not targeted at a specific sensor network architecture or

onfiguration. A specialized compiler takes this high-level view of

he application and produces the node specific behavior for each

ensor as required for the deployment of the application, without

he intervention of the programmer. This approach is called macro-

rogramming. A good example of such a language is Regiment [34].

L. Lopes, F. Martins / Journal of Systems Architecture 63 (2016) 16–32 31

I

m

t

a

o

t

m

p

a

f

s

n

c

m

a

w

d

l

d

q

t

a

w

b

q

a

p

t

d

i

p

s

J

d

h

p

e

a

n

m

w

n

t

p

W

s

a

s

t

t

s

f

t

a

r

fi

r

t

e

t

v

l

i

7

p

r

p

f

t

g

o

t

o

c

t

t

t

i

c

t

p

g

i

p

t

p

g

n

o

s

c

b

e

a

F

v

m

p

v

w

s

f

p

C

e

o

g

s

a

b

t

N

t

n

p

R

t uses network regions and data streams as the basic program-

ing abstractions. The run-time for the language is based on a dis-

ributed version of a token machine (DTM). Nodes perform sensing

nd computation in response to tokens received from the network

r to tokens generated internally. Other languages also adhere to

he region abstraction as described. Abstract Regions [15], imple-

ented on top of TinyOS, implements a model of regions that sup-

orts the discovery of neighborhood nodes and the sharing of data

mong nodes and regions. No primitives for data aggregation nor

or fine-tuning the trade-off between accuracy and resource con-

umption are given.

Other languages take a data-centric approach, viewing sensor

etworks as data repositories upon which standard database pro-

essing primitives may be used. One example is TinyDB [13], a

acro-programming system that allows a programmer to reason

bout a sensor network as a database. Accordingly, the user may

rite declarative style queries to request a particular view of the

ata being generated by the network. This is done at a very high-

evel of abstraction without the user having any notion of the un-

erlying network. A sophisticated compiler decomposes the user

ueries into low-level, sensor specific operations based on primi-

ives like sampling, application of filters to data, data aggregation,

nd data broadcast. A similar approach is taken in Cougar [14],

hich allows users to specify high-level queries for data views to

e extracted from a sensor network. The system then analyses the

ueries and decomposes them into a sequence of network oper-

tions optimized to minimize resource consumption. Another ap-

roach is used in Sense2P [35], a logic macroprogramming sys-

em for abstracting and programming WSNs as globally deductive

atabases, with simplicity and performance advantages over us-

ng SQL-type queries over data generated from a WSN. Still other

rojects focus on the interface between the Internet and the sen-

or networks viewed as Web resources. In this line, IrisNet [18] is a

ava based system that allows programmers to specify distributed

atabase services through XML documents and provides a set of

igh-level APIs to compose data queries to sensor networks and to

rocess the resulting data.

Finally, other languages introduce mobile agents in WSN. An

xample of this approach is Agilla [17], in which programs are

utonomous agents that move between the nodes in a sensor

etwork. Each agent runs on top of a virtual machine. The com-

unication model is based on a distributed Linda tuple-space. Net-

ork re-programming is allowed by injecting new agents into the

etwork and by killing existing ones. One of the goals of Agilla is

o transform more resourceful sensor networks into general pur-

ose computing platforms. A similar approach is taken by Sensor-

are [16], a system that, given its size, aims at more resourceful

ensor nodes and networks. Programs appear as mobile scripts and

sensor node is seen as a dynamically changing entity where new

cripts may be installed on the fly. The scripts may be injected in

he network at any time. The language is TCL-based with primi-

ives for timer services, acquisition and sensing data, mobility of

cripts, and for a location discovery protocol.

Other approaches focus on providing programming languages

or WSN that are friendly to non-specialists [36–38]. Although

he technology is widely available and interesting to many fields,

pplication developers do not usually have the skills or expe-

ience to dwell in low-level programming and hardware con-

gurations. Absynth [36] is a project that explores this line of

esearch by providing archetypes for common network configura-

ions and applications, including a simple programming language,

.g., Wasp [39], and application templates. A similar approach is

aken by Sonar [37] in providing developers with a seamless en-

ironment to deploy WSN, a simple domain-specific programming

anguage and virtual machine, and a tiny operating system, allow-

ng for the dynamic reprogramming of WSN.
. Conclusion and future work

In this paper we address the problem of providing WSN with

rogramming languages that eliminate some types of runtime er-

ors, aiming to simplify the debugging and the deployment of ap-

lications. Our main argument is that this can be achieved by care-

ully designing programming languages and their runtime systems,

o be safe-by-design. Type-safe languages, for instance, allow pro-

rammers to develop applications that are guaranteed to be free

f runtime errors such as misuse of interfaces. Well-typed applica-

ions never produce such runtime errors. From the point of view

f the language runtime system, the existence of a formal specifi-

ation, e.g., in the form of an abstract machine, allows the verifica-

ion of its soundness, i.e., that it preserves the operational seman-

ics of the language. In this case, applications never produce run-

ime errors due to a faulty design of the runtime system. Another

ssue, which is the subject of ongoing work, refers to the language

ompiler and whether it generates code that preserves the seman-

ics of the programming language. This would guarantee that ap-

lications would not incur in runtime errors due to errors in the

eneration of code by the compiler. These design principles elim-

nate the major sources of subtle semantic errors from WSN ap-

lications and provide a typed programming discipline that allows

he premature detection of would-be runtime errors.

To provide a proof-of-concept for the aforementioned design

rinciples, we implemented a new type-safe programming lan-

uage, Callas, based on a formal model for computations in sensor

etworks. The runtime for the language was specified in the form

f an abstract machine and it soundness relative to the operational

emantics of the language was asserted. We describe the language

ompiler and three target platforms that are currently supported

y the framework: networks of SunSPOT devices, the simulation

nvironment VisualSense, and a testbed implementation over local

rea networks using UDP datagrams to simulate wireless channels.

inally, to provide a complete programming environment, we de-

eloped a plugin for the Eclipse IDE that allows Callas program-

ers to implement applications and to deploy them over the sup-

orted target platforms in a seamless way. In fact, the plugin en-

ironment is being used to provide the Callas software releases,

ith embedded language compiler, runtime systems, and platform

pecific software. The prototype here described and documentation

or the project can be downloaded from the Callas Project Home-

age [40].

In terms of future work, we are interested in proving that the

allas compiler produces correct byte-code, i.e., preserving the op-

rational semantics of the language. We are interested in devel-

ping higher level idioms for programming WSN (e.g., a macropro-

ramming language) fully encoded in Callas therefore inheriting its

afety properties.

Acknowledgments

This work was sponsored by project MACAW (Fundação para

Ciência e Tecnologia contract PTDC/EIA-EIA/115730/2009) and

y project ‘‘NORTE-07-0124-FEDER-000058” (SENSING) financed by

he North Portugal Regional Operational Programme (ON.2-O Novo

orte), under the National Strategic Reference Framework (NSRF),

hrough the European Regional Development Fund (ERDF), and by

ational funds, through the Portuguese funding agency, Fundação

ara a Ciência e a Tecnologia.

eferences

[1] I. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, A survey on sensor net-

works, IEEE Commun. Mag. 40 (8) (2002) 102–114.
[2] L. Lopes, F. Martins, J. Barros, Middleware for Network Eccentric and Mobile

Applications, Springer-Verlag, pp. 25–41.

http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0001
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0001
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0001
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0001
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0001

32 L. Lopes, F. Martins / Journal of Systems Architecture 63 (2016) 16–32

[

[
[

[

[

[

[

[3] S. Bhatti, J. Carlson, H. Dai, J. Deng, J. Rose, A. Sheth, B. Shucker, C. Gruen-
wald, A. Torgerson, R. Han, MANTIS OS: an embedded multithreaded operating

system for wireless micro sensor platforms, ACM/Kluwer Mobile Netw. Appl.
(MONET) Spec. Issue Wireless Sens. Netw. 10 (4) (2005) 563–579.

[4] A. Dunkels, B. Grönvall, T. Voigt, Contiki—a lightweight and flexible operating
system for tiny networked sensors, in: First IEEE Workshop on Embedded Net-

worked Sensors (EmNets’04), Tampa, Florida, USA, 2004, pp. 455–462.
[5] A. Eswaran, A. Rowe, R. Rajkumar, Nano-RK: an energy-aware resource-centric

operating system for sensor networks, in: Proceedings of the IEEE Real-Time

Systems Symposium (RTSS’05), 2005, pp. 256–265.
[6] C. Han, R. Kumar, R. Shea, E. Kohler, M. Srivastava, A dynamic operating sys-

tem for sensor nodes, in: Proceedings of the Third International Conference
on Mobile Systems, Applications, and Services (MobiSys’05), ACM Press, New

York, NY, USA, 2005, pp. 163–176.
[7] The TinyOS Documentation Project, 2004–present, http://www.tinyos.net.

[8] J. Lifton, D. Seetharam, M. Broxton, J. Paradiso, Pushpin computing sys-

tem overview: a platform for distributed, embedded, ubiquitous sensor net-
works, in: Proceedings of the Pervasive Computing Conference (Pervasive’02),

Springer-Verlag, 2002, pp. 139–151.
[9] P. Levis, D. Culler, Maté: a tiny virtual machine for sensor networks, in: Pro-

ceedings of the International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS X), ACM Press, 2002, pp. 85–

95.

[10] P. Levis, D. Gay, D. Culler, Bridging the Gap: Programming Sensor Networks
with Application Specific Virtual Machines, Technical Report UCB//CSD-04-

1343, University of California at Berkeley, 2004.
[11] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, D. Culler, The nesC lan-

guage: a holistic approach to network embedded systems, in: ACM Conference
on Programming Language Design and Implementation (PLDI’03), 2003, pp. 1–

11.

[12] R. Newton, Arvind, M. Welsh, Building up to macroprogramming: an interme-
diate language for sensor networks, in: Proceedings of the ACM/IEEE Inter-

national Conference on Information Processing in Sensor Networks (IPSN’05),
2005, pp. 37–44.

[13] S. Madden, M.J. Franklin, J.M. Hellerstein, W. Hong, TinyDB: an acquisitional
query processing system for sensor networks, ACM Trans.Database Syst. 30

(2005) 122–173.

[14] W.F. Fung, D. Sun, J. Gehrke, COUGAR: the network is the database, in: Pro-
ceedings of the ACM International Conference on Management of Data (SIG-

MOD’02), ACM Press, 2002, p. 621.
[15] M. Welsh, G. Mainland, Programming sensor networks using abstract regions,

in: Proceedings of the First USENIX/ACM Symposium on Networked Systems
Design and Implementation (NSDI ’04), 2004, p. 3.

[16] A. Boulis, C. Han, M.B. Srivastava, Design and implementation of a framework

for efficient and programmable sensor networks, in: Proceedings of the First
International Conference on Mobile Systems, Applications and Services (Mo-

biSys’03), ACM Press, 2003, pp. 187–200.
[17] C.-L. Fok, G.-C. Roman, C. Lu, Rapid development and flexible deployment of

adaptive wireless sensor network applications, in: Proceedings of the 24th
International Conference on Distributed Computing Systems (ICDCS’05), IEEE

Press, 2005, pp. 653–662.
[18] P.B. Gibbons, B. Karp, Y. Ke, S. Nath, S. Seshan, IrisNet: an architecture for a

world-wide sensor web, IEEE Pervasive Comput. 2 (4) (2003).

[19] L. Lopes, F. Martins, M.S. Silva, J. Barros, A process calculus approach to sensor
network programming, in: Proceedings of the International Conference on Sen-

sor Technologies and Applications (SENSORCOMM’07), IEEE Computer Society,
2007, pp. 451–456.

[20] K. Honda, M. Tokoro, An object calculus for asynchronous communication,
in: Proceedings of the European Conference on Object-oriented Programming

(ECOOP’91), in: LNCS, vol. 512, Springer-Verlag, 1991, pp. 133–147.

[21] R. Milner, J. Parrow, D. Walker, A calculus of mobile processes (parts I and II),
Inf. Comput. 100 (1992) 1–77.

[22] F. Martins, L. Lopes, J. Barros, Towards safe programming of wireless sensor
networks, Electron. Proc. Theor. Comput. Sci. 17 (2010) 49–62.

[23] Project Sun SPOT, 2004–present, http://www.sunspotworld.com.
[24] P. Baldwin, S. Kohli, E.A. Lee, X. Liu, Y. Zhao, Modelling of sensor nets in

Ptolemy II, in: Proceedings of the Third International Symposium on Informa-

tion Processing in Sensor Networks (IPSN’04), ACM Press, 2004, pp. 359–368.
[25] K.V.S. Prasad, A calculus of broadcasting systems, in: International Joint Confer-

ence on Theory and Practice of Software Development (TAPSOFT’91), in: LNCS,
vol. 493, Springer-Verlag, 1991, pp. 338–358.
26] K. Ostrovský, K.V.S. Prasad, W. Taha, Towards a primitive higher order calculus
of broadcasting systems, in: International Conference on Principles and Prac-

tice of Declarative Programming (PPDP’02), ACM Press, 2002, pp. 2–13.
[27] N. Mezzetti, D. Sangiorgi, Towards a calculus for wireless systems, in: Twenty-

second Conference on the Mathematical Foundations of Programming Seman-
tics (MFPS’06), in: ENTCS, 158, Elsevier Science, 2006, pp. 331–354.

28] Eclipse IDE, 2001–present, http://www.eclipse.org.
29] R. Harper, B. Pierce, A record calculus based on symmetric concatenation, in:

Proceedings of the ACM SIGPLAN-SIGACT Symposium on Principles of Pro-

gramming Languages (POPL’91), The ACM Press, 1991, pp. 131–142.
[30] T. Cogumbreiro, P. Gomes, F. Martins, L. Lopes, Safe-by-Design Program-

ming Languages for Wireless Sensor Networks, technical report DCC-2011-
09, Department of Computer Science, Faculty of Sciences, University of Porto,

2011.Available at http://www.dcc.fc.up.pt/dcc/Pubs/TReports/.
[31] D. Simon, C. Cifuentes, D. Cleal, J. Daniels, D. White, Java on the bare metal of

wireless sensor devices—the Squawk Java virtual machine, in: Proceedings of

the ACM International Conference on Virtual Execution Environments (VEE’06),
2006, pp. 78–88.

32] D. Vieira, F. Martins, Automatic generation of WSN simulations: from Callas
applications to visualsense models, in: Proceedings of the 2010 Fourth Interna-

tional Conference on Sensor Technologies and Applications (SENSORCOMM’10),
IEEE Computer Society, 2010, pp. 336–341.

[33] J. Torres, An Integrated Development Environment for the Callas Programming

Language, Department of Computer Science, Faculty of Sciences, University of
Porto, 2011 Master’s thesis.

[34] R. Newton, M. Welsh, Region streams: functional macroprogramming for sen-
sor networks, in: First International Workshop on Data Management for Sensor

Networks (DMSN’04), Toronto, Canada, 2004, pp. 78–87.
[35] S. Choochaisri, N. Pornprasitsakul, C. Intanagonwiwat, Logic macroprogram-

ming for wireless sensor networks, Int. J. Distrib.Sens. Netw. 2012 (2012)

(pages 12) http://www.hindawi.com/journals/ijdsn/2012/171738.
36] The Absynth Project, 2007–present, http://absynth-project.org/.

[37] G. Ferro, R. Silva, L. Lopes, Towards out-of-the-box programming for wireless
sensor networks, in: Proceedings of the 18th IEEE International Conference on

Computational Science and Engineering (CSE2015), Porto, Portugal, IEEE Com-
puter Society, 2015.

38] A. Elsts, J. Judvaitis, L. Selavo, SEAL: a domain-specific language for novice

wireless sensor network programmers, in: Proceedings of the 39th EU-
ROMICRO Conference on Software Engineering and Advanced Applications

(SEAA’13), Santander, Spain, IEEE Computer Society, 2013, pp. 220–227.
39] L.S. Bai, R.P. Dick, P.A. Dinda, Archetype-based design: sensor network pro-

gramming for application experts, not just programming experts, in: Proceed-
ings of the 2009 International Conference on Information Processing in Sensor

Networks, in: IPSN’09, IEEE Computer Society, 2009, pp. 85–96.

[40] The Callas Project, 2008–present, http://www.dcc.fc.up.pt/callas.

Luís Lopes got his Ph.D. on Computer Science from the

University of Porto, in 1999. His research interests in-
clude domain specific programming languages, virtual

machines, distributed systems, embedded systems and, in
particular, wireless sensor networks. He is an associate

professor at the Department of Computer Science at the
Faculty of Science, University of Porto.

Francisco Martins is an assistant professor at the De-

partment of Informatics, Faculty of Sciences, University of

Lisbon. Until September 2006 he was assistant professor
at the Department of Mathematics, University of Azores

where he began teaching (as teaching assistant) in Oc-
tober 1997. Previously he was an I. T. manager at Banco

Comercial dos Açores since 1990. He received his Ph.D.
in Computer Science at University of Lisbon (Faculty of

Sciences) in 2006, his M.Sc. (by research) in Computer

Science at University of Azores in 2000, and his B.Sc. in
Mathematics and Informatics at the University of Azores

in 1995.

http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0002
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0002
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0002
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0002
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0002
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0002
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0002
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0002
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0002
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0002
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0002
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0003
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0003
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0003
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0003
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0004
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0004
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0004
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0004
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0005
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0005
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0005
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0005
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0005
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0005
http://www.tinyos.net
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0006
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0006
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0006
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0006
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0006
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0007
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0007
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0007
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0008
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0008
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0008
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0008
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0009
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0009
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0009
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0009
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0009
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0009
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0009
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0010
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0010
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0010
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0010
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0011
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0011
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0011
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0011
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0011
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0012
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0012
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0012
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0012
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0013
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0013
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0013
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0014
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0014
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0014
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0014
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0015
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0015
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0015
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0015
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0016
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0016
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0016
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0016
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0016
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0016
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0017
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0017
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0017
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0017
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0017
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0018
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0018
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0018
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0019
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0019
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0019
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0019
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0020
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0020
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0020
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0020
http://www.sunspotworld.com
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0021
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0021
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0021
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0021
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0021
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0021
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0022
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0022
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0023
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0023
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0023
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0023
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0024
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0024
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0024
http://www.eclipse.org
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0025
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0025
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0025
http://www.dcc.fc.up.pt/dcc/Pubs/TReports/
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0027
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0027
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0027
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0027
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0027
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0027
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0028
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0028
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0028
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0029
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0029
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0030
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0030
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0030
http://www.hindawi.com/journals/ijdsn/2012/171738
http://absynth-project.org/
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0032
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0032
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0032
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0032
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0033
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0033
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0033
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0033
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0034
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0034
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0034
http://refhub.elsevier.com/S1383-7621(16)00015-1/sbref0034
http://www.dcc.fc.up.pt/callas

	A safe-by-design programming language for wireless sensor networks
	1 Introduction
	2 The programming model
	2.1 The Callas programming language
	2.2 Abstract syntax
	2.3 Semantics
	2.4 Type safety and absence of runtime errors

	3 The Callas virtual machine
	3.1 The virtual machine data-structures
	3.2 The initial state
	3.3 Reduction rules
	3.4 Soundness of the virtual machine

	4 Prototype implementation and deployment
	4.1 Support for the SunSPOT platform
	4.2 Support for the VisualSense platform
	4.3 CallasUDP

	5 An integrated development environment for Callas
	6 Related work
	7 Conclusion and future work
	 Acknowledgments
	 References

