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We study the effects of product differentiation in a Stackelberg model with demand
uncertainty for the first mover. We do an ex-ante and ex-post analysis of the profits
of the leader and of the follower firms in terms of product differentiation and of the
demand uncertainty. We show that even with small uncertainty about the demand,
the follower firm can achieve greater profits than the leader, if their products are
sufficiently differentiated. We also compute the probability of the second firm
having higher profit than the leading firm, subsequently showing the advantages
and disadvantages of being either the leader or the follower firm.

Keywords: game theory; Stackelberg model; demand uncertainty; differentiation;
perfect Bayesian equilibrium

AMS Subject Classifications: 91A15; 91A80

1. Introduction

The Stackelberg model [1] is one of the most widely used models in industrial organization
to analyse the behaviour of the firms in a competitive environment. It models the strategic
situation where firms sequentially choose their output levels in a market. The belief of first-
mover advantage was widely held among entrepreneurs and venture capitalists, but is now
questioned by numerous practitioners. There are examples of successful and unsuccessful
pioneering firms as described, for instance, in Liu [2]: Dell was the first to introduce the
direct-sale business model into the PC market, and it achieved great success; however,
during the dot-com booming era, Pets.com, Webvan.com, Garden.com and eToys.com were
all unsuccessful first movers in their respective market segments. The probability of success
of pioneering in a market clearly depends on many factors, including technology, marketing
strategy, market demand and product differentiation (see [1–18]). Liu [2] studied the effect
of uncertainty in demand systems where only the leading firm is facing uncertainty in the
demand parameter α that is considered to be uniformly distributed on an interval [α0, α1].
In this paper, we add the dimension of product differentiation to Liu’s model and we show
among other results that if their products are sufficiently differentiated, even with small
uncertainty about the demand, the follower can achieve higher profits than the leader.

Our study focus on the influence of two parameters: the product differentiation
0 < γ ≤ 1 and demand uncertainty θ ≥ 1. When γ is close to one we have small
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878 F.A. Ferreira et al.

differentiation between the goods and when γ is small we have high differentiation between
the goods. The demand uncertainty θ = α1/α0 can be interpreted as the maximum value
of demand using the minimum value of demand α0 as the unit. In Theorem 1, we prove the
existence of a unique perfect Bayesian equilibrium that requires a different reasoning from
Liu’s [2]. In Corollary 1, we compare the quantities produced by each firm and prove the
existence of a threshold T for α, depending upon θ and γ , such that, bellow that threshold
the leader is producing more than the follower and above that threshold the follower is
producing more than the leader. In Theorem 2, we present the (ex-ante) expected profits of
the two firms, depending upon the parameters θ and γ and we characterize two parameter
regions A1 and A2 in the parameter space (γ, θ) with the following properties: in the region
A1 the ex-ante profits of firm F1 are higher than ex-ante profits of firm F2; in the region
A2 the ex-ante profits of firm F2 are higher than ex-ante profits of firm F1. In Theorem 3,
we prove the existence of a threshold θ0 for the demand uncertainty parameter θ , such that
for θ greater than θ0 the expected profit of the follower is always (i.e. for any γ ) greater
than the expected profit of the leader. In Theorem 4, we find the (ex-post) profits of the
firms and we characterize three parameter regions P1, P2 and P3 in the parameter space
(γ, θ) corresponding to three distinct economic behaviours: a region P1, where the leading
firm always has a higher profit than the follower firm; a region P2, where there exists R,
depending upon γ and θ , with the property that (i) if α < R, the leading firm has a higher
profit than the follower firm, and (ii) if α > R, the follower firm has a higher profit than
the leading firm; autoedited1. a region P3, where there exists L , depending upon γ and
θ , with the property that (i) if L < α < R, the leading firm has a higher profit than the
follower firm, and (ii) if α < L or α > R, the follower firm has a higher profit than the
leading firm. Hence, we show that the leading firm looses its advantage for high values
of the demand intercept α, if the demand uncertainty parameter θ belongs to the union of
regions P2 and P3. Furthermore, the leading firm also looses its advantage for low values
of the demand intercept α, if the demand uncertainty parameter θ belongs to the region
P3. Furthermore, in Corollary 2, we compute the ex-ante probability P(π∗

2 > π∗
1 ) that the

follower’s ex-post profit is higher than the leader’s ex-post profit. ex-ante expected profits
and the ex-post profits of the leader firm and of the follower firm, and we also compute
the probability P(π∗

2 > π∗
1 ) of the second firm having higher profit than the leading firm.

We show that this probability increases both with the demand uncertainty and the degree of
differentiation of the goods.

2. The model and the perfect Bayesian equilibrium

We start by describing the Stackelberg duopoly with product differentiation. We consider
two firms, each producing a differentiated good. The demand, for simplicity, is linear{

p1 = α − q1 − γ q2
p2 = α − γ q1 − q2

, (1)

with α > 0 and 0 < γ ≤ 1, where pi is the price and qi the amount of good produced
by the firm Fi , for i ∈ {1, 2}. We note that the two products are substitutes and, since
γ ≤ 1, ‘cross effects’ are dominated by ‘own effects’. The value of γ expresses the degree
of product differentiation. When γ is equal to one, the goods are homogeneous, and when
γ tends to zero, we are close to independent goods (see [18]). We assume that the firms
have the same constant marginal cost c. From now on, we consider prices net of marginal
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Optimization 879

costs. This is without any loss of generality because if the marginal cost is positive, we may
replace α by α − c. We consider that the demand intercept is a random variable uniformly
distributed in the interval [α0, α1], with α1 > α0 > 0. We note that, in this case, the demand
uncertainty parameter θ is equal to the ratio α1/α0 (can be interpreted as the maximum
value of demand using the minimum value of demand α0 as the unit). The distribution of α

is common knowledge. Profit πi of firm Fi is given by

πi = pi qi = (α − qi − γ q j )qi . (2)

As already stated in the Introduction, the timing of the game is as follows:

(i) Firm F1 chooses a quantity level q1 ≥ 0 without knowing the value of the demand
realization;

(ii) Firm F2 first observes the demand realization and observes q1, and then chooses a
quantity level q2 ≥ 0.

In the next theorem, we show that this game has a unique perfect Bayesian equilibrium
(q∗

1 , q∗
2 ) and we give its explicit characterization. Let

Kγ = 8 − 2γ − 3γ 2

γ (2 − γ )
,

A = (4 − γ 2)2 − 2γ 2(4 − 3γ ), B = 16(2 − γ 2) and C = 2(8 − 3γ 3), and denote by �

the expression

� ≡ �(α0, γ, θ) = α0

(
4 − 2

(
2 − γ 2

)
θ +

√
Aθ2 − Bθ + C

)
.

We observe that Aα2
1 − Bα0α1 +Cα2

0 ≥ 0, for all θ = α1/α0 > 1, and so � is well defined.

Theorem 1 Consider a differentiated products Stackelberg duopoly facing the demand
system (1), where the parameter α is uniformly distributed in the interval [α0, α1]. Then,
there is a unique perfect Bayesian equilibrium (q∗

1 , q∗
2 ) given as follows:

(i) If θ ≤ Kγ , then

q∗
1 = α0 (2 − γ )

4(2 − γ 2)
(θ + 1) and q∗

2 = α

2
− α0γ (2 − γ )

8(2 − γ 2)
(θ + 1);

(ii) If θ ≥ Kγ , then

q∗
1 = �

3γ 3
and q∗

2 =
{

0, if α < �/(3γ 2)
α
2 − �

6γ 2 , if α ≥ �/(3γ 2)
.

Theorem 1 is proved in the Appendix. From this theorem, we conclude that when the
interval of α is large and the products are not very differentiated (large γ ), if the realized
demand is small the follower may choose not to produce at all. The relevant parameters
in terms of their economical effects are γ and θ . In the next corollary, we compare the
quantities produced by each firm.
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Figure 1. The quantities produced by each firm when the intervals of the uniform distribution of the
parameter α are such that the ratio θ between its endpoints is as in each situation of Corollary 1, for
γ = 0.8, α0 = 1 and (a) α1 = 1.5; (b) α1 = 4.

Let Iγ = (γ − 4)/(3γ 2 − 4).
Let

R(α0, γ, θ) =
⎧⎨
⎩

R1 = α0
(
4−γ 2

)
4(2−γ 2)

(θ + 1) if θ ≤ Kγ

R2 = (2+γ )�

3γ 3 if θ ≥ Kγ

.

Corollary 1

(a) If θ < Iγ , then, for all α ∈ [α0, α1], the leading firm produces more than firm F2,
i.e. q∗

2 < q∗
1 .

(b) If θ ≥ Iγ , then

(i) if α ≤ R, the leading firm produces more than firm F2, i.e. q∗
2 ≤ q∗

1 ;
(ii) if α ≥ R, firm F2 produces more than the leading firm, i.e. q∗

2 ≥ q∗
1 .

Corollary 1 is proved in the Appendix. The three different situations described in this
corollary are illustrated for some values of the parameters in Figure 1. We observe the
existence of a threshold R for α such that for values of α smaller than that threshold the
leader is producing more, and for values of α greater than that threshold the follower is
producing more. This is due to the fact that the leader makes the decision based only on
expectations. The follower is going to produce more if the demand turns out to be large
(and possibly more than the leader), and less if the realized demand is small (and possibly
less than the leader).

3. Ex-ante expected profits

In this section, we present an ex-ante analysis of the Stackelberg game previously described.
In the next theorem, we explicitly show the profits that the firms can expect, before the
knowledge of the demand realization α. For simplicity of notation, we denote by π∗

i the
profit πi

(
q∗

1 , q∗
2 (q∗

1 , α)
)
, for i ∈ {1, 2}. Let γ0 : [3,+∞) → R+

0 be defined by
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Optimization 881

γ0(θ) =

⎧⎪⎨
⎪⎩

1, for θ = 3

1+θ−
√

θ2−6θ+25
θ−3 , for θ > 3

Let
Q = {(θ, γ ) : θ ≥ 3 ∧ γ0(θ) ≤ γ ≤ 1}

and
P = ([1,+∞) × (0, 1]) \ Q.

Let � = �/α0.

Theorem 2 While the demand realization α is unknown for both firms, their expected
profits E(π∗

1 ) and E(π∗
2 ) are given by

E(π∗
1 ) =

⎧⎪⎪⎨
⎪⎪⎩

α2
0(2−γ )2(θ+1)2

32(2−γ 2)
, if (θ, γ ) ∈ P

α0�
(
18γ 3

(
θ2−1

)−12�(θ−1)−9γ 4θ2+6γ 2�θ−�2
)

108γ 6(θ−1)
, if (θ, γ ) ∈ Q

and

E(π∗
2 ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α2
0

((
7γ 4+12γ 3−28γ 2−48γ+64

)(
θ2+1

)−2θ
(
γ 4−12γ 3−4γ 2+48γ−32

))
192(γ 2−2)

2 , if (θ, γ ) ∈ P

α2
0

(
3γ 2θ−�

)3
324γ 6(θ−1)

, if (θ, γ ) ∈ Q

Theorem 2 is proved in the Appendix.
Let α0 = 1. Let A1 = {(γ, θ) : E(π∗

1 ) > E(π∗
2 )} and A2 = {(γ, θ) : E(π∗

2 ) > E(π∗
1 )}.

Then, line E
(
π∗

1 (α)
) = E

(
π∗

2 (α)
)

is given by C(θ, γ ) = 0, defined by

C(θ, γ ) =

⎧⎪⎨
⎪⎩

θ − 4γ
(
2−γ 2

)√
12γ−9γ 2−5γ 4+4

(
3γ 3−4γ 2+4

)
13γ 4−12γ 3−16γ 2+16

, if (θ, γ ) ∈ P

Dθ5 + Eθ4 + Fθ3 + 2Gθ2 + Hθ + 49γ 3 − 120, if (θ, γ ) ∈ Q

where D = 15γ 5 − 36γ 4 + 7γ 3 + 42γ 2 − 40, E = 15γ 5 − 6γ 4 + 49γ 3 − 138γ 2 + 200,
F = 6γ 4 − 56γ 3 + 192γ 2 − 400, G = 3γ 4 − 49γ 3 + 120 and H = 49γ 3 − 96γ 2 + 120
(Figure 2).

Theorem 3 There is θ0 ≈ 7.30 such that if the uncertainty parameter θ is greater than
θ0, then the expected profit of the follower firm is always greater than the expected profit of
the leading firm.

Theorem 3 is proved in the Appendix.
In Figure 3, we plot the firms’ expected profits, E(π∗

1 ) and E(π∗
2 ), as functions of the

demand uncertainty parameter θ and of the degree γ of product differentiation. Figure 4
illustrates cross-sections of Figure 3 at the degrees γ = 0.9 (Figure 4(a)) and γ = 0.5
(Figure 4(b)) of product differentiation. Figure 5 illustrates cross-sections of Figure 3 at the
demand uncertainty parameter’s values θ = 2 (Figure 5(a)) and θ = 8 (Figure 5(b)).
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Figure 2. Plot of C(θ, γ ).
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Figure 3. Firms’ expected profits varying with the demand uncertainty parameter θ and with the
degree γ of the product differentiation, by taking α0 = 1.

These figures illustrate that both parameters θ and γ are relevant to determine which
firm has ex-ante higher expected profits.

4. Ex-post profits

In this section, we present the ex-post analysis of the same Stackelberg game. In Theorem 4,
we explicitly present the ex-post profits π∗

1 and π∗
2 of firms 1 and 2, respectively, obtained

after the observation of the demand realization. We describe three regions for the demand
uncertainty parameter θ = α1/α0 corresponding to three distinct profits relations between
the leading and the follower firms (see Figure 6). The low-medium uncertainty boundary
value is
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Figure 4. Cross-sections of Figure 3 at the degrees (a) γ = 0.9 and (b) γ = 0.5 of product
differentiation.
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Figure 5. Cross-sections of Figure 3 at the uncertainty parameter’s values (a) θ = 2 and (b) θ = 8.

Figure 6. Three regions for the demand uncertainty parameter θ corresponding to three distinct
profits relations between the leading and the follower firms.

Iγ = 4 − γ 2

4 − 3γ 2
,

and the medium–high uncertainty boundary value is

Jγ = 4 + 4γ − 5γ 2

(2 − γ )2
.
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Figure 7. Plots of the functions Iγ and Jγ , and the regions P1, P2 and P3.

Let P1 = {(θ, γ ) : θ < Iγ }, P2 = {(θ, γ ) : Iγ ≤ θ ≤ Jγ } and P3 = {(θ, γ ) : θ > Jγ } (see
Figure 7).

The functions Iγ and Jγ characterize the demand uncertainty parameter θ for which the
leading firm looses its advantage for some realizations of the demand random variable. In
fact, in the next theorem, we will show that the leading firm looses its advantage for high
values of the demand intercept, if the demand uncertainty parameter θ is greater than Iγ ,
and also for low values of the demand intercept, if the demand uncertainty parameter θ is
greater than Jγ . Hence, for high values of the demand uncertainty parameter (θ > Jγ ) only
in an intermediate zone of the realized demand does the first mover preserve its advantage.
We observe that for homogeneous goods (γ = 1), the functions Iγ and Jγ coincide, i.e.
I1 = J1 (Liu’s case [2]), and for non-homogeneous goods (0 ≤ γ < 1), we have that
Iγ < Jγ . Observe that the curve given by E(π∗

1 ) = E(π∗
2 ) crosses the curves P1 and P2

(see Figure 7).
We define L and R as follows:

L ≡ L(α0, γ, θ) =

⎧⎪⎨
⎪⎩

α0(2−γ )2

4(2−γ 2)
(θ + 1), if θ ≤ Kγ

(2−γ )�

3γ 3 , if θ ≥ Kγ

and

R ≡ R(α0, γ, θ) =

⎧⎪⎪⎨
⎪⎪⎩

α0
(
4−γ 2)

4(2−γ 2)
(θ + 1), if θ ≤ Kγ

(2+γ )�

3γ 3 , if θ ≥ Kγ

Theorem 4

(a) Case θ ≤ Iγ . For all α ∈ [α0, α1], the leading firm has a higher profit than firm
F2, i.e. π∗

2 < π∗
1 .

(b) Case Iγ < θ ≤ Jγ . The value R ∈ (α0, α1). Furthermore,
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Figure 8. The profits of both firms when the intervals of the uniform distribution of the parameter
α are such that the ratio θ between its endpoints is as in each situation of Theorem 4, for γ = 0.8,
α0 = 1 and (a) α1 = 1.5; (b) α1 = 2.5; (c) α1 = 4.
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Figure 9. Plots of the functions (a) R(α0, γ, α1); and (b) L(α0, γ, α1), by considering α0 = 1.

(i) if α ≤ R, the leading firm has a higher profit than firm F2, i.e. π∗
2 ≤ π∗

1 ;
(ii) if α ≥ R, firm F2 has a higher profit than the leading firm, i.e. π∗

2 ≥ π∗
1 .

(c) Case θ > Jγ . The values L , R ∈ (α0, α1). Furthermore,

(i) if L ≤ α ≤ R, the leading firm has a higher profit than firm F2, i.e.
π∗

2 ≤ π∗
1 ;

(ii) if either α ≤ L or α ≥ R, firm F2 has a higher profit than the leading firm,
i.e. π∗

2 ≥ π∗
1 .

Theorem 4 is proved in the Appendix. This theorem allows us to say that even with small
uncertainty about the demand, the follower can achieve greater profits than the leader, if their
products are sufficiently differentiated (Figure 8). In Figure 9, we present the plots of R and
L as functions of the demand uncertainty parameter θ and of the degree of differentiation
γ . In Figure 10, we show the plots of R and L as functions of the demand uncertainty
parameter θ , for some chosen values of the degree γ of differentiation. We take α0 = 1
and, so, we observe that α1 = θ . We note that the values L and R are increasing with θ .
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Figure 10. Plots of the functions R(α0, γ, α1) and L(α0, γ, α1), by considering α0 = 1 and in the
cases of (a) γ = 1; and (b) γ = 0.9.

5. Ex-ante probability of higher ex-post profits

Now, we are going to compute, in terms of the demand uncertainty parameter θ and of
the product differentiation degree γ , the ex-ante probability P

(
π∗

2 > π∗
1

)
of the second

firm having higher ex-post profit than the leading firm. Using the results presented in
Theorem 4, we get the following corollary.

Corollary 2

(a) If θ < Iγ , then P
(
π∗

2 > π∗
1

) = 0.
(b) If Iγ ≤ θ ≤ Jγ , then

P
(
π∗

2 > π∗
1

) = (4 − 3γ 2)θ − (4 − γ 2)

4(2 − γ 2)(θ − 1)
.

(c) If θ ≥ Jγ , then

P
(
π∗

2 > π∗
1

) =

⎧⎪⎪⎨
⎪⎪⎩

(
4−2γ−γ 2

)
θ−(4+2γ−3γ 2

)
2(2−γ 2)(θ−1)

, if θ ≤ Kγ

1 − 2�

3γ 2(θ−1)
, if θ ≥ Kγ

.

The economic interpretations of this result include: (i) given the degree of the differenti-
ation of the goods γ , the probability P

(
π∗

2 > π∗
1

)
of the follower firm having higher profit

than the leading firm increases with the degree of the demand uncertainty; and (ii) given
the demand uncertainty, the probability P

(
π∗

2 > π∗
1

)
of the follower firm having higher

profit than the leading firm increases with the differentiation of the goods. Furthermore,
when the goods are homogeneous, the probability P

(
π∗

1 > π∗
2

)
of the leading firm having

higher profit than the follower firm is greater than the probability of the opposite situation.
However, when the goods are sufficiently different, for sufficiently high level of uncertainty,
the probability P

(
π∗

2 > π∗
1

)
of the follower firm having higher profit than the leading firm

is greater than the probability of the opposite situation (see Figure 11).
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Figure 11. The probability of the second firm having higher profit than the leading firm, as a function
of the demand uncertainty parameter θ , for different degrees γ of the differentiation of the goods, by
taking α0 = 1.

0 0.5 1
1

9

17

γ

θ

P(π2 > π1) = P(π1 > π2)

E(π1
* )=E(π2

* )V1

V2

Figure 12. Solid line refers to the equality between the probabilities of the second firm having higher
profit than the leading firm and the dashed line refers to the equality between the expected profits of
both firms.

We observe that

P
(
π∗

2 > π∗
1

) = 1

2
⇔

⎧⎪⎪⎨
⎪⎪⎩

θ = γ 2−γ−1
γ−1 , if 0 ≤ γ ≤ 3 − √

5

θ = 32−5γ 2−4γ
√

γ 2+32
32−32γ+3γ 2 , if 3 − √

5 ≤ γ ≤ 1
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For a sufficiently high level of uncertainty (θ > 9+4
√

33/3), the probability P
(
π∗

2 > π∗
1

)
of the follower firm having higher profit than the leading firm is greater than the probability of
the opposite situation, independently of the degree γ of differentiation. Let V1 = {(γ, θ) :
P1 > P2} and V2 = {(γ, θ) : P1 < P2}. In Figure 12, we show the region where the
probability of the second firm having higher profit than the leading firm is greater than the
probability of the opposite situation.

We also observe that

lim
θ→∞ P

(
π∗

2 > π∗
1

) = 8 − γ 2 − 2
√

γ 4 + 6γ 3 − 16γ 2 + 16

3γ 2
,

and

7 − 2
√

7

3
≤ 8 − γ 2 − 2

√
γ 4 + 6γ 3 − 16γ 2 + 16

3γ 2
−→
γ→0

1.

6. Conclusions

In order to analyse the leadership and flexibility advantages, we considered three different
situations, that depend upon the uncertainty parameter θ given by the ratioα1/α0 between the
endpoints of the demand interval [α0, α1] in which the parameter α is uniformly distributed.
We found two functions Iγ and Jγ , that depend upon the degree γ of differentiation of the
goods, such that (i) if θ < Iγ , then the leading firm has a higher profit than the follower;
(ii) if Iγ ≤ θ ≤ Jγ , then when the realized demand is very high, the leading firm has
a lower profits than the follower, otherwise the leading firm has a higher profit than the
follower; and (iii) if θ > Jγ , then when the realized demand is very low or very high, the
leading firm has a lower profit than the follower, and when the realized demand is in an
intermediate region, the leading firm has a higher profit than the follower. We observed that
for homogeneous goods (γ = 1, Liu’s case), the functions Iγ and Jγ coincide, i.e. I1 = J1,
and for non-homogeneous goods (0 ≤ γ < 1), we have that Iγ < Jγ .

We showed that, when the goods are homogeneous, the probability P
(
π∗

1 > π∗
2

)
of the

leading firm having higher profit than the follower firm is greater than the probability of
the opposite situation; however, if the goods are sufficiently different or have high level of
uncertainty, the probability P

(
π∗

2 > π∗
1

)
of the follower firm having higher profit than the

leading firm is greater than one half.
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Appendix
In this Appendix, we prove of the results presented throughout the paper.

Proof of Theorem 1 Using backwards-induction, we first compute firm F2’s reaction, q∗
2 (q1, α),

to an arbitrary quantity q1 fixed by firm F1, and to the realized demand parameter α. The quantity
q∗

2 (q1, α) is given by
arg max

q2≥0
q2(α − γ q1 − q2),

which yields

q∗
2 (q1, α) = max

{
α − γ q1

2
, 0

}
.

Therefore, firm F1’s problem in the first stage of the game amounts to determine

q∗
1 = arg max

q1≥0
E (q1 · p1) ,

D
ow

nl
oa

de
d 

by
 [

b-
on

: B
ib

lio
te

ca
 d

o 
co

nh
ec

im
en

to
 o

nl
in

e 
U

P]
 a

t 0
4:

35
 1

5 
Ja

nu
ar

y 
20

18
 



890 F.A. Ferreira et al.

where p1 = α − q1 − γ q∗
2 (q1, α) and E(•) is the expectation with respect to the demand intercept

α. We are going to study separately the cases: (I) α0 ≥ γ q1 and (II) α0 ≤ γ q1. Note that the density
function of α’s distribution is 1/(α1 − α0).
Case I α0 ≥ γ q1 (see Figure 13). In this case, α ≥ α0 ≥ γ q1, and so q∗

2 (q1, α) = (α − γ q1)/2.
Therefore,

E
(
q1
(
α − q1 − γ q∗

2 (q1, α)
)) =

∫ α1

α0

q1

(
α − q1 − γ

α − γ q1

2

)
1

α1 − α0
dα

= (2 − γ )(α1 + α0)q1 − 2(2 − γ 2)q2
1

4
. (3)

Then, firm F1’s best quantity q∗
1 solves the equation

−4(2 − γ 2)q1 + (2 − γ )(α1 + α0) = 0.

Hence,

q∗
1 = (2 − γ )(α1 + α0)

4(2 − γ 2)
, (4)

and so

q∗
2 = α

2
− γ (2 − γ )(α1 + α0)

8(2 − γ 2)
. (5)

We observe that the value q∗
1 obtained in (4) satisfies the hypothesis α0 ≥ γ q1 considered in

Case I if, and only if, θ ≤ Kγ .

Case II α0 ≤ γ q1 (see Figure 14). In this case,

(i) if α ≤ γ q1, then q∗
2 (q1, α) = 0; and

(ii) if α ≥ γ q1, then q∗
2 (q1, α) = (α − γ q1)/2.

Therefore,

E
(
q1(α − q1 − γ q∗

2 (q1, α))
) =

∫ γ q1

α0

q1(α − q1)
1

α1 − α0
dα

+
∫ α1

γ q1

q1

(
α − q1 − γ

α − γ q1

2

)
1

α1 − α0
dα

=
(
(2 − γ )α2

1 − 2α2
0

)
q1 − 2

(
(2 − γ 2)α1 − 2α0

)
q2

1 − γ 3q3
1

4(α1 − α0)
.

(6)

Then, firm F1’s best quantity q∗
1 solves the equation

−3γ 3q2
1 − 4

(
(2 − γ 2)α1 − 2α0

)
q1 + (2 − γ )α2

1 − 2α2
0 = 0.

Hence,

q∗
1 = �

3γ 3
, (7)

and so

q∗
2 =

{
0, if α < �/(3γ 2)
α
2 − �

6γ 2 , if α ≥ �/(3γ 2)
. (8)

We observe that the value q∗
1 obtained in (7) satisfies the hypothesis α0 ≤ γ q1 considered in

Case II if, and only if, θ ≥ Kγ . �
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0 1q10

Figure 13. α0 ≥ γ q1 (Case I).

10 q10

Figure 14. α0 ≤ γ q1 (Case II).

0

0

0

q1
* q1

*α0 /γ α0 /γ α1 α1

E(⋅) E(⋅)

q1 q1

0

Figure 15. Case I (θ ≤ Kγ ): arg maxq1≥0 E(q1 · p1) ≤ α0/γ ; Case II (θ ≥ Kγ ):
arg maxq1≥0 E(q1 · p1) ≥ α0/γ .

We note that, in Case I (θ ≤ Kγ ) we have that arg maxq1≥0 E(q1 · p1) ≤ α0/γ , and in Case II
(θ ≥ Kγ ) we have that arg maxq1≥0 E(q1 · p1) ≥ α0/γ (see Figure 15).

Proof of Corollary 1 First, suppose that θ ≤ Kγ . By Theorem 1, we get that

q∗
1 − q∗

2 = 4 − γ 2

8(2 − γ 2)
(α1 + α0) − α

2
.

Therefore, q∗
1 − q∗

2 ≥ 0 if, and only if,

α ≤ 4 − γ 2

4(2 − γ 2)
(α1 + α0).

Since 4−γ 2

4(2−γ 2)
(α1 + α0) > α1 if, and only if, θ < Iγ , and Iγ ≤ kγ , we get the statement (a).

Since 4−γ 2

4(2−γ 2)
(α1 + α0) ∈ [α0, α1] if, and only if, θ ≥ Iγ , we get the statement (b).

Now, suppose that θ ≥ Kγ . By Theorem 1, we get that

• if α < �/(3γ 2), then

q∗
1 − q∗

2 = q∗
1 = �

3γ 3
,

which is positive;
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• if α ≥ �/(3γ 2), then

q∗
1 − q∗

2 = (2 + γ )�

6γ 3
− α

2
.

Therefore, q∗
1 − q∗

2 ≥ 0 if, and only if,

α ≤ (2 + γ )�

3γ 3
,

which implies the statement (c). �

Proof of Theorem 2 Firm F1’s expected profit, E(π∗
1 (α)), is obtained by (3) and (6). Firm F2’s

expected profit, E(π∗
2 (α)), is determined by

E(π∗
2 (α)) =

∫ α1

α0

q∗
2
(
α − γ q∗

1 − q∗
2
) 1

α1 − α0
dα,

with q∗
1 and q∗

2 given, respectively, by (4) and (5), in the case of θ ≤ Kγ , and given, respectively, by
(7) and (8), in the case of θ ≥ Kγ . Finally, we note that the values (θ, γ ) in the set P are the ones
that satisfy θ ≤ Kγ , and the values (θ, γ ) in the set Q are the ones that satisfy θ ≥ Kγ . �

Proof of Theorem 3 Here, we compute the exact value θ0, when we take α0 = 1 and γ = 1, such
that if the uncertainty parameter θ is greater than θ0, then the expected profit of the follower firm is
always greater than the expected profit of the leading firm.

Let

D = 10348768573

5971968
− 8804787277

√
17

23887872
, E = 10348768573

5971968
+ 8804787277

√
17

23887872
,

F = 118172131

995328
− 10655929

√
17

373248
and G = 118172131

995328
+ 10655929

√
17

373248
.

The value θ0 is given by

θ0 = 9

4
+
√√√√143

48
−
(

3539

3456
− 3011

√
17

13824

)1/3

−
(

3539

3456
+ 3011

√
17

13824

)1/3

+
√√√√143

24
+
(

3539

3456
− 3011

√
17

13824

)1/3

+
(

3539

3456
+ 3011

√
17

13824

)1/3

+ √
H ,

where

H = D1/3 + E1/3 + F1/3 + G1/3 + 19013

576
.

Therefore, we observe that θ0 ≈ 7.30. �

Proof of Theorem 4 By Theorem 1, in the case where θ ≤ Kγ , the profits π∗
1 and π∗

2 at equilibrium
are given by

π∗
1 = (2 − γ )2(4α − α1 − α0)(α1 + α0)

32(2 − γ 2)

and

π∗
2 =

(
4α(2 − γ 2) − γ (2 − γ )(α1 + α0)

)2

64(2 − γ 2)2
.
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So, we have that π∗
1 − π∗

2 > 0 if, and only if,

L1 ≡ (2 − γ )2

4(2 − γ 2)
(α0 + α1) < α <

4 − γ 2

4(2 − γ 2)
(α0 + α1) ≡ R1.

Again by Theorem 1, in the case of θ ≥ Kγ , the profits π∗
1 and π∗

2 at equilibrium are given by

π∗
1 =

⎧⎪⎨
⎪⎩
(
3αγ 3−�

)
�

9γ 6 , if α < �/(3γ 2)(
3αγ 3(2−γ )−(2−γ 2)�

)
�

18γ 6 , if α ≥ �/(3γ 2)

and

π∗
2 =

⎧⎨
⎩

0, if α < �/(3γ 2)(
3αγ 2−�

)2
36γ 4 , if α ≥ �/(3γ 2)

So, we have that π∗
1 − π∗

2 > 0 if, and only if,

L2 ≡ (2 − γ )�

3γ 3
< α <

(2 + γ )�

3γ 3
≡ R2.

(a) For θ < Iγ , we have that L1 < α0 and R1 > α1. Therefore, π∗
2 < π∗

1 for all α ∈ [α0, α1].
(b) For Iγ ≤ θ ≤ Jγ , we have that L1 < α0 and α0 ≤ R1 ≤ α1. Therefore, if α < R1 then

π∗
2 < π∗

1 ; and if α > R1 then π∗
2 > π∗

1 .
(c) For Jγ < θ ≤ Kγ , we have that α0 ≤ L1, R1 ≤ α1. Therefore, if L1 < α < R1 then

π∗
2 < π∗

1 ; and if either α < L1 or α > R1 then π∗
2 > π∗

1 .
For θ > Kγ , we have that α0 ≤ L2, R2 ≤ α1. Therefore, if L2 < α < R2 then π∗

2 < π∗
1 ;

and if either α < L2 or α > R2 then π∗
2 > π∗

1 .

�
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