
A Procedure for Splitting Data-Aware Processes
and its Application to CoordinationI

S.-S.T.Q. Jongmansa,∗, D. Clarkeb, J. Proençab

aCentrum Wiskunde & Informatica, Science Park 123, 1098 XG, Amsterdam, Netherlands
bKatholieke Universiteit Leuven, Celestijnenlaan 200A, 3001 Heverlee, Belgium

Abstract

We present a procedure for splitting processes in a process algebra with multiactions and data (the untimed
subset of the specification language mCRL2). This splitting procedure cuts a process into two processes
along a set of actions A: roughly, one of these processes contains no actions from A, while the other process
contains only actions from A. We state and prove a theorem asserting that the parallel composition of these
two processes is provably equal from a set of axioms (sound and complete with respect to strong bisimilarity)
to the original process under some appropriate notion of synchronization.

We apply our splitting procedure to the process algebraic semantics of the coordination language Reo:
using this procedure and its related theorem, we formally establish the soundness of splitting Reo connec-
tors along the boundaries of their (a)synchronous regions in implementations of Reo. Such splitting can
significantly improve the performance of connectors as shown elsewhere.

1. Motivation

Context. Over the past decades, coordination languages have emerged for the specification and implementa-
tion of interaction protocols among entities running concurrently (components, services, threads, etc.). This
class of languages includes Reo [2, 3], a graphical language for compositional construction of connectors:
communication media through which entities can interact with each other. Figure 1 shows some example
Reo connectors in their usual graphical syntax. Intuitively, connectors consist of one or more channels
(i.e., the edges of a connector graph), through which data items flow, and a number of nodes (i.e., the
vertices of a connector graph), on which channel ends (i.e., the endpoints of edges) meet. Through channel
composition—the act of gluing channels together on nodes—engineers can construct complex connectors.
Channels often used include the reliable synchronous channel, called sync, and the reliable asynchronous
channel fifon, which has a buffer of capacity n. Importantly, while nodes have a fixed semantics, Reo features
an open-ended set of channels. This allows engineers to define their own channels with custom semantics.

To use connectors in real applications, one must derive executable code from graphical specifications of
connectors (e.g., those in Figure 1). Roughly two implementation approaches currently exist. In the dis-
tributed approach [11, 37, 35, 36], one implements the behavior of each of the k constituents of a connector and
runs these k implementations concurrently as a distributed system; in the centralized approach [19, 17, 22],
one computes the behavior of a connector as a whole, implements this behavior, and runs this implemen-
tation sequentially as a centralized system. For example, in the case of a service-oriented choreography
application, the distributed approach seems natural, because the services involved run on different machines
and the network between them may play a role in their coordination. However, if coordination involves com-
putation threads running on the same machine in some multithreading application, the centralized approach

IThis research is partly funded by the EU project FP7-231620 HATS: Highly Adaptable and Trustworthy Software using
Formal Models (http://www.hats-project.eu/)
∗Corresponding author

Preprint submitted to Elsevier December 15, 2015

http://www.hats-project.eu/

a x

b

d

d

(a) FIFO2

a x

b

d

(b) LossyFIFO

ca

b

d

(c) Alternator

ba

x yd

(d) SyncFIFOSync

Figure 1: Example connectors.

appears more appropriate, because it avoids communication among the constituents of a connector at run-
time: in this approach, due to the computation of the behavior of an entire connector at compile time, one
abstracts from the individual, smaller, concurrent constituents of a connector to obtain one big sequential
program for the whole (which can run in its own dedicated thread at run-time, among the computation
threads it coordinates).

One optimization technique applicable to both the distributed and the centralized approach involves
the identification of the synchronous and the asynchronous regions of a connector [36]. A synchronous
region contains exactly those nodes and channels of a connector that synchronize collectively to decide on
their individual behavior; an asynchronous region connects synchronous regions in an asynchronous way,
typically involving a fifo1 channel. For instance, the connector consisting of a sync channel, a fifo1 channel,
and another sync channel (see Figure 1d) has two synchronous regions, connected by an asynchronous region.

Intuitively, two synchronous regions can run completely independently of each other. In the distributed
approach, this means that nodes and channels need to share information only with those nodes and channels
in the same synchronous region—not with every node or channel in the connector [36]. In the centralized
approach, this means that one does not need to compute the behavior of a connector as a whole, but rather
on a per-region basis [17]. Supplementary, asynchronous regions connect synchronous regions to each other
by transporting data and control information between them. Based on how asynchronous regions do this, one
can distinguish different versions of the region-based optimization technique, with different guarantees and
for different use cases. For example, an asynchronous region can transport control information directly (in
which case transportation starts at the same time as the coordination step that triggered it and ends before
the next), atomically (same as the previous case but transportation can start also after the coordination
step that triggered it), or interleaved (same as the previous case but transportation does not need to end
before the next coordination step). Recent work shows that the region-based optimization technique for Reo
can significantly improve performance [11, 22, 35, 36] (both at compile time and at run-time), to the extent
that its use will become vital for real-world applications: without it, automatically deploying (including
code generation) and running connectors quickly becomes infeasible as their size increases.

Problem. The region-based optimization technique still has a serious problem: although we have reason to
believe (based on intuition and loose informal reasoning) that it preserves the semantics of a connector, we
do not know this for sure by lack of a formal proof.

Contributions of the paper. In this paper, using the existing process algebraic semantics of Reo [27, 24,
25, 26], we prove the correctness of the region-based optimization technique for asynchronous regions with
direct transportation.1 In this semantics, expressed using the specification language mCRL2 [14, 16], one
associates every connector with a process describing its behavior. Roughly, our proof technique consists of
the formulation of a number of theorems for the untimed subset of mCRL2. We then apply these theorems
to Reo’s process algebraic semantics to prove the region-based optimization technique correct.

Importantly, however, the scope of this paper extends beyond Reo. Because we work on the semantics
level—in terms of process algebra—and because we formulate our proof technique for general processes (not
just those used in Reo’s semantics), our results apply not exclusively to Reo but, instead, to any process

1

1

in untimed mCRL2. As a result, we can divide the contributions of this paper into two categories: those
concerning mCRL2 in general and those concerning Reo. More concretely:

• mCRL2

− We define a splitting procedure for the untimed subset of mCRL2 and prove its correctness.
Essentially, this procedure syntactically splits a process into two new processes: one process
contains only actions from some set A; the other contains only actions from outside A.

− Our work shows the feasibility of using the language mCRL2 (not the associated toolset) for
proving properties of a whole language, Reo, rather than of individual concrete connectors. This
subtly, yet significantly, differs from work of Kokash et al. [27, 24, 25, 26], who introduced a
process algebraic semantics of Reo for verifying concrete connectors (e.g., “this connector never
deadlocks”) but obtain no results about Reo as a language. As such, the work presented in this
paper also paves the way to proving other properties about Reo using process algebra, including
the correctness of others versions of the region-based optimization techniques (in terms of new
different splitting procedures).

• Reo

− We formalize the notion of (a)synchronous regions in terms of the process algebraic semantics of
Reo.

− We apply the splitting procedure to the process algebraic semantics of Reo, thereby justifying
the region-based optimization technique for Reo implementations. To illustrate this further, we
discuss how to implement and use the splitting procedure in the distributed approach, exploiting
the local concurrency available on the computational nodes.

Although motivated by Reo, to emphasize the generality of our splitting procedure and theorems, we have
organized the rest of this paper from a process algebra perspective; Reo serves as a ‘case study’ exemplifying
their usefulness. In Section 2, we give an overview of the untimed subset of mCRL2 we use. In Section 3,
to show mCRL2 in action, we summarize the process algebraic semantics of Reo. In Section 4, we introduce
our splitting procedure, and in Section 5, we prove its correctness. In Section 6, we apply our splitting
procedure to Reo. Section 7 contains related work, and Section 8 ends this paper with a conclusion and
future work.

An earlier version of this work appeared in [20], where we considered the untimed data-free subset of
mCRL2 and adopted a limited form of recursion. In this paper, by contrast, we do have data and a more
general treatment of recursion. As a consequence, in addition to new proofs for new results, we necessarily
revised, extended, and sometimes simplified many of our old proofs.

2. A Process Algebra with Multiactions and Data

The process algebra used in this paper is the untimed subset of mCRL2 [14, 16], a specification language
based on ACP [6] and the basis of the process algebraic semantics of Reo. Among other useful constructs,
mCRL2 has one feature that makes it particularly well-suited as a semantic formalism for Reo, namely
multiactions: collections of actions that occur at the same time. We postpone an explanation of how to use
multiactions for describing the behavior of connectors until Section 3. In this section, we summarize the
untimed subset of mCRL2.

2.1. Data

Before discussing the syntax and semantics of processes, we first give a terse overview of the data
language of mCRL2, used to parameterize actions in the algebra (details appear elsewhere [14]). This data
language, based on higher-order abstract data types, allows for the definition of sorts. Every sort consists of
constructors and maps, which compose into data expressions. Every data expression can be interpreted as

2

sort B
cons true : B , false : B
map ¬ : B→ B , ∧ : B× B→ B , . . .
var b
eqn ¬true = false , ¬false = true , ¬¬b = b ,

b ∧ true = b , b ∧ false = false , true ∧ b = b , false ∧ b = false , . . .

Figure 2: Partial definition of sort B.

a ::= any action in Act
α ::= a(d) | τ | α t α
ααα ::= α | δ

(a) Multiactions and deadlock.

p ::= ααα | P (d) | p+ p | p · p | c _ p � p |
∑
d∈D p

| p ‖ p | p T q | p | p
| ∇V (p) | ∂B(p) | ρR(p) | ΓC(p) | TI(p)

(b) Processes.

Figure 3: Syntax.

a data element of a sort. Equations, possibly containing data variables (over data expressions), enable one
to derive equalities between data expressions (by giving meaning to maps). For example, Figure 2 shows
a fragment of the definition of mCRL2’s built-in sort B [16], which represents the booleans. Additionally,
mCRL2’s collection of built-in sorts includes the natural numbers (N) and the real numbers (R). Users of
mCRL2 can also define their own sorts.

Every sort S has, among other standard maps, a map ≈ : S × S → B for equality of data expressions of
sort S. For the built-in sorts, this map behaves as expected. For user-defined sorts, the user must provide
equations that give meaning to ≈.

Henceforth, let c range over data expressions of sort B, let d, e, f range over arbitrary data expressions,
and let D, E, F range over such sets. Likewise, let d, e, f range over tuples of data expressions and data
variables, and let D, E, F range over tuples of such sets. Finally, let x, y, z range over data variables, let
X, Y , Z range over such sets, and let x, y, z range over such tuples. Furthermore:

Definition 1. Elem denotes a global set of and Var denotes a global set of data variables such that
Elem ∩ Var = ∅.

2.2. Syntax

Figure 3a shows the syntax of multiactions and deadlock. Let Act denote a global set of actions, ranged
over by a, b, c (henceforth, whether c denotes an action or a data expression of sort B is always clear from
the context). Actions can involve data, specified using the data language from Section 2.1. Note that data
variables can occur in the parameter of a(d). The distinguished symbol τ denotes the empty multiaction,
which consists of no observable actions. Operator t (associative and commutative) composes multiactions
into larger multiactions; let MAct denote the global set of all multiactions, ranged over by α, β, γ. The
distinguished symbol δ denotes the deadlock process, which performs no multiactions; let ααα, βββ, γγγ range over
the processes in the set MAct ∪ {δ}.

Figure 3b shows the syntax of processes. Parameterized process references, ranged over by P (d), Q(e),
R(f), refer to process definitions of the form P (x : D) = p, where p denotes some process: the process
reference P (d) behaves as the process resulting from substituting the occurrences of the data variables x
with the data expressions d in p, denoted by p[d/x]. Processes, ranged over by p, q, r, consist of multiactions
and process references, composed with a variety of operators as follows.

Basic operators Operator + and · denote alternative and sequential composition in the usual way. Ternary
operator _ � composes processes into a conditional choice: the process c _ q � r behaves as q
if the data expression c equals true (in terms of ≈) and as r otherwise. Operator

∑
binds, for each

3

Bound(ααα) = ∅
Bound(q + r) , Bound(q · r) , Bound(c _ q � r) = Bound(q) ∪ Bound(r)

Bound(
∑
x∈D q) = Bound(q) ∪ {x}

Figure 4: Definition of Bound.

ααα ∈ Basic
q + r , q · r , c _ q � r ∈ Basic iff q , r ∈ Basic∑

x∈D q ∈ Basic iff
[
q ∈ Basic and x /∈ Bound(q)

]
Figure 5: Definition of Basic.

data element in a finite set, a data variable in a process to that particular element and places the
resulting processes in an alternative composition: the process

∑
x∈{d1 , ... , d`} q, with x ∈ Var and d1 ,

. . . , d` ∈ Elem, behaves as q[d1/x] + · · · + q[d`/x] (shortly, we shall state this more explicitly in a
proposition).2

We associate with every process p built from the operators discussed so far a set Bound(p) (defined
in Figure 4), which contains the data variables bound by occurrences of

∑
in p. Furthermore, let

Basic (defined in Figure 5) denote the set of basic processes, which consist of only multiactions and the
basic operators such that nested occurrences of

∑
bind different data variables. The latter restriction,

imposed for technical convenience, does not really limit the expressiveness of the algebra, because
one can always bring a process to the desired format by applying alpha-conversion (i.e., we consider
processes up to alpha-conversion for summation).

(Full mCRL2 contains also the at basic operator and the initialization basic operator for expressing
timed behavior. We skip those operators here, because we use only the untimed subset of mCRL2 in
this paper.)

Parallel operators Operator ‖ interleaves and synchronizes processes. Operator T behaves as ‖, but the
first computation step must come from its left-hand argument. Similarly, operator | behaves as ‖, but
the first computation step is formed by synchronizing the first multiaction of each of its arguments.

Additional operators Four additional operators constrain the behavior of processes composed in parallel.
Operator ∇ restricts a process p to the multiactions in a set of nonempty multiactions V ⊆MAct \ {
τ} (modulo commutativity and associativity of t). Operator ∂ blocks those actions in a process p that
occur also in a set of actions B ⊆ Act. Operator ρ renames the actions in a process p according to
a set of renaming rules R ⊆ Act × Act. Finally, operator Γ applies the communication rules in a set
C ⊆MAct×Act to a process p. We write communication rules as α→ a and require that τ does not
occur in α.

Abstraction operator Operator T hides those actions in a process p that occur also in a set of actions
I ⊆ Act. The act of hiding an action a, which means “replacing a by τ ,” differs from the act of
blocking a, which means “replacing a by δ.”

We adopt the following usual operator precedence (in decreasing order): t , | , · , ‖ , T , +. We write as
few parentheses as possible, omitting them also in the case of associative or commutative operators. For
example, we write p · q · r+α+ β instead of (p · (q · r)) + (α+ β). Furthermore, let symbol ⊕ range over the
binary operators +, ·, ‖, T, and |. Similarly, let symbol f range over unary operators ∇, ∂, ρ, Γ, and T.

4

MA1 α t β ' β t α
MA2 (α t β) t γ ' α t (β t γ)
MA3 α t τ ' α

SMA α | β ' α t β

MD1 τ \ α ' τ
MD2 α \ τ ' α
MD3 α \ (β t γ) ' (α \ β) \ γ
MD4 (a(d) t α) \ a(d) ' α
MD5 (a(d) t α) \ b(e) ' a(d) t (α \ b(e))

if
[
a 6= b or d 6= e

]
MS1 τ v α ' true
MS2 a(d) v τ ' false
MS3 a(d) t α v a(d) t β ' α v β
MS4 a(d) t α v b(e) t β ' a(d) t (α \ b(e)) v β

if
[
a 6= b or d 6= e

]
MAN1 τ ' τ
MAN2 a(d) ' a
MAN3 α t β ' α t β

A1 p+ q ' q + p
A2 p+ (q + r) ' (p+ q) + r
A3 p+ p ' p
A4 (p+ q) · r ' p · r + q · r
A5 (p · q) · r ' p · (q · r)
A6 p+ δ ' p
A7 δ · p ' δ

COND1 true _ p � q ' p
COND2 false _ p � q ' q

SUM1
∑
x∈D p ' p if x /∈ Free(p)

SUM2
∑
x∈D p '

∑
y∈D p[y/x]

if y /∈ Free(p)
SUM3

∑
x∈D p '

∑
x∈D p+ p

SUM4
∑
x∈D(p+ q) '

∑
x∈D p+

∑
x∈D q

SUM5 (
∑
x∈D p) · q '

∑
x∈D(p · q)

if x /∈ Free(q)

M p ‖ q ' p T q + q T p+ p | q

LM1 ααα T p ' ααα · p
LM2 δ T p ' δ
LM3 ααα · p T q ' ααα · (p ‖ q)
LM4 (p+ q) T r ' p T r + q T r

S1 p | q ' q | p
S2 (p | q) | r ' p | (q | r)
S3 p | τ ' p
S4 ααα | δ ' δ
S5 (ααα · p) | βββ ' ααα | βββ · p
S6 (ααα · p) | (βββ · q) ' ααα | βββ · (p ‖ q)
S7 (p+ q) | r ' p | r + q | r

V1 ∇V (α) ' α if α ∈ V ∪ {τ}
V2 ∇V (α) ' δ if α /∈ V ∪ {τ}

B1 ∂B(τ) ' τ
B2 ∂B(a(d)) ' a(d) if a /∈ B
B3 ∂B(a(d)) ' δ if a ∈ B
B4 ∂B(α | β) ' ∂B(α) | ∂B(β)

R1 ρR(τ) ' τ
R2 ρR(a(d)) ' b(d)

if a→ b ∈ R for some b
R3 ρR(a(d)) ' a(d)

if a→ b /∈ R for all b
R4 ρR(α | β) ' ρR(α) | ρR(β)

C1 ΓC(α) ' CC(α)

H1 TI(τ) ' τ
H2 TI(a(d)) ' τ if a ∈ I
H3 TI(a(d)) ' a(d) if a /∈ I
H4 TI(α | β) ' TI(α) | TI(β)

F1 f(δ) ' δ
F2 f(α+ β) ' f(α) + f(β)
F3 f(α · β) ' f(α) · f(β)
F4 f(

∑
x∈D p) '

∑
x∈D f(p)

Figure 6: Axioms.

5

Var(〈d1 , . . . , d`〉) =
⋃`
i=1 Var(di)

Var(a(d)) , Var(P (d)) = Var(d)
Var(τ) , Var(δ) = ∅
Var(β t γ) = Var(β) ∪ Var(γ)
Var(q ⊕ r) = Var(q) ∪ Var(r)
Var(c _ q � r) = Var(c) ∪ Var(q) ∪ Var(r)
Var(

∑
x∈D q) , Var(f(q)) = Var(q)

Free(p) = Var(p) \ Bound(p)

Figure 7: Definition of Var and Free.

2.3. Semantics

Every process has an associated transition system describing its semantics (sos rules appear in [14]). Let
' denote processes. Figure 6 shows a sound axiomatization for strong bisimulation of the operators shown
in Figure 3 [14].3 Let function Free (defined in Figure 7), which occurs in axioms SUM1, SUM2, and SUM5,
map processes to the free data variables occurring in them. Note that Figure 6 axiomatizes three additional
operators on multiactions: operator \ subtracts the multiaction on its right-hand side from the multiaction
on its left-hand side; operator v checks if the multiaction on its right-hand side contains the multiaction on
its left-hand side; operator clears a multiaction from data parameters. These three additional operators
occur in the definition of the auxiliary function C, used in Axiom C1:

CC(α) =


CC1

(CC2
(α)) if C = C1 ∪ C2 and C1 ∩ C2 = ∅ and C1 , C2 6= ∅

b(e) t CC(α \ β) if C = {β → b} and β = b1(e) t · · · t bm(e) and β v α
α otherwise

Informally, C applies the communication rules in a set C to a multiaction α.
Although we use only a subset of the axioms in Figure 6 in proofs, we show all of them for completeness.4

The proof of one of the theorems in Section 5 relies on the recursive specification principle (RSP) [7]. This
principle states that every guarded recursive definition has at most one solution.5 One can formulate this
principle in terms of a guarded process operator Φ—a function from processes to processes—as follows [16]:

P ' Φ(P) and Q ' Φ(Q) implies P ' Q

Thus, if Φ has both P and Q as fixed points, P must be provably equal to Q.
Finally, we introduce a “metalevel” operator

⊔
to abbreviate arbitrary finite sequences of multiactions

composed together: let
⊔n
i=1 αi abbreviate the multiaction α1t· · ·tαn and identify

⊔0
i=1 αi with τ . Similarly,

we introduce a metalevel operator
∑

(same symbol as the summation operator but with a different, yet
related, meaning) to abbreviate alternative compositions consisting of a finite number of processes: let∑n
i=1 pi abbreviate the process p1 + · · · + pn and identify

∑0
i=1 pi with δ. Operators

⊔
and

∑
help us

in formulating propositions and proofs more concisely. Although strictly different, the latter has a tight
connection with the summation operator. The following proposition makes this connection precise.

Proposition 1 ([16, Section 4.6]).
∑
x∈{d1,...,d`} q '

∑l
i=1 q[di/x]

2

3

4

5

6

Graphical syntax Textual syntax Semantics

a b
sync〈a; b〉 Atomically accepts an item on its source end a and dispenses it

on its sink end b.
a b

lossysync〈a; b〉 Atomically accepts an item on its source end a and,
nondeterministically, either dispenses it on its sink end b or loses
it.

a b
syncdrain〈a, b; 〉 Atomically accepts (and loses) items on both of its source ends a

and b.
a b

d fifo1〈a; b〉 Atomically accepts an item on its source end and stores it in its
buffer, then atomically dispenses the item d on its sink end and
clears its buffer.

Figure 8: Syntax and informal semantics of common channels.

3. An Application of the Algebra: Semantics of Reo

Before continuing with our splitting procedure in Section 4, we briefly discuss Reo and its process
algebraic semantics by Kokash et al. [27, 24, 25, 26] as an application of the algebra discussed in Section 2;
this also helps us to relate the relatively abstract discussion in Section 4 to a concrete case. Recall from
Section 1 that connectors consist of channels and nodes. Below, following Kokash et al., we outline how
these channels and nodes, as well as the data they transport, behave and how to describe such behavior as
processes in untimed mCRL2.

Data. To model the pieces of data transported by a connector in mCRL2, one can define a sort whose
constructors correspond to concrete data items. Additionally, one can define maps to allow channels to
perform operations on data elements, but we skip that here. Let Data denote a finite global set of data
elements of said sort.

Channels. Every channel has exactly two ends, each of which has one of two types: source ends accept data,
while sink ends dispense data. Besides this assumption on the number of ends, Reo makes no assumptions
about channels. This means, for example, that Reo allows channels with two source ends. Figure 8 shows the
graphical syntax of four common channels, a textual syntax, and an informal description of their behavior.

In the process algebraic semantics of Reo, one associates every channel end with an action. For source
ends, such an action represents the acceptance of data; for sink ends, it represents the dispersal of data. By
composing these actions into multiactions, one can describe channels that atomically accept and dispense
data on their ends. For example, the following process definitions describe the behavior of the channels in
Figure 8.6

Sync〈a; b〉 =
∑
x∈Data a(x) t b(x) · Sync〈a; b〉

LossySync〈a; b〉 =
∑
x∈Data(a(x) t b(x) + a(x)) · LossySync〈a; b〉

SyncDrain〈a, b;〉 =
∑
x∈Data

∑
y∈Data a(x) t b(y) · SyncDrain〈a, b;〉

Fifo1〈a; b〉 =
∑
x∈Data(a(x) · b(x)) · Fifo1〈a; b〉

The definition of Sync〈a; b〉 models synchronous flow of a data item x through channel ends a and b,
represented by the multiaction a(x) t b(x). The definition of LossySync〈a; b〉 models a (nondeterministic)
choice between flow of a data item x through ends a and b and flow of x through only a, represented by the
proces a(x) t b(x) + a(x). The definition of SyncDrain〈a, b;〉 models synchronous flow of (unrelated) data
items x and y through channel ends a and b, represented by the multiaction a(x) t b(y). The definition

6In process references, in contrast to the textual syntax in Figure 8, angle brackets have no meaning and give no structure.

7

of Fifo1〈a; b〉 models flow of a data item x through channel end a followed by flow of the same x through
channel end b. The recursion present in each of the four process definitions above models that the channels
repeat their behavior indefinitely.

In this paper, we adopt the context-insensitive process algebraic semantics of Reo, originally based on
constraint automata [4]. In context-insensitive semantic formalisms, one cannot directly describe channels
and connectors whose behavior depends not only on their internal state but also on the presence or absence
of I/O operations—their context. In contrast, one can describe such channels and connectors in semantic
formalisms that do support context-sensitivity. For instance, a context-sensitive version of lossysync should
lose a data item only in the absence of I/O operations on its sink end. A context-sensitive process algebraic
semantics of Reo exists, originally based on connector coloring with three colors [10]. Alternatively, we
could encode a context-sensitive process algebraic semantics along the lines of [21].7 Although the splitting
procedure introduced in Section 4 supports both approaches, we do not pursue context sensitivity in this
paper, because it would only distract and unnecessarily complicate matters.

Nodes. Entities communicating through a connector perform I/O operations—writes and takes—on its
nodes. Reo features three kinds of nodes: source nodes on which only source ends coincide, sink nodes on
which only sink ends coincide, and mixed nodes on which both kinds of channel end coincide. Nodes have
the following semantics.

• A source node n has replicator semantics. Once an entity attempts to write a data item d on n, this
node first suspends this operation. Subsequently, n notifies the channels whose source ends coincide
on n that it offers d. Once each of these channels has notified n that it accepts d, n resolves the write:
atomically, n dispenses d to each of its coincident source ends.

• A sink node n has nondeterministic merger semantics. Once an entity attempts to take a data item
from n, this node first suspends this operation. Subsequently, n notifies the channels whose sink ends
coincide on n that it accepts a data item. Once at least one of these channels has notified n that
it offers a data item, n resolves the take: atomically, n fetches this data item from the appropriate
channel end and dispenses it to the entity attempting to take. If multiple sink ends offer a data item,
n chooses one of them nondeterministically.

• A mixed node n has pumping station semantics, which is a combination of the replicator semantics
and merger semantics discussed above, where fetching and dispensing occur atomically.

In the process algebraic semantics of Reo, one associates each of the m source ends of a node with an
action srci (1 ≤ i ≤ m) and each of its n sink ends with an action snki (1 ≤ i ≤ n). Then, one can describe
nodes by combining the processes for a binary replicator R (one sink end to two source ends), a binary
merger M (two sink ends to one source end), a one-to-one pumping station PS, and a boundary node B:

R〈snk; src1, src2〉 =
∑
x∈Data snk(x) t src1(x) t src2(x) · R〈snk; src1, src2〉

M〈snk1, snk2; src〉 =
∑
x∈Data(snk1(x) t src(x) + snk2(x) t src(x)) · M〈snk1, snk2; src〉

PS〈snk; src〉 =
∑
x∈Data snk(x) t src(x) · PS〈snk; src〉

B〈bnd〉 =
∑
x∈Data bnd(x) · B〈bnd〉

Connectors. To get the behavior of a connector as a process, one composes the processes of the constituents
of that connector in parallel and synchronizes their actions. Below, we give the processes of the connectors
in Figures 1a and 1c. More examples may be found in [24, 25, 26, 27].

Fig1a = ∂{a1 ,̃a1,x1 ,̃x1,x2 ,̃x2,b1 ,̃b1}(Γ{a1tã1→a,x1tx̃1tx2tx̃2→x,b1tb̃1→b}(q))

Fig1c = ∂{ai,ãi|a∈{a,b,c}∧i∈{1,2,3}}(Γ{a1tã1ta2tã2ta3tã3→a|a∈{a,b,c}}(r))

7An extensive overview of context-(in)sensitive semantic formalisms for Reo appears in [18].

8

b b

a

a

a∣b

x

a1 x1 x̃1
x̃2

ã1

x2

b̃1

b1

node a
node x
node b

ã1
x1

a1

x̃1∣x̃ 2

x2 b1

b̃1

Figure 9: Labeled transition system(s) of the proces(ses) modeling the connector in Figure 1a. On the left is a graphical
representation of the decomposition of that connector into channels and nodes with labeled ends. In the middle are the labeled
transition systems of the processes modeling those channels and nodes (without data for simplicity). On the right is the labeled
transition system of the parallel composition of those processes (after applying communication and blocking).

For:

q =

B〈ã1〉 ‖ Fifo1〈a1; x1〉 ‖ PS〈x̃1; x̃2〉
‖ Fifo1〈x2; b1〉
‖ B〈b̃1〉



r =

B〈a1〉 ‖ R〈ã1; ã2, ã3〉 ‖ Sync〈a3; c1〉 ‖ M〈c̃1, c̃2; c̃3〉 ‖ B〈c3〉
‖ SyncDrain〈b2, a2〉 ‖ Fifo1〈b3; c2〉 ‖

B〈b1〉 ‖ R〈b̃1; b̃2, b̃3〉



4. Splitting Processes

Recall from Section 1 that we originally aimed at establishing the validity of optimizing implementations
of Reo through the identification of (a)synchronous regions. Essentially, we want to show that splitting
connectors along the boundaries of their (a)synchronous regions (and running the resulting subconnectors
concurrently) neither loses behavior nor gives rise to inadmissible behavior. In this section, we lay the
foundation for this kind of splitting in terms of a splitting procedure for processes. Later, in Section 6, we
apply this procedure to the process algebraic semantics of Reo, thereby justifying the splitting of connectors.
Here, in Section 4.1, we start by explaining the intuition behind our splitting procedure; formal definitions
appear in Section 4.2. In Section 5, we investigate and prove properties of our splitting procedure, including
a proof of correctness. We note that our notion of “splitting processes” differs from “uniquely decomposing
processes” [32]: in our context, neither primality nor uniqueness of processes matters. We discuss the
differences in more detail in Section 7.

4.1. Intuition

For simplicity, to convey the intuition behind our splitting procedure, we consider only data-free processes
in this subsection (definitions in Section 4.2 do incorporate data).

Let Act(p) (defined in Figure 10) denote the set of actions syntactically occurring in a process p.8 We
introduce function split, which splits a process p along a set of actions A into two processes: one of these

8

9

Act(a(d)) = {a}
Act(τ) , Act(δ) , P (d) = ∅
Act(β t γ) = Act(β) ∪ Act(γ)
Act(q ⊕ r) , Act(c _ q � r) = Act(q) ∪ Act(r)
Act(

∑
x∈D q) , Act(f(q)) = Act(q)

Figure 10: Definition of Act.

processes contains no actions in Act(p) \ A, while the other process contains no actions in A. We call the
former process the A-isolation of p and the latter process the A-coisolation of p. We aim at constructing
p’s isolation and its coisolation such that their parallel composition behaves as p under some appropriate
notion of synchronization (defined shortly).

Informally, to construct p’s A-isolation, replace every action in p as follows:

• If a ∈ A, replace a with the multiaction a t ξ(a), where ξ(a) denotes a fresh auxiliary action with
respect to Act(p). Intuitively, ξ(a) represents the act of “disseminating that this process performs a.”

• If b /∈ A, replace b with the auxiliary action ξ(b), where ξ(b) denotes a fresh action with respect to
Act(p). Intuitively, ξ(b) represents the act of “discovering that another process performs b.”

Symmetrically, to construct the A-coisolation of a process p, replace in p every b ∈ A with ξ(b) and every
b /∈ A with btξ(b). Note that because the foregoing affects only multiactions, p’s isolation and its coisolation
have the same syntactic structure as p. In other words: the process p, its isolation, and its coisolation have
the same transition system modulo transition labels.

To illustrate isolation and coisolation, consider an example process q = a · b. This process has q1 =
a t ξ(a) · ξ(b) as its {a}-isolation and q2 = ξ(a) · b t ξ(b) as its {a}-coisolation. The parallel composition of
q1 and q2, however, does not behave as q yet: to ensure that a process behaves as the parallel composition
of its isolation and its coisolation, these two processes should appropriately synchronize on ξ(a) and ξ(a)
for each a. To this end, we apply the communication operator Γ to such compositions. In our example,
this yields the process ΓC(q1 ‖ q2) for C = {ξ(a) t ξ(a) → tau , ξ(b) t ξ(b) → tau}. The special action
tau serves as a placeholder action for τ , and we can hide it immediately using the abstraction operator T;9
henceforth, without loss of generality, we assume tau /∈ Act(p) for each p. In our example, this yields the
process TI(ΓC(q1 ‖ q2)) with I = {tau} and C as before.

But also this process does not behave as q yet: synchronization and abstraction alone do not suffice—
we must also block those auxiliary actions whose individual performance “makes no sense.” For instance,
we consider every unpaired occurrence of ξ(a) in a multiaction α nonsensical: intuitively, performing ξ(a)
suggests that some process discovers that another process performs a, even though this does not happen
(otherwise, also ξ(a) would occur in α). By symmetry, we consider also every unpaired occurrence of ξ(a)
nonsensical. To block unpaired occurrences of ξ(a) and ξ(a), we apply the blocking operator ∂. In our
example, this yields the process ∂B(TI(ΓC(q1 ‖ q2))) with B = {ξ(a) , ξ(a) , ξ(b) , ξ(b)} and I and C as
before. This process behaves as q, concluding our example.

We proceed with general formal definitions of the splitting procedure just outlined.

4.2. Formal Definitions

Auxiliary actions and substitution environments. We start with a formal account of the fresh auxiliary
actions of the form ξ(a) and ξ(a). As suggested by this notation, ξ and ξ denote functions that take an
action a as input and produce another action as output. We collect such pairs of functions in substitution
environments as follows. Let C∗ denote the set of finite strings over C.

Definition 2. 1 and 2 are global symbols such that 1 6= 2 and 1 , 2 /∈ Elem ∪ Var.

9We use this construction, because mCRL2 does not permit communications to map directly to τ .

10

dom(Ξ) = {a | 〈w , a〉 ∈ dom(ξ) ∩ dom(ξ)}
img(Ξ) = img(ξ) ∪ img(ξ)

comm(Ξ) = {ξw(a) t ξw(a)→ tau | 〈w , a〉 ∈ dom(ξ) ∩ dom(ξ)}

Figure 11: Definitions of dom, img, and comm.

isol(w , a(d)) = a(d) t ξw](a)(w[) if a ∈ A
isol(w , b(e)) = ξw](b)(w[) if b /∈ A

isol(w , a(d)) = ξw](a)(w[) if a ∈ A
isol(w , b(e)) = b(e) t ξw](b)(w[) if b /∈ A

îsol(w , τ) = τ

îsol(w , β t γ) = îsol(w , β) t îsol(w , γ)

îsol(w , δ) = δ

îsol(w , q + r) = îsol(w1 , q) + îsol(w2 , r)

îsol(w , q · r) = îsol(w1 , q) · îsol(w2 , r)

îsol(w , c _ q � r) = c _ îsol(w1 , q) � îsol(w2 , r)

îsol(w ,
∑
x∈D q) =

∑
x∈D îsol(wx , q)

Figure 12: Definitions of isol and isol. Let îsol range over the set
{isol , isol}.

1] = 1

2] = 2

d] , x] , ε] = ε
(wv)] = w]v]

Figure 13: Definition of
].

1[, 2[, ε[= ε
d[= d
x[= x
(wv)[= w[v[

Figure 14: Definition of
[.

Definition 3. A substitution environment, typically denoted by Ξ, is a quadruple 〈A , tau , ξ , ξ〉 consisting
of a set A ⊆ Act, an action tau ∈ Act \ A and injective functions ξ , ξ : {1 , 2}∗ × A� Act \ (A ∪ {tau})
such that img(ξ) ∩ img(ξ) = ∅.

Example.

Henceforth, we write ξw(a) and ξw(a) instead of ξ(w , a) and ξ(w , a). Note that we dropped the w subscripts
in the example in Section 4.1: because we did not need such an extra string of information, we omitted it
for simplicity. In the general case, however, this information plays a vital role, as explained shortly.

Let “dom” and “img” map functions to their domain and image. Figure 11 shows auxiliary functions for
substitution environment. Functions dom and img map substitution environments to their domain (projected
on actions) and image. Function comm maps substitution environments to communications derivable from
them.

Example.

Henceforth, to avoid heavy notation, we quantify implicitly over all substitution environments in defini-
tions, propositions, lemmas, theorems, and proofs, without mentioning them explicitly. We do the same for
sets A, which contain the actions along which we split processes.

Isolation and coisolation. To formalize the notions of A-isolation and A-coisolation, we introduce the func-

tions isol and isol, ranged over by îsol. Figure 12 shows their definitions. (Recall that we quantify implicitly
over all execution environments Ξ and sets A without mentioning them explicitly.) Functions isol and isol
take a string over {1 , 2} ∪ Elem ∪ Var and a basic process as input.10

10Strictly speaking, isol and isol also take a substitution environment and a set of actions A as input.

11

Before we take a closer look at Figure 12, we explain the purpose of the string over {1 , 2} ∪ Elem ∪
Var. Essentially, such strings encode information that isol and isol use to “keep track” of each other’s
nondeterministic or data-dependent choices. If they cannot do that, an isolated process and its coisolation
run the risk of going “out of sync.” To clarify this, suppose that we want to compose the {a}-isolation and
{a}-coisolation of the process r = a · b+ a · c in parallel. For the sake of argument, suppose that isol and isol
take only a basic process as input and no string. We now demonstrate that this can go wrong. We have:

isol(r) = a t ξ(a) · ξ(b) + a t ξ(a) · ξ(c)

isol(r) = ξ(a) · b t ξ(b) + ξ(a) · c t ξ(c)

This means that isol(r) can erroneously synchronize its left-most multiaction a t ξ(a) with the right-most
multiaction ξ(a) of isol(r), causing deadlock afterwards (because ξ(b) cannot synchronize with ξ(c)). To
solve this problem, we use strings over {1 , 2} ∪ Elem ∪ Var: essentially, we associate with every branch of
the parse tree of a process a unique such string. This string encodes information about the structure of that
process and its data bindings. Moreover, we ensure (e.g., by defining ξ and ξ as injective functions) that
the isolation and the coisolation of a process synchronize auxiliary actions only if they belong to the same
branch (in which case they have matching strings). For example:

isol(ε , r) = a t ξ11(a) · ξ12(b) + a t ξ21(a) · ξ22(c)

isol(ε , r) = ξ11(a) · b t ξ12(b) + ξ21(a) · c t ξ22(c)

In this case, assuming some appropriate notion of synchronization that takes strings into account (we define
this shortly), a t ξ11(a) can synchronize only with ξ11(a) (they share the same string) and not with ξ21(a)
(different string). And so, these two processes do not go out of sync.

Let us now have a closer look at Figure 12. Applied to a string w and a single action a(d), depending
on whether A contains a, isol and isol either compose or replace a(d) with an auxiliary action using the
substitution functions ξ and ξ . However, because ξ and ξ have {1 , 2}∗×A as domain (see Definition 3), isol
and isol cannot directly use w in ξ or ξ : because w ∈ ({1 , 2} ∪ Elem ∪ Var)∗, isol and isol should first filter
out the data elements and data variables possibly occurring in w. We introduce an operator denoted by]
for that purpose. Figure 13 shows its definition. Similarly, we introduce an operator denoted by [, which
does the converse of]: it filters symbols 1 and 2 from a string over {1 , 2}∪Elem∪Var. Figure 14 shows its
definition. Functions isol and isol use [to parameterize auxiliary actions with data. This parameterization
ensures that the isolation and coisolation of a process of the form

∑
x∈D q do not go out of sync (similar to

what we saw in the example above). In Section 4.3, we exemplify this further.
Applied to a composite multiaction β t γ, isol and isol apply themselves recursively on β and γ without

changing w. This differs for processes with a different main composition operator. For instance, for processes
of the form p+ q, isol and isol apply themselves recursively on w1 and w2 instead of w. This ensures that in
their parallel composition, if appropriately synchronized, the process isol(w , p + q) can track which choice
the process isol(w , p+ q) makes and vice versa as outlined above.

We make a final remark about the practical computability of isol and isol. Strictly speaking, because we
defined ξ and ξ as functions over {1 , 2}∗, those functions have infinite domains. This may seem problematic
in practice, but fortunately, one can easily fix this. Start by observing that process terms consist of only
finitely many operators and actions. This means that for isol(w , p) and isol(w , p) to be defined (for some
w and p), functions ξ and ξ must be defined for only finitely many strings (all of which have w as a prefix).
One can compute this set of strings W in a preprocessing step that analyzes the syntax of p (essentially a
dry run of isol or isol). Then, before actually applying isol or isol, define a finite substitution environment Ξ
such that the domains of ξ and ξ contain only the strings in W . Thus, rather than one general substitution
environment for all processes, we have a tailored substitution environment for every individual process (this
generalizes straightforwardly to finite collections of processes). Henceforth, we always assume a finite yet
sufficient substitution environment Ξ when we apply isol or isol to a (collection of) process(es).

Splitting. We build the definition of function split—the actual splitting procedure, so to speak—on top of
functions isol and isol. Figure 15 shows its definition.

12

split(w , p) = ?(isol(ε , p) ‖ isol(ε , p)) if p ∈ Basic

split(w , P (d)) = P †(d)
split(w , q ⊕ r) = split(w , q)⊕ split(w , r) if q ⊕ r /∈ Basic
split(w , c _ q � r) = c _ split(w , q) � split(w , r) if c _ q � r /∈ Basic
split(w ,

∑
x∈D q) =

∑
x∈D split(w , q) if

∑
x∈D q /∈ Basic

split(w , f(q)) = f(split(w , q))

Figure 15: Definitions of split.

We also introduce an auxiliary operator, denoted by ?, which represents and ensures “appropriate syn-
chronization” among auxiliary actions: it takes care of the communication, hiding, and blocking necessary
to synchronize auxiliary actions such that split preserves semantics (as exemplified in Section 4.1). Recall
that we implicitly quantify universally over all substitution environments Ξ in definitions to avoid heavy
notation. Then:11

Definition 4. ?(p) = ∂img(Ξ)(T{tau}(Γcomm(Ξ)(p)))

Example.

The definition of split(w , p) for p = P may seem odd and requires more explanation, because we make
a number of tacit assumptions. First, we assume that if a process reference R occurs in some process q,
there exists also a process definition R = r (otherwise, q has no meaning). Second, we adopt the notational
convention that every process reference with a superscript † refers to a process definition with a body to
which we applied split (for the empty string). For example, R† = split(ε , r). Now, the definition of split(w ,
P) makes more sense: it means that we replace process references in a split process with process references
that refer to other split processes. In that way, the application of split propagates through process definitions.
In Section 5.4, we prove the correctness of this definition.

4.3. More Examples

To illustrate the usage of split, we give three more examples in this subsection. For the sake of clarity,
we use concrete action names for both original actions and auxiliary actions as follows. Define:

Act = {foo , bar , baz}︸ ︷︷ ︸
original actions

∪
{
x foo 1 , x bar 2 , x bar 21 , x foo 22 , x baz

x foo 1 , x bar 2 , x bar 21 , x foo 22 , x baz

}
︸ ︷︷ ︸

auxiliary actions

Furthermore, let A = {foo , baz} (i.e., we split along foo and baz), define ξ as follows:

ξ1(foo) = x foo 1 ξ2(bar) = x bar 2 ξ21(bar) = x bar 21

ξ22(foo) = x foo 22 ξε(baz) = x baz

and define ξ analogously.

Example 1. Let p1 = foo(1 , 2) + bar(3). We derive split(ε , p1) as follows.

split(ε , p1)
= split(ε , foo(1 , 2) + bar(3))

= ?(isol(ε , foo(1 , 2) + bar(3)) ‖ isol(ε , foo(1 , 2) + bar(3)))

= ?(isol(1 , foo(1 , 2)) + isol(2 , bar(3)) ‖ isol(1 , foo(1 , 2)) + isol(2 , bar(3)))

= ?((foo(1 , 2) t ξ1(foo) + ξ2(bar)) ‖ (ξ1(foo) + bar(3) t ξ2(bar)))
= ?((foo(1 , 2) t x foo 1 + x bar 2) ‖ (x foo 1 + bar(3) t x bar 2))

11

13

= ?((foo(1 , 2) t x foo 1 + x bar 2) ‖
(x foo 1 + bar(3) t x bar 2))

Note that the auxiliary actions x foo 1, x foo 1, x bar 2, and x bar 2 have no data parameters in this
example, because none of the strings to which we apply ξ and ξ contain symbols outside {1 , 2}. (In those
case, by the definition of [, auxiliary actions have no parameters.) Next, we consider an example in which
data do play a role.

Example 2. Let

p2 =
∑
x∈D1

x ≤ 28 _ foo(true) �
∑
y∈D2

bar(x , y) · foo(false)

for D1 = {i | 6 ≤ i ≤ 496} and D2 = {1 , 2}. We derive split(ε , p2) as follows.

split(ε , p2)
= split(ε ,

∑
x∈D1

x ≤ 28 _ foo(true) �
∑
y∈D2

bar(x , y) · foo(false))

= ?(isol(ε ,
∑
x∈D1

x ≤ 28 _ foo(true) �
∑
y∈D2

bar(x , y) · foo(false)) ‖
isol(ε ,

∑
x∈D1

x ≤ 28 _ foo(true) �
∑
y∈D2

bar(x , y) · foo(false)))

= ?(
∑
x∈D1

isol(x , x ≤ 28 _ foo(true) �
∑
y∈D2

bar(x , y) · foo(false)) ‖∑
x∈D1

isol(x , x ≤ 28 _ foo(true) �
∑
y∈D2

bar(x , y) · foo(false)))

= ?(
∑
x∈D1

x ≤ 28 _ isol(x1 , foo(true)) � isol(x2 ,
∑
y∈D2

bar(x , y) · foo(false)) ‖∑
x∈D1

x ≤ 28 _ isol(x1 , foo(true)) � isol(x2 ,
∑
y∈D2

bar(x , y) · foo(false)))

= ?(
∑
x∈D1

x ≤ 28 _ isol(x1 , foo(true)) �
∑
y∈D2

isol(x2y , bar(x , y) · foo(false)) ‖∑
x∈D1

x ≤ 28 _ isol(x1 , foo(true)) �
∑
y∈D2

isol(x2y , bar(x , y) · foo(false)))

= ?(
∑
x∈D1

x ≤ 28 _ isol(x1 , foo(true)) �
∑
y∈D2

isol(x2y1 , bar(x , y)) · isol(x2y2 , foo(false)) ‖∑
x∈D1

x ≤ 28 _ isol(x1 , foo(true)) �
∑
y∈D2

isol(x2y1 , bar(x , y) · isol(x2y2 , foo(false))))

= ?(
∑
x∈D1

x ≤ 28
_ foo(true) t x foo 1(x) �

∑
y∈D2

bar(x , y) t x bar 21(x , y) · foo(false) t x foo 22(x , y) ‖∑
x∈D1

x ≤ 28
_ foo(true) t x foo 1(x) �

∑
y∈D2

bar(x , y) t x bar 21(x , y) · foo(false) t x foo 22(x , y))

This example demonstrates how the splitting procedure handles data-dependent processes. Furthermore,
based on this example, we can illustrate an important property guaranteed by the data parameters of
auxiliary actions: the isolation of p2 (left/above of ‖) and the coisolation of p2 (right/below of ‖) terminate
successfully only if they bind x (and later y) to the same value. To see this, suppose that the isolation binds
x to 4, while the coisolation binds x to 28 (such that these processes take the same branch of the conditional
choice). Then, because the communication operator Γ embedded in ? requires that communicating actions
have the same data parameters (see Section 2.3), x foo 1(4) and x foo 1(28) cannot synchronize with each
other. This in turn causes deadlock (effected by the blocking operator in ?). In contrast, if both the isolation
and the coisolation bind x to 4, the auxiliary actions parameterized by x can synchronize, after which the
whole process terminates successfully.

Example 3.

5. Properties of the Splitting Procedure

In this section, we prove the correctness of the definitions presented in Section 4: we establish that
processes p and split(p) are provably equal from the axioms of mCRL2 (see Section 2.3). This implies that p
and split(p) behave indistinguishably under any behavioral congruence satisfying those axioms (e.g., strong
bisimilarity).

14

Sect. 5.1

Sect. 5.2

Sect. 5.3

Sect. 5.4

Sect. 2.3

Prop. 2

Prop. 1

Prop. 3 Prop. 4

Prop. 9

Prop. 5 Prop. 6 Prop. 7

Prop. 8

Lem. 1 Lem. 3

Lem. 2

Lem. 5

Lem. 4

Thm. 1

Thm. 2

Thm. 3

Figure 16: Dependency graph of propositions, lemmas, and correctness theorems.

a(d) , δ ∈ TauFree
β t γ ∈ TauFree iff

[
β ∈ TauFree and γ ∈ TauFree

]
q ⊕ r , c _ q � r ∈ TauFree iff

[
p ∈ TauFree and q ∈ TauFree

]∑
x∈D q , f(q) ∈ TauFree iff q ∈ TauFree

Figure 17: Definition of TauFree.

Notation. In all propositions, we implicitly quantify universally over all elements over which symbols occur-
ring in those propositions range, unless stated otherwise. The same applies to lemmas and theorems. We
use square brackets as meaningless delimiters.

Although each of the premises and consequents in the propositions in this section serves a purpose, they
sometimes make these propositions heavy on notation and difficult to parse. Therefore, to highlight the
essence of a proposition, we sometimes gray out those parts that seem less important for conveying the key
result. (They parts are essential for proving the result in detail, though.) The same applies to lemmas and
theorems.

5.1. Simple Properties I: Deadlock Caused by Split Multiactions

In this subsection, we formulate three propositions that state properties about when split multiactions
cause deadlock. Essentially, these propositions formalize when the “appropariate synchronization” operator
? blocks auxiliary actions whose individual execution “makes no sense” (see Section 4.1).

Proposition 2 states that every appropriately synchronized lone (co)isolated multiaction ?(îsol(w , α))
causes deadlock. In the formulation of the premise, we write α ∈ TauFree (defined in Figure 17) to express
that τ does not occur syntactically in α. Variants of this requirement appear in (nearly) all subsequent
propositions, lemmas, and theorems. Fortunately, they limit the applicability of our results only marginally,
because τ usually does not occur syntactically in processes (but instead results from hiding). The premise

15

of Proposition 2 also ensures that the domain of the substitution environment contains the actions in α;

otherwise, îsol(w , α) has no meaning.

Proposition 2 (îsol-multiactions cause deadlock).[
α ∈ TauFree and Act(α) ⊆ dom(Ξ)

]
implies ?(îsol(w , α)) ' δ

To understand why this proposition holds for îsol = isol (the isol case works similar), observe that every

isolated multiaction contains at least one auxiliary action ξ̂ (this follows immediately from the definition of

isol). Now, reasoning toward a contradiction, suppose that also the dual of ξ̂ occurs in ?(isol(w , α)). Then,

the content of A must have changed between the construction of ξ̂ and its dual or vice versa (otherwise, isol

produces either always ξ̂ or always its dual). But the content of A remains constant across applications of

isol, so A cannot have changed. Hence, ξ̂ has no dual in ?(isol(w , α)). This means that Γcomm(Ξ) in ? does

not affect ξ̂ (because the communications in comm(Ξ) involve only pairs of an auxiliary action and its dual).

Also T{tau} in ? does not affect ξ̂ (because auxiliary actions differ from tau by Definition 3). This leaves us

with ∂img(Ξ), which does affect ξ̂: it blocks it. The resulting deadlock then propagates through the entire
multiaction. See Section B, page 47, for a detailed proof.

Proposition 3 states that the synchronous composition of an isolated multiaction and a coisolated mul-
tiaction under different strings over {1 , 2} causes deadlock.

Proposition 3 (Composed isol- and isol-multiactions cause deadlock, I). β , γ ∈ TauFree and
Act(β) , Act(γ) ⊆ dom(Ξ)

and v] 6= u]

 implies ?(isol(v , β) | isol(u , γ)) ' δ

The validity of this proposition crucially depends on the injectivity of substitution functions (see Defini-
tion 3). Essentially, this injectivity ensures that the auxiliary actions in isol(v , β) and isol(u , γ) come from
different pools: isol(v , β) and isol(u , γ) have neither auxiliary actions nor their duals in common. Moreover,

by similar reasoning as for Proposition 2, we can establish that isol(u , γ) contains an auxiliary action ξ̂ but
not its dual (the same holds for isol(v , β) but we do not need it). Thus, neither isol(v , β) nor isol(u , γ)

contains the dual of ξ̂. Then, again by similar reasoning as for Proposition 2, we can establish that Γcomm(Ξ)

and T{tau} in ? do not affect ξ̂ while ∂img(Ξ) does. See Section B, page 48, for a detailed proof.
Proposition 4 states that the synchronous composition of an isolated multiaction and a coisolated mul-

tiaction under different data causes deadlock.

Proposition 4 (Composed isol- and isol-multiactions cause deadlock, II). β , γ ∈ TauFree and
Act(β) , Act(γ) ⊆ dom(Ξ)

and e 6= f

 implies ?(isol(wev , β) | isol(wfu , γ)) ' δ

Although similar to Proposition 3, we prove the validity of this proposition rather differently. In Proposition 3
(and also in Proposition 2), deadlock occurred due to lone auxiliary actions. But in this case, it can happen
that all auxiliary actions occur with their dual (e.g., if β = γ and v = u). Thus, we need a different strategy.
To that end, observe that the premise of Proposition 4 ensures that the data parameters of an auxiliary
action and its dual differ (because e 6= f). For instance, if b ∈ A, we have isol(e , b) = b t ξε(b)(e) and
isol(f , b) = ξε(b)(f). Now, even though ξε(b)(e) and ξε(b)(f) are duals, Γcomm(Ξ) in ? does not affect their
composition, because e and f differ (see Axiom C1 and the definition of C in Section 2.3). Because also
T{tau} in ? does not affect these auxiliary actions by the same reasoning as before, again, we end up with

∂img(Ξ), which blocks ξε(b)(e) and ξε(b)(f). We can generalize this argument to arbitrary multiactions. See
Section B, page 51, for a detailed proof.

16

5.2. Simple Properties II: Deadlock Caused by Split Basic Processes

Next, we generalize the propositions in the previous subsection from multiactions to basic processes. Each

of the proofs of these generalizations exploits the observation that for every (co)isolated basic process îsol(w ,

p), there exists a provably equal process with the following structure:
∑n
i=1 îsol(wwi , αααi) +

∑n′
i=1(îsol(ww′i ,

ααα′i) · p′i). Essentially, to establish that such processes cause deadlock, it suffices to show that îsol(wwi , αααi)

and îsol(ww′i , ααα
′
i) cause deadlock for all relevant i (because of Axioms A6 and A7 in Figure 6). One can

show this by applying (some of) the propositions from Section 5.1 for each such i.
The premise of each of the following propositions contains a variant of the requirement Bound(p)Cw = ∅.

The C operator denotes the intersection between the elements in a set (e.g., Bound(p)) and the individual
symbols of a string (e.g., w).12 Thus, Bound(p) C w = ∅ means that the data variables that will become
bound in p may not intersect with any of the data variables occurring in w. We forbid this, because if a data
variable x occurs in w, this intuitively means that x already has been bound (due to how isol and isol build
strings). In other words, if Bound(p) and the elements in w intersect, p rebinds a data variable, which it
should not. The requirement Bound(p)Cw = ∅ has little consequences in practice: typically, w = ε, in which
case it holds vacuously. (Moreover, if necessary, one can avoid rebinding with an α-conversion preprocessing
step.)

Proposition 5 (îsol-processes cause deadlock).[
p ∈ Basic and p ∈ TauFree and

Act(p) ⊆ dom(Ξ) and Bound(p) C w = ∅

]
implies ?(îsol(w , p)) ' δ

See Section C, page 65, for a detailed proof.

Proposition 6 (Composed isol- and isol-processes cause deadlock, I).[
q , r ∈ Basic and q , r ∈ TauFree and Act(q) , Act(r) ⊆ dom(Ξ)

and Bound(q) C v = ∅ and Bound(r) C u = ∅ and v] 6= u]

]
implies

[
?(isol(v , q) | isol(u , r)) ' δ and

?((isol(v , q) · q′) | (isol(u , r) · r′)) ' δ

]
See Section C, page 65, for a detailed proof.

Proposition 7 (Composed isol- and isol-processes cause deadlock, II).[
q , r ∈ Basic and q , r ∈ TauFree and Act(q) , Act(r) ⊆ dom(Ξ)
and Bound(q) C we = ∅ and Bound(r) C wf = ∅ and e 6= f

]
implies

[
?(isol(we , q) | isol(wf , r)) ' δ and

?((isol(we , q) · q′) | (isol(wf , r) · r′)) ' δ

]
See Section C, page 68, for a detailed proof.

Although its proof follows the same structure as the proofs of the previous three propositions, we mention
Proposition 8 separately for two reasons. First, this proposition does not really generalize a proposition from
the previous subsection; second, this proposition plays a crucial role in the proof of an important lemma,

Lemma 1, in Section 5.3. Proposition 8 states that if we compose a (co)isolated process îsol(w , p) using T
with any other process, deadlock occurs.

12Alternatively, we could define a function toSet for converting strings to sets and require Bound(p)∩ toSet(w) = ∅. We favor
the C-notation, because it requires a bit less space, especially in proofs.

17

Proposition 8 (îsol-processes cause deadlock in T-ed (left-merged) terms).[
p ∈ Basic and p ∈ TauFree and

Act(p) ⊆ dom(Ξ) and Bound(p) C w = ∅

]
implies

[
?(îsol(w , p) T q) ' δ and

?((îsol(w , p) · p′) T q) ' δ

]

See Section C, page 70, for a detailed proof.

5.3. Synchronization and Preservation

We proceed with a series of more significant properties that concern synchronization and preservation,
starting with the former.

Synchronization. Lemma 1 states that the parallel composition operator, when operating on the isolation
and the coisolation of the same process, behaves as the synchronous composition operator. Intuitively,
this lemma captures the phenomenon that (co)isolated processes execute in lockstep when appropriately
synchronized by ?: when composed in parallel, an isolated processes and its coisolated sibling always wait
for each other until they can perform an auxiliary action and its dual together.

Lemma 1 (Synchronization lemma).[
p ∈ Basic and p ∈ TauFree and Act(p) ⊆ dom(Ξ) and Bound(p) C w = ∅

]
implies

[
?(isol(w , p) ‖ isol(w , p)) ' ?(isol(w , p) | isol(w , p)) and

?((isol(w , p) · p′) ‖ (isol(w , p) · p′)) ' ?((isol(w , p) · p′) | (isol(w , p) · p′))

]

Proof (sketch). By Axiom M, the parallel composition of isol(w , p) and isol(w , p) is provably equal to
a nondeterministic choice among three options. The first two options have the shape isol(w , p) T q and
isol(w , p) T q. Distribute ? over + by Axiom Q3, and apply Proposition 8 to conclude that those first two
options are provably equal to δ (derive the premise of Proposition 8 from the premise of this lemma). After
eliminating these δ-s by Axiom A6, only the third option of the choice remains, which completes the proof.

See Section D, page 71, for a detailed proof. �

Preservation. The remaining four lemmas in this subsection concern properties stating that the basic opera-
tors of the algebra used are preserved by split (i.e., split is homomorphic with respect to the basic operators).
These properties make the proof of correctness in Section 5.4 relatively straightforward, but in some sense
move the main proof obligations (and complexities) to the lemmas in this subsection.

We start with Lemma 2, which states that + is preserved by split (i.e., split is homomorphic13 with
respect to +).

Lemma 2 (Preservation lemma for +).[
q + r ∈ Basic and q + r ∈ TauFree and

Act(q + r) ⊆ dom(Ξ) and Bound(q + r) C w = ∅

]
implies

split(w , q + r) ' split(w1 , q) + split(w2 , r)

Proof (sketch). By the definition of split and by Lemma 1 (derive the premise of Lemma 1 from the
premise of this lemma), conclude that split(w , q + r) is provably equal to ?(isol(w , q + r) | isol(w , q + r)).
Apply the definitions of isol and isol to obtain ?((q1 + r1) | (q2 + r2)) for q1 = isol(w1 , q), r1 = isol(w2 , r),
q2 = isol(w1 , q), r2 = isol(w2 , r). Distribute | over + by Axiom S7, and afterwards, distribute ? over + by
Axiom Q3. This yields the process ?(q1 | q2)+?(q1 | r2)+?(r1 | q2)+?(r1 | r2). The alternative composition

13 With abuse of terminology, ignoring that w becomes w1 and w2.

18

of the first and the last option give the required result (after applying Lemma 1 to each). To get rid of the
middle two options, conclude that both of them are provably equal to δ by Proposition 6 (derive the premise
of Proposition 6 for both of them from the premise of this lemma), and eliminate them by Axiom A6.

See Section D, page 72, for a detailed proof. �

We continue with Lemma 3, which states that _ , � is preserved by split (i.e., split is homomorphic13

with respect to _ , �).

Lemma 3 (Preservation lemma for _ , �).

split(w , c _ q � r) ' c _ split(w1 , q) � split(w2 , r)

Proof (sketch). Distinguish two cases: c ≈ true and c ≈ false. In the former case, by the definition
of split, isol and isol, and c, conclude that split(w , c _ q � r) is provably equal to ?((true _ isol(w1 ,
q) � r′) | (true _ isol(w1 , q) � r′′)). Reduce these processes by Axiom COND1 (from left to right) and apply
split to obtain split(w1 , q). Use Axiom COND1 once more (from right to left this time) to get the required
result. The other case follows analogously.

See Section D, page 74, for a detailed proof. �

The following lemma, Lemma 4, states that
∑

is preserved by split (i.e., split is homomorphic13 with
respect to

∑
), if the domain of quantification has only finitely many elements. We require finiteness, because

otherwise we cannot apply Proposition 1 in the proof, which we do.14

Lemma 4 (Preservation lemma for
∑

).[∑
x∈{d1,...,d`} q ∈ Basic and

∑
x∈{d1,...,d`} q ∈ TauFree and

Act(
∑
x∈{d1,...,d`} q) ⊆ dom(Ξ) and Bound(

∑
x∈{d1,...,d`} q) C w = ∅

]
implies

split(w ,
∑
x∈{d1,...,d`} q) '

∑
x∈{d1,...,d`} split(wx , q)

Proof (sketch). By the definition of split and by Lemma 1 (derive the premise of Lemma 1 from the
premise of this lemma), conclude that split(w ,

∑
x∈{d1,...,d`} q) is provably equal to ?(isol(w ,

∑
x∈{d1,...,d`} q) |

isol(w ,
∑
x∈{d1,...,d`} q)). Then apply Proposition 1, from left to right, to obtain the same process but with an

ordinary alternative composition: ?(
∑`
i=1 isol(wdi , q[di/x]) |

∑`
i=1 isol(wdi , q[di/x])).15 Distribute | over +

by Axiom S7, and afterwards, distribute ? over + by Axiom Q3. This yields the process
∑`
i=1

∑`
j=1 ?(isol(

wdi , q[di/x]) | isol(wdj , q[dj/x])). The alternative composition of the processes on the “diagonal” yields
the desired result (after applying Q3 and Proposition 1, from right to left). To get rid of the processes not
on the diagonal, conclude that each of them is provably equal to δ by Proposition 7 (derive the premise of
Proposition 7 for each of them from the premise of this lemma), and eliminate them by Axiom A6.

See Section D, page 74, for a detailed proof. �

The final lemma of this subsection states that · is preserved by split (i.e., split is homomorphic13 with
respect to ·). The proof of Lemma 5 requires the application of the other preservation lemmas and, in
contrast to those lemmas, involves structural induction. This makes Lemma 5 the most complex among the
lemmas in this subsection.

14

15Actually, the application of Proposition 1 yields ?(
∑`

i=1 isol(wx , q)[di/x] |
∑`

i=1 isol(wx , q)[di/x]). However, one can

show that this is provably equal to ?(
∑`

i=1 isol(wdi , q[di/x]) |
∑`

i=1 isol(wdi , q[di/x])) by induction on the structure of q.

19

Lemma 5 (Preservation lemma for ·).[
q · r ∈ Basic and q · r ∈ TauFree and

Act(q · r) ⊆ dom(Ξ) and Bound(q · r) C w = ∅

]
implies

split(w , q · r) ' split(w1 , q) · split(w2 , r)

Proof (sketch). By the definition of split and by Lemma 1 (derive the premise of Lemma 1 from the
premise of this lemma), conclude that split(w , q · r) is provably equal to ?(isol(w , q · r) | isol(w , q · r)).
Apply the definitions of isol and isol to obtain ?((q1 · r1) | (q2 · r2)) for q1 = isol(w1 , q), r1 = isol(w2 ,
r), q2 = isol(w1 , q), r2 = isol(w2 , r). Then, proceed by induction on the structure of q to show that
?((q1 · r1) | (q2 · r2)) is provably equal to split(w1 , q) · ?(r1 ‖ r2) (afterwards, the required result follows
straightforwardly by identifying split(w2 , r) with ?(r1 ‖ r2)).

Establish the base of the induction (q is a multiaction or δ) by applying Axiom S6, Axiom Q4, and
Lemma 1. To prove the inductive step, set up a case distinction for the main operator of q. Cases +, _ ,
�, and

∑
follow by similar reasoning as in Lemmas 2, 3, and 4. The key difference between those lemmas

and the corresponding cases in the inductive step lies in the presence of r1 and r2 in the latter. Using
the induction hypothesis and the grayed out consequents of Propositions 6 (for +) and 7 (for

∑
), one can

“neutralize” their effect and, basically, follow the same structure as the proofs of the other preservation
lemmas. For proving the · case, the induction hypothesis and Lemma 1 suffice.

See Section D, page 82, for a detailed proof. �

5.4. Correctness

Next, we state three theorems which, in increasing level of generality, establish the correctness of our
splitting procedure. The first theorem, Theorem 1, states that a split multiaction has the same behavior as
the original, unsplit multiaction.

Theorem 1 (Correctness theorem for multiactions).[
α ∈ TauFree and Act(α) ⊆ dom(Ξ)

]
implies split(w , α) ' α

Proof (sketch). By the definition of split, Lemma 1 (derive the premise of Lemma 1 from the premise
of this lemma), and Axiom SMA, conclude that split(w , α) is provably equal to ?(isol(w , α) t isol(w , α)).
Then, by straightforward induction on the structure of α, establish:

• α is provably equal to
⊔n
i=1 ai(di) t

⊔n′
i=1 a

′
i(d
′
i)

• isol(w , α) is provably equal to
⊔n
i=1(ai(di) t ξw](ai)(w

[)) t
⊔n′
i=1 ξw](a′i)(w

[)

• isol(w , α) is provably equal to
⊔n′
i=1(a′i(d

′
i) t ξw](a′i)(w

[)) t
⊔n
i=1 ξw](ai)(w

[)

Insert the latter two results in ?(isol(w , α) t isol(w , α)), and by Axiom MA2, rearrange the actions in the
resulting multiaction to obtain:

?(

n⊔
i=1

(ai(di) t ξw](ai)(w
[) t ξw](ai)(w

[)) t
n′⊔
i=1

(a′i(d
′
i) t ξw](a′i)(w

[) t ξw](a′i)(w
[)))

Then, because ? effectively filters out all pairs of an auxiliary action and its dual (e.g., ξw](ai)(w
[) and

ξw](ai)(w
[)), without affecting the original actions (because the sets of auxiliary and original actions do not

overlap by Definition 3), obtain
⊔n
i=1 ai(di)t

⊔n′
i=1 a

′
i(d
′
i), which is provably equal to α (by the first item in

the above itemization).
See Section E, page 83, for a detailed proof. �

20

The following theorem states that a split basic process has the same behavior as the original, unsplit
process.

Theorem 2 (Correctness theorem for basic processes).[
p ∈ Basic and p ∈ TauFree and

Act(p) ⊆ dom(Ξ) and Bound(p) C w = ∅

]
implies split(w , p) ' p

Proof (sketch). Prove this theorem by a relatively straightforward induction on the structure of p. The
base case (p is a multiaction or δ) follows immediately from Theorem 1 (derive the premise of Theorem 1
from the premise of this theorem) or the definition of split (for δ). To prove the inductive step, set up a case
distinction for the main operator of p, and prove those cases quickly using the preservation lemmas (derive
the premises of Lemmas 2, 3, 4, and 5 from the premise of this theorem). For example (p = q + r):

split(w , p) = split(w , q + r)
Lemma 2

' split(w1 , q) + split(w2 , r)
IH

' q + r = p

See Section E, page 85, for a detailed proof. �

The last theorem of this paper states that split process definitions (potentially mutually recursive) have
the same behavior as the original, unsplit process definitions. To prove this theorem, we find it helpful to
work with single recursive process definitions instead of collections of mutually recursive ones (because the
former allows for a straightforward application of RSP as explained in Section 2.3). To do this without
resorting to weaker results, we first present a proposition about the untimed subset of mCRL2, adapted
from [39]: Proposition 9 states that one can collapse k, potentially mutually recursive, process definitions

(referenced by P1 , . . . , Pk) into a single process definition (referenced by P̃).

Proposition 9 ([39, Section 4.3]).

P1(x1 : D1) = p1 ,
...

Pk(xk : Dk) = pk ,

P̃ (y , x : N×D) = y ≈ 1 _ p1[P1(d) := P̃ (1 , h(d))] · · · [Pk(d) := P̃ (k , h(d))] �
...

y ≈ k _ pk[P1(d) := P̃ (1 , h(d))] · · · [Pk(d) := P̃ (k , h(d))] � δ

and h = harmonizer(D1 ∪ · · · ∪Dk , D)


implies

[
Pi ' P̃ (i) for all 1 ≤ i ≤ k

]
Proposition 9 may look complex, but conceptually, it states a rather simple property. Essentially, it cor-
responds to the “collapsing into one equation” step of the mCRL2 linearization process [39], as follows.

Reference P̃ has a parameter y which represents the indices of the k processes. The body of P̃ contains
a conditional choice dependent on the value of y: if y equals some index i, the body of P̃ behaves as the
body of Pi. Thus: P̃ (i) ' Pi. To ensure also that P̃ contains only references to itself, one should substitute

occurrences of P1 , . . . , Pk with P̃ in pi. To this end, we write pi[Pj(d) := P (j , h(d))] for the process
resulting from replacing Pj(d) by P (j , h(d)) in pi (for any d), for some harmonization function h. Such a
function maps data tuples in D1 ∪ · · · ∪Dk to data tuples in D. Intuitively, h transforms the parameters of
each of the process references P1 , . . . , Pk to a single tuple of parameters for P̃ . Neither the precise meaning
of harmonization nor the definition of harmonizer matter in the remainder, so we skip them (details appear
elsewhere [39]).

We proceed with our final theorem. Let Ref(p) (defined in Figure 18) denote the set of references
occurring in p.

21

Ref(ααα) = ∅
Ref(P (d)) = {P}
Ref(q ⊕ r) , Ref(c _ q � r) = Ref(q) ∪ Ref(r)
Ref(

∑
x∈D q) , Ref(f(q)) = Ref(q)

Figure 18: Definition of Ref.

Theorem 3 (Correctness theorem for process specifications).

P1(x1 : D1) = p1 , P
†
1 (x1 : D1) = split(ε , p1) ,

...

Pk(xk : Dk) = pk , P
†
k (xk : Dk) = split(ε , pk)

and p1 , . . . , pk ∈ TauFree
and Act(p1) , . . . , Act(pk) ⊆ dom(Ξ) and[
Ref(pi) ⊆ {P1 , . . . , Pk} for all 1 ≤ i ≤ k

]


implies

[
Pi ' P †i for all

1 ≤ i ≤ k

]

Proof (sketch). Apply Proposition 9 to collapse the definitions referenced by P1 , . . . , Pk into one defi-

nition P̃ = p. Similarly, apply Proposition 9 to collapse the definitions referenced by P †1 , . . . , P
†
k into one

definition P̃ † = p†. To obtain the desired result, show that P̃ is provably equal to P̃ † by demonstrating that
some process operator Φ has both P̃ and P̃ † as fixed points (and apply RSP). Define Φ(Z) = p[P̃ := Z],

and immediately conclude Φ(P̃) ' P̃ . To show that also Φ(P̃ †) ' P̃ †, essentially, it suffices to show that
pi ' split(ε , pi). This follows from Theorem 2 (derive the premise of Theorem 2 from the premise of this
theorem).

See Section E, page 90, for a detailed proof. We establish the Φ(P̃ †) ' P̃ † step with a separate auxiliary
theorem (Theorem 4, page 88). �

6. An Application of the Splitting Procedure: Splitting Connectors

Up to now, we have defined a splitting procedure for untimed mCRL2 and proved its correctness, all
independent of Reo. Now, as one of its applications, we use this splitting procedure to justify the region-
based optimization technique for Reo implementations (i.e., the version with direct transportation of data
and control information in asynchronous regions—see Section 1). First, we formalize (a)synchronous regions
in terms of process algebra. Afterwards, we split (process algebraic semantic specifications of) connectors.

6.1. Formalization of (A)synchronous Regions

We provide a formal definition of the synchronous regions of a connector, based on the mCRL2 semantics
of Reo. Let p denote a process describing the behavior of a Reo connector, and let −→ denote its transition
relation (labeled with multiactions).16 Recall that every action in p represents a channel end or a node end.
Let a ∈ Act(p) denote one such end. We define the a-synchronous region of p as the smallest set Xa ⊆ Act(p)
such that:

• a ∈ Xa

• b ∈ Xa ⇒
[
Act(β) ⊆ Xa for all β such that

[
q
β−→ q′ and b ∈ Act(β)

]]
17

16We have not given the definition of the transition relation (although we showed examples in Figures 9, 19, and 21), because
the precise definition does not matter in this paper. See Groote et al. [14].

17Square brackets for readability.

22

a|bc+d

c



a|b
c

d

Figure 19: Example transition system for p = a t b · c+ d. The X-state represents successful termination.

• b ∈ Xa ⇒
[
Act(β′) ⊆ Xa for all β , β′ such that

[
q
β−→ q′ and q

β′−→ q′′

and b ∈ Act(β)

]]
The second rule states that all the ends that occur in the same multiaction belong to the same synchronous
region. The third rule states that all the ends that can have flow in some state q, but possibly in different
transitions leaving q, belong to the same synchronous region. In that case, channel ends may exclude each
other from flow, which requires them to synchronize and communicate about their behavior.

To exemplify the previous definition, consider the connector modeled by the process p = a t b · c + d
(we abstract away from data in this example, because data do not influence the regions of the connector).
Informally, either this connector has flow through a and b followed by flow through c, or it has flow through d.
We construct its a-synchronous region starting from the singleton set Xa = {a} (first rule). Subsequently,
due to the presence of multiaction a t b, we add b to this set (second rule). The transition system of p
contains a state with two outgoing transitions: one labeled by at b, the other labeled by d. Hence, because
a ∈ Xa, we add d to Xa (third rule). This concludes the construction: Xa = Xb = Xd = {a , b , d} and
Xc = {c}.

We define the set of the synchronous regions of the connector modeled by p as

X = {Xa | a ∈ Act(p)}

and the set containing its asynchronous regions as

Y = {〈a , b〉 | connected(a , b) and a ∈ X and b ∈ X ′ and X 6= X ′ and X , X ′ ∈ X}

where connected(a, b) holds iff ends a and b belong to the same channel.

6.2. Splitting Connectors

As motivated in Section 1, we set out to establish the soundness of splitting connectors along the
boundaries of their (a)synchronous regions. However, we can split any (syntactically τ -free) process along
any set of actions A by Theorem 3. This suggests that regardless of its (a)synchronous regions, one can
split a connector in any possible way and preserve its original semantics. While true in theory, there is
a catch for implementations of split connectors in practice: the parallel composition of the isolation and
the coisolation of a connector process must synchronize appropriately, as represented by the ? operator
(see Definition 4). Depending on the particular implementation approach, which in turn may depend on
the underlying hardware architecture (see Section 1), performing ? at run-time may cost an unreasonable
amount of resources, if possible at all.

Region-based splitting. We start with an example of splitting based on (a)synchronous regions. Suppose
that we split fifo1〈a, b〉 into two parts: one part contains only a, while the other part contains only b.
Recall from Section 3 that the semantics of this channel is given by the process definition Fifo1〈a; b〉 =∑
x∈Data(a(x) · b(x)) · Fifo1〈a; b〉. Splitting along A = {a} (or equivalently, along A = {b}) yields:

23

Fifo1〈a; b〉†
= split(ε ,

∑
x∈Data(a(x) · b(x)) · Fifo1〈a; b〉)

= split(ε ,
∑
x∈Data(a(x) · b(x))) · split(ε , Fifo1〈a; b〉)

= ?(isol(ε ,
∑
x∈Data(a(x) · b(x))) ‖ isol(ε ,

∑
x∈Data(a(x) · b(x)))) · Fifo1〈a; b〉†

= ?(
∑
x∈Data isol(x , a(x) · b(x)) ‖

∑
x∈Data isol(x , a(x) · b(x))) · Fifo1〈a; b〉†

= ?(
∑
x∈Data(isol(x1 , a(x)) · isol(x2 , b(x))) ‖∑
x∈Data(isol(x1 , a(x)) · isol(x2 , b(x)))) · Fifo1〈a; b〉†

=
?(
∑
x∈Data(a(x) t ξ1(a)(x) · ξ2(b)(x)) ‖∑
x∈Data(ξ1(a)(x) · b(x) t ξ2(b)(x))) · Fifo1〈a; b〉†

Here, ? in fact represents the asynchronous region of fifo1〈a; b〉, because it synchronizes the two synchronous
regions {a} and {b}. The fact that auxiliary actions happen at the same time as the corresponding orig-
inal actions represents direct transportation of data and control information in asynchronous regions (see
Section 1).

Suppose that we want to implement p =
∑
x∈Data(a(x) t ξ1(a)(x) · ξ2(b)(x)) and q =

∑
x∈Data(ξ1(a)(x) ·

b(x) t ξ2(b)(x)) such that, when run in parallel, they behave as
∑
x∈Data(a(x) · b(x)). Crucially, these

implementations should perform the synchronization implied by ?. Recall from Section 4 that intuitively,
ξ1(a) represents the act of “disseminating the performance of a,” while ξ1(a) represents the act of “discovering
the performance of a.” Thus, the implementation of p should: (1) accept data x on a and disseminate this
acceptance, and (2) discover the dispersal of x on b. Meanwhile, the implementation of q should: (1)
discover the acceptance of data x on a, and (2) dispense x on b and disseminate this dispersal. Thus, in
each step, the implementations of p and q require only unidirectional communication about their behavior
to synchronize: first, the implementation of p performs ξ1(a)(x) and the implementation of q takes notice
of this (by performing ξ1(a)(x)); afterwards, p and q switch roles to perform ξ2(b)(x) and ξ2(b)(x). This
shows that different synchronous regions can decide on their behavior independently of each other: region {
a} does not need to know that region {b} will dispense data before it can accept data—it can decide to do
so without communication.

We argue that this can yield performance improvements in practice: although the isolation and the
coisolation of a process p have the same transition system modulo transition labels (i.e., they have the
same syntactic structure), benefits can arise when we compose them in parallel with another split process
q. In that case, there may exist a transition t of the isolation of p that can proceed independently—without
communication among the ends involved—of a transition t′ of the coisolation of q. Without splitting, in
contrast, communication among the ends involved in t and t′ must always take place to decide on whether
to behave according to t, t′, or both. But in the split case, the ends can act independently. For instance, if
we put two split fifo1 instances in sequence (as in Figure 1a), the source end a of the first fifo1 can proceed
independently of the sink end b of the second fifo1. This means that, if empty, the first fifo1 can accept a
data item on a (and place it in its buffer) without communicating with b. Similarly, if full, the second fifo1
can dispense a data item on b (and remove it from its buffer) without communicating with a. In contrast, if
we put two unsplit fifo1 instances in sequence, the source end a and the sink end b communicate with each
other to decide on their joint behavior, even though the behavior of those ends does not depend on each
other. By splitting, one avoids this unnecessary communication.

Arbitrary splitting. To demonstrate that splitting arbitrarily makes no sense, suppose that we split sync〈a, b〉
into two parts: one part contains only a, while the other part contains only b. Recall from Section 3 that
the semantics of this channel is given by the process definition Sync〈a; b〉 =

∑
x∈Data a(x)t b(x) · Sync〈a; b〉.

Splitting along A = {a} (or equivalently, along A = {b}) yields:

Sync〈a; b〉†
= split(ε ,

∑
x∈Data a(x) t b(x) · Sync〈a; b〉)

= split(ε ,
∑
x∈Data a(x) t b(x)) · split(ε , Sync〈a; b〉)

= ?(isol(ε ,
∑
x∈Data a(x) t b(x)) ‖ isol(ε ,

∑
x∈Data a(x) t b(x))) · Sync〈a; b〉†

= ?(
∑
x∈Data isol(x , a(x) t b(x)) ‖

∑
x∈Data isol(x , a(x) t b(x))) · Sync〈a; b〉†

24

a b

y
z

x

dd

Figure 20: Sequencer2

a (d)∣y(d)

b(d)∣x (d)∣z (d)

Figure 21: Transition system of Sequencer2〈; a, b〉↓.

= ?(
∑
x∈Data(isol(x , a(x)) t isol(x , b(x))) ‖∑
x∈Data(isol(x , a(x)) t isol(x , b(x)))) · Sync〈a; b〉†

=
?(
∑
x∈Data(a(x) t ξε(a)(x) t ξε(b)(x)) ‖∑
x∈Data(ξε(a)(x) t b(x) t ξε(b)(x))) · Sync〈a; b〉†

Now, as in the previous example, suppose that we want to implement

p =
∑
x∈Data

(a(x) t ξ1(a)(x) t ξ2(b)(x)) and q =
∑
x∈Data

(ξ1(a)(x) t b(x) t ξ2(b)(x))

such that, when run in parallel, they behave as
∑
x∈Data(a(x) · b(x)). As before, these implementations

should perform the synchronization implied by ?. Thus, the implementation of p should accept data x on a,
disseminate this acceptance, and discover the dispersal of x on b. Meanwhile, the implementation of q should
discover the acceptance of data x on a, dispense x on b, and disseminate this dispersal. All of these actions
must occur at the same time. This means that, in contrast to our previous example, the implementations
of p and q must engage in bidirectional communication with each other about the acceptance of data on a
and the dispersal of data on b. This suggests that the two ends of sync〈a, b〉 must synchronize with each
other—they belong to the same synchronous region and cannot decide on their behavior independently—
making it unreasonable to split them in the first place: the communication necessary to realize the necessary
synchronization inflicts overhead, making it more attractive to run the original sync〈a, b〉 without splitting.

Implementation sketch. We sketch an implementation of the split fifo1〈a, b〉 on a shared memory machine
with multithreading. First, we instantiate two threads, A and B, for the processes p =

∑
x∈Data(a(x) t

ξ1(a)(x) · ξ2(b)(x)) and q =
∑
x∈Data(ξ1(a)(x) · b(x)t ξ2(b)(x)). Every multiaction α translates to the atomic

execution of a block of code representing the actions occurring in α.

6.3. Example: Sequencer2

7. Related Work

Process decomposition. Closest to the process algebraic work presented in this paper seems the work on
processes decomposition, first investigated by Milner and Moller in the late 1980s–early 1990s [32]. In that
work, Milner and Moller define the notion of a prime process, and they explore what kind of processes p
have a unique decomposition into primes p1 , . . . , pk such that the parallel composition of those primes is
strongly bisimilar to p.18 A process p qualifies as a prime process if, for all q and r, it holds that p ' q ‖ r
implies that either q or r—not both—is equivalent to the neutral element for ‖ (the algebra used in this
paper does not have such an element). In other words, one cannot decompose p further into nonneutral
processes. Among other results, Milner and Moller show that finite processes in the algebra they consider
have a unique prime decomposition under strong bisimulation. In his PhD thesis, Moller additionally gives
a unique decomposition result with respect to (weak) observational congruence [33, Section 4.4].

18The parallel composition operator differs slightly from the one in this paper: the operator used by Milner and Moller
satisfies q ‖ r ' q T r + r T q, while in this paper, we have q ‖ r ' q T r + r T q + q | r (by Axiom M in Figure 6).

25

After Milner and Moller, also other researchers investigated process decomposition for various process
calculi. This led to some interesting applications. For instance, Lanese et al. proved a prime decomposition
theorem for a higher-order process calculus and used it to prove the completeness of the axiomatization
of that calculus [29]. Aceto et al. [1] and Christensen [8] used prime decomposition theorems for a similar
purpose, among other contributions. Alternatively, Groote and Moller used process decomposition for
verification [15]: they showed that instead of checking p ' q directly, in some cases, one can more efficiently
check whether the primes of p and q are equivalent (while preserving soundness and completeness). The
projection operator introduced by Groote and Moller for decomposing processes seems somewhat related
to our functions isol and isol, albeit rather distantly. Applied to a process p, similar to isol and isol,
this projection operator throws some actions from p away and keeps others for communicating with other
processes. However, those preserved communication actions must already occur in both the original p and
the original other processes; the projection operator does not add auxiliary actions the same way isol and
isol do (more significant differences between process decomposition and process splitting follow shortly).

Other contributions to the theory of process decomposition include the work of Kučera [28] (decidability
results and constructions of decompositions), Luttik and Van Oostrom [31] (generalization of decomposition
to partial commutative monoids), Luttik [30] (unique parallel decomposition modulo branching and weak
bisimilarity), and Dreier et al. [13] (decomposition in the applied π-calculus).

Although related, the work on process decomposition differs significantly from our work on process
splitting. For one thing, even though both approaches derive smaller processes from an existing one (such
that their parallel composition is equivalent to the orginal process), the notion of “smaller” in our work does
not involve primality. In fact, one could argue that the processes resulting from our splitting procedure are
not really smaller than the original process due to the introduction of auxiliary actions. Another difference
concerns uniqueness, which plays no explicit role in our splitting procedure. Note, however, that only one
isolation and only one coisolation exists for every process under some fixed A and Ξ (due to the deterministic
definition of split). So technically, we have uniqueness. Finally, in process decomposition, one usually requires
no additional synchronization on top of the parallel composition of the primes. We, in contrast, needed to
introduce the ? operator to achieve appropriate synchronization between the isolation and the coisolation of
a process.

Connector decomposition. In this paper, we developed a process algebraic splitting procedure, which we
then applied to Reo’s process algebraic semantics, thereby effectively splitting connectors. Interestingly,
different notions of splitting and decomposition of Reo connectors—or their semantics—already exist in the
literature. Although inapplicable for our purpose, we discuss them below.

Koehler and Clarke investigated the decomposition of port automata [23], an operational model of con-
nector behavior. The states of a port automaton represent the internal configurations of a connector; its
transitions, labeled with sets of firing node names, describe atomic execution steps. Through special product
and hiding operators on port automata, one can compositionally construct a connector model from a set of
smaller automata for the primitive Reo connectors. Koehler and Clarke showed that they can decompose
every port automaton into instances of only two primitive automata. Essentially, this means that one can
construct every Reo connector expressible by a port automaton from instances of only two different primitive
connectors.

Pourvatan et al. explored the decomposition of complete constraint automata [34], a more expressive
operational model of connector behavior than port automata and an extension of ordinary constraint au-
tomata [4]. Their approach differs significantly from the work of Koehler and Clarke: Pourvatan et al.
develop a notion of inverse for their automata, which allows them to factor out certain parts of a complete
constraint automaton based on another such automaton. A typical application of this decomposition tech-
nique is connector synthesis. Suppose that we have a specification (as an automaton) of the whole system
that we want to build and specifications (also as automata) of the components that this system consists
of, but no specification of the connector that should connect those components. We can then factor out
the component automata from the system automaton to get the automaton specifying the behavior of the
connector. Pourvatan et al. exemplify this with a service-oriented application.

Although not often considered (exceptions exist though—see, e.g., [9]), we remark that Arbab mentioned

26

a split operation already in his introductory paper on Reo [2]. However, this split operation splits nodes
instead of connectors (i.e., sets of nodes). Because our interest lies in splitting connectors, we could not use
Arbab’s notion of splitting.

Proença pioneered the work on (a)synchronous regions, region-based optimization techniques for Reo
implementations, and connector splitting in this PhD thesis and associated publications [35, 36, 37]. He
developed the first working Reo implementation based on these ideas, demonstrated its merits through bench-
marks, and invented a new automaton model—behavioral automata [37]—to reason about split connectors.
Also, Proença formulated a number of soundness and completeness criteria for when a split behavioral au-
tomaton preserves the semantics of the original (but without proofs). Recently, Clarke and Proença explored
connector splitting in the context of the connector coloring semantics [11]. They discovered that the stan-
dard version of that semantics has undesirable properties in the context of splitting: some split connectors
that intuitively should be equivalent to the original connector are not equivalent under the standard model.
To address this problem, Clarke and Proença propose a new variant called partial connector coloring, which
allows one to better model locality and independencies between different parts of a connector.

8. Conclusion and Future Work

We presented a procedure for splitting processes in a process algebra with multiactions and data (the
untimed subset of the specification language mCRL2). This splitting procedure cuts a process into two
processes along a set of actions A: roughly, one of these processes contains no actions from A, while the
other process contains only actions from A. We stated and proved a theorem asserting that the parallel
composition of these two processes is provably equal from a set of axioms (sound and complete with respect
to strong bisimilarity) to the original process under some appropriate notion of synchronization.

We applied our splitting procedure to the process algebraic semantics of the coordination language
Reo: using this procedure and its related theorem, we formally established the soundness of splitting Reo
connectors along the boundaries of their (a)synchronous regions in implementations of Reo. Such splitting
can significantly improve the performance of connectors as shown elsewhere [11, 35, 36].

Our work shows the feasibility of using the language mCRL2 (not the associated toolset) for proving
properties of a whole language, Reo, rather than of concrete connectors. This subtly, yet significantly, differs
from the work presented in [27, 24, 25, 26]. In those paper, Kokash et al. introduce the process algebraic
semantics of Reo for verifying concrete connectors (e.g., “this connector never deadlocks”) but obtain no
results about Reo as a language.

We identify several directions for future work.

• Implementing the splitting procedure to facilitate automatic splitting of processes, as well as a tool
for the automatic detection of (a)synchronous regions of Reo connectors. Combined, they allow us to
mechanically split connectors along their (a)synchronous regions. We can then integrate this in one of
the code generation frameworks currently under development for Reo.

•

•

• Investigating other ways of splitting processes, corresponding to other versions of the region-based
optimization technique (see Section 1). The procedure we introduced in this paper splits processes in
a synchronous manner such that ξ(a) occurs at the same time as the action a itself. We imagine at
least two other ways of splitting processes. In one approach, ξ(a) occurs after a but before the next
action. Then, the process q = a · b has a · ξ(a) · ξ(b) as its {a}-isolation (instead of a t ξ(a) · ξ(b)).
In another approach, ξ(a) occurs after a but possibly concurrently with the next action. Then, q has
a · (ξ(a) ‖ ξ(b)) as its isolation. We speculate that these splitting approaches are sound only under
equivalences weaker than strong bisimulation.

This particular line of future work seems related to existing work on delay-insensitive circuits (e.g., [38])
and desynchronization (e.g., [5, 12]), the derivation of an asynchronous system from a synchronous

27

system: for the class of desynchronizable systems, the original synchronous system and the newly
constructed asynchronous system are equivalent. If we use the splitting procedure presented in this
paper to obtain such an original synchronous system, we may use—perhaps with modifications—results
from desynchronization for more asynchronous splitting.

References

[1] Luca Aceto, Wan Fokkink, Anna Ingolfsdottir, and Bas Luttik. Split-2 Bisimilarity has a Finite Axiomatization over CCS
with Hennessy’s Merge. Logical Methods in Computer Science, 1(1):1–12, 2005.

[2] Farhad Arbab. Reo: a channel-based coordination model for component composition. Mathematical Structures in Com-
puter Science, 14(3):329–366, 2004.

[3] Farhad Arbab. Puff, The Magic Protocol. In Gul Agha, Olivier Danvy, and José Meseguer, editors, Talcott Festschrift,
volume 7000 of LNCS, pages 169–206. Springer, 2011.

[4] Christel Baier, Marjan Sirjani, Farhad Arbab, and Jan Rutten. Modeling component connectors in Reo by constraint
automata. Science of Computer Programming, 61(2):75–113, 2006.

[5] Harsh Beohar and Pieter Cuijpers. A theory of desynchronisable closed loop systems. In Simon Bliudze, Roberto Bruni,
Davide Grohmann, and Alexandra Silva, editors, Proceedings ICE 2010, volume 38 of EPTCS, pages 99–114. CoRR, 2010.

[6] Jan Bergstra and Jan Willem Klop. Process Algebra for Synchronous Communication. Information and Control, 60(1–
3):109–137, 1984.

[7] Jan Bergstra and Jan Willem Klop. Verification of an alternating bit protocol by means of process algebra protocol. In
Wolfgang Bibel and Klaus Jantke, editors, Mathematical Methods of Specification and Synthesis of Software Systems ‘85,
volume 215 of LNCS, pages 9–23. Springer, 1986.

[8] Søren Christensen. Decidability and Decomposition in Process Algebras. PhD thesis, University of Edinburgh, 1993.
[9] Dave Clarke. A Basic Logic for Reasoning about Connector Reconfiguration. Fundamenta Informaticae, 82(4):361–390,

2008.
[10] Dave Clarke, David Costa, and Farhad Arbab. Connector colouring I: Synchronisation and context dependency. Science

of Computer Programming, 66(3):205–225, 2007.
[11] Dave Clarke and José Proença. Partial Connector Colouring. In Marjan Sirjani, editor, Coordination Models and Lan-

guages, volume 7274 of LNCS, pages 59–73. Springer, 2012.
[12] Clemens Fischer and Wil Janssen. Synchronous development of asynchronous systems. In Ugo Montanari and Vladimiro

Sassone, editors, CONCUR ‘96: Concurrency Theory, volume 1119 of LNCS, pages 735–750. Springer, 1996.
[13] Jannik Dreier, Cristian Ene, Pascal Lafourcade, and Yassine Lakhnech. On Unique Decomposition of Processes in the

Applied π-Calculus. In Frank Pfenning, editor, Foundations of Software Science and Computation Structures, volume
7794 of LNCS, pages 50–64. Springer, 2013.

[14] Jan Friso Groote, Aad Mathijssen, Michel Reniers, Yaroslav Usenko, and Muck van Weerdenburg. The Formal Specification
Language mCRL2. In Proceedings of MMOSS 2007, pages 1–34, 2007.

[15] Jan Friso Groote and Faron Moller. Verification of Parallel Systems via Decomposition. In Walter Cleaveland, editor,
CONCUR ‘92, volume 630 of LNCS, pages 62–76. Springer, 1992.

[16] Jan Friso Groote and Mohammad Reza Mousavi. Modelling and Analysis of Communicating Systems. To appear, 2010.
[17] Sung-Shik Jongmans and Farhad Arbab. Global Consensus through Local Synchronization. In Natallia Kokash and Javier

Cámara, editors, Proceedings of FOCLASA 2013.
[18] Sung-Shik Jongmans and Farhad Arbab. Overview of Thirty Semantic Formalisms for Reo. Scientific Annals of Computer

Science, 22(1):201–251, 2012.
[19] Sung-Shik Jongmans and Farhad Arbab. Modularizing and Specifying Protocols among Threads. In Simon Gay and Paul

Kelly, editors, Proceedings of PLACES 2012, volume 109 of EPTCS, pages 34–45. CoRR, 2013. 10.4204/EPTCS.109.6.
[20] Sung-Shik Jongmans, Dave Clarke, and José Proença. A Procedure for Splitting Processes and its Application to Coor-

dination. In Natallia Kokash and António Ravara, editors, Proceedings of FOCLASA 2012, volume 91 of EPTCS, pages
79–96. CoRR, 2012.

[21] Sung-Shik Jongmans, Christian Krause, and Farhad Arbab. Encoding Context-Sensitivity in Reo into Non-Context-
Sensitive Semantic Models. In Wolfgang de Meuter and Gruia-Catalin Roman, editors, Coordination Models and Lan-
guages, volume 6721 of LNCS, pages 31–48. Springer, 2011.

[22] Sung-Shik Jongmans, Francesco Santini, Mahdi Sargolzaei, Farhad Arbab, and Hamideh Afsarmanesh. Automatic Code
Generation for the Orchestration of Web Services with Reo. In Flavio de Paoli, Ernesto Pimentel, and Gianluigi Zavattaro,
editors, Service-Oriented and Cloud Computing, volume 7592 of LNCS, pages 1–16. Springer, 2012.

[23] Christian Koehler and Dave Clarke. Decomposing Port Automata. In Michael Schumacher and Alan Wood, editors,
Proceedings of SAC 2009, pages 1369–1373. ACM, 2009.

[24] Natallia Kokash, Christian Krause, and Erik de Vink. Data-Aware Design and Verification of Service Compositions with
Reo and mCRL2. In Manuel Mazzara, Claudio Guidi, and Ivan Lanese, editors, Proceedings of SAC 2010, pages 2406–2413.
ACM, 2010.

[25] Natallia Kokash, Christian Krause, and Erik de Vink. Time and Data-Aware Analysis of Graphical Service Models in
Reo. In José Luiz Fiadeiro and Stefania Gnesi, editors, Proceedings of SEFM 2010, pages 125–134. IEEE, 2010.

[26] Natallia Kokash, Christian Krause, and Erik de Vink. Verification of Context-Dependent Channel-Based Service Models.
In Frank de Boer, Marcello Bonsangue, Stefan Hallerstede, and Michael Leuschel, editors, Formal Methods for Components
and Objects, volume 6286 of LNCS, pages 21–40. Springer, 2010.

28

[27] Natallia Kokash, Christian Krause, and Erik de Vink. Reo+mCRL2: A framework for model-checking dataflow in service
compositions. Formal Aspects of Computing, 24(2):187–216, 2012.

[28] Antońın Kučera. Effective decomposability of sequential behaviours. Theoretical Computer Science, 242(1–2):71–89, 2000.
[29] Ivan Lanese, Jorge Pérez, Davide Sangiorgi, and Alan Schmitt. On the expressiveness and decidability of higher-order

process calculi. Information and Computation, 209(2):198–226, 2011.
[30] Bas Luttik. Unique Parallel Decomposition in Branching and Weak Bisimulation Semantics. In Jos Baeten, Tom Ball,

and Frank de Boer, editors, Theoretical Computer Science, volume 7604 of LNCS, pages 250–264. Springer, 2012.
[31] Bas Luttik and Vincent van Oostrom. Decomposition orders—another generalisation of the fundamental theorem of

arithmetic. Theoretical Computer Science, 335(2–3):147–186, 2005.
[32] Robin Milner and Faron Moller. Unique decomposition of processes. Theoretical Computer Science, 107(2):357–363, 1993.
[33] Faron Moller. Axioms for Concurrency. PhD thesis, University of Edinburgh, 1989.
[34] Bahman Pourvatan, Marjan Sirjani, Farhad Arbab, and Marcello Bonsangue. Decomposition of Constraint Automata. In

Lúıs Barbosa and Markus Lumpe, editors, Formal Aspects of Component Software, volume 6921 of LNCS, pages 237–258.
Springer, 2012.

[35] José Proença, Dave Clarke, Erik de Vink, and Farhad Arbab. Dreams: a framework for distributed synchronous coordi-
nation. In Mirko Viroli, Gabriella Castelli, and Jose Luis Fernandez Marquez, editors, Proceedings of SAC 2012, pages
1510–1515. ACM, 2012.

[36] José Proença. Synchronous Coordination of Distributed Components. PhD thesis, Leiden University, 2011.
[37] José Proença, Dave Clarke, Erik de Vink, and Farhad Arbab. Decoupled execution of synchronous coordination models

via behavioural automata. In Mohammad-Reza Mousavi and António Ravara, editors, Proceedings of FOCLASA 2011,
volume 58 of EPTCS, pages 65–79. CoRR, 2011.

[38] Jan Tijmen Udding. Classification and Composition of Delay-Insensitive Circuits. PhD thesis, Eindhoven University of
Technology, 1984.

[39] Yaroslav Usenko. Linearization in µCRL. PhD thesis, Eindhoven University of Technology, 2004.

29

A. More Definitions

d A d
d A w1w2 iff

[
d A w1 or d A w2

]
x A x
x A w1w2 iff

[
x A w1 or x A w2

]
Figure A.22: Definition of A.

D C w = {d ∈ D | d A w}
V C w = {v ∈ V | v A w}

Figure A.23: Definition of C.

〈d1 , . . . , d`〉[d/x] = 〈d1[d/x] , . . . d`[d/x]〉
a(d)[d/x] = a(d[d/x])

τ [d/x] = τ
(β t γ)[d/x] = β[d/x] t γ[d/x]
P (d)[d/x] = P (d[d/x])

δ[d/x] = δ
(q ⊕ r)[d/x] = q[d/x]⊕ r[d/x]

(c _ q � r)[d/x] = c[d/x] _ q[d/x] � r[d/x]

(
∑
x∈D q)[d/x] =

∑
x∈D q

(
∑
y∈D q)[d/x] =

∑
y∈D q[d/x] if x 6= y

f(q)[d/x] = f(q[d/x])

Figure A.24: Definition of [/].

p[Q :=g R] = p if p ∈ Basic

P (d)[Q :=g R] = P (d) if
[
p /∈ Basic and P 6= Q

]
Q(e)[Q :=g R] = R(g(e)) if p /∈ Basic

δ[Q :=g R] = δ if p /∈ Basic
(q ⊕ r)[Q :=g R] = q[Q :=g R]⊕ r[Q :=g R] if p /∈ Basic

(c _ q � r)[Q :=g R] = c _ q[Q :=g R] � r[Q :=g R] if p /∈ Basic
(
∑
x∈D q)[Q :=g R] =

∑
x∈D q[Q :=g R] if p /∈ Basic

f(q)[Q :=g R] = f(q[Q :=g R]) if p /∈ Basic

Figure A.25: Definition of [:=].

B. Proofs for Section 5.1

Proposition 10 (îsol and [/] commute on multiactions).

x 6A w1 , w2 implies îsol(w1xw2 , α)[d/x] = îsol(w1dw2 , α[d/x])

30

Proof. Assumptions:

• x 6A w1 , w2 (Z1).

By induction on the structure of α.

Base:
[
α = a(d) or α = τ

]
. Observations:

• Conclude (w1xw2)] = w]1x
]w]2 by the definition of]. Then, because x] = ε by the definition of],

conclude (w1xw2)] = w]1εw
]
2. Then, because d] = ε by the definition of], conclude (w1xw2)] =

w]1d
]w]2. Then, conclude (w1xw2)] = (w1dw2)] by the definition of] (Z2).

• Conclude (w1xw2)[= w[1x
[w[2 by the definition of [. Then, because x[= x by the definition of [,

conclude (w1xw2)[= w[1xw
[
2 (Z3).

• Recall (w[1xw
[
2)[d/x] = w[1[d/x]x[d/x]w[2[d/x] by the definition of [/]. Then, because x 6A w1 ,

w2 by Z1, conclude (w[1xw
[
2)[d/x] = w[1x[d/x]w[2. Then, conclude (w[1xw

[
2)[d/x] = w[1dw

[
2 by the

definition of [/] (Z4).

• Because d[= d by the definition of [, conclude w[1dw
[
2 = w[1d

[w[2. Then, conclude w[1dw
[
2 =

(w1dw2)[by the definition of [(Z5).

Proceed by case distinction on the structure of α.

Case: α = a(d). Proceed by case distinction on the value of îsol.

Case: îsol = isol. Conclude
[
a ∈ A or a /∈ A

]
by ZFC—proceed by case distinction.

Case: a ∈ A. Observations:

• Recall a ∈ A by the definition of this case. Then, conclude isol(w1xw2 , a(d)) =
a(d) t ξ(w1xw2)](a)((w1xw2)[) by the definition of isol (Z6).

• Recall a ∈ A by the definition of this case. Then, conclude isol(w1dw2 , a(d)) =
a(d) t ξ(w1dw2)](a)((w1dw2)[) by the definition of isol (Z7).

Conclude:

îsol(w1xw2 , α)[d/x]
Case

= isol(w1xw2 , a(d))[d/x]
Z6

= (a(d) t ξ(w1xw2)](a)((w1xw2)[))[d/x]
Z2

= (a(d) t ξ(w1dw2)](a)((w1xw2)[))[d/x]
Z3

= (a(d) t ξ(w1dw2)](a)(w[1xw
[
2))[d/x]

[/]

= a(d)[d/x] t ξ(w1dw2)](a)(w[1xw
[
2)[d/x]

Z4

= a(d)[d/x] t ξ(w1dw2)](a)(w[1dw
[
2)

Z5

= a(d)[d/x] t ξ(w1dw2)](a)((w1dw2)[)
Z7

= isol(w1dw2 , a(d)[d/x])
Case

= îsol(w1dw2 , α[d/x])

Case: a /∈ A. Observations:

• Recall a /∈ A by the definition of this case. Then, conclude isol(w1xw2 , a(d)) =
ξ(w1xw2)](a)((w1xw2)[) by the definition of isol (Z8).

• Recall a /∈ A by the definition of this case. Then, conclude isol(w1dw2 , a(d)) =
ξ(w1dw2)](a)((w1dw2)[) by the definition of isol (Z9).

Conclude:

31

îsol(w1xw2 , α)[d/x]
Case

= isol(w1xw2 , a(d))[d/x]
Z8

= ξ(w1xw2)](a)((w1xw2)[)[d/x]
Z2

= ξ(w1dw2)](a)((w1xw2)[)[d/x]
Z3

= ξ(w1dw2)](a)(w[1xw
[
2)[d/x]

Z4

= ξ(w1dw2)](a)(w[1dw
[
2)

Z5

= ξ(w1dw2)](a)((w1dw2)[)
Z9

= isol(w1dw2 , a(d)[d/x])
Case

= îsol(w1dw2 , α[d/x])

Case: îsol = isol. Conclude
[
a ∈ A or a /∈ A

]
by ZFC—proceed by case distinction.

Case: a ∈ A. Observations:

• Recall a ∈ A by the definition of this case. Then, conclude isol(w1xw2 , a(d)) =
ξ(w1xw2)](a)((w1xw2)[) by the definition of isol (Z10).

• Recall a ∈ A by the definition of this case. Then, conclude isol(w1dw2 , a(d)) =
ξ(w1dw2)](a)((w1dw2)[) by the definition of isol (Z11).

Conclude:

îsol(w1xw2 , α)[d/x]
Case

= isol(w1xw2 , a(d))[d/x]
Z10

= ξ(w1xw2)](a)((w1xw2)[)[d/x]
Z2

= ξ(w1dw2)](a)((w1xw2)[)[d/x]
Z3

= ξ(w1dw2)](a)(w[1xw
[
2)[d/x]

Z4

= ξ(w1dw2)](a)(w[1dw
[
2)

Z5

= ξ(w1dw2)](a)((w1dw2)[)
Z11

= isol(w1dw2 , a(d)[d/x])
Case

= îsol(w1dw2 , α[d/x])

Case: a /∈ A. Observations:

• Recall a /∈ A by the definition of this case. Then, conclude isol(w1xw2 , a(d)) =
a(d) t ξ(w1xw2)](a)((w1xw2)[) by the definition of isol (Z12).

• Recall a /∈ A by the definition of this case. Then, conclude isol(w1dw2 , a(d)) =
a(d) t ξ(w1dw2)](a)((w1dw2)[) by the definition of isol (Z13).

Conclude:

îsol(w1xw2 , α)[d/x]
Case

= isol(w1xw2 , a(d))[d/x]
Z12

= (a(d) t ξ(w1xw2)](a)((w1xw2)[))[d/x]
Z2

= (a(d) t ξ(w1dw2)](a)((w1xw2)[))[d/x]
Z3

= (a(d) t ξ(w1dw2)](a)(w[1xw
[
2))[d/x]

[/]

= a(d)[d/x] t ξ(w1dw2)](a)(w[1xw
[
2)[d/x]

Z4

= a(d)[d/x] t ξ(w1dw2)](a)(w[1dw
[
2)

Z5

= a(d)[d/x] t ξ(w1dw2)](a)((w1dw2)[)
Z13

= isol(w1dw2 , a(d)[d/x])
Case

= îsol(w1dw2 , α[d/x])

Case: α = τ . Conclude:

32

îsol(w1xw2 , α)[d/x]
Case

= îsol(w1xw2 , τ)[d/x]
îsol

= τ [d/x]
[/]

= τ
îsol

= îsol(w1dw2 , τ)
[/]

= îsol(w1dw2 , τ [d/x])
Case

= îsol(w1dw2 , α[d/x])

Step: α = β t γ. Assumptions:

• Induction hypothesis (IH):[
x̂ 6A ŵ1 , ŵ2 implies îsol(ŵ1x̂ŵ2 , α̂)[d̂/x̂] = îsol(ŵ1d̂ŵ2 , α[d̂/x̂])

]
for all α̂ ∈ {β , γ}

Observations:

• Recall x 6A w1 , w2 by Z1. Then, conclude

îsol(w1xw2 , β)[d/x] = îsol(w1dw2 , β[d/x])

and îsol(w1xw2 , γ)[d/x] = îsol(w1dw2 , γ[d/x])

by IH (Z14).

Conclude:

îsol(w1xw2 , α)[d/x]
Step

= îsol(w1xw2 , β t γ)[d/x]
îsol

= (îsol(w1xw2 , β) t îsol(w1xw2 , γ))[d/x]
[/]

= îsol(w1xw2 , β)[d/x] t îsol(w1xw2 , γ)[d/x]
Z14

= îsol(w1dw2 , β[d/x]) t îsol(w1dw2 , γ[d/x])
îsol

= îsol(w1dw2 , β[d/x] t γ[d/x])
[/]

= îsol(w1dw2 , (β t γ)[d/x])
Step

= îsol(w1dw2 , α[d/x])

�

Proposition 11 (Normal form for îsol-multiactions).

α ∈ TauFree implies



isol(w , α) '
⊔n
i=1(ai(di) t ξw](ai)(w

[)) t
⊔n′
i=1 ξw](a′i)(w

[)

and Act(isol(w , α)) =
⋃n
i=1{ai , ξw](ai)} ∪

⋃n′
i=1{ξw](a′i)}

and isol(w , α) '
⊔n′
i=1(a′i(d

′
i) t ξw](a′i)(w

[)) t
⊔n
i=1 ξw](ai)(w

[)

and Act(isol(w , α)) =
⋃n′
i=1{a′i , ξw](a′i)} ∪

⋃n
i=1{ξw](ai)}

and α '
⊔n
i=1 ai(di) t

⊔n′
i=1 a

′
i(d
′
i)

and Act(α) =
⋃n
i=1 ai ∪

⋃n′
i=1 a

′
i and n+ n′ ≥ 1


for some n , n′ , a1 , . . . , an , d1 , . . . , dn , a

′
1 , . . . , a

′
n′ , d′1 , . . . , d′n′


33

Proof. Assumptions:

• α ∈ TauFree (Z1).

Proceed by induction on the structure of α.

Base:
[
α = a(d) or α = τ

]
. Proceed by case distinction on the structure of α.

Case: α = a(d). Conclude
[
a ∈ A or a /∈ A

]
by ZFC—proceed by case distinction.

Case: a ∈ A. Assumptions:

• n , n′ , a1 , d1 = 1 , 0 , a , d (Z2).

Observations:

• Recall a ∈ A by the definition of this case. Then, conclude isol(w , a(d)) = a(d) t
ξw](a)(w[) by the definition of isol (Z3).

• Recall a ∈ A by the definition of this case. Then, conclude isol(w , a(d)) = ξw](a)(w[)
by the definition of isol (Z4).

• Conclude (Z5):

isol(w , α)
Case

= isol(w , a(d))
Z3

= a(d) t ξw](a)(w[)
Z2

= a1(d1) t ξw](a1)(w[)
MA3

' a1(d1) t ξw](a1)(w[) t τ⊔
'

⊔1
i=1(ai(di) t ξw](ai)(w

[)) t
⊔0
i=1 ξw](a′i)(w

[)
Z2

=
⊔n
i=1(ai(di) t ξw](ai)(w

[)) t
⊔n′
i=1 ξw](a′i)(w

[)

• Conclude (Z6):

Act(isol(w , α))
Case

= Act(isol(w , a))
Z3

= Act(a t ξw](a)(w[))
Z2

= Act(a1 t ξw](a1)(w[))
Act

= {a1} ∪ {ξw](a1)}
ZFC

=
⋃1
i=1{ai , ξw](ai)} ∪

⋃0
i=1{ξw](a′i)}

Z2

=
⋃n
i=1{ai , ξw](ai)} ∪

⋃n′
i=1{ξw](a′i)}

• Conclude (Z7):

isol(w , α)
Case

= isol(w , a(d))
Z4

= ξw](a)(w[)
Z2

= ξw](a1)(w[)
MA3

' τ t ξw](a1)(w[)⊔
'

⊔0
i=1(a′i(d

′
i) t ξw](a′i)(w

[)) t
⊔1
i=1 ξw](ai)(w

[)
Z2

=
⊔n′
i=1(a′i(d

′
i) t ξw](a′i)(w

[)) t
⊔n
i=1 ξw](ai)(w

[)

• Conclude (Z8):

34

Act(isol(w , α))
Case

= Act(isol(w , a))
Z4

= Act(ξw](a)(w[))
Z2

= Act(ξw](a1)(w[))
Act

= {ξw](a1)}
ZFC

=
⋃0
i=1{a′i , ξw](a′i)} ∪

⋃1
i=1{ξw](ai)}

Z2

=
⋃n′
i=1{a′i , ξw](a′i)} ∪

⋃n
i=1{ξw](ai)}

• Conclude (Z9):

α
Case

= a(d)
Z2

= a1(d1)
MA3

' a1(d1) t τ⊔
'

⊔1
i=1 ai(di) t

⊔0
i=1 a

′
i(d
′
i)

Z2

=
⊔n
i=1 ai(di) t

⊔n′
i=1 a

′
i(d
′
i)

• Conclude (Z10):

Act(α)
Case

= Act(a)
Z2

= Act(a1)
Act

= {a1}
ZFC

=

1⋃
i=1

ai ∪
0⋃
i=1

a′i
Z2

=

n⋃
i=1

ai ∪
n′⋃
i=1

a′i

• Conclude 1 + 0 ≥ 1 by ZFC. Then, because n , n′ = 1 , 0 by Z2, conclude n + n′ ≥ 1
(Z11).

Conclude the consequent of this proposition by and-ing the results in Z5, Z6, Z7, Z8, Z9,
Z10, and Z11.

Case: a /∈ A. Assumptions:

• n , n′ , a′1 , d′1 = 0 , 1 , a , d (Z12).

Observations:

• Recall a /∈ A by the definition of this case. Then, conclude isol(w , a(d)) = ξw](a)(w[)
by the definition of isol (Z13).

• Recall a /∈ A by the definition of this case. Then, conclude isol(w , a(d)) = a(d) t
ξw](a)(w[) by the definition of isol (Z14).

• Conclude (Z15):

isol(w , α)
Case

= isol(w , a(d))
Z13

= ξw](a)(w[)
Z12

= ξw](a′1)(w[)
MA3

' τ t ξw](a′1)(w[)⊔
'

⊔0
i=1(ai(di) t ξw](ai)(w

[)) t
⊔1
i=1 ξw](a′i)(w

[)
Z12

=
⊔n
i=1(ai(di) t ξw](ai)(w

[)) t
⊔n′
i=1 ξw](a′i)(w

[)

• Conclude (Z16):

35

Act(isol(w , α))
Case

= Act(isol(w , a))
Z13

= Act(ξw](a)(w[))
Z12

= Act(ξw](a′1)(w[))
Act

= {ξw](a′1)}
ZFC

=
⋃0
i=1{ai , ξw](ai)} ∪

⋃1
i=1{ξw](a′i)}

Z12

=
⋃n
i=1{ai , ξw](ai)} ∪

⋃n′
i=1{ξw](a′i)}

• Conclude (Z17):

isol(w , α)
Case

= isol(w , a(d))
Z14

= a(d) t ξw](a)(w[)
Z12

= a′1(d′1) t ξw](a′1)(w[)
MA3

' a′1(d′1) t ξw](a′1)(w[) t τ⊔
'

⊔1
i=1(a′i(d

′
i) t ξw](a′i)(w

[)) t
⊔0
i=1 ξw](ai)(w

[)
Z12

=
⊔n′
i=1(a′i(d

′
i) t ξw](a′i)(w

[)) t
⊔n
i=1 ξw](ai)(w

[)

• Conclude (Z18):

Act(isol(w , α))
Case

= Act(isol(w , a))
Z14

= Act(a t ξw](a)(w[))
Z12

= Act(a′1 t ξw](a′1)(w[))
Act

= {a′1} ∪ {ξw](a′1)}
ZFC

=
⋃1
i=1{a′i , ξw](a′i)} ∪

⋃0
i=1{ξw](ai)}

Z12

=
⋃n′
i=1{a′i , ξw](a′i)} ∪

⋃n
i=1{ξw](ai)}

• Conclude (Z19):

α
Case

= a(d)
Z12

= a′1(d′1)
MA3

' τ t a′1(d′1)⊔
'

⊔0
i=1 ai(di) t

⊔1
i=1 a

′
i(d
′
i)

Z2

=
⊔n
i=1 ai(di) t

⊔n′
i=1 a

′
i(d
′
i)

• Conclude (Z20):

Act(α)
Case

= Act(a)
Z12

= Act(a′1)
Act

= {a′1}
ZFC

=

0⋃
i=1

ai ∪
1⋃
i=1

a′i
Z2

=

n⋃
i=1

ai ∪
n′⋃
i=1

a′i

• Conclude 0 + 1 ≥ 1 by ZFC. Then, because n , n′ = 0 , 1 by Z12, conclude n + n′ ≥ 1
(Z21).

Conclude the consequent of this proposition by and-ing the results in Z15, Z16, Z17, Z18,
Z19, Z20, and Z21.

Case: α = τ . Conclude τ /∈ TauFree by the definition of TauFree. Then, because α = τ by the
definition of this case, conclude α /∈ TauFree—a contradiction, because α ∈ TauFree by Z1.
Hence, this case cannot happen.

Step: α = β t γ. Assumptions:

36

• Induction hypothesis (IH):

α̂ ∈ TauFree implies



isol(ŵ , α̂) '
⊔n̂
i=1(âi(d̂i) t ξŵ](âi)(ŵ

[)) t
⊔n̂′
i=1 ξŵ](â′i)(ŵ

[)

and Act(isol(ŵ , α̂)) =
⋃n̂
i=1{âi , ξŵ](âi)} ∪

⋃n̂′
i=1{ξŵ](â′i)}

and isol(ŵ , α̂) '
⊔n̂′
i=1(â′i(d̂

′
i) t ξŵ](â′i)(ŵ

[)) t
⊔n̂
i=1 ξŵ](âi)(ŵ

[)

and Act(isol(ŵ , α̂)) =
⋃n̂′
i=1{â′i , ξŵ](â′i)} ∪

⋃n̂
i=1{ξŵ](âi)}

and α̂ '
⊔n̂
i=1 âi(d̂i) t

⊔n̂′
i=1 â

′
i(d̂
′
i)

and Act(α̂) =
⋃n̂
i=1 âi ∪

⋃n̂′
i=1 â

′
i and n̂+ n̂′ ≥ 1


for some n̂ , n̂′ , â1 , . . . , ân̂ , d̂1 , . . . , d̂n̂ , â

′
1 , . . . , â

′
n̂′ , d̂′1 , . . . , d̂′n̂′




for all α̂ ∈ {β , γ}

Observations:

• Recall α ∈ TauFree by Z1. Then, because α = β t γ by the definition of this step, conclude
β t γ ∈ TauFree. Then, conclude β , γ ∈ TauFree by the definition of TauFree. Then, conclude

isol(w , β) '
⊔m
i=1(bi(ei) t ξw](bi)(w

[)) t
⊔m′
i=1 ξw](b′i)(w

[) and

Act(isol(w , β)) =
⋃m
i=1{bi , ξw](bi)} ∪

⋃m′
i=1{ξw](b′i)} and

isol(w , β) '
⊔m′
i=1(b′i(e

′
i) t ξw](b′i)(w

[)) t
⊔m
i=1 ξw](bi)(w

[) and

Act(isol(w , β)) =
⋃m′
i=1{b′i , ξw](b′i)} ∪

⋃m
i=1{ξw](bi)} and

β '
⊔m
i=1 bi(ei) t

⊔m′
i=1 b

′
i(e
′
i) and

Act(β) =
⋃m
i=1 bi ∪

⋃m′
i=1 b

′
i and m+m′ ≥ 1



and



isol(w , γ) '
⊔l
i=1(ci(fi) t ξw](ci)(w

[)) t
⊔l′
i=1 ξw](c′i)(w

[) and

Act(isol(w , γ)) =
⋃l
i=1{ci , ξw](ci)} ∪

⋃l′
i=1{ξw](c′i)} and

isol(w , γ) '
⊔l′
i=1(c′i(f

′
i) t ξw](c′i)(w

[)) t
⊔l
i=1 ξw](ci)(w

[) and

Act(isol(w , γ)) =
⋃l′
i=1{c′i , ξw](c′i)} ∪

⋃l
i=1{ξw](ci)} and

γ '
⊔l
i=1 ci(fi) t

⊔l′
i=1 c

′
i(f
′
i) and

Act(γ) =
⋃l
i=1 ci ∪

⋃l′
i=1 c

′
i and l + l′ ≥ 1


by IH (Z22).

Assumptions:

• n , n′ = m+ l , m′ + l′ (Z23).

• ai , di =

{
bi , ei if 1 ≤ i ≤ m
ci−m , fi−m if m+ 1 ≤ i ≤ m+ l

(Z24).

• a′i , d′i =

{
b′i , e′i if 1 ≤ i ≤ m′
c′i−m′ , f ′i−m′ if m′ + 1 ≤ i ≤ m′ + l′

(Z25).

Observations:

• Conclude (Z26):

isol(w , α)
Step

= isol(w , β t γ)
isol

= isol(w , β) t isol(w , γ)

Z22

'
⊔m
i=1(bi(ei) t ξw](bi)(w

[)) t
⊔m′
i=1 ξw](b′i)(w

[) t⊔l
i=1(ci(fi) t ξw](ci)(w

[)) t
⊔l′
i=1 ξw](c′i)(w

[)

37

Z24,Z25

=
⊔m
i=1(ai(di) t ξw](ai)(w

[)) t
⊔m′
i=1 ξw](a′i)(w

[)⊔m+l
i=m+1(ai(di) t ξw](ai)(w

[)) t
⊔m′+l′
i=m′+1 ξw](a′i)(w

[)

⊔
'

⊔m+l
i=1 (ai(di) t ξw](ai)(w

[)) t
⊔m′+l′
i=1 ξw](a′i)(w

[)
Z23

=
⊔n
i=1(ai(di) t ξw](ai)(w

[)) t
⊔n′
i=1 ξw](a′i)(w

[)

• Conclude (Z27):

Act(isol(w , α))
Step

= Act(isol(w , β t γ))
isol

= Act(isol(w , β) t isol(w , γ))
Act

= Act(isol(w , β)) ∪ Act(isol(w , γ))

Z22

=
⋃m
i=1{bi , ξw](bi)} ∪

⋃m′
i=1{ξw](b′i)} ∪⋃l

i=1{ci , ξw](ci)} ∪
⋃l′
i=1{ξw](c′i)}

Z24,Z25

=
⋃m
i=1{ai , ξw](ai)} ∪

⋃m′
i=1{ξw](a′i)} ∪⋃m+l

i=m+1{ai , ξw](ai)} ∪
⋃m′+l′
i=m′+1{ξw](a′i)}

ZFC

=
⋃m+l
i=1 {ai , ξw](ai)} ∪

⋃m′+l′
i=1 {ξw](a′i)}

Z23

=
⋃n
i=1{ai , ξw](ai)} ∪

⋃n′
i=1{ξw](a′i)}

• Conclude (Z28):

isol(w , α)
Step

= isol(w , β t γ)
isol

= isol(w , β) t isol(w , γ)

Z22

'
⊔m′
i=1(b′i(e

′
i) t ξw](b′i)(w

[)) t
⊔m
i=1 ξw](bi)(w

[) t⊔l′
i=1(c′i(f

′
i) t ξw](c′i)(w

[)) t
⊔l
i=1 ξw](ci)(w

[)

Z24,Z25

=
⊔m′
i=1(a′i(d

′
i) t ξw](a′i)(w

[)) t
⊔m
i=1 ξw](ai)(w

[) t⊔m′+l′
i=m′+1(a′i(d

′
i) t ξw](a′i)(w

[)) t
⊔m+l
i=m+1 ξw](ai)(w

[)

⊔
'

⊔m′+l′
i=1 (a′i(d

′
i) t ξw](a′i)(w

[)) t
⊔m+l
i=1 ξw](ai)(w

[)
Z23

=
⊔n′
i=1(a′i(d

′
i) t ξw](a′i)(w

[)) t
⊔n
i=1 ξw](ai)(w

[)

• Conclude (Z29):

Act(isol(w , α))
Step

= Act(isol(w , β t γ))
isol

= Act(isol(w , β) t isol(w , γ))
Act

= Act(isol(w , β)) ∪ Act(isol(w , γ))

Z22

=
⋃m′
i=1{b′i , ξw](b′i)} ∪

⋃m
i=1{ξw](bi)} ∪⋃l′

i=1{c′i , ξw](c′i)} ∪
⋃l
i=1{ξw](ci)}

Z24,Z25

=
⋃m′
i=1{a′i , ξw](a′i)} ∪

⋃m
i=1{ξw](ai)} ∪⋃m′+l′

i=m′+1{a′i , ξw](a′i)} ∪
⋃m+l
i=m+1{ξw](ai)}

38

ZFC

=
⋃m′+l′
i=1 {a′i , ξw](a′i)} ∪

⋃m+l
i=1 {ξw](ai)}

Z23

=
⋃n′
i=1{a′i , ξw](a′i)} ∪

⋃n
i=1{ξw](ai)}

• Conclude (Z30):

α
Step

= β t γ
Z22

=
⊔m
i=1 bi(ei) t

⊔m′
i=1 b

′
i(e
′
i) t

⊔l
i=1 ci(fi) t

⊔l′
i=1 c

′
i(f
′
i)

Z24,Z25

=
⊔m
i=1 ai(di) t

⊔m′
i=1 a

′
i(d
′
i) t

⊔m+l
i=m+1 ai(di) t

⊔m′+l′
i=m′+1 a

′
i(d
′
i)⊔

'
⊔m+l
i=1 ai(di) t

⊔m′+l′
i=1 a′i(d

′
i)

Z23

=
⊔n
i=1 ai(di) t

⊔n′
i=1 a

′
i(d
′
i)

• Conclude (Z31):

Act(α)
Case

= Act(β t γ)
Act

= Act(β) ∪ Act(γ)
Z22

=
⋃m
i=1 bi ∪

⋃m′
i=1 b

′
i ∪
⋃l
i=1 ci ∪

⋃l′
i=1 c

′
i

Z24,Z25

=
⋃m
i=1 ai ∪

⋃m′
i=1 a

′
i ∪
⋃m+l
i=m+1 ai ∪

⋃m′+l′
i=m′+1 a

′
i

ZFC

=
⋃m+l
i=1 ai ∪

⋃m′+l′
i=1 a′i

Z23

=
⋃n
i=1 ai ∪

⋃n′
i=1 a

′
i

• Recall m+m′ , l+ l′ ≥ 1 by Z22. Then, conclude m+ l+m′ + l′ ≥ 1 by ZFC. Then, because n ,
n′ = m+ l , m′ + l′ by Z23, conclude n+ n′ ≥ 1 (Z32).

Conclude the consequent of this proposition by and-ing the results in Z26, Z27, Z28, Z29, Z30, Z31,
and Z32.

�

Proposition 12. Act(α) ⊆ dom(Ξ) implies ξw](a) , ξw](a) /∈ Act(α)

Proof. Assumptions:

• Act(α) ⊆ dom(Ξ) (Z1).

Observations:

• Recall Act(α) ⊆ dom(Ξ) by Z1. Then, because dom(Ξ) = {a | 〈w , a〉 ∈ dom(ξ) ∩ dom(ξ)} by the
definition of dom, conclude Act(α) ⊆ {a | 〈w , a〉 ∈ dom(ξ) ∩ dom(ξ)}. Then, conclude Act(α) ⊆ {
a | 〈w , a〉 ∈ dom(ξ)} by ZFC. Then, because dom(ξ) ⊆ {1 , 2}∗ × A by Definition 3, conclude
Act(α) ⊆ {a | 〈w , a〉 ∈ {1 , 2}∗ ×A}. Then, conclude Act(α) ⊆ A by ZFC (Z2).

Recall img(ξ) , img(ξ) ⊆ Act \ (A ∪ {tau}) by Definition 3. Then, because Act(α) ⊆ A by Z2, conclude
img(ξ) , img(ξ) ⊆ Act \ (Act(α) ∪ {tau}. Then, conclude ξw](a) , ξw](a) /∈ Act(α) by ZFC. �

39

Proposition 13.

1.

[
ξw](a) ∈ Act(îsol(w , α))
and Act(α) ⊆ dom(Ξ)

]
implies

 [
îsol = isol and a ∈ A

]
or

[
îsol = isol and a /∈ A

]

2.

[
ξw](a) ∈ Act(îsol(w , α))
and Act(α) ⊆ dom(Ξ)

]
implies

 [
îsol = isol and a /∈ A

]
or

[
îsol = isol and a ∈ A

]
3.

[
îsol = isol and a ∈ A
and Act(α) ⊆ dom(Ξ)

]
implies ξw](a) /∈ Act(îsol(w , α))

4.

[
îsol = isol and a /∈ A
and Act(α) ⊆ dom(Ξ)

]
implies ξw](a) /∈ Act(îsol(w , α))

5.

[
îsol = isol and a /∈ A
and Act(α) ⊆ dom(Ξ)

]
implies ξw](a) /∈ Act(îsol(w , α))

6.

[
îsol = isol and a ∈ A
and Act(α) ⊆ dom(Ξ)

]
implies ξw](a) /∈ Act(îsol(w , α))

Proof.

1. Assumptions:

•
[
ξw](a) ∈ Act(îsol(w , α)) and Act(α) ⊆ dom(Ξ)

]
(Z1).

Proceed by induction on α.

Base:
[
α = b(e) or α = τ

]
. Proceed by case distinction on the structure of α.

Case: α = b(e). Observations:

• Recall Act(α) ⊆ dom(Ξ) by Z1. Then, conclude ξw](a) /∈ Act(α) by Proposition 12 Then,
because α = b(e) by the definition of this case, conclude ξw](a) /∈ Act(b(e)). Then,
because Act(b(e)) = {b} by the definition of Act, conclude ξw](a) /∈ {b} (Z2).

• Recall img(ξ) ∩ img(ξ) = ∅ by Definition 3. Then, conclude ξw](a) /∈ {ξw](b)} by ZFC.
Then, because Act(ξw](b)(w[)) = {ξw](b)} by the definition of Act, conclude ξw](a) /∈
Act(ξw](b)(w[)) (Z3).

Conclude
[
b = a or b 6= a

]
by ZFC—proceed by case distinction.

Case: b = a. Observations:

• Conclude ξw](a) ∈ {a} ∪ {ξw](a)} by ZFC. Then, because
[
Act(a(e)) = {a} and

Act(ξw](a)(w[)) = {ξw](a)}
]

by the definition of Act, conclude ξw](a) ∈ Act(a(e)) ∪
Act(ξw](a)(w[)). Then, because Act(a(e) t ξw](a)(w[)) = Act(a(e)) ∪ Act(ξw](a)(w[))
by the definition of Act, conclude ξw](a) ∈ Act(a(e) t ξw](a)(w[)) (Z4).

Proceed by case distinction on the value of îsol.

Case: îsol = isol. Conclude
[
b ∈ A or b /∈ A

]
by ZFC—proceed by case distinction.

Case: b ∈ A. Observations:

• Recall b ∈ A by the definition of this case. Then, because b = a by the definition
of this case, conclude a ∈ A. Then, conclude isol(w , a(e)) = a(e) t ξw](a)(w[) by
the definition of isol (Z5).

40

Recall ξw](a) ∈ Act(a(e) t ξw](a)(w[)) by Z4. Then, because isol(w , a(e)) = a(e) t
ξw](a)(w[) by Z5, conclude ξw](a) ∈ Act(isol(w , a(e))). Then, because

[
b = a and

îsol = isol
]

by the definition of this case, conclude ξw](a) ∈ Act(îsol(w , b(e))). Then,

because α = b(e) by the definition of this base, conclude ξw](a) ∈ Act(îsol(w , α)).

Case: b /∈ A. Observations:

• Recall b /∈ A by the definition of this case. Then, conclude isol(w , b(e)) =
ξw](b)(w[) by the definition of isol (Z6).

Recall ξw](a) /∈ Act(ξw](b)(w[)) by Z3. Then, because isol(w , b(e)) = ξw](b)(w[)
by Z6, conclude ξw](a) /∈ Act(isol(w , b(e))). Then, because

[
α = b(e) by the

definition of this step
]

and
[
îsol = isol by the definition of this case

]
, conclude

ξw](a) /∈ Act(îsol(w , α))—a contradiction, because ξw](a) ∈ Act(îsol(w , α)) by Z1.
Hence, this case cannot happen.

Hence, conclude b ∈ A. Then, because b = a by the definition of this case, conclude
a ∈ A.

Case: îsol = isol. Conclude
[
a ∈ A or a /∈ A

]
by ZFC—proceed by case distinction.

Case: b ∈ A. Observations:

• Recall b ∈ A by the definition of this case. Then, conclude isol(w , b(e)) =
ξw](b)(w[) by the definition of isol (Z7).

Recall ξw](a) /∈ Act(ξw](b)(w[)) by Z3. Then, because isol(w , b(e)) = ξw](b)(w[)
by Z7, conclude ξw](a) /∈ Act(isol(w , b(e))). Then, because

[
α = b(e) by the

definition of this step
]

and
[
îsol = isol by the definition of this case

]
, conclude

ξw](a) /∈ Act(îsol(w , α))—a contradiction, because ξw](a) ∈ Act(îsol(w , α)) by Z1.
Hence, this case cannot happen.

Case: b /∈ A. Observations:

• Recall b /∈ A by the definition of this case. Then, because b = a by the definition
of this case, conclude a /∈ A. Then, conclude isol(w , a(e)) = a(e) t ξw](a)(w[) by
the definition of isol (Z8).

Recall ξw](a) ∈ Act(a(e) t ξw](a)(w[)) by Z4. Then, because isol(w , a(e)) = a(e) t
ξw](a)(w[) by Z8, conclude ξw](a) ∈ Act(isol(w , a(e))). Then, because

[
b = a and

îsol = isol
]

by the definition of this case, conclude ξw](a) ∈ Act(îsol(w , b(e))). Then,

because α = b(e) by the definition of this case, conclude ξw](a) ∈ Act(îsol(w , α)).

Hence, conclude b /∈ A. Then, because b = a by the definition of this case, conclude
a /∈ A.

Hence, conclude
[[

îsol = isol and a ∈ A
]

or
[
îsol = isol and a /∈ A

]]
.

Case: b 6= a. Observations:

• Recall
[
ξ : {1 , 2}∗×A� Act\(A∪{tau}) by Definition 3

]
and

[
a 6= b by the definition

of this case
]
. Then, conclude ξw](a) /∈ {ξw](b)} by ZFC (Z9).

• Recall
[
ξw](a) /∈ {b} by Z2

]
and

[
ξw](a) /∈ {ξw](b)} by Z9

]
. Then, conclude ξw](a) /∈

{b} ∪ {ξw](b)} by ZFC. Then, because
[
Act(b(e)) = {b} and Act(ξw](b)(w[)) = {

ξw](b)}
]

by the definition of Act, conclude ξw](a) /∈ Act(b(e))∪Act(ξw](b)(w[)). Then,

because Act(b(e) t ξw](b)(w[)) = Act(b(e)) ∪ Act(ξw](b)(w[)) by the definition of Act,
conclude ξw](a) /∈ Act(b(e) t ξw](b)(w[)) (Z10).

Proceed by case distinction on the value of îsol.

Case: îsol = isol. Conclude
[
b ∈ A or b /∈ A

]
by ZFC—proceed by case distinction.

Case: b ∈ A. Observations:

• Recall b ∈ A by the definition of this case. Then, conclude isol(w , b(e)) = b(e) t
ξw](b)(w[) by the definition of isol (Z11).

41

Recall ξw](a) /∈ Act(b(e) t ξw](b)(w[)) by Z10. Then, because isol(w , b(e)) = b(e) t
ξw](b)(w[) by Z11, conclude ξw](a) /∈ Act(isol(w , b(e))). Then, because

[
α = b(e)

by the definition of this step
]

and
[
îsol = isol by the definition of this case

]
, conclude

ξw](a) /∈ Act(îsol(w , α))—a contradiction, because ξw](a) ∈ Act(îsol(w , α)) by Z1.
Hence, this case cannot happen.

Case: b /∈ A. Observations:

• Recall b /∈ A by the definition of this case. Then, conclude isol(w , b(e)) =
ξw](b)(w[) by the definition of isol (Z12).

Recall ξw](a) /∈ Act(ξw](b)(w[)) by Z3. Then, because isol(w , b(e)) = ξw](b)(w[)
by Z12, conclude ξw](a) /∈ Act(isol(w , b(e))). Then, because

[
α = b(e) by the

definition of this step
]

and
[
îsol = isol by the definition of this case

]
, conclude

ξw](a) /∈ Act(îsol(w , α))—a contradiction, because ξw](a) ∈ Act(îsol(w , α)) by Z1.
Hence, this case cannot happen.

Hence, this case cannot happen.

Case: îsol = isol. Conclude
[
b ∈ A or b /∈ A

]
by ZFC—proceed by case distinction.

Case: b ∈ A. Observations:

• Recall b ∈ A by the definition of this case. Then, conclude isol(w , b(e)) =
ξw](b)(w[) by the definition of isol (Z13).

Recall ξw](a) /∈ Act(ξw](b)(w[)) by Z3. Then, because isol(w , b(e)) = ξw](b)(w[)
by Z13, conclude ξw](a) /∈ Act(isol(w , b(e))). Then, because

[
α = b(e) by the

definition of this step
]

and
[
îsol = isol by the definition of this case

]
, conclude

ξw](a) /∈ Act(îsol(w , α))—a contradiction, because ξw](a) ∈ Act(îsol(w , α)) by Z1.
Hence, this case cannot happen.

Case: b /∈ A. Observations:

• Recall b /∈ A by the definition of this case. Then, conclude isol(w , b(e)) = b(e) t
ξw](b)(w[) by the definition of isol (Z14).

Recall ξw](a) /∈ Act(b(e) t ξw](b)(w[)) by Z10. Then, because isol(w , b(e)) = b(e) t
ξw](b)(w[) by Z14, conclude ξw](a) /∈ Act(isol(w , b(e))). Then, because

[
α = b(e)

by the definition of this step
]

and
[
îsol = isol by the definition of this case

]
, conclude

ξw](a) /∈ Act(îsol(w , α))—a contradiction, because ξw](a) ∈ Act(îsol(w , α)) by Z1.
Hence, this case cannot happen.

Hence, this case cannot happen.

Hence, this case cannot happen.

Case: α = τ . Conclude ξw](α) /∈ ∅ by ZFC. Then, because Act(τ) = ∅ by the definition of

Act, conclude ξw](α) /∈ Act(τ). Then, because îsol(w , τ) = τ definition of îsol, conclude

ξw](α) /∈ Act(îsol(w , τ)). Then, because α = τ by the definition of this case, conclude

ξw](α) /∈ Act(îsol(w , α))—a contradiction, because ξw](α) ∈ Act(îsol(w , α)) by Z1. Hence,
this case cannot happen.

Step: α = β t γ. Assumptions:

• Induction hypothesis (IH):
ξŵ](â) ∈ Act(îsol(ŵ , α̂)) implies [

îsol = isol and â ∈ A
]

or
[
îsol = isol and â /∈ A

]
 for all α̂ ∈ {β , γ}

Observations:

42

• Conclude (Z15):

Act(îsol(w , α))
Step

= Act(îsol(w , β t γ))
îsol

= Act(îsol(w , β) t îsol(w , γ))
Act

= Act(îsol(w , β)) ∪ Act(îsol(w , γ))

Recall ξw](a) ∈ Act(îsol(w , α)) by Z1. Then, because Act(îsol(w , α)) = Act(îsol(w , β)) ∪
Act(îsol(w , γ)) by Z15, conclude ξw](a) ∈ Act(îsol(w , β)) ∪ Act(îsol(w , γ)). Then, conclude[
ξw](a) ∈ Act(îsol(w , β)) or ξw](a) ∈ Act(îsol(w , γ))

]
by ZFC. Then, conclude

[[
îsol = isol and

a ∈ A
]

or
[
îsol = isol and a /∈ A

]]
by IH.

�

2. Likewise. �

3. Assumptions:

•
[
îsol = isol and a ∈ A and Act(α) ⊆ dom(Ξ)

]
(Z1).

Proceed by induction on α.

Base:
[
α = b(e) or α = τ

]
. Proceed by case distinction on the structure of α.

Case: Observations:

• Recall Act(α) ⊆ dom(Ξ) by Z1. Then, conclude ξw](a) /∈ Act(α) by Proposition 12.
Then, because α = b(e) by the definition of this case, conclude ξw](a) /∈ Act(b(e)). Then,
because Act(b(e)) = {b} by the definition of Act, conclude ξw](a) /∈ {b} (Z2).

• Recall img(ξ) ∩ img(ξ) = ∅ by Definition 3. Then, conclude ξw](a) /∈ {ξw](b)} by ZFC
(Z3).

• Recall
[
ξw](a) /∈ {b} by Z2

]
and

[
ξw](a) /∈ {ξw](b)} by Z3

]
. Then, conclude ξw](a) /∈ {

b}∪ {ξw](b)} by ZFC. Then, because
[
Act(b(e)) = {b} and Act(ξw](b)(w[)) = {ξw](b)}

]
by the definition of Act, conclude ξw](a) /∈ Act(b(e)) ∪ Act(ξw](b)(w[)). Then, because
Act(b(e) t ξw](b)(w[)) = Act(b(e)) ∪ Act(ξw](b)(w[)) by the definition of Act, conclude
ξw](a) /∈ Act(b(e) t ξw](b)(w[)) (Z4).

Conclude
[
b = a or b 6= a

]
by ZFC—proceed by case distinction.

Case: b = a. Observations:

• Recall a ∈ A by Z1. Then, conclude isol(w , a(e)) = a(e)t ξw](a)(w[) by the definition
of isol (Z5).

Recall
[
ξw](a) /∈ {b} by Z2

]
and

[
ξw](a) /∈ {ξw](b)} by Z3

]
. Then, conclude ξw](a) /∈ {

b} ∪ {ξw](b)} by ZFC. Then, because b = a by the definition of this case, conclude
ξw](a) /∈ {a} ∪ {ξw](a)}. Then, because

[
Act(a(e)) = {a} and Act(ξw](a)(w[)) = {

ξw](a)}
]

by the definition of Act, conclude ξw](a) /∈ Act(a(e)) ∪ Act(ξw](a)(w[)). Then,

because Act(a(e) t ξw](a)(w[)) = Act(a(e)) ∪ Act(ξw](a)(w[)) by the definition of Act,
conclude ξw](a) /∈ Act(a(e)tξw](a)(w[)). Then, because isol(w , a(e)) = a(e)tξw](a)(w[)
by Z5, conclude ξw](a) /∈ Act(isol(w , a(e))). Then, because

[
b = a by the definition of

this case
]

and
[
îsol = isol by Z1

]
, conclude ξw](a) /∈ Act(îsol(w , b(e))). Then, because

α = b(e) by the definition of this case, conclude ξw](a) /∈ Act(îsol(w , α)).

Case: b 6= a. Observations:

43

• Recall
[
ξ : {1 , 2}∗ × A � Act \ (A ∪ {tau}) by Definition 3

]
and

[
b 6= a by the

definition of this case
]
. Then, conclude ξw](a) /∈ {ξw](b)} by ZFC. Then, because

Act(ξw](b)(w[)) = {ξw](b)} by the definition of Act, conclude ξw](a) /∈ Act(ξw](b)(w[))
(Z6).

Conclude
[
b ∈ A or b /∈ A

]
by ZFC—proceed by case distinction.

Case: b ∈ A. Observations:

• Recall b ∈ A by the definition of this case. Then, conclude isol(w , b(e)) = b(e) t
ξw](b)(w[) by the definition of isol (Z7).

Recall ξw](a) /∈ Act(b(e) t ξw](b)(w[)) by Z4. Then, because isol(w , b(e)) = b(e) t
ξw](b)(w[) by Z7, conclude ξw](a) /∈ Act(isol(w , b(e))). Then, because

[
α = b(e) by

the definition of this case
]

and
[
îsol = isol by Z1

]
, conclude ξw](a) /∈ Act(îsol(w , α)).

Case: b /∈ A. Observations:

• Recall b /∈ A by the definition of this case. Then, conclude isol(w , b(e)) = ξw](b)(w[)
by the definition of isol (Z8).

Recall ξw](a) /∈ Act(ξw](b)(w[)) by Z6. Then, because isol(w , b(e)) = ξw](b)(w[) by
Z8, conclude ξw](a) /∈ Act(isol(w , b(e))). Then, because

[
α = b(e) by the definition of

this case
]

and
[
îsol = isol by Z1

]
, conclude ξw](a) /∈ Act(îsol(w , α)).

Case: α = τ . Conclude ξw](a) /∈ ∅ by ZFC. Then, because Act(τ) = ∅ by the definition of Act,

conclude ξw](a) /∈ Act(τ). Then, because îsol(w , τ) = τ by the definition of îsol, conclude

ξw](a) /∈ Act(îsol(w , τ)). Then, because α = τ by the definition of this case, conclude

ξw](a) /∈ Act(îsol(w , α)).

Step: α = β t γ. Assumptions:

• Induction hypothesis (IH):[[
îsol = isol and â ∈ A

]
implies

ξŵ](â) /∈ Act(îsol(ŵ , α̂))

]
for all α̂ ∈ {β , γ}

Observations:

• Conclude (Z9):

Act(îsol(w , β)) ∪ Act(îsol(w , γ))
Act

= Act(îsol(w , β) t îsol(w , γ))
îsol

= Act(îsol(w , β t γ))
Step

= Act(îsol(w , α))

Recall
[
îsol = isol and a ∈ A

]
by Z1. Then, conclude ξw](a) /∈ Act(îsol(w , β)) , Act(îsol(w ,

γ)) by IH. Then, conclude ξw](a) /∈ Act(îsol(w , β)) ∪ Act(îsol(w , γ)) by ZFC. Then, because

Act(îsol(w , β)) ∪ Act(îsol(w , γ)) = îsol(w , α) by Z9, conclude ξw](a) /∈ Act(îsol(w , α)).

�

4. Likewise. �

5. Likewise. �

6. Likewise. �

44

Proposition 14 (Auxiliary actions exclude their duals).

1.

[
ξw](a) ∈ Act(îsol(w , α))
and Act(α) ⊆ dom(Ξ)

]
implies ξw](a) /∈ Act(îsol(w , α))

2.

[
ξw](a) ∈ Act(îsol(w , α))
and Act(α) ⊆ dom(Ξ)

]
implies ξw](a) /∈ Act(îsol(w , α))

Proof.

1. Assumptions:

•
[
ξw](a) ∈ Act(îsol(w , α)) and Act(α) ⊆ dom(Ξ)

]
(Z1).

Observations:

• Recall
[
ξw](a) ∈ Act(îsol(w , α)) and Act(α) ⊆ dom(Ξ)

]
by Z1. Then, conclude

[[
îsol = isol and

a ∈ A
]

or
[
îsol = isol and a /∈ A

]]
by Proposition 13:1 (Z2).

Recall
[[[

îsol = isol and a ∈ A
]

or
[
îsol = isol and a /∈ A

]]
by Z2

]
and

[
Act(α) ⊆ dom(Ξ) by Z1

]
.

Then, conclude ξw](a) /∈ Act(îsol(w , α)) by Proposition 13:3,4. �

2. Likewise. �

Proposition 15 (Words separate auxiliary actions).[
Act(β) ⊆ dom(Ξ) and v] 6= u]

]
implies ξu](c) , ξu](c) /∈ Act(isol(v , β))

Proof. Assumptions:

•
[
Act(β) ⊆ dom(Ξ) and v] 6= u]

]
(Z1).

Proceed by induction on the structure of β.

Base:
[
β = b(e) or β = τ

]
. Proceed by case distinction on the structure of β.

Case: β = b(e). Observations:

• Recall ξ , ξ : {1 , 2}∗ × A � Act \ (A ∪ {tau}) by Definition 3. Then, because v] 6= u] by
Z1, conclude

[
ξu](c) 6= ξv](b) and ξu](c) 6= ξv](b)

]
. Then, conclude

[
ξu](c) /∈ {ξv](b)} and

ξu](c) /∈ {ξv](b)}
]

by ZFC (Z2).

• Recall img(ξ)∩img(ξ) = ∅ by Definition 3. Then, conclude
[
ξu](c) /∈ {ξv](b)} and ξu](c) /∈ {

ξv](b)}
]

by ZFC (Z3).

Conclude
[
b ∈ A or b /∈ A

]
by ZFC—proceed by case distinction.

Case: b ∈ A. Observations:

• Recall b ∈ A by the definition of this case. Then, conclude isol(v , b(e)) = b(e)tξv](b)(v[)
by the definition of isol (Z4).

• Recall Act(β) ⊆ dom(Ξ) by Z1. Then, conclude ξu](c) , ξu](c) /∈ Act(β) by Proposition 12.
Then, because β = b(e) by the definition of this case, conclude ξu](c) , ξu](c) /∈ Act(b(e)).
Then, because Act(b(e)) = {b} by the definition of Act, conclude ξu](c) , ξu](c) /∈ {b} (Z5).

45

• Recall
[
ξu](c) /∈ {b} by Z5

]
and

[
ξu](c) /∈ {ξv](b)} by Z2

]
. Then, conclude ξu](c) /∈ {

b} ∪ {ξv](b)} by ZFC (Z6).

• Recall
[
ξu](c) /∈ {b} by Z5

]
and

[
ξu](c) /∈ {ξv](b)} by Z3

]
. Then, conclude ξu](c) /∈ {

b} ∪ {ξv](b)} by ZFC (Z7).

Recall
[
ξu](c) /∈ {b} ∪ {ξv](b)} by Z6

]
and

[
ξu](c) /∈ {b} ∪ {ξv](b)} by Z7

]
. Then, conclude

ξu](c) , ξu](c) /∈ {b}∪{ξv](b)} by ZFC. Then, because
[
Act(b(e)) = {b} and Act(ξv](b)(v

[)) =

{ξv](b)}
]

by the definition of Act, conclude ξu](c) , ξu](c) /∈ Act(b(e))∪Act(ξv](b)(v
[)). Then,

because Act(b(e)t ξv](b)(v[)) = Act(b(e))∪Act(ξv](b)(v
[)) by the definition of Act, conclude

ξu](c) , ξu](c) /∈ Act(b(e) t ξv](b)(v[)). Then, because isol(v , b(e)) = b(e) t ξv](b)(v[) by Z4,
conclude ξu](c) , ξu](c) /∈ Act(isol(v , b(e))). Then, because β = b(e) by the definition of this
case, conclude ξv](c) , ξu](c) /∈ Act(isol(v , β)).

Case: b /∈ A. Observations:

• Recall b /∈ A by the definition of this case. Then, conclude isol(v , b(e)) = ξv](b)(v
[) by

the definition of isol (Z8).

Recall
[
ξu](c) /∈ {ξv](b)} by Z3

]
and

[
ξu](c) /∈ {ξv](b)} by Z2

]
. Then, conclude ξu](c) ,

ξu](c) /∈ {ξv](b)} by ZFC. Then, because Act(ξv](b)(v
[)) = {ξv](b)} by the definition of Act,

conclude ξu](c) , ξu](c) /∈ Act(ξv](b)(v
[)). Then, because isol(v , b(e)) = ξv](b)(v

[) by Z4,
conclude ξu](c) , ξu](c) /∈ Act(isol(v , b(e))). Then, because β = b(e) by the definition of this
case, conclude ξv](c) , ξu](c) /∈ Act(isol(v , β)).

Case: β = τ . Conclude ξu](c) , ξu](c) /∈ ∅ by ZFC. Then, because Act(τ) = ∅ by the definition of Act,

conclude ξu](c) , ξu](c) /∈ Act(τ). Then, because îsol(w , τ) = τ by the definition of îsol, conclude

ξu](c) , ξu](c) /∈ Act(îsol(w , τ)). Then, because β = τ by the definition of this case, conclude

ξu](c) , ξu](c) /∈ Act(îsol(w , β)).

Step: β = β1 t β2. Assumptions:

• Induction hypothesis (IH):[[
Act(β̂) ⊆ dom(Ξ) and v̂] 6= û]

]
implies

ξû](ĉ) , ξû](ĉ) /∈ Act(isol(v̂ , β̂))

]
for all β̂ ∈ {β1 , β2}

Observations:

• Recall Act(β) ⊆ dom(Ξ) by Z1. Then, because β = β1tβ2 by the definition of this step, conclude
Act(β1 t β2) ⊆ dom(Ξ). Then, because Act(β1 t β2) = Act(β1)∪Act(β2) by the definition of Act,
conclude Act(β1) ∪ Act(β2) ⊆ dom(Ξ). Then, conclude Act(β1) , Act(β2) ⊆ dom(Ξ) by ZFC (Z9).

• Conclude (Z10):

Act(isol(v , β1)) ∪ Act(isol(v , β2))
Act

= Act(isol(v , β1) t isol(v , β2))
isol

= Act(isol(v , β1 t β2))
Step

= Act(isol(v , β))

Recall
[
Act(β1) , Act(β2) ⊆ dom(Ξ) by Z9

]
and

[
v] 6= u] by Z1

]
. Then, conclude ξv](c) , ξu](c) /∈

Act(isol(v , β1)) , Act(isol(v , β2)) by IH. Then, conclude ξv](c) , ξu](c) /∈ Act(isol(v , β1)) ∪ Act(isol(v ,
β2)) by ZFC. Then, because Act(isol(v , β1)) ∪ Act(isol(v , β2)) = Act(isol(v , β)), conclude ξv](c) ,
ξu](c) /∈ Act(isol(v , β)).

�

46

Proof (of Proposition 2). Assumptions:

•
[
α ∈ TauFree and Act(α) ⊆ dom(Ξ)

]
(Z1).

Observations:

• Recall α ∈ TauFree by Z1. Then, conclude

îsol(w , α) '
⊔n
i=1(ai(di) t ξw](ai)(w

[)) t
⊔n′
i=1 ξw](a′i)(w

[) and

Act(îsol(w , α)) =
⋃n
i=1{ai , ξw](ai)} ∪

⋃n′
i=1{ξw](a′i)} and n+ n′ ≥ 1

by Proposition 11 (Z2).

• Conclude tau /∈ Act \ (A ∪ {tau}) by ZFC. Then, because img(ξ) , img(ξ) ⊆ Act \ (A ∪ {tau}) by
Definition 3, conclude tau /∈ img(ξ) , img(ξ). Then, conclude

[
tau 6= ξw](an) and tau 6= ξw](a′n′)

]
by

ZFC. Then, conclude
[
T{tau}(ξw](an)(w[)) ' ξw](an)(w[) and T{tau}(ξw](a′n′)(w

[)) ' ξw](a′n′)(w
[)
]

by H3 (Z3).

• Conclude
[
∂img(ξ)∪img(ξ)(ξw](an)(w[)) ' δ and ∂img(ξ)∪img(ξ)(ξw](a′n′)(w

[)) ' δ
]

by B3. Then, be-

cause img(Ξ) = img(ξ) ∪ img(ξ) by the definition of img, conclude
[
∂img(Ξ)(ξw](an)(w[)) ' δ and

∂img(Ξ)(ξw](a′n′)(w
[)) ' δ

]
(Z4).

Recall n+ n′ ≥ 1 by Z2. Then, conclude
[
n ≥ 1 or n′ ≥ 1

]
by ZFC—proceed by case distinction.

Case: n ≥ 1. Observations:

• Recall n ≥ 1 by the definition of this case. Then, conclude ξw](an) ∈
⋃n
i=1{ai , ξw](ai)} ∪

⋃n′
i=1{

ξw](a′i)} by ZFC. Then, because Act(îsol(w , α)) =
⋃n
i=1{ai , ξw](ai)} ∪

⋃n′
i=1{ξw](a′i)} by Z2,

conclude ξw](an) ∈ Act(îsol(w , α)) (Z5).

• Recall
[
ξw](an) ∈ Act(îsol(w , α)) by Z5

]
and

[
Act(α) ⊆ dom(Ξ) by Z1

]
. Then, conclude

ξw](an) /∈ Act(îsol(w , α)) by Proposition 14:1. Then, because Act(îsol(w , α)) =
⋃n
i=1{ai ,

ξw](ai)} ∪
⋃n′
i=1{ξw](a′i)} by Z2, conclude ξw](an) /∈

⋃n
i=1{ai , ξw](ai)} ∪

⋃n′
i=1{ξw](a′i)}. Then,

conclude
C{ξ∗(a)tξ∗(a)→tau |〈∗,a〉∈dom(ξ)∩dom(ξ)}(⊔n

i=1(ai(di) t ξw](ai)(w
[)) t

⊔n′
i=1 ξw](a′i)(w

[)) ' α′ t ξw](an)(w[)

by the definition of C (Z6).

Conclude:

?(îsol(w , α))
Z2

' ?(
⊔n
i=1(ai(di) t ξw](ai)(w

[)) t
⊔n′
i=1 ξw](a′i)(w

[))
?

= ∂img(Ξ)(T{tau}(Γcomm(Ξ)(
⊔n
i=1(ai(di) t ξw](ai)(w

[)) t
⊔n′
i=1 ξw](a′i)(w

[))))
C1

' ∂img(Ξ)(T{tau}(Ccomm(Ξ)(
⊔n
i=1(ai(di) t ξw](ai)(w

[)) t
⊔n′
i=1 ξw](a′i)(w

[))))

comm

= ∂img(Ξ)(T{tau}(C{ξ∗(a)tξ∗(a)→tau |〈∗,a〉∈dom(ξ)∩dom(ξ)}(⊔n
i=1(ai(di) t ξw](ai)(w

[)) t
⊔n′
i=1 ξw](a′i)(w

[))))

47

Z6

= ∂img(Ξ)(T{tau}(α′ t ξw](an)(w[)))
SMA

' ∂img(Ξ)(T{tau}(α′ | ξw](an)(w[)))
H4

' ∂img(Ξ)(T{tau}(α′) | T{tau}(ξw](an)(w[)))
B4

' ∂img(Ξ)(T{tau}(α′)) | ∂img(Ξ)(T{tau}(ξw](an)(w[)))
Z3

' ∂img(Ξ)(T{tau}(α′)) | ∂img(Ξ)(ξw](an)(w[))
Z4

' ∂img(Ξ)(T{tau}(α′)) | δ
S4

' δ

Case: n′ ≥ 1. Observations:

• Recall n′ ≥ 1 by the definition of this case. Then, conclude ξw](a′n′) ∈
⋃n
i=1{ai , ξw](ai)}∪

⋃n′
i=1{

ξw](a′i)} by ZFC. Then, because Act(îsol(w , α)) =
⋃n
i=1{ai , ξw](ai)} ∪

⋃n′
i=1{ξw](a′i)} by Z2,

conclude ξw](a′n′) ∈ Act(îsol(w , α)) (Z7).

• Recall
[
ξw](a′n′) ∈ Act(îsol(w , α)) by Z7

]
and

[
Act(α) ⊆ dom(Ξ) by Z1

]
. Then, conclude

ξw](a′n′) /∈ Act(îsol(w , α)) by Proposition 14:2. Then, because Act(îsol(w , α)) =
⋃n
i=1{ai ,

ξw](ai)} ∪
⋃n′
i=1{ξw](a′i)} by Z2, conclude ξw](a′n′) /∈

⋃n
i=1{ai , ξw](ai)} ∪

⋃n′
i=1{ξw](a′i)}. Then,

conclude
C{ξ∗(a)tξ∗(a)→tau |〈∗,a〉∈dom(ξ)∩dom(ξ)}(⊔n

i=1(ai(di) t ξw](ai)(w
[)) t

⊔n′
i=1 ξw](a′i)(w

[)) ' α′ t ξw](a′n′)(w
[)

by the definition of C (Z8).

Conclude:

?(îsol(w , α))
Z2

' ?(
⊔n
i=1(ai(di) t ξw](ai)(w

[)) t
⊔n′
i=1 ξw](a′i)(w

[))
?

= ∂img(Ξ)(T{tau}(Γcomm(Ξ)(
⊔n
i=1(ai(di) t ξw](ai)(w

[)) t
⊔n′
i=1 ξw](a′i)(w

[))))
C1

' ∂img(Ξ)(T{tau}(Ccomm(Ξ)(
⊔n
i=1(ai(di) t ξw](ai)(w

[)) t
⊔n′
i=1 ξw](a′i)(w

[))))

comm

= ∂img(Ξ)(T{tau}(C{ξ∗(a)tξ∗(a)→tau |〈∗,a〉∈dom(ξ)∩dom(ξ)}(⊔n
i=1(ai(di) t ξw](ai)(w

[)) t
⊔n′
i=1 ξw](a′i)(w

[))))

Z8

= ∂img(Ξ)(T{tau}(α′ t ξw](a′n′)(w
[)))

SMA

' ∂img(Ξ)(T{tau}(α′ | ξw](a′n′)(w
[)))

H4

' ∂img(Ξ)(T{tau}(α′) | T{tau}(ξw](a′n′)(w
[)))

B4

' ∂img(Ξ)(T{tau}(α′)) | ∂img(Ξ)(T{tau}(ξw](a′n′)(w
[)))

Z3

' ∂img(Ξ)(T{tau}(α′)) | ∂img(Ξ)(ξw](a′n′)(w
[))

Z4

' ∂img(Ξ)(T{tau}(α′)) | δ
S4

' δ

�

Proof (of Proposition 3). Assumptions:

48

•
[
β , γ ∈ TauFree and Act(β) , Act(γ) ⊆ dom(Ξ) and v] 6= u]

]
(Z1).

Observations:

• Recall β , γ ∈ TauFree by Z1. Then, conclude[
isol(v , β) '

⊔m
i=1(bi(ei) t ξv](bi)(v[)) t

⊔m′
i=1 ξv](b

′
i)(v

[) and

Act(isol(v , β)) =
⋃m
i=1{bi , ξv](bi)} ∪

⋃m′
i=1{ξv](b′i)} and m+m′ ≥ 1

]

and

[
isol(u , γ) '

⊔l′
i=1(c′i(f

′
i) t ξu](c′i)(u

[)) t
⊔l
i=1 ξu](ci)(u

[) and

Act(isol(u , γ)) =
⋃l′
i=1{c′i , ξu](c′i)} ∪

⋃l
i=1{ξu](ci)} and l + l′ ≥ 1

]
by Proposition 11 (Z2).

• Recall
[
Act(β) ⊆ dom(Ξ) and v] 6= u]

]
by Z1. Then, conclude ξu](cl) , ξu](c′l′) /∈ Act(isol(v , β)) by

Proposition 15 (Z3).

• Conclude tau /∈ Act \ (A ∪ {tau}) by ZFC. Then, because img(ξ) , img(ξ) ⊆ Act \ (A ∪ {tau}) by
Definition 3, conclude tau /∈ img(ξ) , img(ξ). Then, conclude

[
tau 6= ξu](cl) and tau 6= ξu](c′l′)

]
by

ZFC. Then, conclude
[
T{tau}(ξu](cl)(u

[)) ' ξu](cl)(u
[) and T{tau}(ξu](c′l′)(u

[)) ' ξu](c′l′)(u
[)
]

by H3
(Z4).

• Conclude
[
∂img(ξ)∪img(ξ)(ξu](cl)(u

[)) ' δ and ∂img(ξ)∪img(ξ)(ξu](c′l′)(u
[)) ' δ

]
by B3. Then, be-

cause img(Ξ) = img(ξ) ∪ img(ξ) by the definition of img, conclude
[
∂img(Ξ)(ξu](cl)(u

[)) ' δ and

∂img(Ξ)(ξu](c′l′)(u
[)) ' δ

]
(Z5).

Recall l + l′ ≥ 1 by Z2. Then, conclude
[
l ≥ 1 or l′ ≥ 1

]
by ZFC—proceed by case distinction.

Case: l ≥ 1. Observations:

• Recall l ≥ 1 by the definition of this case. Then, conclude ξu](cl) ∈
⋃l′
i=1{c′i , ξu](c′i)} ∪

⋃l
i=1{

ξu](ci)} by ZFC. Then, because Act(isol(u , γ)) =
⋃l′
i=1{c′i , ξu](c′i)} ∪

⋃l
i=1{ξu](ci)} by Z2, con-

clude ξu](cl) ∈ Act(isol(u , γ)) (Z6).

• Recall
[
ξu](cl) ∈ Act(isol(u , γ)) by Z6

]
and

[
Act(γ) ⊆ dom(Ξ) by Z1

]
. Then, conclude ξu](cl) /∈

Act(isol(u , γ)) by Proposition 14:2 (Z7).

• Recall
[
ξu](cl) /∈ Act(isol(v , β)) by Z3

]
and

[
ξu](cl) /∈ Act(isol(u , γ)) by Z7

]
. Then, conclude

ξu](cl) /∈ Act(isol(v , β)) ∪ Act(isol(u , γ)) by ZFC. Then, because

Act(isol(v , β)) =
⋃m
i=1{bi , ξv](bi)} ∪

⋃m′
i=1{ξv](b′i)}

and Act(isol(u , γ)) =
⋃l′
i=1{c′i , ξu](c′i)} ∪

⋃l
i=1{ξu](ci)}

by Z2, conclude

ξu](cl) /∈⋃m
i=1{bi , ξv](bi)} ∪

⋃m′
i=1{ξv](b′i)} ∪

⋃l′
i=1{c′i , ξu](c′i)} ∪

⋃l
i=1{ξu](ci)}

Then, conclude

C{ξ∗(a)tξ∗(a)→tau |〈∗,a〉∈dom(ξ)∩dom(ξ)}(⊔m
i=1(bi(ei) t ξv](bi)(v[)) t

⊔m′
i=1 ξv](b

′
i)(v

[) t⊔l′
i=1(c′i(f

′
i) t ξu](c′i)(u

[)) t
⊔l
i=1 ξu](ci)(u

[)) ' γ′ t ξu](cl)(u
[)

by the definition of C (Z8).

49

Conclude:

?(isol(v , β) | isol(u , γ))
SMA

' ?(isol(v , β) t isol(u , γ))

Z2

' ?(
⊔m
i=1(bi(ei) t ξv](bi)(v[)) t

⊔m′
i=1 ξv](b

′
i)(v

[) t⊔l′
i=1(c′i(f

′
i) t ξu](c′i)(u

[)) t
⊔l
i=1 ξu](ci)(u

[))

?

= ∂img(Ξ)(T{tau}(Γcomm(Ξ)(⊔m
i=1(bi(ei) t ξv](bi)(v[)) t

⊔m′
i=1 ξv](b

′
i)(v

[) t⊔l′
i=1(c′i(f

′
i) t ξu](c′i)(u

[)) t
⊔l
i=1 ξu](ci)(u

[))))

C1

' ∂img(Ξ)(T{tau}(Ccomm(Ξ)(⊔m
i=1(bi(ei) t ξv](bi)(v[)) t

⊔m′
i=1 ξv](b

′
i)(v

[) t⊔l′
i=1(c′i(f

′
i) t ξu](c′i)(u

[)) t
⊔l
i=1 ξu](ci)(u

[))))

comm

= ∂img(Ξ)(T{tau}(C{ξ∗(a)tξ∗(a)→tau |〈w,a〉∈dom(ξ)∩dom(ξ)}(⊔m
i=1(bi(ei) t ξv](bi)(v[)) t

⊔m′
i=1 ξv](b

′
i)(v

[) t⊔l′
i=1(c′i(f

′
i) t ξu](c′i)(u

[)) t
⊔l
i=1 ξu](ci)(u

[))))

Z8

= ∂img(Ξ)(T{tau}(γ′ t ξu](cl)(u
[)))

SMA

' ∂img(Ξ)(T{tau}(γ′ | ξu](cl)(u
[)))

H4

' ∂img(Ξ)(T{tau}(γ′) | T{tau}(ξu](cl)(u
[)))

B4

' ∂img(Ξ)(T{tau}(γ′)) | ∂img(Ξ)(T{tau}(ξu](cl)(u
[)))

Z4

' ∂img(Ξ)(T{tau}(γ′)) | ∂img(Ξ)(ξu](cl)(u
[))

Z5

' ∂img(Ξ)(T{tau}(γ′)) | δ
S4

' δ

Case: l′ ≥ 1. Observations:

• Recall l′ ≥ 1 by the definition of this case. Then, conclude ξu](c′l′) ∈
⋃l′
i=1{c′i , ξu](c′i)} ∪

⋃l
i=1{

ξu](ci)} by ZFC. Then, because Act(isol(u , γ)) =
⋃l′
i=1{c′i , ξu](c′i)} ∪

⋃l
i=1{ξu](ci)} by Z2, con-

clude ξu](c′l′) ∈ Act(isol(u , γ)) (Z9).

• Recall
[
ξu](c′l′) ∈ Act(isol(u , γ)) by Z9

]
and

[
Act(γ) ⊆ dom(Ξ) by Z1

]
. Then, conclude ξu](c′l′) /∈

Act(isol(u , γ)) by Proposition 14:1 (Z10).

• Recall
[
ξu](c′l′) /∈ Act(isol(v , β)) by Z3

]
and

[
ξu](c′l′) /∈ Act(isol(u , γ)) by Z10

]
. Then, conclude

ξu](c′l′) /∈ Act(isol(v , β)) ∪ Act(isol(u , γ)) by ZFC. Then, because

Act(isol(v , β)) =
⋃m
i=1{bi , ξv](bi)} ∪

⋃m′
i=1{ξv](b′i)}

and Act(isol(u , γ)) =
⋃l′
i=1{c′i , ξu](c′i)} ∪

⋃l
i=1{ξu](ci)}

by Z2, conclude

ξu](c′l′) /∈⋃m
i=1{bi , ξv](bi)} ∪

⋃m′
i=1{ξv](b′i)} ∪

⋃l′
i=1{c′i , ξu](c′i)} ∪

⋃l
i=1{ξu](ci)}

50

Then, conclude

C{ξ∗(a)tξ∗(a)→tau |〈∗,a〉∈dom(ξ)∩dom(ξ)}(⊔m
i=1(bi(ei) t ξv](bi)(v[)) t

⊔m′
i=1 ξv](b

′
i)(v

[) t⊔l′
i=1(c′i(f

′
i) t ξu](c′i)(u

[)) t
⊔l
i=1 ξu](ci)(u

[)) ' γ′ t ξu](c′l′)(u
[)

by the definition of C (Z11).

Conclude:

?(isol(v , β) | isol(u , γ))
SMA

' ?(isol(v , β) t isol(u , γ))

Z2

' ?(
⊔m
i=1(bi(ei) t ξv](bi)(v[)) t

⊔m′
i=1 ξv](b

′
i)(v

[) t⊔l′
i=1(c′i(f

′
i) t ξu](c′i)(u

[)) t
⊔l
i=1 ξu](ci)(u

[))

?

= ∂img(Ξ)(T{tau}(Γcomm(Ξ)(⊔m
i=1(bi(ei) t ξv](bi)(v[)) t

⊔m′
i=1 ξv](b

′
i)(v

[) t⊔l′
i=1(c′i(f

′
i) t ξu](c′i)(u

[)) t
⊔l
i=1 ξu](ci)(u

[))))

C1

' ∂img(Ξ)(T{tau}(Ccomm(Ξ)(⊔m
i=1(bi(ei) t ξv](bi)(v[)) t

⊔m′
i=1 ξv](b

′
i)(v

[) t⊔l′
i=1(c′i(f

′
i) t ξu](c′i)(u

[)) t
⊔l
i=1 ξu](ci)(u

[))))

comm

= ∂img(Ξ)(T{tau}(C{ξ∗(a)tξ∗(a)→tau |〈w,a〉∈dom(ξ)∩dom(ξ)}(⊔m
i=1(bi(ei) t ξv](bi)(v[)) t

⊔m′
i=1 ξv](b

′
i)(v

[) t⊔l′
i=1(c′i(f

′
i) t ξu](c′i)(u

[)) t
⊔l
i=1 ξu](ci)(u

[))))

Z11

= ∂img(Ξ)(T{tau}(γ′ t ξu](c′l′)(u
[)))

SMA

' ∂img(Ξ)(T{tau}(γ′ | ξu](c′l′)(u
[)))

H4

' ∂img(Ξ)(T{tau}(γ′) | T{tau}(ξu](c′l′)(u
[)))

B4

' ∂img(Ξ)(T{tau}(γ′)) | ∂img(Ξ)(T{tau}(ξu](c′l′)(u
[)))

Z4

' ∂img(Ξ)(T{tau}(γ′)) | ∂img(Ξ)(ξu](c′l′)(u
[))

Z5

' ∂img(Ξ)(T{tau}(γ′)) | δ
S4

' δ

Proof (of Proposition 4). Assumptions:

•
[
β , γ ∈ TauFree and Act(β) , Act(γ) ⊆ dom(Ξ) and e 6= f

]
(Z1).

Observations:

51

• Recall β , γ ∈ TauFree by Z1. Then, concludeisol(wev , β) '
⊔m
i=1(bi(ei) t ξ(wev)](bi)((wev)[)) t

⊔m′
i=1 ξ(wev)](b

′
i)((wev)[)

and Act(isol(wev , β)) =
⋃m
i=1{bi , ξ(wev)](bi)} ∪

⋃m′
i=1{ξ(wev)](b

′
i)}

and Act(β) =
⋃m
i=1{bi} ∪

⋃m′
i=1{b′i} and m+m′ ≥ 1


andisol(wfu , γ) '

⊔l′
i=1(c′i(f

′
i) t ξ(wfu)](c

′
i)((wfu)[)) t

⊔l
i=1 ξ(wfu)](ci)((wfu)[)

and Act(isol(wfu , γ)) =
⋃l′
i=1{c′i , ξ(wfu)](c

′
i)} ∪

⋃l
i=1{ξ(wfu)](ci)}

and Act(γ) =
⋃l
i=1{ci} ∪

⋃l′
i=1{c′i} and l + l′ ≥ 1


by Proposition 11 (Z2).

• Conclude tau /∈ Act \ (A ∪ {tau}) by ZFC. Then, because img(ξ) , img(ξ) ⊆ Act \ (A ∪ {tau})
by Definition 3, conclude tau /∈ img(ξ) , img(ξ). Then, conclude

[
tau 6= ξ(wfu)](cl) and tau 6=

ξ(wfu)](c
′
l′)
]

by ZFC. Then, conclude

T{tau}(ξ(wfu)](cl)((wfu)[)) ' ξ(wfu)](cl)((wfu)[)

and T{tau}(ξ(wfu)](c
′
l′)((wfu)[)) ' ξ(wfu)](c

′
l′)((wfu)[)

by H3 (Z3).

• Conclude
∂img(ξ)∪img(ξ)(ξ(wfu)](cl)((wfu)[)) ' δ

and ∂img(ξ)∪img(ξ)(ξ(wfu)](c
′
l′)((wfu)[)) ' δ

by B3. Then, because img(Ξ) = img(ξ)∪img(ξ) by the definition of img, conclude
[
∂img(Ξ)(ξ(wfu)](cl)((wfu)[)) '

δ and ∂img(Ξ)(ξ(wfu)](c
′
l′)((wfu)[)) ' δ

]
(Z4).

Recall l + l′ ≥ 1 by Z2. Then, conclude
[
l ≥ 1 or l′ ≥ 1

]
by ZFC—proceed by case distinction.

Case: l ≥ 1. Observations:

• Recall Act(β) ⊆ dom(Ξ). Then, conclude ξ(wfu)](cl) /∈ Act(β) by Proposition 12. Then, because

Act(β) =
⋃m
i=1{bi} ∪

⋃m′
i=1{b′i}, conclude ξ(wfu)](cl) /∈

⋃m
i=1{bi} ∪

⋃m′
i=1{b′i}. Then, conclude

ξ(wfu)](cl) /∈
⋃m
i=1{bi} by ZFC (Z5).

• Recall l ≥ 1 by the definition of this case. Then, conclude ξ(wfu)](cl) ∈
⋃l′
i=1{c′i , ξ(wfu)](c

′
i)} ∪⋃l

i=1{ξ(wfu)](ci)} by ZFC. Then, because Act(isol(wfu , γ)) =
⋃l′
i=1{c′i , ξ(wfu)](c

′
i)} ∪

⋃l
i=1{

ξ(wfu)](ci)} by Z2, conclude ξ(wfu)](cl) ∈ Act(isol(wfu , γ)) (Z6).

• Recall
[
ξ(wfu)](cl) ∈ Act(isol(wfu , γ)) by Z6

]
and

[
Act(γ) ⊆ dom(Ξ) by Z1

]
. Then, conclude

ξ(wfu)](cl) /∈ Act(isol(wfu , γ)) by Proposition 14:2. Then, because Act(isol(wfu , γ)) =
⋃l′
i=1{

c′i , ξ(wfu)](c
′
i)} ∪

⋃l
i=1{ξ(wfu)](ci)} by Z2, conclude ξ(wfu)](cl) /∈

⋃l′
i=1{c′i , ξ(wfu)](c

′
i)} ∪

⋃l
i=1{

ξ(wfu)](ci)} (Z7).

• Recall
[
ξ(wfu)](cl) /∈

⋃m
i=1{bi} by Z5

]
and

[
ξ(wfu)](cl) /∈

⋃l′
i=1{c′i , ξ(wfu)](c

′
i)}∪

⋃l
i=1{ξ(wfu)](ci)}

by Z7
]
. Then, conclude ξ(wfu)](cl) /∈

⋃m
i=1{bi} ∪

⋃l′
i=1{c′i , ξ(wfu)](c

′
i)} ∪

⋃l
i=1{ξ(wfu)](ci)} by

52

ZFC. Then, because e 6= f by Z1, conclude:

C{ξ∗(a)tξ∗(a)→tau |〈∗,a〉∈dom(ξ)∩dom(ξ)}(⊔m
i=1(bi(ei) t ξ(wev)](bi)((wev)[)) t

⊔m′
i=1 ξ(wev)](b

′
i)((wev)[) t⊔l′

i=1(c′i(f
′
i) t ξ(wfu)](c

′
i)((wfu)[)) t

⊔l
i=1 ξ(wfu)](ci)((wfu)[))

' γ′ t ξ(wfu)](cl)((wfu)[)

by the definition of C (Z8).

Conclude:

?(isol(wev , β) | isol(wfu , γ))
SMA

' ?(isol(wev , β) t isol(wfu , γ))

Z2

' ?(
⊔m
i=1(bi(ei) t ξ(wev)](bi)((wev)[)) t

⊔m′
i=1 ξ(wev)](b

′
i)((wev)[) t⊔l′

i=1(c′i(f
′
i) t ξ(wfu)](c

′
i)((wfu)[)) t

⊔l
i=1 ξ(wfu)](ci)((wfu)[)

?

= ∂img(Ξ)(T{tau}(Γcomm(Ξ)(⊔m
i=1(bi(ei) t ξ(wev)](bi)((wev)[)) t

⊔m′
i=1 ξ(wev)](b

′
i)((wev)[) t⊔l′

i=1(c′i(f
′
i) t ξ(wfu)](c

′
i)((wfu)[)) t

⊔l
i=1 ξ(wfu)](ci)((wfu)[))))

C1

' ∂img(Ξ)(T{tau}(Ccomm(Ξ)(⊔m
i=1(bi(ei) t ξ(wev)](bi)((wev)[)) t

⊔m′
i=1 ξ(wev)](b

′
i)((wev)[) t⊔l′

i=1(c′i(f
′
i) t ξ(wfu)](c

′
i)((wfu)[)) t

⊔l
i=1 ξ(wfu)](ci)((wfu)[))))

comm

= ∂img(Ξ)(T{tau}(C{ξ∗(a)tξ∗(a)→tau |〈∗,a〉∈dom(ξ)∩dom(ξ)}(⊔m
i=1(bi(ei) t ξ(wev)](bi)((wev)[)) t

⊔m′
i=1 ξ(wev)](b

′
i)((wev)[) t⊔l′

i=1(c′i(f
′
i) t ξ(wfu)](c

′
i)((wfu)[)) t

⊔l
i=1 ξ(wfu)](ci)((wfu)[))))

Z8

= ∂img(Ξ)(T{tau}(γ′ t ξ(wfu)](cl)((wfu)[)))
SMA

' ∂img(Ξ)(T{tau}(γ′ | ξ(wfu)](cl)((wfu)[)))
H4

' ∂img(Ξ)(T{tau}(γ′) | T{tau}(ξ(wfu)](cl)((wfu)[)))
B4

' ∂img(Ξ)(T{tau}(γ′)) | ∂img(Ξ)(T{tau}(ξ(wfu)](cl)((wfu)[)))
Z3

' ∂img(Ξ)(T{tau}(γ′)) | ∂img(Ξ)(ξ(wfu)](cl)((wfu)[))
Z4

' ∂img(Ξ)(T{tau}(γ′)) | δ
S4

' δ

Case: l′ ≥ 1. Observations:

• Recall Act(β) ⊆ dom(Ξ). Then, conclude ξ(wfu)](c
′
l′) /∈ Act(β) by Proposition 12. Then, because

Act(β) =
⋃m
i=1{bi} ∪

⋃m′
i=1{b′i}, conclude ξ(wfu)](c

′
l′) /∈

⋃m
i=1{bi} ∪

⋃m′
i=1{b′i}. Then, conclude

ξ(wfu)](c
′
l′) /∈

⋃m
i=1{bi} by ZFC (Z9).

53

• Recall l′ ≥ 1 by the definition of this case. Then, conclude ξ(wfu)](c
′
l′) ∈

⋃l′
i=1{c′i , ξ(wfu)](c

′
i)} ∪⋃l

i=1{ξ(wfu)](ci)} by ZFC. Then, because Act(isol(wfu , γ)) =
⋃l′
i=1{c′i , ξ(wfu)](c

′
i)} ∪

⋃l
i=1{

ξ(wfu)](ci)} by Z2, conclude ξ(wfu)](c
′
l′) ∈ Act(isol(wfu , γ)) (Z10).

• Recall
[
ξ(wfu)](c

′
l′) ∈ Act(isol(wfu , γ)) by Z10

]
and

[
Act(γ) ⊆ dom(Ξ) by Z1

]
. Then, conclude

ξ(wfu)](c
′
l′) /∈ Act(isol(wfu , γ)) by Proposition 14:1. Then, because Act(isol(wfu , γ)) =

⋃l′
i=1{

c′i , ξ(wfu)](c
′
i)} ∪

⋃l
i=1{ξ(wfu)](ci)} by Z2, conclude ξ(wfu)](c

′
l′) /∈

⋃l′
i=1{c′i , ξ(wfu)](c

′
i)} ∪

⋃l
i=1{

ξ(wfu)](ci)} (Z11).

• Recall
[
ξ(wfu)](c

′
l′) /∈

⋃m
i=1{bi} by Z9

]
and

[
ξ(wfu)](c

′
l′) /∈

⋃l′
i=1{c′i , ξ(wfu)](c

′
i)}∪

⋃l
i=1{ξ(wfu)](ci)}

by Z11
]
. Then, conclude ξ(wfu)](c

′
l′) /∈

⋃m
i=1{bi} ∪

⋃l′
i=1{c′i , ξ(wfu)](c

′
i)} ∪

⋃l
i=1{ξ(wfu)](ci)} by

ZFC. Then, because e 6= f by Z1, conclude

C{ξ∗(a)tξ∗(a)→tau |〈∗,a〉∈dom(ξ)∩dom(ξ)}(⊔m
i=1(bi(ei) t ξ(wev)](bi)((wev)[)) t

⊔m′
i=1 ξ(wev)](b

′
i)((wev)[) t⊔l′

i=1(c′i(f
′
i) t ξ(wfu)](c

′
i)((wfu)[)) t

⊔l
i=1 ξ(wfu)](ci)((wfu)[))

' γ′ t ξ(wfu)](c
′
l′)((wfu)[)

by the definition of C (Z12).

Conclude:

?(isol(wxv , β) | isol(wxu , γ))
SMA

' ?(isol(wxv , β) t isol(wxu , γ))

Z2

' ?(
⊔m
i=1(bi(ei) t ξ(wev)](bi)((wev)[)) t

⊔m′
i=1 ξ(wev)](b

′
i)((wev)[) t⊔l′

i=1(c′i(f
′
i) t ξ(wfu)](c

′
i)((wfu)[)) t

⊔l
i=1 ξ(wfu)](ci)((wfu)[)

?

= ∂img(Ξ)(T{tau}(Γcomm(Ξ)(⊔m
i=1(bi(ei) t ξ(wev)](bi)((wev)[)) t

⊔m′
i=1 ξ(wev)](b

′
i)((wev)[) t⊔l′

i=1(c′i(f
′
i) t ξ(wfu)](c

′
i)((wfu)[)) t

⊔l
i=1 ξ(wfu)](ci)((wfu)[))))

C1

' ∂img(Ξ)(T{tau}(Ccomm(Ξ)(⊔m
i=1(bi(ei) t ξ(wev)](bi)((wev)[)) t

⊔m′
i=1 ξ(wev)](b

′
i)((wev)[) t⊔l′

i=1(c′i(f
′
i) t ξ(wfu)](c

′
i)((wfu)[)) t

⊔l
i=1 ξ(wfu)](ci)((wfu)[))))

comm

= ∂img(Ξ)(T{tau}(C{ξ∗(a)tξ∗(a)→tau |〈∗,a〉∈dom(ξ)∩dom(ξ)}(⊔m
i=1(bi(ei) t ξ(wev)](bi)((wev)[)) t

⊔m′
i=1 ξ(wev)](b

′
i)((wev)[) t⊔l′

i=1(c′i(f
′
i) t ξ(wfu)](c

′
i)((wfu)[)) t

⊔l
i=1 ξ(wfu)](ci)((wfu)[))))

Z12

= ∂img(Ξ)(T{tau}(γ′ t ξ(wfu)](c
′
l′)((wfu)[)))

SMA

' ∂img(Ξ)(T{tau}(γ′ | ξ(wfu)](c
′
l′)((wfu)[)))

H4

' ∂img(Ξ)(T{tau}(γ′) | T{tau}(ξ(wfu)](c
′
l′)((wfu)[)))

B4

' ∂img(Ξ)(T{tau}(γ′)) | ∂img(Ξ)(T{tau}(ξ(wfu)](c
′
l′)((wfu)[)))

Z3

' ∂img(Ξ)(T{tau}(γ′)) | ∂img(Ξ)(ξ(wfu)](c
′
l′)((wfu)[))

Z4

' ∂img(Ξ)(T{tau}(γ′)) | δ
S4

' δ

54

�

C. Proofs for Section 5.2

Proposition 16.

1.
[
x /∈ Bound(p) and Bound(p) C w = ∅

]
implies Bound(p) C wx = ∅

2.
[
d /∈ Bound(p) and Bound(p) C w = ∅

]
implies Bound(p) C wd = ∅

Proof.

1. Assumptions:

•
[
x /∈ Bound(p) and Bound(p) C w = ∅

]
(Z1).

Observations:

• Suppose
[
y A x for some y ∈ Bound(p)

]
. Then, conclude

[
y = x for some y ∈ Bound(p)

]
by

the definition of A. Then, conclude y ∈ Bound(p) by ZFC—a contradiction, because x /∈ Bound(p)
by Z1. Hence,

[
y 6A x for all y ∈ Bound(p)

]
(Z2).

• Recall Bound(p) C w = ∅ by Z1. Then, conclude {y ∈ Bound(p) | y A w} = ∅ by the definition of
C. Then, conclude

[
y 6A w for all y ∈ Bound(p)

]
by ZFC (Z3).

Recall
[[
y 6A x for all y ∈ Bound(p)

]
by Z2

]
and

[[
y 6A w for all y ∈ Bound(p)

]
by Z3

]
. Then,

conclude
[
y 6A w , x for all y ∈ Bound(p)

]
by ZFC. Then, conclude

[
y 6A wx for all y ∈ Bound(p)

]
by the definition of A. Then, conclude {y ∈ Bound(p) | y A wx} = ∅ by ZFC. Then, conclude
Bound(p) C wx = ∅ by the definition of C. �

2. Likewise.

Proposition 17 (îsol and [/] commute on processes).[
p ∈ Basic and x 6A w1 , w2

and Bound(p) C w1xw2 = ∅

]
implies îsol(w1xw2 , p)[d/x] = îsol(w1dw2 , p[d/x])

Proof. Assumptions:

•
[
p ∈ Basic and x 6A w1 , w2 and Bound(p) C w1xw2 = ∅

]
(Z1).

Proceed by induction on the structure of p.

Base:
[
p = α or p = δ

]
. Proceed by case distinction on the structure of p.

Case: p = α. Recall x 6A w1 , w2 by Z1. Then, conclude îsol(w1xw2 , α)[d/x] = îsol(w1dw2 , α[d/x])

by Proposition 10. Then, because p = α by the definition of this case, conclude îsol(w1xw2 ,

p)[d/x] = îsol(w1dw2 , p[d/x]).

Case: p = δ. Conclude:

55

îsol(w1xw2 , p)[d/x]
Case

= îsol(w1xw2 , δ)[d/x]
îsol

= δ[d/x]
[/]

= δ
îsol

= îsol(w1dw2 , δ)
[/]

= îsol(w1dw2 , δ[d/x])
Case

= îsol(w1dw2 , p[d/x])

Step:
[
p = q + r or p = q · r or p = c _ q � r or p =

∑
y∈{d1,...,d`} q

]
. Assumptions:

• Induction hypothesis (IH):[[
p̂ ∈ Basic and x̂ 6A ŵ1 , ŵ2

and Bound(p̂) C ŵ1x̂ŵ2 = ∅

]
implies

îsol(ŵ1x̂ŵ2 , p̂)[d̂/x̂] =

îsol(ŵ1d̂ŵ2 , p̂[d̂/x̂])

]
for all p̂ ∈ {q , r}

Proceed by case distinction on the structure of p.

Case:
[
p = q + r or p = q · r or p = c _ q � r

]
. Observations:

• Recall p ∈ Basic by Z1. Then, because
[
p = q + r or p = q · r or p = c _ q � r

]
by the

definition of this case, conclude
[
q + r ∈ Basic or q · r ∈ Basic or c _ q � r ∈ Basic

]
. Then,

conclude q , r ∈ Basic by the definition of Basic (Z2).

• Conclude 1 , 2 /∈ Var by Definition 2. Then, because x ∈ Var by the definition of x, conclude[
x 6= 1 and x 6= 2

]
. Then, conclude x 6A 1 , 2 by the definition of 6A. Then, because x A w2

by Z1, conclude x 6A w2 , 1 , 2. Then, conclude x 6A w21 , w22 by the definition of A. Then,
because x 6A w1 by Z1, conclude x 6A w1 , w21 , w22 (Z3).

• Recall Bound(p)Cw1xw2 = ∅ by Z1. Then, because
[
p = q+r or p = q ·r or p = c _ q �r

]
by the definition of this case, conclude

Bound(q + r) C w1xw2 = ∅ or Bound(q · r) C w1xw2 = ∅
or Bound(c _ q � r) C w1xw2 = ∅

Then, conclude Bound(q)∪Bound(r)Cw1xw2 = ∅ by the definition of Bound. Then, conclude[
Bound(q) C w1xw2 = ∅ and Bound(r) C w1xw2 = ∅

]
by ZFC (Z4).

• Recall
[
q , r ∈ Basic by Z2

]
and

[
x 6A w1 , w21 , w22 by Z3

]
and

[[
Bound(q) C w1xw2 = ∅

and Bound(r) C w1xw2 = ∅
]

by Z4
]
. Then, conclude

îsol(w1xw21 , q)[d/x] = îsol(w1dw21 , q[d/x])

and îsol(w1xw22 , r)[d/x] = îsol(w1dw22 , r[d/x])

by IH (Z5).

Proceed by case distinction on the structure of p.

Case: p = q + r. Conclude:

56

îsol(w1xw2 , p)[d/x]
Case

= îsol(w1xw2 , q + r)[d/x]
îsol

= (îsol(w1xw21 , q) + îsol(w1xw22 , r))[d/x]
[/]

= îsol(w1xw21 , q)[d/x] + îsol(w1xw22 , r)[d/x]
Z5

= îsol(w1dw21 , q[d/x]) + îsol(w1dw22 , r[d/x])
îsol

= îsol(w1dw2 , q[d/x] + r[d/x])
[/]

= îsol(w1dw2 , (q + r)[d/x])
Case

= îsol(w1dw2 , p[d/x])

Case: p = q · r.
îsol(w1xw2 , p)[d/x]

Case

= îsol(w1xw2 , q · r)[d/x]
îsol

= (îsol(w1xw21 , q) · îsol(w1xw22 , r))[d/x]
[/]

= îsol(w1xw21 , q)[d/x] · îsol(w1xw22 , r)[d/x]
Z5

= îsol(w1dw21 , q[d/x]) · îsol(w1dw22 , r[d/x])
îsol

= îsol(w1dw2 , q[d/x] · r[d/x])
[/]

= îsol(w1dw2 , (q · r)[d/x])
Case

= îsol(w1dw2 , p[d/x])

Case: p = c _ q � r.
îsol(w1xw2 , p)[d/x]

Case

= îsol(w1xw2 , c _ q � r)[d/x]
îsol

= (c _ îsol(w1xw21 , q) � îsol(w1xw22 , r))[d/x]
[/]

= c[d/x] _ îsol(w1xw21 , q)[d/x] � îsol(w1xw22 , r)[d/x]
Z5

= c[d/x] _ îsol(w1dw21 , q[d/x]) � îsol(w1dw22 , r[d/x])
îsol

= îsol(w1dw2 , c[d/x] _ q[d/x] � r[d/x])
[/]

= îsol(w1dw2 , (c _ q � r)[d/x])
Case

= îsol(w1dw2 , p[d/x])

Case: p =
∑
y∈{d1,...,d`} q. Observations:

• Recall p ∈ Basic by Z1. Then, because p =
∑
y∈{d1,...,d`} q by the definition of this case,

conclude
∑
y∈{d1,...,d`} q ∈ Basic. Then, conclude

[
q ∈ Basic and y /∈ Bound(q)

]
by the

definition of Basic (Z6).

• Recall Bound(p) C w1xw2 = ∅ by Z1. Then, because p =
∑
y∈{d1,...,d`} q by the definition

of this case, conclude Bound(
∑
y∈{d1,...,d`} q) C w1xw2 = ∅. Then, conclude Bound(q) ∪ {

y} C w1xw2 = ∅ by the definition of Bound. Then, conclude
[
Bound(q) C w1xw2 = ∅ and {

y} C w1xw2 = ∅
]

by ZFC (Z7).

• Recall {y} C w1xw2 = ∅ by Z7. Then, conclude {z ∈ {y} | z A w1xw2} = ∅ by the definition
of C. Then, conclude y 6A w1xw2 by ZFC. Then, conclude

[
y 6A w1 and y 6A x and y 6A w2

]
by the definition of A. Then, conclude y 6= x by the definition of A. Then, conclude

(
∑
y∈{d1,...,d`} îsol(w1xw2y , q))[d/x] =

∑
y∈{d1,...,d`} îsol(w1xw2y , q)[d/x]

and (
∑
y∈{d1,...,d`} q)[d/x] =

∑
y∈{d1,...,d`} q[d/x]

by the definition of [/] (Z8).

57

• Recall {y} C w1xw2 = ∅ by Z7. Then, conclude {z ∈ {y} | z A w1xw2} = ∅ by the definition
of C. Then, conclude y 6A w1xw2 by ZFC. Then, conclude

[
y 6A w1 and y 6A x and y 6A w2

]
by the definition of A. Then, conclude y 6= x by the definition of A. Then, conclude x 6A y
by the definition of A. Then, because x 6A w2 by Z1, conclude x 6A w2 , y. Then, conclude
x 6A w2y by the definition of A. Then, because x 6A w1 by Z1, conclude x 6A w1 , w2y (Z9).

• Recall
[
y /∈ Bound(q) by Z6

]
and

[
Bound(q)Cw1xw2 = ∅ by Z7

]
. Then, conclude Bound(q)C

w1xw2y = ∅ by Proposition 16 (Z10).

• Recall
[
q ∈ Basic by Z6

]
and

[
x 6A w1 , w2y by Z9

]
and

[
Bound(q) C w1xw2y = ∅ by Z10

]
.

Then, conclude îsol(w1xw2y , q)[d/x] = îsol(w1dw2y , q[d/x]) by IH (Z11).

Conclude:

îsol(w1xw2 , p)[d/x]
Case

= îsol(w1xw2 ,
∑
y∈{d1,...,d`} q)[d/x]

îsol

= (
∑
y∈{d1,...,d`} îsol(w1xw2y , q))[d/x]

Z8

=
∑
y∈{d1,...,d`} îsol(w1xw2y , q)[d/x]

Z11

=
∑
y∈{d1,...,d`} îsol(w1dw2y , q[d/x])

îsol

= îsol(w1dw2 ,
∑
y∈{d1,...,d`} q[d/x])

Z8

= îsol(w1dw2 , (
∑
y∈{d1,...,d`} q)[d/x])

Case

= îsol(w1dw2 , p[d/x])

�

Proposition 18 (Normal form for îsol-processes).[
p ∈ Basic and p ∈ TauFree and Act(p) ⊆ dom(Ξ) and Bound(p) C w = ∅

]

implies



 îsol(w , p) '
∑n
i=1 îsol(wwi , αααi) +

∑n′
i=1(îsol(ww′i , ααα

′
i) · p′i)

and
[[
αααi ∈ TauFree and Act(αααi) ⊆ dom(Ξ)

]
for all 1 ≤ i ≤ n

]
and

[[
ααα′i ∈ TauFree and Act(ααα′i) ⊆ dom(Ξ)

]
for all 1 ≤ i ≤ n′

]


for some

[
n , n′ , w1 , . . . , wn , ααα1 , . . . , αααn ,

w′1 , . . . , w
′
n′ , ααα

′
1 , . . . , ααα

′
n′ , p

′
1 , . . . , p

′
n′

]


Proof. Assumptions:

•
[
p ∈ Basic and p ∈ TauFree and Act(p) ⊆ dom(Ξ) and Bound(p) C w = ∅

]
(Z1).

Proceed by induction on the structure of p.

Base: p = ααα. Assumptions:

•
[
n , n′ , w1 , ααα1 = 1 , 0 , ε , ααα

]
(Z2).

Observations:

• Conclude (Z3):

58

îsol(w , p)
Base

= îsol(w , ααα)
ZFC

= îsol(wε , ααα)
Z2

= îsol(ww1 , ααα1)∑
=

∑1
i=1 îsol(wwi , αααi)

A6

'
∑1
i=1 îsol(wwi , αααi) + δ∑

=
∑1
i=1 îsol(wwi , αααi) +

∑0
i=1(îsol(ww′i , ααα

′
i) · p′i)

Z2

=
∑n
i=1 îsol(wwi , αααi) +

∑n′
i=1(îsol(ww′i , ααα

′
i) · p′i)

• Recall
[
p ∈ TauFree and Act(p) ⊆ dom(Ξ)

]
by Z1. Then, because p = ααα by the defini-

tion of this case, conclude
[
ααα ∈ TauFree and Act(ααα) ⊆ dom(Ξ)

]
. Then, because ααα1 = ααα by

Z2, conclude
[
ααα1 ∈ TauFree and Act(ααα1) ⊆ dom(Ξ)

]
. Then, conclude

[[
αααi ∈ TauFree and

Act(αααi) ⊆ dom(Ξ)
]

for all 1 ≤ i ≤ 1
]

by ZFC. Then, because n = 1 by Z2, conclude
[[
αααi ∈ Tau-

Free and Act(αααi) ⊆ dom(Ξ)
]

for all 1 ≤ i ≤ n
]

(Z4).

• Conclude
[[
ααα′i ∈ TauFree and Act(ααα′i) ⊆ dom(Ξ)

]
for all 1 ≤ i ≤ 0

]
by ZFC. Then, because

n′ = 0 by Z2, conclude
[[
ααα′i ∈ TauFree and Act(ααα′i) ⊆ dom(Ξ)

]
for all 1 ≤ i ≤ n′

]
(Z5).

Conclude the consequent of this proposition by and-ing the results in Z3, Z4, and Z5.

Step:
[
p = q + r or p = q · r or p = c _ q � r or p =

∑
x∈{d1,...,d`} q

]
. Assumptions:

• Induction hypothesis (IH):

[
p̂ ∈ Basic and p̂ ∈ TauFree and

Act(p̂) ⊆ dom(Ξ) and Bound(p̂) C ŵ = ∅

]
implies

 îsol(ŵ , p̂) '
∑n̂
i=1 îsol(ŵŵi , α̂ααi) +

∑n̂′
i=1(îsol(ŵŵ′i , α̂αα

′
i) · p̂′i)

and
[[
α̂ααi ∈ TauFree and Act(α̂ααi) ⊆ dom(Ξ)

]
for all 1 ≤ i ≤ n̂

]
and

[[
α̂αα′i ∈ TauFree and Act(α̂αα′i) ⊆ dom(Ξ)

]
for all 1 ≤ i ≤ n̂′

]


for some

[
n̂ , n̂′ , ŵ1 , . . . , ŵn , α̂αα1 , . . . , α̂ααn ,

ŵ′1 , . . . , ŵ
′
n̂′ , α̂αα

′
1 , . . . , α̂αα

′
n̂′ , p̂

′
1 , . . . , p̂

′
n̂′

]



for all p̂ ∈ {q , r} ∪ {q[di/x] | 1 ≤ i ≤ `}

Proceed by case distinction on the structure of p.

Case:
[
p = q + r or p = q · r or p = c _ q � r

]
. Observations:

• Recall p ∈ Basic by Z1. Then, because
[
p = q + r or p = q · r or p = c _ q � r

]
by the

definition of this case, conclude
[
q + r ∈ Basic or q · r ∈ Basic or c _ q � r ∈ Basic

]
. Then,

conclude q , r ∈ Basic by the definition of Basic (Z6).

• Recall p ∈ TauFree by Z1. Then, because
[
p = q + r or p = q · r or p = c _ q � r

]
by the

definition of this case, conclude
[
q+ r ∈ TauFree or q · r ∈ TauFree or c _ q � r ∈ TauFree

]
.

Then, conclude q , r ∈ TauFree by the definition of TauFree (Z7).

• Recall Act(p) ⊆ dom(Ξ) by Z1. Then, because
[
p = q + r or p = q · r or p = c _ q � r

]
by

the definition of this case, conclude

Act(q + r) ⊆ dom(Ξ) or Act(q · r) ⊆ dom(Ξ)
or Act(c _ q � r) ⊆ dom(Ξ)

Then, conclude Act(q) ∪ Act(r) ⊆ dom(Ξ) by the definition of Act. Then, conclude Act(q) ,
Act(r) ⊆ dom(Ξ) by ZFC (Z8).

59

• Recall Bound(p) Cw = ∅ by Z1. Then, because
[
p = q + r or p = q · r or p = c _ q � r

]
by

the definition of this case, conclude

Bound(q + r) C w = ∅ or Bound(q · r) C w = ∅
or Bound(c _ q � r) C w = ∅

Then, conclude Bound(q) ∪ Bound(r) C w = ∅ by the definition of Bound. Then, conclude[
Bound(q) C w = ∅ and Bound(r) C w = ∅

]
by ZFC (Z9).

• Conclude 1 , 2 /∈ Var by Definition 2. Then, because Bound(q) , Bound(r) ⊆ Var by the
definition of Bound, conclude 1 , 2 /∈ Bound(q) , Bound(r) (Z10).

• Recall
[
1 , 2 /∈ Bound(q) , Bound(r) by Z10

]
and

[[
Bound(q) Cw = ∅ and Bound(r) Cw = ∅

]
by Z9

]
. Then, conclude

[
Bound(q) C w1 = ∅ and Bound(r) C w2 = ∅

]
by Proposition 16

(Z11).

• Recall
[
q , r ∈ Basic by Z6

]
and

[
q , r ∈ TauFree by Z7

]
and

[
Act(q) , Act(r) ⊆ dom(Ξ) by

Z8
]

and
[[

Bound(q) C w1 = ∅ and Bound(r) C w2 = ∅
]

by Z11
]
. Then, conclude îsol(w1 , q) '

∑m
i=1 îsol(w1vi , βββi) +

∑m′
i=1(îsol(w1v′i , βββ

′
i) · q′i)

and
[[
βββi ∈ TauFree and Act(βββi) ⊆ dom(Ξ)

]
for all 1 ≤ i ≤ m

]
and

[[
βββ′i ∈ TauFree and Act(βββ′i) ⊆ dom(Ξ)

]
for all 1 ≤ i ≤ m′

]


and îsol(w2 , r) '
∑l
i=1 îsol(w2ui , γγγi) +

∑l′
i=1(îsol(w2u′i , γγγ

′
i) · r′i)

and
[[
γγγi ∈ TauFree and Act(γγγi) ⊆ dom(Ξ)

]
for all 1 ≤ i ≤ l

]
and

[[
γγγ′i ∈ TauFree and Act(γγγ′i) ⊆ dom(Ξ)

]
for all 1 ≤ i ≤ l′

]


by IH (Z12).

Proceed by case distinction on the structure of p.

Case: p = q + r. Assumptions:

•
[
n , n′ = m+ l , m′ + l′

]
(Z13).

• wi , αααi =

{
1vi , βββi if 1 ≤ i ≤ m
2ui−m , γγγi−m if m+ 1 ≤ i ≤ m+ l

(Z14).

• w′i , ααα′i , p′i =

{
1v′i , βββ

′
i , q
′
i if 1 ≤ i ≤ m′

2u′i−m′ , γγγ
′
i−m′ , r

′
i−m′ if m′ + 1 ≤ i ≤ m′ + l′

(Z15).

Observations:

• Conclude (Z16):

îsol(w , p)
Case

= îsol(w , q + r)
îsol

= îsol(w1 , q) + îsol(w2 , r)
Z12

'
∑m
i=1 îsol(w1vi , βββi) +

∑m′
i=1(îsol(w1v′i , βββ

′
i) · q′i) +∑l

i=1 îsol(w2ui , γγγi) +
∑l′
i=1(îsol(w2u′i , γγγ

′
i) · r′i)

Z14,Z15

=
∑m
i=1 îsol(wwi , αααi) +

∑m′
i=1(îsol(ww′i , ααα

′
i) · p′i) +∑m+l

i=m+1 îsol(wwi , αααi) +
∑m′+l′
i=m′+1(îsol(ww′i , ααα

′
i) · p′i)∑

'
∑m+l
i=1 îsol(wwi , αααi) +

∑m′+l′
i=1 (îsol(ww′i , ααα

′
i) · p′i)

Z13

=
∑n
i=1 îsol(wwi , αααi) +

∑n′
i=1(îsol(ww′i , ααα

′
i) · p′i)

• Recall [[
βββi ∈ TauFree and Act(βββi) ⊆ dom(Ξ)

]
for all 1 ≤ i ≤ m

]
and

[[
γγγi ∈ TauFree and Act(γγγi) ⊆ dom(Ξ)

]
for all 1 ≤ i ≤ l

]
60

by Z12. Then, conclude[[
βββi ∈ TauFree and Act(βββi) ⊆ dom(Ξ)

]
for all 1 ≤ i ≤ m

]
and

[[
γγγi−m ∈ TauFree and Act(γγγi−m) ⊆ dom(Ξ)

]
for all m+ 1 ≤ i ≤ m+ l

]
by ZFC. Then, conclude

[[
αααi ∈ TauFree and Act(αααi) ⊆ dom(Ξ)

]
for all 1 ≤ i ≤ m+ l

]
by the definition of αααi in Z14. Then, because n = m+ l by Z13, conclude

[[
αααi ∈ TauFree

and Act(αααi) ⊆ dom(Ξ)
]

for all 1 ≤ i ≤ n
]

(Z17).

• Recall [[
βββ′i ∈ TauFree and Act(βββ′i) ⊆ dom(Ξ)

]
for all 1 ≤ i ≤ m′

]
and

[[
γγγ′i ∈ TauFree and Act(γγγ′i) ⊆ dom(Ξ)

]
for all 1 ≤ i ≤ l′

]
by Z12. Then, conclude[[

βββ′i ∈ TauFree and Act(βββ′i) ⊆ dom(Ξ)
]

for all 1 ≤ i ≤ m′
]

and

[[
γγγ′i−m′ ∈ TauFree and Act(γγγ′i−m′) ⊆ dom(Ξ)

]
for all m′ + 1 ≤ i ≤ m′ + l′

]
by ZFC. Then, conclude

[[
ααα′i ∈ TauFree and Act(ααα′i) ⊆ dom(Ξ)

]
for all 1 ≤ i ≤ m′+l′

]
by the definition of ααα′i in Z15. Then, because n′ = m′+l′ by Z13, conclude

[[
ααα′i ∈ TauFree

and Act(ααα′i) ⊆ dom(Ξ)
]

for all 1 ≤ i ≤ n′
]

(Z18).

Conclude the consequent of this proposition by and-ing the results in Z16, Z17, and Z18.

Case: p = q · r. Assumptions:

•
[
n , n′ = 0 , m+m′

]
(Z19).

• w′i , ααα′i , p′i =


1vi , βββi , îsol(w2 , r)

if 1 ≤ i ≤ m

1v′i−m , βββ
′
i−m , q

′
i−m · îsol(w2 , r)

if m+ 1 ≤ i ≤ m+m′

(Z20).

Observations:

• Conclude (Z21):

îsol(w , p)
Case

= îsol(w , q · r)
îsol

= îsol(w1 , q) · îsol(w2 , r)
Z12

' (
∑m
i=1 îsol(w1vi , βββi) +

∑m′
i=1(îsol(w1v′i , βββ

′
i) · q′i)) ·

îsol(w2 , r)
A4

'
∑m
i=1(îsol(w1vi , βββi) · îsol(w2 , r)) +∑m′
i=1(îsol(w1v′i , βββ

′
i) · q′i · îsol(w2 , r))

Z20

'
∑m
i=1(îsol(ww′i , ααα

′
i) · p′i) +

∑m+m′
i=m+1(îsol(ww′i , ααα

′
i) · p′i)∑

'
∑m+m′
i=1 (îsol(ww′i , ααα

′
i) · p′i)

A6

' δ +
∑m+m′
i=1 (îsol(ww′i , ααα

′
i) · p′i)∑

'
∑0
i=1 îsol(wwi , αααi) +

∑m+m′
i=1 (îsol(ww′i , ααα

′
i) · p′i)

Z19

=
∑n
i=1 îsol(wwi , αααi) +

∑n′
i=1(îsol(ww′i , ααα

′
i) · p′i)

• Conclude
[[
αααi ∈ TauFree and Act(αααi) ⊆ dom(Ξ)

]
for all 1 ≤ i ≤ 0

]
by ZFC. Then,

because n = 0 by Z19, conclude
[[
αααi ∈ TauFree and Act(αααi) ⊆ dom(Ξ)

]
for all 1 ≤ i ≤

n
]

(Z22).

61

• Recall [[
βββi ∈ TauFree and Act(βββi) ⊆ dom(Ξ)

]
for all 1 ≤ i ≤ m

]
and

[[
βββ′i ∈ TauFree and Act(βββ′i) ⊆ dom(Ξ)

]
for all 1 ≤ i ≤ m′

]
by Z12. Then, conclude[[

βββi ∈ TauFree and Act(βββi) ⊆ dom(Ξ)
]

for all 1 ≤ i ≤ m
]

and

[[
βββ′i−m ∈ TauFree and Act(βββ′i−m) ⊆ dom(Ξ)

]
for all m+ 1 ≤ i ≤ m+m′

]
by ZFC. Then, conclude

[[
ααα′i ∈ TauFree and Act(ααα′i) ⊆ dom(Ξ)

]
for all 1 ≤ i ≤ m +

m′
]

by the definition of ααα′i in Z20. Then, because n′ = m + m′ by Z13, conclude[[
ααα′i ∈ TauFree and Act(ααα′i) ⊆ dom(Ξ)

]
for all 1 ≤ i ≤ n′

]
(Z23).

Conclude the consequent of this proposition by and-ing the results in Z21, Z22, and Z23.

Case: p = c _ q � r. Proceed by case distinction on the value of c.

Case: c ≈ true. Assumptions:

•
[
n , n′ , wi , αααi , w

′
i , ααα

′
i , p

′
i = m, m′ , 1vi , βββi , 1v

′
i , βββ

′
i , q
′
i

]
(Z24).

Observations:

• Conclude (Z25):

îsol(w , p)
Case

= îsol(w , c _ q � r)
Case

= îsol(w , true _ q � r)
îsol

= true _ îsol(w1 , q) � îsol(w2 , r)
COND1

' îsol(w1 , q)
Z12

'
∑m
i=1 îsol(w1vi , βββi) +

∑m′
i=1(îsol(w1v′i , βββ

′
i) · q′i)

Z24

=
∑n
i=1 îsol(wwi , αααi) +

∑n′
i=1(îsol(ww′i , ααα

′
i) · p′i)

• Recall
[[
βββi ∈ TauFree and Act(βββi) ⊆ dom(Ξ)

]
for all 1 ≤ i ≤ m

]
by Z12. Then,

conclude
[[
αααi ∈ TauFree and Act(αααi) ⊆ dom(Ξ)

]
for all 1 ≤ i ≤ m

]
by the definition

of αααi in Z24. Then, because n = m by Z24, conclude
[[
αααi ∈ TauFree and Act(αααi) ⊆

dom(Ξ)
]

for all 1 ≤ i ≤ n
]

(Z26).

• Recall
[[
βββ′i ∈ TauFree and Act(βββ′i) ⊆ dom(Ξ)

]
for all 1 ≤ i ≤ m′

]
by Z12. Then,

conclude
[[
ααα′i ∈ TauFree and Act(ααα′i) ⊆ dom(Ξ)

]
for all 1 ≤ i ≤ m′

]
by the defi-

nition of ααα′i in Z24. Then, because n′ = m′ by Z24, conclude
[[
ααα′i ∈ TauFree and

Act(ααα′i) ⊆ dom(Ξ)
]

for all 1 ≤ i ≤ n′
]

(Z27).

Conclude the consequent of this proposition by and-ing the results in Z25, Z26, and Z27.

Case: c ≈ false. Assumptions:

•
[
n , n′ , wi , αααi , w

′
i , ααα

′
i , p

′
i = l , l′ , 2ui , γγγi , 2u

′
i , γγγ

′
i , r
′
i

]
(Z28).

Observations:

• Conclude (Z29):

îsol(w , p)
Case

= îsol(w , c _ q � r)
Case

= îsol(w , false _ q � r)
îsol

= false _ îsol(w1 , q) � îsol(w2 , r)
COND2

' îsol(w2 , r)
Z12

'
∑l
i=1 îsol(w2ui , γγγi) +

∑l′
i=1(îsol(w2u′i , γγγ

′
i) · r′i)

Z28

=
∑n
i=1 îsol(wwi , αααi) +

∑n′
i=1(îsol(ww′i , ααα

′
i) · p′i)

62

• Recall
[[
γγγi ∈ TauFree and Act(γγγi) ⊆ dom(Ξ)

]
for all 1 ≤ i ≤ l

]
by Z12. Then,

conclude
[[
αααi ∈ TauFree and Act(αααi) ⊆ dom(Ξ)

]
for all 1 ≤ i ≤ l

]
by the definition

of αααi in Z28. Then, because n = l by Z28, conclude
[[
αααi ∈ TauFree and Act(αααi) ⊆

dom(Ξ)
]

for all 1 ≤ i ≤ n
]

(Z30).

• Recall
[[
γγγ′i ∈ TauFree and Act(γγγ′i) ⊆ dom(Ξ)

]
for all 1 ≤ i ≤ l′

]
by Z12. Then,

conclude
[[
ααα′i ∈ TauFree and Act(ααα′i) ⊆ dom(Ξ)

]
for all 1 ≤ i ≤ l′

]
by the definition

of ααα′i in Z28. Then, because n′ = l′ by Z28, conclude
[[
ααα′i ∈ TauFree and Act(ααα′i) ⊆

dom(Ξ)
]

for all 1 ≤ i ≤ n′
]

(Z31).

Conclude the consequent of this proposition by and-ing the results in Z29, Z30, and Z31.

Case: p =
∑
x∈{d1,...,d`} q. Observations:

• Recall p ∈ Basic by Z1. Then, because p =
∑
x∈{d1,...,d`} q by the definition of this case,

conclude
∑
x∈{d1,...,d`} q ∈ Basic. Then, conclude

[
q[di/x] ∈ Basic for all 1 ≤ i ≤ `

]
by the

definition of Basic (Z32).

• Recall p ∈ TauFree by Z1. Then, because p =
∑
x∈{d1,...,d`} q by the definition of this case,

conclude
∑
x∈{d1,...,d`} q ∈ TauFree. Then, conclude

[
q[di/x] ∈ TauFree for all 1 ≤ i ≤ `

]
by

the definition of TauFree (Z33).

• Recall Act(p) ⊆ dom(Ξ) by Z1. Then, because p =
∑
x∈{d1,...,d`} q by the definition of this

case, conclude Act(
∑
x∈{d1,...,d`} q) ⊆ dom(Ξ). Then, conclude

[
Act(q[di/x]) ⊆ dom(Ξ) for

all 1 ≤ i ≤ `
]

by the definition of Act (Z34).

• Recall Bound(p) C w = ∅ by Z1. Then, because p =
∑
x∈{d1,...,d`} q by the definition of this

case, conclude Bound(
∑
x∈{d1,...,d`} q) C w = ∅. Then, conclude Bound(q) ∪ {x} C w = ∅ by

the definition of Bound. Then, conclude
[
Bound(q)Cw = ∅ and {x}Cw = ∅

]
by ZFC (Z35).

• Recall {x} C w = ∅ by Z35. Then, conclude x 6A w by the definition of C (Z36).

• Recall
∑
x∈{d1,...,d`} q ∈ Basic by Z1. Then, conclude x /∈ Bound(q) by the definition of Basic

(Z37).

• Recall
[
x /∈ Bound(q) by Z37

]
and

[
Bound(q) C w = ∅ by Z35

]
. Then, conclude Bound(q) C

wx = ∅ by Proposition 16 (Z38).

• Recall
[
q ∈ Basic by Z32

]
and

[
x 6A w by Z36

]
and

[
Bound(q) C wx = ∅ by Z38

]
. Then,

conclude
[
îsol(wx , q)[di/x] = îsol(wdi , q[di/x]) for all 1 ≤ i ≤ `

]
by Proposition 17 (Z39).

• Conclude
[
di ∈ Elem for all 1 ≤ i ≤ `

]
by the definition of

∑
. Then, because

[
Bound(q) ⊆

Var by the definition of Bound
]

and
[
Elem∩Var = ∅ by Definition 1

]
, conclude

[
di /∈ Bound(q)

for all 1 ≤ i ≤ `
]

(Z40).

• Recall
[[
di /∈ Bound(q) for all 1 ≤ i ≤ `

]
by Z40

]
and

[
Bound(q) C w = ∅ by Z35

]
. Then,

conclude
[
Bound(q) C wdi = ∅ for all 1 ≤ i ≤ `

]
by Proposition 16. Then, conclude[

Bound(q[di/x]) C wdi = ∅ for all 1 ≤ i ≤ `
]

by the definition of Bound (Z41).

• Recall
[[
q[di/x] ∈ Basic for all 1 ≤ i ≤ `

]
by Z32

]
and

[[
q[di/x] ∈ TauFree for all 1 ≤ i ≤

`
]

by Z33
]

and
[[

Act(q[di/x]) ⊆ dom(Ξ) for all 1 ≤ i ≤ `
]

by Z34
]

and
[[

Bound(q[di/x]) C
wdi = ∅ for all 1 ≤ i ≤ `

]
by Z41

]
. Then, conclude

îsol(wdi , q[di/x]) '∑m
j=1 îsol(wdivi,j , βββi,j) +

∑m′
j=1(îsol(wdiv

′
i,j , βββ

′
i,j) · q′i,j)

and
[[
βββi,j ∈ TauFree and Act(βββi,j) ⊆ dom(Ξ)

]
for all 1 ≤ j ≤ m

]
and

[[
βββ′i,j ∈ TauFree and Act(βββ′i,j) ⊆ dom(Ξ)

]
for all 1 ≤ j ≤ m′

]


for all 1 ≤ i ≤ `

63

by IH (Z42).

Assumptions:

•
[
n , n′ = `m , `m′

]
(Z43).

•
[
wi , αααi = dd i

m e
vd i

m e,(i mod m)+1 , βββd i
m e,(i mod m)+1

]
(Z44).

•
[
w′i , ααα

′
i = dd i

m′ e
v′d i

m′ e,(i mod m′)+1
, βββ′d i

m′ e,(i mod m′)+1

]
(Z45).

Observations:

• Conclude (Z46):

îsol(w , p)
Case

= îsol(w ,
∑
x∈{d1,...,d`} q)

îsol

=
∑
x∈{d1,...,d`} îsol(wx , q)

Prop. 1

'
∑`
i=1 îsol(wx , q)[di/x]

Z39

'
∑`
i=1 îsol(wdi , q[di/x])

Z42

'
∑`
i=1(

∑m
j=1 îsol(wdivi,j , βββi,j) +

∑m′
j=1(îsol(wdiv

′
i,j , βββ

′
i,j) · q′i,j))∑

'
∑`
i=1

∑m
j=1 îsol(wdivi,j , βββi,j) +∑`

i=1

∑m′
j=1(îsol(wdiv

′
i,j , βββ

′
i,j) · q′i,j)

Z44,Z45

=
∑`m
i=1 îsol(wwi , αααi) +

∑`m′
i=1(îsol(ww′i , ααα

′
i) · p′i)

Z43

=
∑n
i=1 îsol(wwi , αααi) +

∑n′
i=1(îsol(ww′i , ααα

′
i) · p′i)

• Recall [[
βββi,j ∈ TauFree and Act(βββi,j) ⊆ dom(Ξ)

]
for all 1 ≤ j ≤ m

]
for all 1 ≤ i ≤ `

by Z12. Then, conclude[
βββd i

m e,(i mod m)+1 ∈ TauFree and Act(βββd i
m e,(i mod m)+1) ⊆ dom(Ξ)

]
for all 1 ≤ i ≤ `m

by ZFC. Then, conclude
[[
αααi ∈ TauFree and Act(αααi) ⊆ dom(Ξ)

]
for all 1 ≤ i ≤ `m

]
by

the definition of αααi in Z44. Then, because n = `m by Z43, conclude
[[
αααi ∈ TauFree and

Act(αααi) ⊆ dom(Ξ)
]

for all 1 ≤ i ≤ n
]

(Z47).

• Recall [[
βββ′i,j ∈ TauFree and Act(βββ′i,j) ⊆ dom(Ξ)

]
for all 1 ≤ j ≤ m′

]
for all 1 ≤ i ≤ `

by Z12. Then, conclude[
βββ′d i

m′ e,(i mod m′)+1
∈ TauFree and Act(βββ′d i

m′ e,(i mod m′)+1
) ⊆ dom(Ξ)

]
for all 1 ≤ i ≤ `m′

by ZFC. Then, conclude
[[
ααα′i ∈ TauFree and Act(ααα′i) ⊆ dom(Ξ)

]
for all 1 ≤ i ≤ `m′

]
by

the definition of ααα′i in Z45. Then, because n′ = `m′ by Z43, conclude
[[
ααα′i ∈ TauFree and

Act(ααα′i) ⊆ dom(Ξ)
]

for all 1 ≤ i ≤ n′
]

(Z48).

Conclude the consequent of this proposition by and-ing the results in Z46, Z47, and Z48.

�

64

Proof (of Proposition 5). Assumptions:

•
[
p ∈ Basic and p ∈ TauFree and Act(p) ⊆ dom(Ξ) and Bound(p) C w = ∅

]
(Z1).

Observations:

• Recall
[
p ∈ Basic and p ∈ TauFree and Act(p) ⊆ dom(Ξ) and Bound(p) C w = ∅

]
by Z1. Then,

conclude
îsol(w , p) '

∑n
i=1 îsol(wwi , αααi) +

∑n′
i=1(îsol(ww′i , ααα

′
i) · p′i)

and
[[
αααi ∈ TauFree and Act(αααi) ⊆ dom(Ξ)

]
for all 1 ≤ i ≤ n

]
and

[[
ααα′i ∈ TauFree and Act(ααα′i) ⊆ dom(Ξ)

]
for all 1 ≤ i ≤ n′

]
by Proposition 18 (Z2).

• Recall [[
αααi ∈ TauFree and Act(αααi) ⊆ dom(Ξ)

]
for all 1 ≤ i ≤ n

]
and

[[
ααα′i ∈ TauFree and Act(ααα′i) ⊆ dom(Ξ)

]
for all 1 ≤ i ≤ n′

]
by Z2. Then, conclude [

?(îsol(wwi , αααi)) ' δ for all 1 ≤ i ≤ n
]

and
[
?(îsol(wwi , ααα

′
i)) ' δ for all 1 ≤ i ≤ n′

]
by Proposition 2 (Z3).

Conclude:

?(îsol(w , p))
Z2

' ?(
∑n
i=1 îsol(wwi , αααi) +

∑n′
i=1(îsol(ww′i , ααα

′
i) · p′i))

Q3

'
∑n
i=1 ?(îsol(wwi , αααi)) +

∑n′
i=1 ?(îsol(ww′i , ααα

′
i) · p′i)

Q4

'
∑n
i=1 ?(îsol(wwi , αααi)) +

∑n′
i=1(?(îsol(ww′i , ααα

′
i)) · ?(p′i))

Z3

'
∑n
i=1 δ +

∑n′
i=1(δ · ?(p′i))

A7

'
∑n
i=1 δ +

∑n′
i=1 δ

A6

' δ

�

Proof (of Proposition 6). Assumptions:

•
[
q , r ∈ Basic and q , r ∈ TauFree and Act(q) , Act(r) ⊆ dom(Ξ)

and Bound(q) C v = ∅ and Bound(r) C u = ∅ and v] 6= u]

]
(Z1)

Observations:

• Recall
q , r ∈ Basic and q , r ∈ TauFree and Act(q) , Act(r) ⊆ dom(Ξ)

and Bound(q) C v = ∅ and Bound(r) C u = ∅ and v] 6= u]

by Z1. Then, conclude isol(v , q) '
∑m
i=1 isol(vvi , βββi) +

∑m′
i=1(isol(vv′i , βββ

′
i) · q′i)

and
[[
βββi ∈ TauFree and Act(βββi) ⊆ dom(Ξ)

]
for all 1 ≤ i ≤ m

]
and

[[
βββ′i ∈ TauFree and Act(βββ′i) ⊆ dom(Ξ)

]
for all 1 ≤ i ≤ m′

]


and

 isol(u , r) '
∑l
i=1 isol(uui , γγγi) +

∑l′
i=1(isol(uu′i , γγγ

′
i) · r′i)

and
[[
γγγi ∈ TauFree and Act(γγγi) ⊆ dom(Ξ)

]
for all 1 ≤ i ≤ l

]
and

[[
γγγ′i ∈ TauFree and Act(γγγ′i) ⊆ dom(Ξ)

]
for all 1 ≤ i ≤ l′

]


65

by Proposition 18 (Z2).

• Recall v] 6= u] by Z1. Then, conclude[
v]v]i 6= u]u]j and v]v]i 6= u]u′]j′ and v]v′]i′ 6= u]u]j and v]v′]i′ 6= u]u′]j′

]
for all

[
1 ≤ i ≤ m and 1 ≤ j ≤ l and 1 ≤ i′ ≤ m′ and 1 ≤ j′ ≤ l′

]
by ZFC. Then, conclude [

(vvi)
] 6= (uuj)

] and (vvi)
] 6= (uu′j′)

]

and (vv′i′)
] 6= (uuj)

] and (vv′i′)
] 6= (uu′j′)

]

]
for all

[
1 ≤ i ≤ m and 1 ≤ j ≤ l and 1 ≤ i′ ≤ m′ and 1 ≤ j′ ≤ l′

]
by the definition of] (Z3).

• Recall
[[[

βββi ∈ TauFree and Act(βββi) ⊆ dom(Ξ)
]

for all 1 ≤ i ≤ m
]

and
[[
βββ′i ∈ TauFree and Act(βββ′i) ⊆ dom(Ξ)

]
for all 1 ≤ i ≤ m′

]
and

[[
γγγi ∈ TauFree and Act(γγγi) ⊆ dom(Ξ)

]
for all 1 ≤ i ≤ l

]
and

[[
γγγ′i ∈ TauFree and Act(γγγ′i) ⊆ dom(Ξ)

]
for all 1 ≤ i ≤ l′

]
by Z2

]
and

[
[

(vvi)
] 6= (uuj)

] and (vvi)
] 6= (uu′j′)

]

and (vv′i′)
] 6= (uuj)

] and (vv′i′)
] 6= (uu′j′)

]

]
for all

[
1 ≤ i ≤ m and 1 ≤ j ≤ l and 1 ≤ i′ ≤ m′ and 1 ≤ j′ ≤ l′

]
by Z3

]
. Then, conclude

?(isol(vvi , βββi) | isol(uuj , γγγj)) ' δ
and ?(isol(vvi , βββi) | isol(uu′j′ , γγγ

′
j′)) ' δ

and ?(isol(vv′i′ , βββ
′
i′) | isol(uuj , γγγj)) ' δ

and ?(isol(vv′i′ , βββ
′
i′) | isol(uu′j′ , γγγ

′
j′)) ' δ

 for all


1 ≤ i ≤ m

and 1 ≤ j ≤ l
and 1 ≤ i′ ≤ m′
and 1 ≤ j′ ≤ l′


by Proposition 3 (Z4).

• Conclude (Z5):

?(isol(v , q) | isol(u , r))

Z2

' ?(
∑m
i=1 isol(vvi , βββi) +

∑m′
i=1(isol(vv′i , βββ

′
i) · q′i) |∑l

i=1 isol(uui , γγγi) +
∑l′
i=1(isol(uu′i , γγγ

′
i) · r′i))

S7

' ?(
∑m
i=1

∑l
j=1(isol(vvi , βββi) | isol(uuj , γγγj)) +∑m

i=1

∑l′
j=1(isol(vvi , βββi) | (isol(uu′j , γγγ

′
j) · r′j)) +∑m′

i=1

∑l
j=1((isol(vv′i , βββ

′
i) · q′i) | isol(uuj , γγγj)) +∑m′

i=1

∑l′
j=1((isol(vv′i , βββ

′
i) · q′i) | (isol(uu′j , γγγ

′
j) · r′j)))

S5,S6

' ?(
∑m
i=1

∑l
j=1(isol(vvi , βββi) | isol(uuj , γγγj)) +∑m

i=1

∑l′
j=1(isol(vvi , βββi) | isol(uu′j , γγγ

′
j) · r′j) +∑m′

i=1

∑l
j=1(isol(vv′i , βββ

′
i) | isol(uuj , γγγj) · q′i) +∑m′

i=1

∑l′
j=1(isol(vv′i , βββ

′
i) | isol(uu′j , γγγ

′
j) · (q′i ‖ r′j)))

66

Q3

'
∑m
i=1

∑l
j=1 ?(isol(vvi , βββi) | isol(uuj , γγγj)) +∑m

i=1

∑l′
j=1 ?(isol(vvi , βββi) | isol(uu′j , γγγ

′
j) · r′j) +∑m′

i=1

∑l
j=1 ?(isol(vv′i , βββ

′
i) | isol(uuj , γγγj) · q′i) +∑m′

i=1

∑l′
j=1 ?(isol(vv′i , βββ

′
i) | isol(uu′j , γγγ

′
j) · (q′i ‖ r′j))

Q4

'
∑m
i=1

∑l
j=1 ?(isol(vvi , βββi) | isol(uuj , γγγj)) +∑m

i=1

∑l′
j=1(?(isol(vvi , βββi) | isol(uu′j , γγγ

′
j)) · ?(r′j)) +∑m′

i=1

∑l
j=1(?(isol(vv′i , βββ

′
i) | isol(uuj , γγγj)) · ?(q′i)) +∑m′

i=1

∑l′
j=1(?(isol(vv′i , βββ

′
i) | isol(uu′j , γγγ

′
j)) · ?(q′i ‖ r′j))

Z4

'
∑m
i=1

∑l
j=1 δ +∑m

i=1

∑l′
j=1(δ · ?(r′j)) +

∑m′
i=1

∑l
j=1(δ · ?(q′i)) +

∑m′
i=1

∑l′
j=1(δ · ?(q′i ‖ r′j))

A7

'
∑m
i=1

∑l
j=1 δ +

∑m
i=1

∑l′
j=1 δ +

∑m′
i=1

∑l
j=1 δ +

∑m′
i=1

∑l′
j=1 δ

A6

' δ

• Conclude (Z6):

?((isol(v , q) · q′) | (isol(u , r) · r′))

Z2

' ?(((
∑m
i=1 isol(vvi , βββi) +

∑m′
i=1(isol(vv′i , βββ

′
i) · q′i)) · q′) |

((
∑l
i=1 isol(uui , γγγi) +

∑l′
i=1(isol(uu′i , γγγ

′
i) · r′i)) · r′))

A4

' ?((
∑m
i=1(isol(vvi , βββi) · q′) +

∑m′
i=1(isol(vv′i , βββ

′
i) · q′i · q′)) |

(
∑l
i=1(isol(uui , γγγi) · r′) +

∑l′
i=1(isol(uu′i , γγγ

′
i) · r′i · r′)))

S7

' ?(
∑m
i=1

∑l
j=1((isol(vvi , βββi) · q′) | (isol(uui , γγγi) · r′)) +∑m

i=1

∑l′
j=1((isol(vvi , βββi) · q′) | (isol(uu′j , γγγ

′
j) · r′j · r′)) +∑m′

i=1

∑l
j=1((isol(vv′i , βββ

′
i) · q′i · q′) | (isol(uui , γγγi) · r′)) +∑m′

i=1

∑l′
j=1((isol(vv′i , βββ

′
i) · q′i · q′) | (isol(uu′j , γγγ

′
j) · r′j · r′)))

S6

' ?(
∑m
i=1

∑l
j=1(isol(vvi , βββi) | isol(uuj , γγγj) · (q′ ‖ r′)) +∑m

i=1

∑l′
j=1(isol(vvi , βββi) | isol(uu′j , γγγ

′
j) · (q′ ‖ r′j · r′)) +∑m′

i=1

∑l
j=1(isol(vv′i , βββ

′
i) | isol(uuj , γγγj) · (q′i · q′ ‖ r′)) +∑m′

i=1

∑l′
j=1(isol(vv′i , βββ

′
i) | isol(uu′j , γγγ

′
j) · (q′i · q′ ‖ r′j · r′)))

Q3

'
∑m
i=1

∑l
j=1 ?(isol(vvi , βββi) | isol(uuj , γγγj) · (q′ ‖ r′)) +∑m

i=1

∑l′
j=1 ?(isol(vvi , βββi) | isol(uu′j , γγγ

′
j) · (q′ ‖ r′j · r′)) +∑m′

i=1

∑l
j=1 ?(isol(vv′i , βββ

′
i) | isol(uuj , γγγj) · (q′i · q′ ‖ r′)) +∑m′

i=1

∑l′
j=1 ?(isol(vv′i , βββ

′
i) | isol(uu′j , γγγ

′
j) · (q′i · q′ ‖ r′j · r′))

67

Q4

'
∑m
i=1

∑l
j=1(?(isol(vvi , βββi) | isol(uuj , γγγj)) · ?(q′ ‖ r′)) +∑m

i=1

∑l′
j=1(?(isol(vvi , βββi) | isol(uu′j , γγγ

′
j)) · ?(q′ ‖ r′j · r′)) +∑m′

i=1

∑l
j=1(?(isol(vv′i , βββ

′
i) | isol(uuj , γγγj)) · ?(q′i · q′ ‖ r′)) +∑m′

i=1

∑l′
j=1(?(isol(vv′i , βββ

′
i) | isol(uu′j , γγγ

′
j)) · ?(q′i · q′ ‖ r′j · r′))

Z4

'
∑m
i=1

∑l
j=1(δ · ?(q′ ‖ r′)) +

∑m
i=1

∑l′
j=1(δ · ?(q′ ‖ r′j · r′)) +∑m′

i=1

∑l
j=1(δ · ?(q′i · q′ ‖ r′)) +

∑m′
i=1

∑l′
j=1(δ · ?(q′i · q′ ‖ r′j · r′))

A7

'
∑m
i=1

∑l
j=1 δ +

∑m
i=1

∑l′
j=1 δ +

∑m′
i=1

∑l
j=1 δ +

∑m′
i=1

∑l′
j=1 δ

A6

' δ

Conclude the consequent of this proposition by and-ing the results in Z5 and Z6. �

Proof (of Proposition 7). Assumptions:

•
[
q , r ∈ Basic and q , r ∈ TauFree and Act(q) , Act(r) ⊆ dom(Ξ)
and Bound(q) C we = ∅ and Bound(r) C wf = ∅ and e 6= f

]
(Z1)

Observations:

• Recall
q , r ∈ Basic and q , r ∈ TauFree and Act(q) , Act(r) ⊆ dom(Ξ)
and Bound(q) C we = ∅ and Bound(r) C wf = ∅ and e 6= f

by Z1. Then, conclude isol(we , q) '
∑m
i=1 isol(wevi , βββi) +

∑m′
i=1(isol(wev′i , βββ

′
i) · q′i)

and
[[
βββi ∈ TauFree and Act(βββi) ⊆ dom(Ξ)

]
for all 1 ≤ i ≤ m

]
and

[[
βββ′i ∈ TauFree and Act(βββ′i) ⊆ dom(Ξ)

]
for all 1 ≤ i ≤ m′

]


and

 isol(wf , r) '
∑l
i=1 isol(wfui , γγγi) +

∑l′
i=1(isol(wfu′i , γγγ

′
i) · r′i)

and
[[
γγγi ∈ TauFree and Act(γγγi) ⊆ dom(Ξ)

]
for all 1 ≤ i ≤ l

]
and

[[
γγγ′i ∈ TauFree and Act(γγγ′i) ⊆ dom(Ξ)

]
for all 1 ≤ i ≤ l′

]


by Proposition 18 (Z2).

• Recall
[[[

βββi ∈ TauFree and Act(βββi) ⊆ dom(Ξ)
]

for all 1 ≤ i ≤ m
]

and
[[
βββ′i ∈ TauFree and Act(βββ′i) ⊆ dom(Ξ)

]
for all 1 ≤ i ≤ m′

]
and

[[
γγγi ∈ TauFree and Act(γγγi) ⊆ dom(Ξ)

]
for all 1 ≤ i ≤ l

]
and

[[
γγγ′i ∈ TauFree and Act(γγγ′i) ⊆ dom(Ξ)

]
for all 1 ≤ i ≤ l′

]
by Z2

]
and

[
e 6= f by Z1

]
. Then, conclude

?(isol(wevi , βββi) | isol(wfuj , γγγj)) ' δ
and ?(isol(wevi , βββi) | isol(wfu′j′ , γγγ

′
j′)) ' δ

and ?(isol(wev′i′ , βββ
′
i′) | isol(wfuj , γγγj)) ' δ

and ?(isol(wev′i′ , βββ
′
i′) | isol(wfu′j′ , γγγ

′
j′)) ' δ

 for all


1 ≤ i ≤ m

and 1 ≤ j ≤ l
and 1 ≤ i′ ≤ m′
and 1 ≤ j′ ≤ l′


by Proposition 4 (Z3).

• Conclude (Z4):

68

?(isol(we , q) | isol(wf , r))

Z2

' ?(
∑m
i=1 isol(wevi , βββi) +

∑m′
i=1(isol(wev′i , βββ

′
i) · q′i) |∑l

i=1 isol(wfui , γγγi) +
∑l′
i=1(isol(wfu′i , γγγ

′
i) · r′i))

S7

' ?(
∑m
i=1

∑l
j=1(isol(wevi , βββi) | isol(wfuj , γγγj)) +∑m

i=1

∑l′
j=1(isol(wevi , βββi) | (isol(wfu′j , γγγ

′
j) · r′j)) +∑m′

i=1

∑l
j=1((isol(wev′i , βββ

′
i) · q′i) | isol(wfuj , γγγj)) +∑m′

i=1

∑l′
j=1((isol(wev′i , βββ

′
i) · q′i) | (isol(wfu′j , γγγ

′
j) · r′j)))

S5,S6

' ?(
∑m
i=1

∑l
j=1(isol(wevi , βββi) | isol(wfuj , γγγj)) +∑m

i=1

∑l′
j=1(isol(wevi , βββi) | isol(wfu′j , γγγ

′
j) · r′j) +∑m′

i=1

∑l
j=1(isol(wev′i , βββ

′
i) | isol(wfuj , γγγj) · q′i) +∑m′

i=1

∑l′
j=1(isol(wev′i , βββ

′
i) | isol(wfu′j , γγγ

′
j) · (q′i ‖ r′j)))

Q3

'
∑m
i=1

∑l
j=1 ?(isol(wevi , βββi) | isol(wfuj , γγγj)) +∑m

i=1

∑l′
j=1 ?(isol(wevi , βββi) | isol(wfu′j , γγγ

′
j) · r′j) +∑m′

i=1

∑l
j=1 ?(isol(wev′i , βββ

′
i) | isol(wfuj , γγγj) · q′i) +∑m′

i=1

∑l′
j=1 ?(isol(wev′i , βββ

′
i) | isol(wfu′j , γγγ

′
j) · (q′i ‖ r′j))

Q4

'
∑m
i=1

∑l
j=1 ?(isol(wevi , βββi) | isol(wfuj , γγγj)) +∑m

i=1

∑l′
j=1(?(isol(wevi , βββi) | isol(wfu′j , γγγ

′
j)) · ?(r′j)) +∑m′

i=1

∑l
j=1(?(isol(wev′i , βββ

′
i) | isol(wfuj , γγγj)) · ?(q′i)) +∑m′

i=1

∑l′
j=1(?(isol(wev′i , βββ

′
i) | isol(wfu′j , γγγ

′
j)) · ?(q′i ‖ r′j))

Z3

'
∑m
i=1

∑l
j=1 δ +∑m

i=1

∑l′
j=1(δ · ?(r′j)) +

∑m′
i=1

∑l
j=1(δ · ?(q′i)) +

∑m′
i=1

∑l′
j=1(δ · ?(q′i ‖ r′j))

A7

'
∑m
i=1

∑l
j=1 δ +

∑m
i=1

∑l′
j=1 δ +

∑m′
i=1

∑l
j=1 δ +

∑m′
i=1

∑l′
j=1 δ

A6

' δ

• Conclude (Z5):

?((isol(wx , q) · q′) | (isol(wx , r) · r′))

Z2

' ?(((
∑m
i=1 isol(wevi , βββi) +

∑m′
i=1(isol(wev′i , βββ

′
i) · q′i)) · q′) |

((
∑l
i=1 isol(wfui , γγγi) +

∑l′
i=1(isol(wfu′i , γγγ

′
i) · r′i)) · r′))

A4

' ?((
∑m
i=1(isol(wevi , βββi) · q′) +

∑m′
i=1(isol(wev′i , βββ

′
i) · q′i · q′)) |

(
∑l
i=1(isol(wfui , γγγi) · r′) +

∑l′
i=1(isol(wfu′i , γγγ

′
i) · r′i · r′)))

69

S7

' ?(
∑m
i=1

∑l
j=1((isol(wevi , βββi) · q′) | (isol(wfui , γγγi) · r′)) +∑m

i=1

∑l′
j=1((isol(wevi , βββi) · q′) | (isol(wfu′j , γγγ

′
j) · r′j · r′)) +∑m′

i=1

∑l
j=1((isol(wev′i , βββ

′
i) · q′i · q′) | (isol(wfui , γγγi) · r′)) +∑m′

i=1

∑l′
j=1((isol(wev′i , βββ

′
i) · q′i · q′) | (isol(wfu′j , γγγ

′
j) · r′j · r′)))

S6

' ?(
∑m
i=1

∑l
j=1(isol(wevi , βββi) | isol(wfuj , γγγj) · (q′ ‖ r′)) +∑m

i=1

∑l′
j=1(isol(wevi , βββi) | isol(wfu′j , γγγ

′
j) · (q′ ‖ r′j · r′)) +∑m′

i=1

∑l
j=1(isol(wev′i , βββ

′
i) | isol(wfuj , γγγj) · (q′i · q′ ‖ r′)) +∑m′

i=1

∑l′
j=1(isol(wev′i , βββ

′
i) | isol(wfu′j , γγγ

′
j) · (q′i · q′ ‖ r′j · r′)))

Q3

'
∑m
i=1

∑l
j=1 ?(isol(wevi , βββi) | isol(wfuj , γγγj) · (q′ ‖ r′)) +∑m

i=1

∑l′
j=1 ?(isol(wevi , βββi) | isol(wfu′j , γγγ

′
j) · (q′ ‖ r′j · r′)) +∑m′

i=1

∑l
j=1 ?(isol(wev′i , βββ

′
i) | isol(wfuj , γγγj) · (q′i · q′ ‖ r′)) +∑m′

i=1

∑l′
j=1 ?(isol(wev′i , βββ

′
i) | isol(wfu′j , γγγ

′
j) · (q′i · q′ ‖ r′j · r′))

Q4

'
∑m
i=1

∑l
j=1(?(isol(wevi , βββi) | isol(wfuj , γγγj)) · ?(q′ ‖ r′)) +∑m

i=1

∑l′
j=1(?(isol(wevi , βββi) | isol(wfu′j , γγγ

′
j)) · ?(q′ ‖ r′j · r′)) +∑m′

i=1

∑l
j=1(?(isol(wev′i , βββ

′
i) | isol(wfuj , γγγj)) · ?(q′i · q′ ‖ r′)) +∑m′

i=1

∑l′
j=1(?(isol(wev′i , βββ

′
i) | isol(wfu′j , γγγ

′
j)) · ?(q′i · q′ ‖ r′j · r′))

Z3

'
∑m
i=1

∑l
j=1(δ · ?(q′ ‖ r′)) +

∑m
i=1

∑l′
j=1(δ · ?(q′ ‖ r′j · r′)) +∑m′

i=1

∑l
j=1(δ · ?(q′i · q′ ‖ r′)) +

∑m′
i=1

∑l′
j=1(δ · ?(q′i · q′ ‖ r′j · r′))

A7

'
∑m
i=1

∑l
j=1 δ +

∑m
i=1

∑l′
j=1 δ +

∑m′
i=1

∑l
j=1 δ +

∑m′
i=1

∑l′
j=1 δ

A6

' δ

Conclude the consequent of this proposition by and-ing the results in Z4 and Z5. �

Proof (of Proposition 8). Assumptions:

•
[
p ∈ Basic and p ∈ TauFree and Act(p) ⊆ dom(Ξ) and Bound(p) C w = ∅

]
(Z1).

Observations:

• Recall
p ∈ Basic and p ∈ TauFree and

Act(p) ⊆ dom(Ξ) and Bound(p) C w = ∅

by Z1. Then, conclude

îsol(w , p) '
∑n
i=1 îsol(wwi , αααi) +

∑n′
i=1(îsol(ww′i , ααα

′
i) · p′i)

and
[[
αααi ∈ TauFree and Act(αααi) ⊆ dom(Ξ)

]
for all 1 ≤ i ≤ n

]
and

[[
ααα′i ∈ TauFree and Act(ααα′i) ⊆ dom(Ξ)

]
for all 1 ≤ i ≤ n′

]
by Proposition 18 (Z2).

70

• Conclude
[
Bound(αααi) = ∅ for all 1 ≤ i ≤ `

]
by the definition of Bound. Then, conclude

[
Bound(αααi) C

wwi = ∅ for all 1 ≤ i ≤ `
]

by the definition of C (Z3).

• Conclude
[
Bound(ααα′i) = ∅ for all 1 ≤ i ≤ `

]
by the definition of Bound. Then, conclude

[
Bound(ααα′i) C

ww′i = ∅ for all 1 ≤ i ≤ `
]

by the definition of C (Z4).

• Recall
[[
αααi ∈ Basic for all 1 ≤ i ≤ n

]
by the definition of Basic

]
and

[[
αααi ∈ TauFree and Act(αααi) ⊆

dom(Ξ) for all 1 ≤ i ≤ n
]

by Z2
]

and
[[

Bound(αααi) C wwi = ∅ for all 1 ≤ i ≤ `
]

by Z3
]
. Then,

conclude
[

?(îsol(wwi , αααi)) ' δ for all 1 ≤ i ≤ n
]

by Proposition 5 (Z5).

• Recall
[[
ααα′i ∈ Basic for all 1 ≤ i ≤ n′

]
by the definition of Basic

]
and

[[
ααα′i ∈ TauFree and Act(ααα′i) ⊆

dom(Ξ) for all 1 ≤ i ≤ n
]

by Z2
]

and
[[

Bound(ααα′i) C ww′i = ∅ for all 1 ≤ i ≤ `
]

by Z4
]
. Then,

conclude
[

?(îsol(ww′i , ααα
′
i)) ' δ for all 1 ≤ i ≤ n

]
by Proposition 5 (Z6).

• Conclude (Z7):

?(îsol(w , p) T q)
Z2

' ?((
∑n
i=1 îsol(wwi , αααi) +

∑n′
i=1(îsol(ww′i , ααα

′
i) · p′i)) T q)

LM4

' ?(
∑n
i=1(îsol(wwi , αααi) T q) +

∑n′
i=1((îsol(ww′i , ααα

′
i) · p′i) T q))

LM1,LM3

' ?(
∑n
i=1(îsol(wwi , αααi) · q) +

∑n′
i=1(îsol(ww′i , ααα

′
i) · (p′i ‖ q)))

Q3

'
∑n
i=1 ?(îsol(wwi , αααi) · q) +

∑n′
i=1 ?(îsol(ww′i , ααα

′
i) · (p′i ‖ q))

Q4

'
∑n
i=1(?(îsol(wwi , αααi)) · ?(q)) +

∑n′
i=1(?(îsol(ww′i , ααα

′
i)) · ?(p′i ‖ q))

Z5,Z6

'
∑n
i=1(δ · ?(q)) +

∑n′
i=1(δ · ?(p′i ‖ q))

A7

'
∑n
i=1 δ +

∑n′
i=1 δ

A6

' δ

• Conclude (Z8):

?((îsol(w , p) · p′) T q)
Z2

' ?(((
∑n
i=1 îsol(wwi , αααi) +

∑n′
i=1(îsol(ww′i , ααα

′
i) · p′i)) · p′) T q)

A4

' ?((
∑n
i=1(îsol(wwi , αααi) · p′) +

∑n′
i=1(îsol(ww′i , ααα

′
i) · p′i · p′)) T q)

LM4

' ?(
∑n
i=1((îsol(wwi , αααi) · p′) T q) +

∑n′
i=1((îsol(ww′i , ααα

′
i) · p′i · p′) T q))

LM3

' ?(
∑n
i=1(îsol(wwi , αααi) · (p′ ‖ q)) +

∑n′
i=1(îsol(ww′i , ααα

′
i) · (p′i ‖ q)))

Q3

'
∑n
i=1 ?(îsol(wwi , αααi) · (p′ ‖ q)) +

∑n′
i=1 ?(îsol(ww′i , ααα

′
i) · (p′i ‖ q))

Q4

'
∑n
i=1(?(îsol(wwi , αααi)) · ?(p′ ‖ q)) +

∑n′
i=1(?(îsol(ww′i , ααα

′
i)) · ?(p′i ‖ q))

Z5,Z6

'
∑n
i=1(δ · ?(p′ ‖ q)) +

∑n′
i=1(δ · ?(p′i ‖ q))

A7

'
∑n
i=1 δ +

∑n′
i=1 δ

A6

' δ

Conclude the consequent of this proposition by and-ing the results in Z7 and Z8. �

D. Proofs for Section 5.3

Proof (of Lemma 1). Assumptions:

71

•
[
p ∈ Basic and p ∈ TauFree and Act(p) ⊆ dom(Ξ) and Bound(p) C w = ∅

]
(Z1).

Observations:

• Recall
[
p ∈ Basic and p ∈ TauFree and Act(p) ⊆ dom(Ξ) and Bound(p) C w = ∅

]
by Z1. Then,

conclude
?(isol(w , p) T isol(w , p)) ' δ and ?(isol(w , p) T isol(w , p)) ' δ

and ?((isol(w , p) · p′) T (isol(w , p) · p′)) ' δ
and ?((isol(w , p) · p′) T (isol(w , p) · p′)) ' δ

by Proposition 8 (Z2).

• Conclude (Z3):

?(isol(w , p) ‖ isol(w , p))
M

' ?(isol(w , p) T isol(w , p) + isol(w , p) T isol(w , p) + isol(w , p) | isol(w , p))

Q3

' ?(isol(w , p) T isol(w , p)) + ?(isol(w , p) T isol(w , p)) +

?(isol(w , p) | isol(w , p))

Z2

' δ + δ + ?(isol(w , p) | isol(w , p))
A6

' ?(isol(w , p) | isol(w , p))

• Conclude (Z4):

?((isol(w , p) · p′) ‖ (isol(w , p) · p′))

M

' ?((isol(w , p) · p′) T (isol(w , p) · p′) + (isol(w , p) · p′) T (isol(w , p) · p′) +

(isol(w , p) · p′) | (isol(w , p) · p′))

Q3

' ?((isol(w , p) · p′) T (isol(w , p) · p′)) +

?((isol(w , p) · p′) T (isol(w , p) · p′)) +

?((isol(w , p) · p′) | (isol(w , p) · p′))

Z2

' δ + δ + ?((isol(w , p) · p′) | (isol(w , p) · p′))
A6

' ?((isol(w , p) · p′) | (isol(w , p) · p′))

Conclude the consequent of this lemma by and-ing the results in Z3 and Z4. �

Proof (of Lemma 2). Assumptions:

•
[

q + r ∈ Basic and q + r ∈ TauFree and
Act(q + r) ⊆ dom(Ξ) and Bound(q + r) C w = ∅

]
(Z1)

Observations:

• Recall q + r ∈ Basic by Z1. Then, conclude q , r , q + r ∈ Basic by the definition of Basic (Z2).

• Recall q + r ∈ TauFree by Z1. Then, conclude q , r , q + r ∈ TauFree by the definition of TauFree (Z3).

72

• Recall Act(q+r) ⊆ dom(Ξ) by Z1. Then, because Act(q+r) = Act(q)∪Act(r) by the definition of Act,
conclude Act(q) ∪ Act(r) ⊆ dom(Ξ). Then, conclude Act(q) , Act(r) ⊆ dom(Ξ) by ZFC. Then, because
Act(q + r) ⊆ dom(Ξ) by Z1, conclude Act(q) , Act(r) , Act(q + r) ⊆ dom(Ξ) (Z4).

• Recall Bound(q + r) C w = ∅ by Z1. Then, because Bound(q + r) = Bound(q) ∪ Bound(r) by the
definition of Bound, conclude Bound(q) ∪ Bound(r) C w = ∅. Then, conclude

[
Bound(q) C w = ∅ and

Bound(r) C w = ∅
]

by ZFC (Z5).

• Recall
[
q , r , q+r ∈ Basic by Z2

]
and

[
q , r , q+r ∈ TauFree by Z3

]
and

[
Act(q) , Act(r) , Act(q+r) ⊆

dom(Ξ) by Z4
]

and
[[

Bound(q) Cw1 = ∅ and Bound(r) Cw2 = ∅ and Bound(q+ r) Cw = ∅
]

by Z8
]
.

Then, conclude

?(isol(w1 , q) ‖ isol(w1 , q)) ' ?(isol(w1 , q) | isol(w1 , q))
and ?(isol(w2 , r) ‖ isol(w2 , r)) ' ?(isol(w2 , r) | isol(w2 , r)) and

?(isol(w , q + r) ‖ isol(w , q + r)) ' ?(isol(w , q + r) | isol(w , q + r))

by Lemma 1 (Z6).

• Conclude 1 , 2 /∈ Var by Definition 2. Then, because Bound(q) , Bound(r) ⊆ Var by the definition of
Bound, conclude 1 , 2 /∈ Bound(q) , Bound(r) (Z7).

• Recall
[
1 , 2 /∈ Bound(q) , Bound(r) by Z7

]
and

[[
Bound(q) C w = ∅ and Bound(r) C w = ∅

]
by Z5

]
.

Then, conclude
[
Bound(q) C w1 = ∅ and Bound(r) C w2 = ∅

]
by Proposition 16. Then, because

Bound(q + r) C w = ∅ by Z1, conclude
[
Bound(q) C w1 = ∅ and Bound(r) C w2 = ∅ and Bound(q +

r) C w = ∅
]

(Z8).

• Conclude 1 6= 2 by Definition 2. Then, because
[
1] = 1 and 2] = 2

]
by the definition of], conclude

1] 6= 2]. Then, conclude w]1] 6= w]2] by ZFC. Then, conclude (w1)] 6= (w2)] by the definition of]
(Z9).

• Recall
[
q , r ∈ Basic by Z2

]
and

[
q , r ∈ TauFree by Z3

]
and

[
Act(q) , Act(r) ⊆ dom(Ξ) by Z4

]
and[[

Bound(q) C w1 = ∅ and Bound(r) C w2 = ∅
]

by Z8
]

and
[
(w1)] 6= (w2)] by Z9

]
. Then, conclude

?(isol(w1 , q) | isol(w2 , r)) ' δ and ?(isol(w2 , r) | isol(w1 , q)) ' δ

by Proposition 6 (Z10).

Conclude:

split(w , q + r)
split

= ?(isol(w , q + r) ‖ isol(w , q + r))
Z6

' ?(isol(w , q + r) | isol(w , q + r))
isol,isol

= ?((isol(w1 , q) + isol(w2 , r)) | (isol(w1 , q) + isol(w2 , r)))

S7

' ?(isol(w1 , q) | isol(w1 , q) + isol(w1 , q) | isol(w2 , r) +

isol(w2 , r) | isol(w1 , q) + isol(w2 , r) | isol(w2 , r))

Q3

' ?(isol(w1 , q) | isol(w1 , q)) + ?(isol(w1 , q) | isol(w2 , r)) +

?(isol(w2 , r) | isol(w1 , q)) + ?(isol(w2 , r) | isol(w2 , r))

73

Z10

' ?(isol(w1 , q) | isol(w1 , q)) + δ + δ + ?(isol(w2 , r) | isol(w2 , r))
A6

' ?(isol(w1 , q) | isol(w1 , q)) + ?(isol(w2 , r) | isol(w2 , r))
Z6

' ?(isol(w1 , q) ‖ isol(w1 , q)) + ?(isol(w2 , r) ‖ isol(w2 , r))
split

= split(w1 , q) + split(w2 , r)

�

Proof (of Lemma 3). By case distinction on the value of c.

Case: c ≈ true. Conclude:

split(w , c _ q � r)
split

= ?(isol(w , c _ q � r) ‖ isol(w , c _ q � r))
isol,isol

= ?((c _ isol(w1 , q) � isol(w2 , r)) ‖ (c _ isol(w1 , q) � isol(w2 , r)))
Case

= ?((true _ isol(w1 , q) � isol(w2 , r)) ‖ (true _ isol(w1 , q) � isol(w2 , r)))
COND1

' ?(isol(w1 , q) ‖ isol(w1 , q))
split

= split(w1 , q)
COND1

' true _ split(w1 , q) � split(w2 , r)
Case

= c _ split(w1 , q) � split(w2 , r)

Case: c ≈ false.

split(w , c _ q � r)
split

= ?(isol(w , c _ q � r) ‖ isol(w , c _ q � r))
isol,isol

= ?((c _ isol(w1 , q) � isol(w2 , r)) ‖ (c _ isol(w1 , q) � isol(w2 , r)))
Case

= ?((false _ isol(w1 , q) � isol(w2 , r)) ‖ (false _ isol(w1 , q) � isol(w2 , r)))
COND1

' ?(isol(w2 , r) ‖ isol(w2 , r))
split

= split(w2 , r)
COND1

' false _ split(w1 , q) � split(w2 , r)
Case

= c _ split(w1 , q) � split(w2 , r)

�

Proof (of Lemma 4). Assumptions:

•
[∑

x∈{d1,...,d`} q ∈ Basic and
∑
x∈{d1,...,d`} q ∈ TauFree and

Act(
∑
x∈{d1,...,d`} q) ⊆ dom(Ξ) and Bound(

∑
x∈{d1,...,d`} q) C w = ∅

]
(Z1).

Observations:

• Recall
∑
x∈{d1,...,d`} q ∈ Basic by Z1. Then, conclude q ,

∑
x∈{d1,...,d`} q ∈ Basic by the definition of

Basic (Z2).

• Recall
∑
x∈{d1,...,d`} q ∈ TauFree by Z1. Then, conclude q ,

∑
x∈{d1,...,d`} q ∈ TauFree by the definition

of TauFree (Z3).

74

• Recall Act(
∑
x∈{d1,...,d`} q) ⊆ dom(Ξ) by Z1. Then, because Act(

∑
x∈{d1,...,d`} q) = Act(q) by the

definition of Act, conclude Act(q) ⊆ dom(Ξ). Then, because Act(
∑
x∈{d1,...,d`} q) ⊆ dom(Ξ) by Z1,

conclude Act(q) , Act(
∑
x∈{d1,...,d`} q) ⊆ dom(Ξ) (Z4).

• Recall Bound(
∑
x∈{d1,...,d`} q) Cw = ∅ by Z1. Then, because Bound(

∑
x∈{d1,...,d`} q) = Bound(q)∪ {x}

by the definition of Bound, conclude Bound(q)∪ {x}Cw = ∅. Then, conclude
[
Bound(q) Cw = ∅ and

{x} C w = ∅
]

by ZFC (Z5).

• Recall
∑
x∈{d1,...,d`} q ∈ Basic by Z1. Then, conclude x /∈ Bound(q) by the definition of Basic (Z6).

• Recall
[
x /∈ Bound(q) by Z6

]
and

[
Bound(q) C w = ∅ by Z5

]
. Then, conclude Bound(q) C wx = ∅ by

Proposition 16 (Z7).

• Recall
[
Bound(q) C wx = ∅ by Z7

]
and

[
Bound(

∑
x∈{d1,...,d`} q) C w = ∅ by Z1

]
. Then, conclude[

Bound(q) C wx = ∅ and Bound(
∑
x∈{d1,...,d`} q) C w = ∅

]
by ZFC (Z8).

• Recall
[
q ,
∑
x∈{d1,...,d`} q ∈ Basic by Z2

]
and

[
q ,
∑
x∈{d1,...,d`} q ∈ TauFree by Z3

]
and

[
Act(q) ,

Act(
∑
x∈{d1,...,d`} q) ⊆ dom(Ξ) by Z4

]
and

[[
Bound(q) Cwx = ∅ and Bound(

∑
x∈{d1,...,d`} q) Cw = ∅

]
by Z8

]
. Then, conclude

?(isol(wx , q) ‖ isol(wx , q)) ' ?(isol(wx , q) | isol(wx , q))

and ?(isol(w ,
∑
x∈{d1,...,d`} q) ‖ isol(w ,

∑
x∈{d1,...,d`} q))

' ?(isol(w ,
∑
x∈{d1,...,d`} q) | isol(w ,

∑
x∈{d1,...,d`} q))

by Lemma 1 (Z9).

• Recall {x} C w = ∅ by Z5. Then, conclude x 6A w by the definition of C (Z10).

• Recall
[
q ∈ Basic by Z2

]
and

[
x 6A w by Z10

]
and

[
Bound(q)Cwx = ∅ by Z7

]
. Then, conclude

[
isol(wx ,

q)[di/x] = isol(wdi , q[di/x]) for all 1 ≤ i ≤ `
]

by Proposition 17 (Z11).

• Conclude
[
di ∈ Elem for all 1 ≤ i ≤ `

]
by the definition of

∑
. Then, because

[
Bound(q) ⊆ Var

by the definition of Bound
]

and
[
Elem ∩ Var = ∅ by Definition 1

]
, conclude

[
di /∈ Bound(q) for all

1 ≤ i ≤ `
]

(Z12).

• Recall
[[
di /∈ Bound(q) for all 1 ≤ i ≤ `

]
by Z12

]
and

[
Bound(q) C w = ∅ by Z5

]
. Then, conclude[

Bound(q) C wdi = ∅ for all 1 ≤ i ≤ `
]

(Z13).

• Recall
[
q ∈ Basic by Z2

]
and

[
q ∈ TauFree by Z3

]
and

[
Act(q) ⊆ dom(Ξ) by Z4

]
and

[[
Bound(q)Cwdi =

∅ for all 1 ≤ i ≤ `
]

by Z13
]

and
[[[
di 6= dj or i = j

]
for all 1 ≤ i , j ≤ `

]
by ZFC

]
. Then, conclude[[

?(isol(wdi , q[di/x]) | isol(wdj , q[dj/x])) ' δ or i = j
]

for all 1 ≤ i , j ≤ `
]

by Proposition 7.
Then, conclude ∑`

i=1

∑i−1
j=1 ?(isol(wdi , q[di/x]) | isol(wdj , q[dj/x])) ' δ

and
∑`
i=1

∑`
j=i+1 ?(isol(wdi , q[di/x]) | isol(wdj , q[dj/x])) ' δ

by ZFC (Z14).

75

Conclude:

split(w ,
∑
x∈{d1,...,d`} q)

split

= ?(isol(w ,
∑
x∈{d1,...,d`} q) ‖ isol(w ,

∑
x∈{d1,...,d`} q))

Z9

' ?(isol(w ,
∑
x∈{d1,...,d`} q) | isol(w ,

∑
x∈{d1,...,d`} q))

isol,isol

= ?(
∑
x∈{d1,...,d`} isol(wx , q) |

∑
x∈{d1,...,d`} isol(wx , q))

Prop. 1

' ?(
∑`
i=1 isol(wx , q)[di/x] |

∑`
i=1 isol(wx , q)[di/x])

Z11

= ?(
∑`
i=1 isol(wdi , q[di/x]) |

∑`
i=1 isol(wdi , q[di/x]))

S7

' ?(
∑`
i=1

∑`
j=1 isol(wdi , q[di/x]) | isol(wdj , q[dj/x]))

Q3

'
∑`
i=1

∑`
j=1 ?(isol(wdi , q[di/x]) | isol(wdj , q[dj/x]))

∑
'

∑`
i=1

∑i−1
j=1 ?(isol(wdi , q[di/x]) | isol(wdj , q[dj/x])) +∑`

i=1

∑i
j=i ?(isol(wdi , q[di/x]) | isol(wdj , q[dj/x])) +∑`

i=1

∑`
j=i+1 ?(isol(wdi , q[di/x]) | isol(wdj , q[dj/x]))

Z14

'
∑`
i=1

∑i−1
j=1 δ +∑`

i=1

∑i
j=i ?(isol(wdi , q[di/x]) | isol(wdi , q[dj/x])) +∑`

i=1

∑`
j=i+1 δ

A6,
∑
'

∑`
i=1 ?(isol(wdi , q[di/x]) | isol(wdi , q[di/x]))

Q3

' ?(
∑`
i=1 isol(wdi , q[di/x]) | isol(wdi , q[di/x]))

Z11

= ?(
∑`
i=1 isol(wx , q)[di/x] | isol(wx , q)[di/x])

[/]

= ?(
∑`
i=1(isol(wx , q) | isol(wx , q))[di/x])

Prop.1

' ?(
∑
x∈{d1,...,d`} isol(wx , q) | isol(wx , q))

Q5

'
∑
x∈{d1,...,d`} ?(isol(wx , q) | isol(wx , q))

Z9

'
∑
x∈{d1,...,d`} ?(isol(wx , q) ‖ isol(wx , q))

split

=
∑
x∈{d1,...,d`} split(wx , q)

�

Lemma 6 (Prepreservation lemma for ·).[
p ∈ Basic and p ∈ TauFree and Act(p) ⊆ dom(Ξ) and Bound(p) C w = ∅

]
implies ?((isol(w , p) · p′) ‖ (isol(w , p) · p′)) ' split(w , p) · ?(p′ ‖ p′)

Proof. Assumptions:

•
[
p ∈ Basic and p ∈ TauFree and Act(p) ⊆ dom(Ξ) and Bound(p) C w = ∅

]
(Z1).

Observations:

• Recall
[
p ∈ Basic and p ∈ TauFree and Act(p) ⊆ dom(Ξ) and Bound(p) C w = ∅

]
by Z1. Then,

conclude
?(isol(w , p) ‖ isol(w , p)) ' ?(isol(w , p) | isol(w , p)) and

?((isol(w , p) · p′) ‖ (isol(w , p) · p′)) ' ?((isol(w , p) · p′) | (isol(w , p) · p′))
by Lemma 1 (Z2).

76

Proceed by induction on the structure of p.

Base: p = ααα. Conclude:

?((isol(w , p) · p′) ‖ (isol(w , p) · p′))
Z2

' ?((isol(w , p) · p′) | (isol(w , p) · p′))
Base

= ?((isol(w , ααα) · p′) | (isol(w , ααα) · p′))
S6

' ?(isol(w , ααα) | isol(w , ααα) · (p′ ‖ p′))
Q4

' ?(isol(w , ααα) | isol(w , ααα)) · ?(p′ ‖ p′)
Base

= ?(isol(w , p) | isol(w , p)) · ?(p′ ‖ p′)
Z2

' ?(isol(w , p) ‖ isol(w , p)) · ?(p′ ‖ p′)
split

= split(w , p) · ?(p′ ‖ p′)

Step:
[
p = q + r or p = q · r or p = c _ q � r or p =

∑
x∈{d1,...,d`} q

]
. Assumptions:

• Induction hypothesis (IH):
[

p̂ ∈ Basic and p̂ ∈ TauFree and
Act(p̂) ⊆ dom(Ξ) and Bound(p̂) C ŵ = ∅

]
implies

?((isol(ŵ , p̂) · p̂′) | (isol(ŵ , p̂) · p̂′)) ' split(ŵ , p̂) · ?(p̂′ ‖ p̂′)


for all p̂ ∈ {q , r} ∪ {q[di/x] | 1 ≤ i ≤ `}

Proceed by case distinction on the structure of p.

Case:
[
p = q + r or p = q · r or p = c _ q � r

]
. Observations:

• Recall p ∈ Basic by Z1. Then, because
[
p = q + r or p = q · r or p = c _ q � r

]
by the

definition of this case, conclude
[
q + r ∈ Basic or q · r ∈ Basic or c _ q � r ∈ Basic

]
. Then,

conclude q , r ∈ Basic by the definition of Basic (Z3).

• Recall p ∈ TauFree by Z1. Then, because
[
p = q + r or p = q · r or p = c _ q � r

]
by the

definition of this case, conclude
[
q+ r ∈ TauFree or q · r ∈ TauFree or c _ q � r ∈ TauFree

]
.

Then, conclude q , r ∈ TauFree by the definition of TauFree (Z4).

• Recall Act(p) ⊆ dom(Ξ) by Z1. Then, because
[
p = q + r or p = q · r or p = c _ q � r

]
by

the definition of this case, conclude

Act(q + r) ⊆ dom(Ξ) or Act(q · r) ⊆ dom(Ξ)
or Act(c _ q � r) ⊆ dom(Ξ)

Then, conclude Act(q) ∪ Act(r) ⊆ dom(Ξ) by the definition of Act. Then, conclude Act(q) ,
Act(r) ⊆ dom(Ξ) by ZFC (Z5).

• Recall Bound(p) Cw = ∅ by Z1. Then, because
[
p = q + r or p = q · r or p = c _ q � r

]
by

the definition of this case, conclude

Bound(q + r) C w = ∅ or Bound(q · r) C w = ∅
or Bound(c _ q � r) C w = ∅

Then, conclude Bound(q) ∪ Bound(r) C w = ∅ by the definition of Bound. Then, conclude[
Bound(q) C w = ∅ and Bound(r) C w = ∅

]
by ZFC (Z6).

• Conclude 1 , 2 /∈ Var by Definition 2. Then, because Bound(q) , Bound(r) ⊆ Var by the
definition of Bound, conclude 1 , 2 /∈ Bound(q) , Bound(r) (Z7).

77

• Recall
[
1 , 2 /∈ Bound(q) , Bound(r) by Z7

]
and

[[
Bound(q) C w = ∅ and Bound(r) C w = ∅

]
by Z10

]
. Then, conclude

[
Bound(q) C w1 = ∅ and Bound(r) C w2 = ∅

]
by Proposition 16

(Z8).

• Recall
[
q , r ∈ Basic by Z3

]
and

[
q , r ∈ TauFree by Z4

]
and

[
Act(q) , Act(r) ⊆ dom(Ξ) by

Z5
]

and
[[

Bound(q) C w1 = ∅ and Bound(r) C w2 = ∅
]

by Z8
]
. Then, conclude

?((isol(w1 , q) · p′) | (isol(w1 , q) · p′)) ' split(w1 , q) · ?(p′ ‖ p′)
and ?((isol(w2 , r) · p′) | (isol(w2 , r) · p′)) ' split(w2 , r) · ?(p′ ‖ p′)

and ?((isol(w1 , q) · isol(w2 , r) · p′) | (isol(w1 , q) · isol(w2 , r) · p′))
' split(w1 , q) · ?((isol(w2 , r) · p′) ‖ (isol(w2 , r) · p′))

and ?((isol(w1 , q) · isol(w2 , r)) | (isol(w1 , q) · isol(w2 , r)))
' split(w1 , q) · ?(isol(w2 , r) ‖ isol(w2 , r))

by IH (Z9).

Proceed by case distinction on the structure of p.

Case: p = q + r. Observations:

• Conclude 1 6= 2 by Definition 2. Then, because
[
1] = 1 and 2] = 2

]
by the definition of

], conclude 1] 6= 2]. Then, conclude w]1] 6= w]2] by ZFC. Then, conclude (w1)] 6= (w2)]

by the definition of] (Z10).

• Recall
[
q , r ∈ Basic by Z3

]
and

[
q , r ∈ TauFree by Z4

]
and

[
Act(q) , Act(r) ⊆ dom(Ξ)

by Z5
]

and
[[

Bound(q) C w1 = ∅ and Bound(r) C w2 = ∅
]

by Z8
]

and
[
(w1)] 6= (w2)]

by Z10
]
. Then, conclude

?((isol(w1 , q) · p′) | (isol(w2 , r) · p′)) ' δ
and ?((isol(w2 , r) · p′) | (isol(w1 , q) · p′)) ' δ

by Proposition 6 (Z11).

• Recall
[
p ∈ Basic by Z3

]
and

[
p ∈ TauFree by Z4

]
and

[
Act(p) ⊆ dom(Ξ) by Z5

]
and[

Bound(p)∩w = ∅ by Z1
]
. Then, because p = q+r by the definition of this case, conclude

q + r ∈ Basic and q + r ∈ TauFree and
Act(q + r) ⊆ dom(Ξ) and Bound(q + r) ∩ w = ∅

Then, conclude split(w , q + r) ' split(w1 , q) + split(w2 , r) by Lemma 2 (Z12).

Conclude:

?((isol(w , p) · p′) ‖ (isol(w , p) · p′))
Z2

' ?((isol(w , p) · p′) | (isol(w , p) · p′))
Case

= ?((isol(w , q + r) · p′) | (isol(w , q + r) · p′))
isol,isol

= ?(((isol(w1 , q) + isol(w2 , r)) · p′) |
((isol(w1 , q) + isol(w2 , r)) · p′))

A4

' ?(((isol(w1 , q) · p′) + (isol(w2 , r) · p′)) |
((isol(w1 , q) · p′) + (isol(w2 , r) · p′)))

S7

' ?((isol(w1 , q) · p′) | (isol(w1 , q) · p′) +

(isol(w1 , q) · p′) | (isol(w2 , r) · p′) +

(isol(w2 , r) · p′) | (isol(w1 , q) · p′) +

(isol(w2 , r) · p′) | (isol(w2 , r) · p′))

78

Q3

' ?((isol(w1 , q) · p′) | (isol(w1 , q) · p′)) +

?((isol(w1 , q) · p′) | (isol(w2 , r) · p′)) +

?((isol(w2 , r) · p′) | (isol(w1 , q) · p′)) +

?((isol(w2 , r) · p′) | (isol(w2 , r) · p′))
Z9,Z11

' split(w1 , q) · ?(p′ ‖ p′) + δ + δ + split(w2 , r) · ?(p′ ‖ p′)
A6

' split(w1 , q) · ?(p′ ‖ p′) + split(w2 , r) · ?(p′ ‖ p′)
A4

' (split(w1 , q) + split(w2 , r)) · ?(p′ ‖ p′)
Z12

' split(w , q + r) · ?(p′ ‖ p′)
Case

= split(w , p) · ?(p′ ‖ p′)
Case: p = q · r. Observations:

• Recall
[
r ∈ Basic by Z3

]
and

[
r ∈ TauFree by Z4

]
and

[
Act(r) ⊆ dom(Ξ) by Z5

]
and[

Bound(r) C w2 = ∅ by Z8
]
. Then, conclude

?((isol(w2 , r) · p′) ‖ (isol(w2 , r) · p′))
' ?((isol(w2 , r) · p′) | (isol(w2 , r) · p′))

by Lemma 1 (Z13).

Conclude:

?((isol(w , p) · p′) ‖ (isol(w , p) · p′))
Z2

' ?((isol(w , p) · p′) | (isol(w , p) · p′))
Case

= ?((isol(w , q · r) · p′) | (isol(w , q · r) · p′))
isol,isol

= ?((isol(w1 , q) · isol(w2 , r) · p′) | (isol(w1 , q) · isol(w2 , r) · p′))
Z9

' split(w1 , q) · ?((isol(w2 , r) · p′) ‖ (isol(w2 , r) · p′))
Z13

' split(w1 , q) · ?((isol(w2 , r) · p′) | (isol(w2 , r) · p′))
Z9

' split(w1 , q) · split(w2 , r) · ?(p′ ‖ p′)
split

= split(w1 , q) · ?(isol(w2 , r) ‖ isol(w2 , r)) · ?(p′ ‖ p′)
Z9

' ?((isol(w1 , q) · isol(w2 , r)) | (isol(w1 , q) · isol(w2 , r))) ·
?(p′ ‖ p′)

isol,isol

= ?(isol(w , q · r) | isol(w , q · r)) · ?(p′ ‖ p′)
Case

= ?(isol(w , p) | isol(w , p)) · ?(p′ ‖ p′)
Z2

' ?(isol(w , p) ‖ isol(w , p)) · ?(p′ ‖ p′)
split

= split(w , p) · ?(p′ ‖ p′)
Case: p = c _ q � r. Proceed by case distinction on the value of c.

Case: c ≈ true. Conclude:

?((isol(w , p) · p′) ‖ (isol(w , p) · p′))
Z2

' ?((isol(w , p) · p′) | (isol(w , p) · p′))
Case

= ?((isol(w , true _ q � r) · p′) | (isol(w , true _ q � r) · p′))
isol,isol

= ?(((true _ isol(w1 , q) � isol(w2 , r)) · p′) |
((true _ isol(w1 , q) � isol(w2 , r)) · p′))

79

COND1

' ?((isol(w1 , q) · p′) | (isol(w1 , q) · p′))
Z9

' split(w1 , q) · (p′ ‖ p′)
COND1

' (true _ split(w1 , q) � split(w2 , r)) · (p′ ‖ p′)
Lemma 3

' split(w , true _ q � r) · (p′ ‖ p′)
Case

= split(w , p) · (p′ ‖ p′)
Case: c ≈ false. Conclude:

?((isol(w , p) · p′) ‖ (isol(w , p) · p′))
Z2

' ?((isol(w , p) · p′) | (isol(w , p) · p′))
Case

= ?((isol(w , false _ q � r) · p′) | (isol(w , false _ q � r) · p′))
isol,isol

= ?(((false _ isol(w1 , q) � isol(w2 , r)) · p′) |
((false _ isol(w1 , q) � isol(w2 , r)) · p′))

COND2

' ?((isol(w2 , r) · p′) | (isol(w2 , r) · p′))
Z9

' split(w2 , r) · (p′ ‖ p′)
COND1

' (false _ split(w1 , q) � split(w2 , r)) · (p′ ‖ p′)
Lemma 3

' split(w , false _ q � r) · (p′ ‖ p′)
Case

= split(w , p) · (p′ ‖ p′)
Case: p =

∑
x∈{d1,...,d`} q. Observations:

• Recall p ∈ Basic by Z1. Then, because p =
∑
x∈{d1,...,d`} q by the definition of this case,

conclude
∑
x∈{d1,...,d`} q ∈ Basic. Then, conclude

[
q , q[di/x] ∈ Basic for all 1 ≤ i ≤ `

]
by

the definition of Basic (Z14).

• Recall p ∈ TauFree by Z1. Then, because p =
∑
x∈{d1,...,d`} q by the definition of this case,

conclude
∑
x∈{d1,...,d`} q ∈ TauFree. Then, conclude

[
q , q[di/x] ∈ TauFree for all 1 ≤ i ≤ `

]
by the definition of TauFree (Z15).

• Recall Act(p) ⊆ dom(Ξ) by Z1. Then, because p =
∑
x∈{d1,...,d`} q by the definition of

this case, conclude Act(
∑
x∈{d1,...,d`} q) ⊆ dom(Ξ). Then, conclude

[
Act(q) , Act(q[di/x]) ⊆

dom(Ξ) for all 1 ≤ i ≤ `
]

by the definition of Act (Z16).

• Recall Bound(p) C w = ∅ by Z1. Then, because p =
∑
x∈{d1,...,d`} q by the definition of this

case, conclude Bound(
∑
x∈{d1,...,d`} q) C w = ∅. Then, conclude Bound(q) ∪ {x} C w = ∅ by

the definition of Bound. Then, conclude
[
Bound(q)Cw = ∅ and {x}Cw = ∅

]
by ZFC (Z17).

• Recall {x} C w = ∅ by Z17. Then, conclude x 6A w by the definition of C (Z18).

• Recall
∑
x∈{d1,...,d`} q ∈ Basic by Z1. Then, conclude x /∈ Bound(q) by the definition of Basic

(Z19)

• Recall
[
x /∈ Bound(q) by Z19

]
and

[
Bound(q) C w = ∅ by Z17

]
. Then, conclude Bound(q) C

wx = ∅ by Proposition 16 (Z20).

• Recall
[
q ∈ Basic by Z14

]
and

[
x 6A w by Z18

]
and

[
Bound(q) C wx = ∅ by Z20

]
. Then,

conclude [
isol(wx , q)[di/x] = isol(wdi , q[di/x])

and isol(wx , q)[di/x] = isol(wdi , q[di/x])
]] for all 1 ≤ i ≤ `

by Proposition 17 (Z21).

• Conclude
[
di ∈ Elem for all 1 ≤ i ≤ `

]
by the definition of

∑
. Then, because

[
Bound(q) ⊆

Var by the definition of Bound
]

and
[
Elem∩Var = ∅ by Definition 1

]
, conclude

[
di /∈ Bound(q)

for all 1 ≤ i ≤ `
]

(Z22).

80

• Recall
[[
di /∈ Bound(q) for all 1 ≤ i ≤ `

]
by Z22

]
and

[
Bound(q) C w = ∅ by Z17

]
. Then,

conclude
[
Bound(q) C wdi = ∅ for all 1 ≤ i ≤ `

]
(Z23).

• Recall
[
q ∈ Basic by Z14

]
and

[
q ∈ TauFree by Z15

]
and

[
Act(q) ⊆ dom(Ξ) by Z16

]
and[[

Bound(q) C wdi = ∅ for all 1 ≤ i ≤ `
]

by Z23
]

and
[[[
di 6= dj or i = j

]
for all 1 ≤ i ,

j ≤ `
]]

by ZFC. Then, conclude[
?((isol(wdi , q[di/x]) · p′) | (isol(wdj , q[dj/x]) · p′)) ' δ or i = j

]
for all 1 ≤ i , j ≤ `

by Proposition 7. Then, conclude∑`
i=1

∑i−1
j=1 ?((isol(wdi , q[di/x]) · p′) | (isol(wdj , q[dj/x]) · p′)) ' δ

and
∑`
i=1

∑`
j=i+1 ?((isol(wdi , q[di/x]) · p′) | (isol(wdj , q[dj/x]) · p′))

' δ

by ZFC (Z24).

• Recall
[
Bound(q) C wdi = ∅ for all 1 ≤ i ≤ `

]
by Z23. Then, conclude

[
Bound(q[di/x]) C

wdi = ∅ for all 1 ≤ i ≤ `
]

by the definition of Bound (Z25).

• Recall
[[
q[di/x] ∈ Basic for all 1 ≤ i ≤ `

]
by Z14

]
and

[[
q[di/x] ∈ TauFree for all 1 ≤ i ≤

`
]

by Z15
]

and
[[

Act(q[di/x]) ⊆ dom(Ξ) for all 1 ≤ i ≤ `
]

by Z16
]

and
[[

Bound(q[di/x]) C
wdi = ∅ for all 1 ≤ i ≤ `

]
by Z25

]
. Then, conclude

?((isol(wdi , q[di/x]) · p′) | (isol(wdi , q[di/x]) · p′))
' split(wdi , q[di/x]) · (p′ ‖ p′) for all 1 ≤ i ≤ `

by IH (Z26).

• Recall
[
p ∈ Basic by Z3

]
and

[
p ∈ TauFree by Z4

]
and

[
Act(p) ⊆ dom(Ξ) by Z5

]
and[

Bound(p) ∩ w = ∅ by Z1
]
. Then, because p =

∑
x∈{d1,...,d`} q by the definition of this case,

conclude ∑
x∈{d1,...,d`} q ∈ Basic and

∑
x∈{d1,...,d`} q ∈ TauFree and

Act(
∑
x∈{d1,...,d`} q) ⊆ dom(Ξ) and Bound(

∑
x∈{d1,...,d`} q) ∩ w = ∅

Then, conclude split(w ,
∑
x∈{d1,...,d`} q) '

∑
x∈{d1,...,d`} split(wx , q) by Lemma 4 (Z27).

Conclude:

?((isol(w , p) · p′) ‖ (isol(w , p) · p′))
Z2

' ?((isol(w , p) · p′) | (isol(w , p) · p′))
Case

= ?((isol(w ,
∑
x∈{d1,...,d`} q) · p

′) | (isol(w ,
∑
x∈{d1,...,d`} q) · p

′))
isol,isol

= ?((
∑
x∈{d1,...,d`} isol(wx , q) · p′) | (

∑
x∈{d1,...,d`} isol(wx , q) · p′))

Prop. 1

' ?((
∑`
i=1 isol(wx , q)[di/x] · p′) | (

∑`
i=1 isol(wx , q)[di/x] · p′))

Z21

= ?((
∑`
i=1 isol(wdi , q[di/x]) · p′) | (

∑`
i=1 isol(wdi , q[di/x]) · p′))

A4

' ?((
∑`
i=1(isol(wdi , q[di/x]) · p′)) | (

∑`
i=1(isol(wdi , q[di/x]) · p′)))

S7

' ?(
∑`
i=1

∑`
j=1((isol(wdi , q[di/x]) · p′) | (isol(wdj , q[dj/x]) · p′)))

Q3

'
∑`
i=1

∑`
j=1 ?((isol(wdi , q[di/x]) · p′) | (isol(wdj , q[dj/x]) · p′))

81

∑
'

∑`
i=1

∑i−1
j=1 ?((isol(wdi , q[di/x]) · p′) | (isol(wdj , q[dj/x]) · p′)) +∑`

i=1

∑i
j=i ?((isol(wdi , q[di/x]) · p′) | (isol(wdj , q[dj/x]) · p′)) +∑`

i=1

∑`
j=i+1 ?((isol(wdi , q[di/x]) · p′) | (isol(wdj , q[dj/x]) · p′))

Z24

'
∑`
i=1

∑i−1
j=1 δ +∑`

i=1

∑i
j=i ?((isol(wdi , q[di/x]) · p′) | (isol(wdj , q[dj/x]) · p′)) +∑`

i=1

∑`
j=i+1 δ

A6,
∑
'

∑`
i=1 ?((isol(wdi , q[di/x]) · p′) | (isol(wdi , q[di/x]) · p′))

Z26

'
∑`
i=1(split(wdi , q[di/x]) · (p′ ‖ p′))

A4

'
∑`
i=1 split(wdi , q[di/x]) · (p′ ‖ p′)

split

=
∑`
i=1 ?(isol(wdi , q[di/x]) ‖ isol(wdi , q[di/x])) · (p′ ‖ p′)

Z21

=
∑`
i=1 ?(isol(wx , q)[di/x] ‖ isol(wx , q)[di/x]) · (p′ ‖ p′)

[/]

=
∑`
i=1 ?(isol(wx , q) ‖ isol(wx , q))[di/x] · (p′ ‖ p′)

split

=
∑`
i=1 split(wx , q)[di/x] · (p′ ‖ p′)

Prop. 1

'
∑
x∈{d1,...,d`} split(wx , q) · (p′ ‖ p′)

Z27

' split(w ,
∑
x∈{d1,...,d`} q) · (p

′ ‖ p′)
Case

= split(w , p) · ?(p′ ‖ p′)

�

Proof (of Lemma 5). Assumptions:

•
[

q · r ∈ Basic and q · r ∈ TauFree and
Act(q · r) ⊆ dom(Ξ) and Bound(q · r) C w = ∅

]
(Z1).

Observations:

• Recall q · r ∈ Basic by Z1. Then, conclude q ∈ Basic by the definition of Basic (Z2).

• Recall q · r ∈ TauFree by Z1. Then, conclude q ∈ TauFree by the definition of TauFree (Z3).

• Recall Act(q · r) ⊆ dom(Ξ) by Z1. Then, because Act(q · r) = Act(q) ∪ Act(r) by the definition of Act,
conclude Act(q) ∪ Act(r) ⊆ dom(Ξ). Then, conclude Act(q) ⊆ dom(Ξ) by ZFC (Z4).

• Recall Bound(q · r)Cw = ∅ by Z1. Then, because Bound(q · r) = Bound(q)∪Bound(r) by the definition
of Bound, conclude Bound(q) ∪ Bound(r) C w = ∅. Then, conclude Bound(q) C w = ∅ by ZFC (Z5).

• Conclude 1 /∈ Var by Definition 2. Then, because Bound(q) ⊆ Var by the definition of Bound, conclude
1 /∈ Bound(q) (Z6).

• Recall
[
1 /∈ Bound(q) by Z6

]
and

[
Bound(q) C w = ∅ by Z5

]
. Then, conclude Bound(q) C w1 = ∅ by

Proposition 16 (Z7).

• Recall
[
q ∈ Basic by Z2

]
and

[
q ∈ TauFree by Z3

]
and

[
Act(q) ⊆ dom(Ξ) by Z4

]
and

[
Bound(q)Cw1 = ∅

by Z7
]
. Then, conclude

?((isol(w1 , q) · isol(w2 , r)) ‖ (isol(w1 , q) · isol(w2 , r)))
' split(w1 , q) · ?(isol(w2 , r) ‖ isol(w2 , r))

by Lemma 6 (Z8).

82

Conclude:

split(w , q · r)
split

= ?(isol(w , q · r) ‖ isol(w , q · r))
isol,isol

= ?((isol(w1 , q) · isol(w2 , r)) ‖ (isol(w1 , q) · isol(w2 , r)))
Z8

' split(w1 , q) · ?(isol(w2 , r) ‖ isol(w2 , r))
split

= split(w1 , q) · split(w2 , r)

�

E. Proofs for Section 5.4

Proof (of Theorem 1). Assumptions:

•
[
α ∈ TauFree and Act(α) ⊆ dom(Ξ)

]
(Z1).

Observations:

• Conclude ∅ C w = ∅ by the definition of C. Then, because Bound(α) = ∅ by the definition of Bound,
conclude Bound(α) C w = ∅ (Z2).

• Recall
[
α ∈ Basic by the definition of Basic

]
and

[[
α ∈ TauFree and Act(α) ⊆ dom(Ξ)

]
by Z1

]
and[

Bound(α) C w = ∅ by Z2
]
. Then, conclude ?(isol(w , α) ‖ isol(w , α)) ' ?(isol(w , α) | isol(w , α)) by

Lemma 1 (Z3).

• Recall α ∈ TauFree by Z1. Then, conclude

isol(w , α) '
⊔n
i=1(ai(di) t ξw](ai)(w

[)) t
⊔n′
i=1 ξw](a′i)(w

[)

and isol(w , α) '
⊔n′
i=1(a′i(d

′
i) t ξw](a′i)(w

[)) t
⊔n
i=1 ξw](ai)(w

[)

and α '
⊔n
i=1 ai(di) t

⊔n′
i=1 a

′
i(d
′
i) and Act(α) =

⋃n
i=1 ai ∪

⋃n′
i=1 a

′
i

by Proposition 11 (Z4).

• Recall Act(α) ⊆ dom(Ξ) by Z1. Then, because dom(Ξ) = {a | 〈w , a〉 ∈ dom(ξ) ∩ dom(ξ)} by the
definition of dom, conclude Act(α) ⊆ {a | 〈w , a〉 ∈ dom(ξ) ∩ dom(ξ)}. Then, conclude Act(α) ⊆ {
a | 〈w , a〉 ∈ dom(ξ)} by ZFC. Then, because dom(ξ) ⊆ {1 , 2}∗ × A by Definition 3, conclude
Act(α) ⊆ {a | 〈w , a〉 ∈ {1 , 2}∗ ×A}. Then, conclude Act(α) ⊆ A by ZFC (Z5).

• Conclude img(ξ) , img(ξ) ⊆ Act \ (A ∪ {tau}) by Definition 3. Then, because Act(α) ⊆ A by Z5,
conclude img(ξ) , img(ξ) ⊆ Act \ (Act(α)∪ {tau}). Then, conclude Act(α)∩ (img(ξ)∪ img(ξ)) = ∅ by
ZFC. Then, because Act(α) =

⋃n
i=1 ai∪

⋃n′
i=1 a

′
i by Z4, conclude (

⋃n
i=1 ai∪

⋃n′
i=1 a

′
i)∩(img(ξ)∪img(ξ)) =

∅. Then, conclude
[
ai , a

′
i′ /∈ img(ξ) ∪ img(ξ) for all

[
1 ≤ i ≤ n and 1 ≤ i′ ≤ n′

]]
by ZFC (Z6).

• Recall
[
ai , a

′
i′ /∈ img(ξ) ∪ img(ξ) for all

[
1 ≤ i ≤ n and 1 ≤ i′ ≤ n′

]]
by Z6. Then, conclude

C{ξ∗(a)tξ∗(a)→tau |〈∗,a〉∈dom(ξ)∩dom(ξ)}(⊔n
i=1(ai(di) t ξw](ai)(w

[)) t
⊔n′
i=1 ξw](a′i)(w

[) t⊔n′
i=1(a′i(d

′
i) t ξw](a′i)(w

[)) t
⊔n
i=1 ξw](ai)(w

[))

'
⊔n
i=1(ai(di) t tau) t

⊔n′
i=1(a′i(d

′
i) t tau)

by the definition of C (Z7).

83

• Recall Act(α) ⊆ A by Z5. Then, because tau ∈ Act \A by Definition 3, conclude tau /∈ Act(α). Then,
because Act(α) =

⋃n
i=1 ai ∪

⋃n′
i=1 a

′
i by Z4, conclude tau /∈

⋃n
i=1 ai ∪

⋃n′
i=1 a

′
i. Then, conclude

[
ai ,

a′i′ /∈ {tau} for all
[
1 ≤ i ≤ n and 1 ≤ i′ ≤ n′

]]
by ZFC. Then, conclude[

T{tau}(ai(di)) ' ai(di) and T{tau}(a′i(d′i)) ' a′i(d′i)
]

for all
[
1 ≤ i ≤ n and 1 ≤ i′ ≤ n′

]
by H3 (Z8).

• Recall
[
ai , a

′
i′ /∈ img(ξ) ∪ img(ξ) for all

[
1 ≤ i ≤ n and 1 ≤ i′ ≤ n′

]]
by Z6. Then, conclude[

∂img(ξ)∪img(ξ)(ai(di)) = ai(di) and ∂img(ξ)∪img(ξ)(a
′
i(d
′
i)) = a′i(d

′
i)
]

for all
[
1 ≤ i ≤ n and 1 ≤ i′ ≤ n′

]
by B2. Then, because img(Ξ) = img(ξ) ∪ img(ξ) by the definition of img, conclude (Z9):[

∂img(Ξ)(ai(di)) = ai(di) and ∂img(Ξ)(a
′
i(d
′
i)) = a′i(d

′
i)
]

for all
[
1 ≤ i ≤ n and 1 ≤ i′ ≤ n′

]
Conclude:

split(w , α)
split

= ?(isol(wi , αi) ‖ isol(wi , αi))
Z3

' ?(isol(wi , αi) | isol(wi , αi))
SMA

' ?(isol(wi , αi) t isol(wi , αi))
Z4

' ?(
⊔n
i=1(ai(di) t ξw](ai)(w

[)) t
⊔n′
i=1 ξw](a′i)(w

[) t⊔n′
i=1(a′i(d

′
i) t ξw](a′i)(w

[)) t
⊔n
i=1 ξw](ai)(w

[))
?

= ∂img(Ξ)(T{tau}(Γcomm(Ξ)(⊔n
i=1(ai(di) t ξw](ai)(w

[)) t
⊔n′
i=1 ξw](a′i)(w

[) t⊔n′
i=1(a′i(d

′
i) t ξw](a′i)(w

[)) t
⊔n
i=1 ξw](ai)(w

[))))
C1

' ∂img(Ξ)(T{tau}(Ccomm(Ξ)(⊔n
i=1(ai(di) t ξw](ai)(w

[)) t
⊔n′
i=1 ξw](a′i)(w

[) t⊔n′
i=1(a′i(d

′
i) t ξw](a′i)(w

[)) t
⊔n
i=1 ξw](ai)(w

[))))

comm

= ∂img(Ξ)(T{tau}(C{ξ∗(a)tξ∗(a)→tau |〈w,a〉∈dom(ξ)∩dom(ξ)}(⊔n
i=1(ai(di) t ξw](ai)(w

[)) t
⊔n′
i=1 ξw](a′i)(w

[) t⊔n′
i=1(a′i(d

′
i) t ξw](a′i)(w

[)) t
⊔n
i=1 ξw](ai)(w

[))))

Z7

' ∂img(Ξ)(T{tau}(
⊔n
i=1(ai(di) t tau) t

⊔n′
i=1(a′i(d

′
i) t tau)))

SMA

' ∂img(Ξ)(T{tau}(|||
n
i=1(ai(di) | tau) | |||n′i=1(a′i(d

′
i) | tau)))

H4

' ∂img(Ξ)(|||
n
i=1(T{tau}(ai(di)) | T{tau}(tau)) | |||n′i=1(T{tau}(a′i(d′i)) | T{tau}(tau)))

Z8,H2

' ∂img(Ξ)(|||
n
i=1(ai(di) | τ) | |||n′i=1(a′i(d

′
i) | τ))

S3

' ∂img(Ξ)(|||
n
i=1 ai(di) | |||

n′
i=1 a

′
i(d
′
i))

B4

' |||ni=1 ∂img(Ξ)(ai(di)) | |||
n′
i=1 ∂img(Ξ)(a

′
i(d
′
i))

Z9

' |||ni=1 ai(di) | |||
n′
i=1 a

′
i(d
′
i)

SMA

'
⊔n
i=1 ai(di) t

⊔n′
i=1 a

′
i(d
′
i)

Z4

' α

84

�

Proof (of Theorem 2). Assumptions:

•
[
p ∈ Basic and p ∈ TauFree and Act(p) ⊆ dom(Ξ) and Bound(p) C w = ∅

]
(Z1).

Proceed by induction on the structure of p.

Base:
[
p = α or p = δ

]
. Proceed by case distinction on the structure of p.

Case: p = α. Recall
[
p ∈ TauFree and Act(p) ⊆ dom(Ξ)

]
by Z1. Then, because p = α by the

definition of this case, conclude
[
α ∈ TauFree and Act(α) ⊆ dom(Ξ)

]
. Then, conclude split(w ,

α) ' α by Theorem 1. Then, because p = α by the definition of this case, conclude split(w ,
p) ' p.

Case: p = δ. Conclude:

split(w , p)
Case

= split(w , δ)
split

= ?(isol(w , δ) ‖ isol(w , δ))
isol,isol

= ?(δ ‖ δ)
M

' ?(δ T δ + δ T δ + δ | δ)
LM2,S4

' ?(δ + δ + δ)
A6

' ?(δ)
Q2

' δ
Case

= p

Step:
[
p = q + r or p = q · r or p = c _ q � r or p =

∑
x∈{d1,...,d`} q

]
. Assumptions:

• Induction hypothesis (IH):[[
p̂ ∈ Basic and p̂ ∈ TauFree and

Act(p̂) ⊆ dom(Ξ) and Bound(p̂) C ŵ = ∅

]
implies split(ŵ , p̂) ' p̂

]
for all p̂ ∈ {q , r}

Proceed by case distinction on the structure of p.

Case:
[
p = q + r or p = q · r or p = c _ q � r

]
. Observations:

• Recall p ∈ Basic by Z1. Then, because
[
p = q + r or p = q · r or p = c _ q � r

]
by the

definition of this case, conclude
[
q + r ∈ Basic or q · r ∈ Basic or c _ q � r ∈ Basic

]
. Then,

conclude q , r ∈ Basic by the definition of Basic (Z2).

• Recall p ∈ TauFree by Z1. Then, because
[
p = q + r or p = q · r or p = c _ q � r

]
by the

definition of this case, conclude
[
q+ r ∈ TauFree or q · r ∈ TauFree or c _ q � r ∈ TauFree

]
.

Then, conclude q , r ∈ TauFree by the definition of TauFree (Z3).

• Recall Act(p) ⊆ dom(Ξ) by Z1. Then, because
[
p = q + r or p = q · r or p = c _ q � r

]
by

the definition of this case, conclude

Act(q + r) ⊆ dom(Ξ) or Act(q · r) ⊆ dom(Ξ)
or Act(c _ q � r) ⊆ dom(Ξ)

Then, conclude Act(q) ∪ Act(r) ⊆ dom(Ξ) by the definition of Act. Then, conclude Act(q) ,
Act(r) ⊆ dom(Ξ) by ZFC (Z4).

85

• Recall Bound(p) Cw = ∅ by Z1. Then, because
[
p = q + r or p = q · r or p = c _ q � r

]
by

the definition of this case, conclude

Bound(q + r) C w = ∅ or Bound(q · r) C w = ∅
or Bound(c _ q � r) C w = ∅

Then, conclude Bound(q) ∪ Bound(r) C w = ∅ by the definition of Bound. Then, conclude[
Bound(q) C w = ∅ and Bound(r) C w = ∅

]
by ZFC (Z5).

• Conclude 1 , 2 /∈ Var by Definition 2. Then, because Bound(q) , Bound(r) ⊆ Var by the
definition of Bound, conclude 1 , 2 /∈ Bound(q) , Bound(r) (Z6).

• Recall
[
1 , 2 /∈ Bound(q) , Bound(r) by Z6

]
and

[[
Bound(q) C w = ∅ and Bound(r) C w = ∅

]
by Z10

]
. Then, conclude

[
Bound(q) C w1 = ∅ and Bound(r) C w2 = ∅

]
by Proposition 16

(Z7).

• Recall
[
q , r ∈ Basic by Z2

]
and

[
q , r ∈ TauFree by Z3

]
and

[
Act(q) , Act(r) ⊆ dom(Ξ) by

Z4
]

and
[[

Bound(q) C w1 = ∅ and Bound(r) C w2 = ∅
]

by Z7
]
. Then, conclude

[
split(w1 ,

q) ' q and split(w2 , r) ' r
]

by IH (Z8).

Proceed by case distinction on the structure of p.

Case: p = q + r. Observations:

• Recall
p ∈ Basic and p ∈ TauFree and

Act(p) ⊆ dom(Ξ) and Bound(p) C w = ∅
by Z1. Then, because p = q + r by the definition of this case, conclude

q + r ∈ Basic and q + r ∈ TauFree and
Act(q + r) ⊆ dom(Ξ) and Bound(q + r) C w = ∅

Then, conclude split(w , q + r) ' split(w1 , q) + split(w2 , r) by Lemma 2 (Z9).

Conclude:

split(w , p)
Case

= split(w , q + r)
Z9

' split(w1 , q) + split(w2 , r)
Z8

' q + r
Case

= p

Case: p = q · r. Observations:

• Recall
p ∈ Basic and p ∈ TauFree and

Act(p) ⊆ dom(Ξ) and Bound(p) C w = ∅
by Z1. Then, because p = q · r by the definition of this case, conclude

q · r ∈ Basic and q · r ∈ TauFree and
Act(q · r) ⊆ dom(Ξ) and Bound(q · r) C w = ∅

Then, conclude split(w , q · r) ' split(w1 , q) · split(w2 , r) by Lemma 5 (Z10).

Conclude:

split(w , p)
Case

= split(w , q · r)
Z10

' split(w1 , q) · split(w2 , r)
Z8

' q · r
Case

= p

86

Case: p = c _ q � r. Conclude:

split(w , p)
Case

= split(w , c _ q � r)
Lemma 3

' c _ split(w1 , q) � split(w2 , r)
Z8

' c _ q � r
Case

= p

Case: p =
∑
x∈{d1,...,d`} q. Observations:

• Recall p ∈ Basic by Z1. Then, because p =
∑
x∈{d1,...,d`} q by the definition of this case,

conclude
∑
x∈{d1,...,d`} q ∈ Basic. Then, conclude q ∈ Basic by the definition of Basic (Z11).

• Recall p ∈ TauFree by Z1. Then, because p =
∑
x∈{d1,...,d`} q by the definition of this case,

conclude
∑
x∈{d1,...,d`} q ∈ TauFree. Then, conclude q ∈ TauFree by the definition of TauFree

(Z12).

• Recall Act(p) ⊆ dom(Ξ) by Z1. Then, because p =
∑
x∈{d1,...,d`} q by the definition of this

case, conclude Act(
∑
x∈{d1,...,d`} q) ⊆ dom(Ξ). Then, conclude Act(q) ⊆ dom(Ξ) by the

definition of Act (Z13).

• Recall Bound(p) C w = ∅ by Z1. Then, because p =
∑
x∈{d1,...,d`} q by the definition of this

case, conclude Bound(
∑
x∈{d1,...,d`} q) C w = ∅. Then, conclude Bound(q) ∪ {x} C w = ∅ by

the definition of Bound. Then, conclude Bound(q) C w = ∅ by ZFC (Z14).

• Recall p ∈ Basic by Z1. Then, because p =
∑
x∈{d1,...,d`} q by the definition of this case,

conclude
∑
x∈{d1,...,d`} q ∈ Basic. Then, conclude x /∈ Bound(q) by the definition of Basic

(Z15).

• Recall
[
x /∈ Bound(q) by Z15

]
and

[
Bound(q) C w = ∅

]
by Z14. Then, conclude Bound(q) C

wx = ∅ by Proposition 16 (Z16).

• Recall
[
q ∈ Basic by Z11

]
and

[
q ∈ TauFree by Z12

]
and

[
Act(q) ⊆ dom(Ξ) by Z13

]
and[

Bound(q) C wx = ∅ by Z16
]
. Then, conclude split(wx , q) ' q by IH (Z17).

• Recall
p ∈ Basic and p ∈ TauFree and

Act(p) ⊆ dom(Ξ) and Bound(p) C w = ∅

by Z1. Then, because p =
∑
x∈{d1,...,d`} q by the definition of this case, conclude∑

x∈{d1,...,d`} q ∈ Basic and
∑
x∈{d1,...,d`} q ∈ TauFree and

Act(
∑
x∈{d1,...,d`} q) ⊆ dom(Ξ) and Bound(

∑
x∈{d1,...,d`} q) C w = ∅

Then, conclude split(w ,
∑
x∈{d1,...,d`} q) '

∑
x∈{d1,...,d`} split(wx , q) by Lemma 4 (Z18).

Conclude:

split(w , p)
Case

= split(w ,
∑
x∈{d1,...,d`} q)

Z18

'
∑
x∈{d1,...,d`} split(wx , q)

Z17

'
∑
x∈{d1,...,d`} q

Case

= p

�

87

Theorem 4 (Precorrectness theorem for process specifications).[
p ∈ TauFree and Act(p) ⊆ dom(Ξ) and Ref(p) ⊆ {P1 , . . . , Pk}

]
implies

split(ε , p)[P †1 (x) := P̃ †(1 , g(x))] · · · [P †k (x) := P̃ †(k , g(x))]

' p[P1(x) := P̃ †(1 , g(x))] · · · [Pk(x) := P̃ †(k , g(x))]

Proof. Assumptions:

•
[
p ∈ TauFree and Act(p) ⊆ dom(Ξ) and Ref(p) ⊆ {P1 , . . . , Pk}

]
(Z1).

Proceed by induction on the structure of p.

Base:
[
p ∈ Basic or p = P

]
. Proceed by case distinction on the structure of p.

Case: p ∈ Basic. Recall
[[
p ∈ TauFree and Act(p) ⊆ dom(Ξ)

]
by Z1

]
and

[
Bound(p) C ε = ∅ by

the definition of C
]
. Then, conclude split(ε , p) ' p by Theorem 2. Then, conclude split(ε ,

p) ' p[P1(x) := P̃ †(1 , g(x))] · · · [Pk(x) := P̃ †(k , g(x))] by the definition of [:=].

Case: p = Q(y). Observations:

• Recall Ref(p) ⊆ {P1 , . . . , Pk}. Then, because p = Q(y) by the definition of this case,
conclude Ref(Q(y)) ⊆ {P1 , . . . , Pk}. Then, conclude {Q} ⊆ {P1 , . . . , Pk} by the definition
of Ref. Then, conclude

[
Q = Pi for some 1 ≤ i ≤ k

]
by ZFC (Z2).

Conclude:

split(ε , p)[P †1 (x) := P̃ †(1 , g(x))] · · · [P †k (x) := P̃ †(k , g(x))]
Case

= split(ε , Q(y))[P †1 (x) := P̃ †(1 , g(x))] · · · [P †k (x) := P̃ †(k , g(x))]
Z2

= split(ε , Pi(y))[P †1 (x) := P̃ †(1 , g(x))] · · · [P †k (x) := P̃ †(k , g(x))]
split

= P †i (y)[P †1 (x) := P̃ †(1 , g(x))] · · · [P †k (x) := P̃ †(k , g(x))]
[:=]

= Pi(y)[P1(x) := P̃ †(1 , g(x))] · · · [Pk(x) := P̃ †(k , g(x))]
Z2

= Q(y)[P1(x) := P̃ †(1 , g(x))] · · · [Pk(x) := P̃ †(k , g(x))]
Case

= p[P1(x) := P̃ †(1 , g(x))] · · · [Pk(x) := P̃ †(k , g(x))]

Step:
[
p = q ⊕ r or p = c _ q � r or p =

∑
d∈D q or p = f(q)

]
. Assumptions:

• Induction hypothesis (IH):
[
p̂ ∈ TauFree and Act(p̂) ⊆ dom(Ξ)

and Ref(p̂) ⊆ {P̂1 , . . . , P̂k̂}

]
implies

split(ε , p̂)[P̂ †1 (x) :=
ˆ̃
P †(1̂ , ĝ(x))] · · · [P̂ †

k̂
(x) :=

ˆ̃
P †(k̂ , ĝ(x))]

' p̂[P̂1(x) :=
ˆ̃
P †(1 , ĝ(x))] · · · [P̂k̂(x) :=

ˆ̃
P †(k̂ , ĝ(x))]


for all p̂ ∈ {q̂ , r̂}

Observations:

• Recall p ∈ TauFree by Z1. Then, because
[
p = q ⊕ r or p = c _ q � r or p =

∑
x∈D q or

p = f(q)
]

by the definition of this case, conclude

q ⊕ r ∈ TauFree or c _ q � r ∈ TauFree
or

∑
x∈D q ∈ TauFree or f(q) ∈ TauFree

Then, conclude q , r ∈ TauFree by the definition of TauFree (Z3).

88

• Recall Act(p) ⊆ dom(Ξ) by Z1. Then, because
[
p = q ⊕ r or p = c _ q � r or p =

∑
x∈D q or

p = f(q)
]

by the definition of this case, conclude

Act(q ⊕ r) ⊆ dom(Ξ) or Act(c _ q � r) ⊆ dom(Ξ)
or Act(

∑
x∈D q) ⊆ dom(Ξ) or Act(f(q)) ⊆ dom(Ξ)

Then, conclude Act(q) ∪ Act(r) ⊆ dom(Ξ) by the definition of Act. Then, conclude Act(q) ,
Act(r) ⊆ dom(Ξ) by ZFC (Z4).

• Recall Ref(p) ⊆ {P̂1 , . . . , P̂k̂} by Z1. Then, because
[
p = q⊕r or p = c _ q�r or p =

∑
x∈D q

or p = f(q)
]

by the definition of this case, conclude

Ref(q ⊕ r) ⊆ {P̂1 , . . . , P̂k̂} or Ref(c _ q � r) ⊆ {P̂1 , . . . , P̂k̂}
or Ref(

∑
x∈D q) ⊆ {P̂1 , . . . , P̂k̂} or Ref(f(q)) ⊆ {P̂1 , . . . , P̂k̂}

Then, conclude Ref(q)∪Ref(r) ⊆ {P̂1 , . . . , P̂k̂} by the definition of Ref. Then, conclude Ref(q) ,

Ref(r) ⊆ {P̂1 , . . . , P̂k̂} by ZFC (Z5).

• Recall
[
q , r ∈ TauFree by Z3

]
and

[
Act(q) , Act(r) ⊆ dom(Ξ) by Z4

]
and

[
Ref(q) , Ref(r) ⊆ {P1 ,

. . . , Pk} by Z5
]
. Then, conclude

split(ε , q)[P †1 (x) := P̃ †(1 , g(x))] · · · [P †k (x) := P̃ †(k , g(x))]

' q[P1(x) := P̃ †(1 , g(x))] · · · [Pk(x) := P̃ †(k , g(x))]

and split(ε , r)[P †1 (x) := P̃ †(1 , g(x))] · · · [P †k (x) := P̃ †(k , g(x))]

' r[P1(x) := P̃ †(1 , g(x))] · · · [Pk(x) := P̃ †(k , g(x))]

by IH (Z6).

Proceed by case distinction on the structure of p.

Case: p = q ⊕ r. Conclude:

split(ε , p)[P †1 (x) := P̃ †(1 , g(x))] · · · [P †k (x) := P̃ †(k , g(x))]
Case

= split(ε , q ⊕ r)[P †1 (x) := P̃ †(1 , g(x))] · · · [P †k (x) := P̃ †(k , g(x))]

split

= (split(ε , q)⊕ split(ε , r))

[P †1 (x) := P̃ †(1 , g(x))] · · · [P †k (x) := P̃ †(k , g(x))]

[:=]

= split(ε , q)[P †1 (x) := P̃ †(1 , g(x))] · · · [P †k (x) := P̃ †(k , g(x))]⊕
split(ε , r)[P †1 (x) := P̃ †(1 , g(x))] · · · [P †k (x) := P̃ †(k , g(x))]

Z6

' q[P1(x) := P̃ †(1 , g(x))] · · · [Pk(x) := P̃ †(k , g(x))]⊕
r[P1(x) := P̃ †(1 , g(x))] · · · [Pk(x) := P̃ †(k , g(x))]

[:=]

= (q ⊕ r)[P1(x) := P̃ †(1 , g(x))] · · · [Pk(x) := P̃ †(k , g(x))]
Case

= p[P1(x) := P̃ †(1 , g(x))] · · · [Pk(x) := P̃ †(k , g(x))]

Case: p = c _ q � r. Conclude:

split(ε , p)[P †1 (x) := P̃ †(1 , g(x))] · · · [P †k (x) := P̃ †(k , g(x))]
Case

= split(ε , c _ q � r)[P †1 (x) := P̃ †(1 , g(x))] · · · [P †k (x) := P̃ †(k , g(x))]

split

= (c _ split(ε , q) � split(ε , r))

[P †1 (x) := P̃ †(1 , g(x))] · · · [P †k (x) := P̃ †(k , g(x))]

89

[:=]

= c _
split(ε , q)[P †1 (x) := P̃ †(1 , g(x))] · · · [P †k (x) := P̃ †(k , g(x))] �
split(ε , r)[P †1 (x) := P̃ †(1 , g(x))] · · · [P †k (x) := P̃ †(k , g(x))]

Z6

' c _
q[P1(x) := P̃ †(1 , g(x))] · · · [Pk(x) := P̃ †(k , g(x))] �
r[P1(x) := P̃ †(1 , g(x))] · · · [Pk(x) := P̃ †(k , g(x))]

[:=]

= (c _ q � r)[P1(x) := P̃ †(1 , g(x))] · · · [Pk(x) := P̃ †(k , g(x))]
Case

= p[P1(x) := P̃ †(1 , g(x))] · · · [Pk(x) := P̃ †(k , g(x))]

Case: p =
∑
x∈D q. Conclude:

split(ε , p)[P †1 (x) := P̃ †(1 , g(x))] · · · [P †k (x) := P̃ †(k , g(x))]
Case

= split(ε ,
∑
x∈D q)[P

†
1 (x) := P̃ †(1 , g(x))] · · · [P †k (x) := P̃ †(k , g(x))]

split

= (
∑
x∈D split(ε , q))[P †1 (x) := P̃ †(1 , g(x))] · · · [P †k (x) := P̃ †(k , g(x))]

[:=]

=
∑
x∈D split(ε , q)[P †1 (x) := P̃ †(1 , g(x))] · · · [P †k (x) := P̃ †(k , g(x))]

Z6

'
∑
x∈D q[P1(x) := P̃ †(1 , g(x))] · · · [Pk(x) := P̃ †(k , g(x))]

[:=]

= (
∑
x∈D q)[P1(x) := P̃ †(1 , g(x))] · · · [Pk(x) := P̃ †(k , g(x))]

Case

= p[P1(x) := P̃ †(1 , g(x))] · · · [Pk(x) := P̃ †(k , g(x))]

Case: p = f(q). Conclude:

split(ε , p)[P †1 (x) := P̃ †(1 , g(x))] · · · [P †k (x) := P̃ †(k , g(x))]
Case

= split(ε , f(q))[P †1 (x) := P̃ †(1 , g(x))] · · · [P †k (x) := P̃ †(k , g(x))]
split

= f(split(ε , q))[P †1 (x) := P̃ †(1 , g(x))] · · · [P †k (x) := P̃ †(k , g(x))]
[:=]

= f(split(ε , q)[P †1 (x) := P̃ †(1 , g(x))] · · · [P †k (x) := P̃ †(k , g(x))])
Z6

' f(q[P1(x) := P̃ †(1 , g(x))] · · · [Pk(x) := P̃ †(k , g(x))])
[:=]

= f(q)[P1(x) := P̃ †(1 , g(x))] · · · [Pk(x) := P̃ †(k , g(x))]
Case

= p[P1(x) := P̃ †(1 , g(x))] · · · [Pk(x) := P̃ †(k , g(x))]

�

Proof (of Theorem 3). Assumptions:

•



P1(x1 : D1) = p1 , P
†
1 (x1 : D1) = split(ε , p1) ,

...

Pk(xk : Dk) = pk , P
†
k (xk : Dk) = split(ε , pk)

and p1 , . . . , pk ∈ TauFree
and Act(p1) , . . . , Act(pk) ⊆ dom(Ξ) and[
Ref(pi) ⊆ {P1 , . . . , Pk} for all 1 ≤ i ≤ k

]


(Z1).

• h = harmonizer(D1 ∪ · · · ∪Dk , D) (Z2).

• P̃ (y , x : N×D) = y ≈ 1 _ p1[P1(d) := P̃ (1 , h(d))] · · · [Pk(d) := P̃ (k , h(d))] �
...

y ≈ k _ pk[P1(d) := P̃ (1 , h(d))] · · · [Pk(d) := P̃ (k , h(d))] � δ
(Z3).

90

• P̃ †(y , x : N×D) =

y ≈ 1 _ split(p1)[P †1 (d) := P̃ †(1 , h(d))] · · · [P †k (d) := P̃ †(k , h(d))] �
...

y ≈ k _ split(pk)[P †1 (d) := P̃ †(1 , h(d))] · · · [P †k (d) := P̃ †(k , h(d))] � δ
(Z4).

• Φ(Z) = y ≈ 1 _ p1[P1(d) := Z(1 , h(d))] · · · [Pk(d) := Z(k , h(d))] �
...

y ≈ k _ pk[P1(d) := Z(1 , h(d))] · · · [Pk(d) := Z(k , h(d))] � δ
(Z5).

Observations:

• Recall
[
P1(x1 : D1) = p1 , . . . , Pk(xk : Dk) = pk by Z1

]
and

[
P̃ (y , x : N×D) = y ≈ 1 _ p1[P1(d) := P̃ (1 , h(d))] · · · [Pk(d) := P̃ (k , h(d))] �

...

y ≈ k _ pk[P1(d) := P̃ (1 , h(d))] · · · [Pk(d) := P̃ (k , h(d))] � δ

by Z3
]

and
[
h = harmonizer(D1 ∪ · · · ∪Dk , D) by Z2

]
. Then, conclude

[
Pi ' P̃ (i) for all 1 ≤ i ≤ k

]
by Proposition 9 (Z6).

• Recall
[
P †1 (x1 : D1) = split(ε , p1) , . . . , P †k (xk : Dk) = split(ε , pk) by Z1

]
and

[
P̃ †(y , x : N×D) =

y ≈ 1 _ split(p1)[P †1 (d) := P̃ †(1 , h(d))] · · · [P †k (d) := P̃ †(k , h(d))] �
...

y ≈ k _ split(pk)[P †1 (d) := P̃ †(1 , h(d))] · · · [P †k (d) := P̃ †(k , h(d))] � δ

by Z3
]

and
[
h = harmonizer(D1∪· · ·∪Dk , D) by Z2

]
. Then, conclude

[
P †i ' P̃ †(i) for all 1 ≤ i ≤ k

]
by Proposition 9 (Z7).

• Recall
p1 , . . . , pk ∈ TauFree and Act(p1) , . . . , Act(pk) ⊆ dom(Ξ)

and
[
Ref(pi) ⊆ {P1 , . . . , Pk} for all 1 ≤ i ≤ k

]
by Z1. Then, conclude

split(ε , pi)[P
†
1 (d) := P̃ †(1 , h(d))] · · · [P †k (d) := P̃ †(k , h(d))]

' pi[P1(d) := P̃ †(1 , h(d))] · · · [Pk(d) := P̃ †(k , h(d))]
for all 1 ≤ i ≤ k

by Theorem 4 (Z8).

• Conclude (Z9):

Φ(P̃)

Z5

= y ≈ 1 _ p1[P1(d) := P̃ (1 , h(d))] · · · [Pk(d) := P̃ (k , h(d))] �
...

y ≈ k _ pk[P1(d) := P̃ (1 , h(d))] · · · [Pk(d) := P̃ (k , h(d))] � δ

91

Z3

= P̃

• Conclude (Z10):

Φ(P̃ †)

Z5

= y ≈ 1 _ p1[P1(d) := P̃ †(1 , h(d))] · · · [Pk(d) := P̃ †(k , h(d))] �
...

y ≈ k _ pk[P1(d) := P̃ †(1 , h(d))] · · · [Pk(d) := P̃ †(k , h(d))] � δ

Z8

' y ≈ 1 _ split(ε , p1)[P †1 (d) := P̃ †(1 , h(d))] · · · [P †k (d) := P̃ †(k , h(d))] �
...

y ≈ k _ split(ε , pk)[P †1 (d) := P̃ †(1 , h(d))] · · · [P †k (d) := P̃ †(k , h(d))] � δ

Z4

' P̃ †

• Recall
[
Φ(P̃) ' P̃ by Z8

]
and

[
Φ(P̃ †) ' P̃ † by Z8

]
. Then, conclude P̃ ' P̃ † by RSP (Z10).

Recall
[
Pi ' P̃ (i) for all 1 ≤ i ≤ k

]
by Z6. Then, because P̃ ' P̃ † by Z10, conclude

[
Pi ' P̃ †(i) for all

1 ≤ i ≤ k
]
. Then, because

[
P †i ' P̃ †(i) for all 1 ≤ i ≤ k

]
by Z7, conclude

[
Pi ' P †i for all 1 ≤ i ≤ k

]
. �

92

	Motivation
	A Process Algebra with Multiactions and Data
	Data
	Syntax
	Semantics

	An Application of the Algebra: Semantics of Reo
	Splitting Processes
	Intuition
	Formal Definitions
	More Examples

	Properties of the Splitting Procedure
	Simple Properties I: Deadlock Caused by Split Multiactions
	Simple Properties II: Deadlock Caused by Split Basic Processes
	Synchronization and Preservation
	Correctness

	An Application of the Splitting Procedure: Splitting Connectors
	Formalization of (A)synchronous Regions
	Splitting Connectors
	Example:

	Related Work
	Conclusion and Future Work
	More Definitions
	Proofs for Section 5.1
	Proofs for Section 5.2
	Proofs for Section 5.3
	Proofs for Section 5.4

