
Chaos, Solitons and Fractals 131 (2020) 109496 

Contents lists available at ScienceDirect 

Chaos, Solitons and Fractals 

Nonlinear Science, and Nonequilibrium and Complex Phenomena 

journal homepage: www.elsevier.com/locate/chaos 

Evolutionary dynamics for the generalized Baliga–Maskin public good 

model 

Elvio Accinelli a , Filipe Martins b , c , ∗, Alberto A. Pinto 

b , c 

a Facultad de Economía de la UASLP, México 
b Departamento de Matemática, Faculdade de Ciências da Universidade do Porto, Portugal 
c LIAAD-INESC, Porto, Portugal 

a r t i c l e i n f o 

Article history: 

Received 31 March 2019 

Revised 18 October 2019 

Accepted 19 October 2019 

Available online 30 October 2019 

Keywords: 

Common and public goods 

Externalities 

Free-riding 

Evolutionary dynamics 

Adaptive dynamics 

Stability 

Environment 

Pollution. 

a b s t r a c t 

The problem of the consumption or provision of common and public goods is a well known and well 

studied problem in economic sciences. The nature of the problem is the existence of non-excludable 

externalities which gives rise to incentives to free-riding behaviour. There are several economical frame- 

works trying to deal with the problem such as coalition theory or mechanism design and implementation 

theory to ensure a Pareto efficient consumption or provision of such good. Baliga and Maskin considered 

an environmental game where several communities face a problem of pollution reduction. They show 

that all communities except one of them have incentives to act as a free-rider, i.e. only one community 

is willing to face the costs that air cleaning implies, namely the one with greatest preference for the 

good. In this work we introduce an adaptive evolutionary dynamics for the generalization of the Baliga–

Maskin model to quasi-linear utility functions. We show that the Baliga–Maskin equilibrium is the only 

asymptotically stable dynamical equilibrium, all others being unstable. This result reasserts the problem 

of free-riding and externalities for the case of a common good in a dynamically/evolutionary setting, and 

reiterates the relevance of mechanism design and coalition formation in the context of dynamical models. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

In economic sciences when a group of economic agents con-

umes or makes a provision for a public good or a common good,

ormally some problems arise when trying to do it efficiently, ei-

her because the good is over-consumed or under-provided, result-

ng in negative externalities affecting all agents, i.e. non-excludable

xternalities. Usual examples include exhaustion of fish or coal

tocks for the case of common goods or common-pool resources,

nd air or sea pollution related to the overuse of air and water re-

ources in the case of public goods. The reason for this inefficiency

ies in the fact that common or public goods are non-excludable

oods, i.e. a good whereby it is not possible to efficiently exclude

eople from using or having access to the good, even those that

ave not paid for its consumption or contributed to its provision.

ccording to the usual definitions, a public good is a good that

n addition to being non-excludable is also non-rivalrous or non-

ubtractable, meaning that consumption by one agent does not re-

uce the ability of another agent to consume the good, thereby
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aking it difficult to restrict access to the good based on price

ince the marginal cost of providing the good to an additional in-

ividual is zero. Non-excludability causes individuals to have in-

entives to act as “free-riders”, since if they do not pay for such

 good or do not contribute to its provision, they will not be ex-

luded from its using. Such behaviour is possible if there are other

roups of individuals who are willing to pay the cost or make the

ffort that the provision of the common or public good requires,

n which case an individual agent may be tempted to “free-ride”

n the effort made by the others in the sharing of the costs of

onsumption or provision. The obvious social consequence is that

uccessive free-riding may cause a lowering of the provision of the

ood, or alternatively over-consumption due to not all consumers

ontributing to its maintenance. Several solutions for the problem

ave been considered in the past such as the so-called Coasian po-

ition arguing that given an inefficient allocation it leads to incen-

ive to bargain in the direction of a Pareto-optimal or efficient allo-

ation. The problem of free-riding and externalities related to the

ifficulties of the governance and administration of common and

ublic goods have been widely studied. For instance, we mention

he seminal studies [7,8] . 

In [6] the authors propose a model for the consumption and

rovision of a public good in the case of environment protection.
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They consider a non-excludable externality, which in their case is

air pollution, and the problems of mitigation of such externality

which will affect any agent, even those that do not pollute. In

their case the public good is the reduction of air pollution itself

which is non-excludable since any agent will benefit from the

reduction of pollution, which nonetheless bears a cost and hence

causes incentives to free-riding. In a broader context the non-

excludable externality may be sea pollution or more generally be

the overuse of a common-pool resource such as natural resources

as fish stocks or forests, or the under-provision of a public good

such as national defence, and the problem of their sustainable

preservation. The model may also be seen more generally as a

model for the contributions to a good that is non-excludable, i.e.

a common or a public good, with the decision variables being the

effort or amount of contribution. Their results show that when

several communities or economic agents are interested in the

contribution or consumption of a non-excludable good (in the

case considered, the good is the reduction of pollution), Coasian

bargaining (i.e. bargaining in the presence of externalities) by the

agents will not lead to a Pareto-efficient outcome. This is due

to the non-excludable nature of the externality, be it positive,

as a public good, or negative. Indeed, when all communities are

participating in an agreement, each community will be better off

by not contributing, hence free-riding on the others effort s ending

up in a non Pareto-optimal solution, and with each agent or com-

munity contributing its individually optimal level which falls short

of the total joint contribution for the Pareto-optimal solution.

More precisely, the community with the greatest preference for

the maintenance of the good, in the case, the reduction of air

pollution, will alone bear the costs associated to the reduction.

This solution may be seen as a Pareto-dominated Nash equilibrium

for a two population normal form game. 

In this work we introduce a dynamics, the so called adaptive

dynamics from the theory of evolutionary games (see Hofbauer

and Sigmund [3] and Sigmund [9] ) to a generalized version of the

common good contribution/pollution reduction model in [6] . Adap-

tive dynamics was first introduced in the context of evolution-

ary game theory to address the problem of the direction of evo-

lution given a certain fitness function, pointing towards the most

favourable direction of evolution. Adaptive dynamics has been in-

creasingly used in contexts other than biology such as economics

and other social sciences. We shall show that in a generalized ver-

sion of the environment protection model of Baliga and Maskin the

equilibria for the adaptive dynamics are the equilibria where one

community alone is bearing the costs of maintenance of the good,

while the others are free-riding on this effort. In our generalized

version we consider quasi-linear utility functions and we assume

heterogeneity regarding the marginal utilities between the com-

munities involved in the common good game. Furthermore, the

stationary states of the dynamics are all unstable with the excep-

tion of one equilibrium, which is the one where only the agent

with greatest preference (or more generally, the one with the high-

est marginal gross benefit) contributes. 

The results in our work can be seen as an evolutionary dynam-

ical reassertion of the results by Baliga and Maskin in the sense

that it raises the problem of sustainability of the exploration and

provision of common goods such as the question of contribution

for the reduction of pollution in an evolutionary framework. In

their paper they argue that to ensure the Pareto-optimal alloca-

tion one needs to consider intervention of some sort providing a

mechanism so that this outcome can be attained in a stable way.

This is the goal of implementation theory or the theory of mecha-

nism design. See for instance [5] for a survey on some of the main

features and results of mechanism design theory. Our results thus

highlight also the importance of evolutionary stability in address-

ing of problems of the governance of common and public goods
here the issue of free-riding appears and the implementation of

ocial goals regarding their management. See for instance [1] for

n economic application of adaptive dynamics in the framework

f mechanism design and implementation theory and [4] for how

volution can help solve the problem of the tragedy of the com-

ons. Apart from the study of mechanisms enforcing contributing

o the solution of problems of governance of the commons, there

re alternative approaches such as clubs or coalition theory ap-

roach whose relevance in cases of climate policy and free-riding

ave been pointed in works such as [2] where coalitions may form

hat share the costs of the provision of the goods, such as the costs

f reducing air or sea pollution. See [8] for more on the importance

f coalitions for questions regarding common goods. The question

f game theoretic stability as well as evolutionary dynamical sta-

ility of such coalitions are essential to the study of the problem,

ogether with the study of the conditions in which it is possible to

ender them stable. 

This work is organized in the following way. In Section 2 we

ntroduce the common good game inspired by the air pollution

eduction game of Baliga and Maskin [6] . We describe the utility

unctions we consider and discuss the assumptions we make on

uch utilities regarding the heterogeneity of the communities in-

olved, and we propose and describe the evolutionary adaptive or

yopic dynamics for the game. In Section 3 we obtain our results

egarding the stability analysis of the equilibria of the evolutionary

ynamics for the generalized version of the Baliga Maskin game

escribed in the previous section. We present some conclusions

ummarizing our results and several possibilities of future research

n related topics in Section 4 . 

. Evolutionary dynamics for the common good model 

Following [6] , we consider an example based on environ-

ent contamination, where N communities (labelled i = { 1 , . . . , N} )
ould like to reduce their aggregated polluting emissions. De-

ote by r j ≥ 0 the reduction of pollution by community j and

y r = 

∑ N 
j=1 r j the aggregated pollution reduction. Given a vec-

or (r 1 , . . . , r i , . . . , r N ) of individual contributions (i.e. reductions of

ollution) we will denote by r −i = (r 1 , . . . r i −1 , r i +1 , . . . , r N ) the con-

ributions of every community except community i . In a broader

ontext the variables may be referred to as the contributions for

he common good. In the context of air pollution as the non-

xcludable externality, the common good is the reduction of pol-

ution and we will refer to the variables as the contributions or

ffort f or the reduction of pollution by the communities involved. 

Suppose that the utility to a community j is given by a quasi-

inear utility function of the form: 

 i (r i , r −i ) = u i (r) − βi r i . 

epending on the individual contribution r i and also on the con-

ributions of the other communities r −i . As usual for quasi-linear

tilities, the function u i is assumed to be strictly concave on the

ggregated contribution r and β i > 0 is the marginal cost. The func-

ions u i are the gross benefit of the reduction of pollution. In most

ituations we have u i (r) = u (r; p i ) for some parameter p i character-

zing community i . We will denote the marginal benefit of commu-

ity i by v i (r) = ∂ u i /∂ r. Strict concavity implies that v i is strictly

ecreasing on r , i.e. ∂ v i / ∂ r < 0. 

For the adaptive dynamics analysis in the next section, we re-

uire two more assumptions on the marginal benefits. We will as-

ume that 

im 

r→ 0 
v i (r) > βi > lim 

r→ + ∞ 

v i (r) . 

e observe that the usual Inada conditions for the gross benefits

 imply the above conditions. 
i 
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Furthermore we will assume that the marginal benefits are dif-

erent for each community. More precisely, we will assume that for

very community i we have: 

 i (r) > v i +1 (r) . 

n other words, we assume heterogeneity in the marginal gross

enefits of the communities. 

xample. Consider the following modification of the Baliga–

askin utility function where the gross benefit u i ( r ) is given by

j r 
α , where α ∈ (0, 1) is the intensity of reduction and θ j ∈ R 

+ , for

j ∈ { 1 , . . . , N} are the preferences of community j for clean air. This

ross benefit is strictly concave since α is less than 1 and so the

tility function given by U i (r i , r −i ) = θ j r 
α − r j is quasi-linear. 

Furthermore, the marginal benefit for community i is given by

 i (r) = αθi r 
α−1 . This function is monotonically increasing in θ and

hese utility functions satisfy the previous assumption if the pref-

rences θ are such that 

1 > θ2 > . . . > θN . 

hese inequalities mean that the individuals or communities in-

olved in the pollution of the environment have different prefer-

nces for clean air, and then different incentives to cooperate for

he clearing of the air. 

We consider the adaptive or myopic dynamics (see for instance

ofbauer and Sigmund [3] , Sigmund [9] and Cabrales [1] ) for the

ame “free-riders vs . cooperation”: 

˙ 
 i = 

∂U i 

∂r i 
r i , i = 1 , . . . , N. (1)

here the phase space is the non-negative orthant of R 

N . We ob-

erve that the vector field defining the system of differential equa-

ions might blow up at the origin and be undefined. 

The reason for the nomenclature myopic is that in each state

f the dynamics, i.e., each state of the contribution for the public

ood, agents change their contribution in the direction which is

he most promising one according to their marginal utility. 

. Stability analysis of the myopic dynamics of the effort 

In this section we present the stability analysis of the dynamics

ntroduced in the previous section. 

Consider the utility function of the j th community given by

 j (r) − β j r j as previously described with the assumptions we

ade, namely strict concavity of the gross benefit u j ( r ) and hetero-

eneity regarding the marginal benefits v j ( r ). We will assume some

omogeneity in the costs β j , i.e. we will assume that the costs are

elatively similar, i.e. β j ≈β and without loss of generality we will

ssume that the marginal costs are β j = β = 1 . The “myopic” dy-

amics is given by the system of differential equations: 

˙ 
 j = 

∂U j 

∂r j 
r j = 

(
v j (r) − 1 

)
r j , j = 1 , . . . , N. (2)

ccording to this dynamics each community increases its contribu-

ion/reduction when its utility increases, and conversely decreases

ts contribution when the utility decreases and it does so in a per

apita rate equal to its marginal utility. 

We first observe that the coordinate axes r j = 0 are positively

nvariant for this dynamics as well as the interior of the non-

egative orthant of R 

N . The marginal utilities are given by: 

∂U j 

∂r j 
= v j (r) − 1 . 

or each of the differential equations composing the system (2) the

ight-hand side is zero when r j = 0 or when v j (r) = 1 . By strict
oncavity of the gross benefit u i ( r ) we have that the marginal ben-

fit v j ( r ) is a strictly decreasing function and so the previous equa-

ion has a unique solution r̄ j , i.e. such that v j ( ̄r j ) = 1 . 

When the aggregated contribution r is such that r = r̄ j then the

 th community is offering the effort that according to their pref-

rences corresponds to their optimal contribution, i.e. the effort

hat maximizes his/her utility. In this case, the time derivative ˙ r j 
s zero, so j does not change its contribution, although the ag-

regated contribution might change due to changes of the other

gents. We observe that if r > r̄ j then the agent decreases its con-

ribution whereas if r < r̄ j he/she increases its contribution. This

s the main idea of the aforementioned adaptive dynamics where

gents locally optimize their strategy in the direction which grants

igher utility levels. Hence we may call r̄ j the aggregated contri-

ution threshold for community j : it is the aggregated contribu-

ion level that must be achieved in order that j does not need to

ncrease its contribution, or in other words it may be regarded as

he subsistence aggregated contribution for j . 

With the previous assumptions on the marginal utilities of the

ommunities we have heterogeneity of the agents in the sense that

he aggregated contribution thresholds are such that r̄ i > r̄ i +1 . Tak-

ng this into account the equilibria of system (2) are: 

1. Zero-contribution : r j = 0 , ∀ j ∈ { 1 , . . . , N} . This is where no

community contributes. We observe that the vector field

might not be defined the zero-contribution , otherwise it is

an equilibrium. 

2. Free-riding equilibria : (0 , . . . , 0 , ̄r j , 0 , . . . , 0) for each j ∈
{ 1 , . . . , N} where r̄ j is the aggregated contribution thresh-

old for j , i.e. the unique solution r of the equation v j (r) = 1 .

These are the N equilibria where only one community con-

tributes to the common good. The other communities may

be seen as free-riding on community j . 

The zero-contribution is always unstable independently if the

ector field is defined or not at that point. In fact, in the portion of

he coordinate axes (which are invariant) connecting this point to

ach one of the free-riding equilibria the dynamics goes away from

he origin and approaches the corresponding free-riding equilibrium

ince the marginal utility ∂ U j /∂ r j is positive. This implies that the

ero-contribution is indeed a repelling fixed point or a source for

he dynamics. 

For the other equilibria we will apply Hartman-Grobman’s the-

rem. Consider the equilibrium R̄ j = (0 , . . . , 0 , ̄r j , 0 , . . . , 0) and let

 	 = j . So we have: 

1. when k 	 = i : 

∂ 

∂r k 

(
∂U i 

∂r i 
r i 

)
R̄ j 

= 

(
∂v i 
∂r k 

r i 

)
R̄ j 

= 0 

2. when k = i : 

∂ 

∂r i 

(
∂U i 

∂r i 
r i 

)
R̄ j 

= v i ( ̄r j ) − 1 

ow when i = j we have that for all k : 

∂ 

∂r k 

(
∂U j 

∂r j 
r j 

)
R̄ j 

= r̄ j 

(
∂v j 
∂r 

)
R̄ j 

< 0 

o the Jacobian matrix at the equilibrium R̄ j =
(0 , . . . , 0 , ̄r j , 0 , . . . , 0) is given by 
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⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

v 1 ( ̄r j ) − 1 0 . . . 0 0 

0 v 2 ( ̄r j ) − 1 . . . 0 0 

. . . 
. . . 

. . . 
. . . 

. . . 
0 0 . . . v j−1 ( ̄r j ) − 1 0 

r̄ j 

(
∂v j 
∂r 

)
R̄ j 

r̄ j 

(
∂v j 
∂r 

)
R̄ j 

. . . r̄ j 

(
∂v j 
∂r 

)
R̄ j 

r̄ j 

(
∂v j 
∂r 

)
R̄ j 

r̄ j 

(
0 0 . . . 0 0 v j+1 (
. . . 

. . . 
. . . 

. . . 
. . . 

0 0 . . . 0 0 

It is easy to verify that the matrix has N different eigenvalues

which are 

v 1 ( ̄r j ) − 1 > v 2 ( ̄r j ) − 1 > . . . > v j−1 ( ̄r j ) − 1 > v j+1 ( ̄r j ) − 1 

> . . . > v N ( ̄r j ) − 1 , 

and 

ω = r̄ j 

(
∂v j 
∂r 

)
R̄ j 

< 0 . 

The eigenvalue ω has eigenvector e j = (0 , . . . , 1 , . . . , 0) the j th vec-

tor of the canonical basis. The eigenvalue λk = v ( ̄r k ) − 1 for k 	 = j

has eigenvector v = ωe j + (λk − ω) e k . 

So each free-riding equilibrium has a stable direction along the

corresponding coordinate axe. By our previous assumptions we

have that v k ( ̄r j ) − 1 > v j ( ̄r j ) − 1 = 0 if k < j and that v k ( ̄r j ) − 1 <

0 = v j ( ̄r j ) − 1 if k > j . Consequently we have that all the steady-

states are saddle points with the exception of R̄ 1 = ( ̄r 1 , 0 , . . . , 0) ,

i.e. the equilibria where the only contributing community is the

one with the greatest gross marginal benefit for the maintenance

of the common good. 

Example. For the Baliga–Maskin utility the aggregated contribu-

tion threshold for community j is given by r̄ j = (αθ j ) 
1 

1 −α . Conse-

quently v k ( ̄r j ) − 1 = θk /θ j − 1 which is lesser than zero for k > j

and greater than zero for k < j . In this case the only asymptot-

ically stable steady-state is R̄ 1 = ( ( αθ1 ) 
1 

1 −α , 0 , . . . , 0) where only

the community with the greatest preference θ for the common

good (in their interpretation the contribution for the reduction of

air pollution) is contributing for its maintenance with the others

free-riding. 

Remark 1. Observe that as we assumed that the costs β j are rela-

tively similar, say β j ≈β , then since the thresholds r̄ j are all differ-

ent and ordered according to the marginal gross benefits of the

communities, we have that the equilibria of the system are as

above, i.e. the zero-contribution and the free-riding equilibria for

each community and in order to simplify notation we assumed

that β j = 1 . 

However, if this is not the case and the costs β i are not homo-

geneous, we obtain a similar situation if we substitute the hetero-

geneity in the gross benefit by heterogeneity in the utilities in the

sense that 

∂U i 

∂r i 
> 

∂U i +1 

∂r i +1 

More precisely, in this situation if the marginal utility of commu-

nity i is zero when the aggregated contribution is r = r̄ i then the

equilibria are of the above form and the stability considerations

that follow also hold. Moreover, this also holds for even more gen-

eral utility functions U i with the above property provided they are

strictly concave and they are zero for a given aggregated contribu-

tion r = r i > 0 . 

t  
. . . 0 

. . . 0 

. . . 
. . . 

. . . 0 

¯
 j 

. . . r̄ j 

(
∂v j 
∂r 

)
R̄ j 

1 . . . 0 

. . . 
. . . 

. . . v N ( ̄r j ) − 1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

So we have that under general conditions on the utility func-

ions, which are quasi-linear utilities and heterogeneity on the

arginal utilities of the communities intervening in the game, the

nly asymptotically stable equilibrium is the one corresponding to

he highest marginal gross benefit. We observe this goes in the

ense obtained in [6] : when there is no agreement for the reduc-

ion of pollution this is precisely the result of the static individ-

al optimization and the total aggregated contribution is the one

orresponding to the community that has the greatest preference

or the reduction of air pollution with the other communities free-

iding. Our results above assert an identical result in terms of the

arginal utilities in a dynamical context of evolution by myopic

daptation. 

. Conclusion 

In this paper we introduced an evolutionary dynamics for a

eneralized version of the common good model of Baliga and

askin (see [6] ) and we showed that the only stable equilibrium is

he one in which there is a single community willing to contribute

or the good which is the one with the highest marginal gross ben-

fit from the maintenance of the good, while all the other commu-

ities of the game are free-riding on such contribution, and that

ll the other equilibria are unstable. Our setting of the problem

onsiders quasi-linear utility functions with marginal gross ben-

fit heterogeneity that includes the Baliga–Maskin environmental

ame as a particular case. Indeed, this may be seen as reasserting

he classic problem of governance of the commons, as for instance

resented in [6] in the context of air pollution in an evolutionary

ramework. Several questions remain. For instance to what extent

oes the provision of the common good which this single agent

an provide is sufficient so that the consumption of that good can

e enjoyed by all potential consumers in a sustainable way, i.e.

ithout exhausting it definitively? Or in the context of air pollu-

ion, whether the effort of the reduction of pollution by this single

gent is sufficient to ensure a sustainable reduction of pollution?

lternatively, how can stable coalition for the maintenance of the

ommon good be formed? 
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