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Abstract—This paper addresses the simultaneous localization
and control of an AUV using a single acoustic beacon. To
determine its horizontal position, the AUV fuses distances to the
single beacon with dead reckoning data, heading and longitudinal
velocity. A particle filter and an extended Kalman filter are
implemented and compared in terms of performances. As this is
an ill-posed problem, special guidance laws are derived so that
the overall horizontal positioning error remains bounded. Besides
presenting the derivation of such guidance and control laws, as
well as procedures to estimate the horizontal position, we also
demonstrate the performance of the proposed system by means
of simulation results.

I. INTRODUCTION

Autonomous vehicles and robots have been used in many
applications over the last years addressing the need for auto-
matic systems in order to improve performance or safety, for
example. In this sense, robotics is a challenging domain in
which several engineering subjects have to be considered to
build robust and efficient systems. Adequate motion of these
vehicles (or robots) requires the knowledge about the current
position which, in turn, implies the use of sensors to capture
environment data. Nowadays, devices like GPS, Doppler based
sensors or Inertial Measurement Unit (IMU) provide accurate
measurements of the motion.

However, GPS are not available for underwater environ-
ments and Doppler effect sensors and INS are affected by
biases that are difficult to estimate, contributing to position-
ing errors that grow with time or traveled distance. In this
sense, underwater vehicle navigation systems are often aided
by measurements of ranges [1]-[5] to beacons or markers.
Nevertheless, this implies the need for knowledge of marker
position or deployment of several setup material, which is
intended to be minimal.

This paper focuses on navigation of underwater vehicles
based on measurements of ranges to a single beacon. We
address the problem of navigation and control in a coupled
way in order to guarantee observability.

Some works have been performed in single beacon navi-
gation [1], [3]. Both implementations include Kalman filter
estimation, being different on the initialization process. Their
simulation and practical results show successful operation of
the navigation system.
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The subject addressed here may be directly adapted to
several scenarios. In particular, for underwater vehicles, one
may imagine several scenarios like the search of a lost object
equipped with an emitter or the so-called homing of an
underwater vehicle in a moving platform. This last scenario
is of utmost importance, considering that it may be applied
to recover a vehicle: if for any reason, a vehicle fails during
its mission or loses itself due to issues in sensors or in the
navigation system, it may switch to a safety mode in witch it
tries to find an emitter in a surface vehicle or in a well known
place, for instance.

Recently, the inclusion of acoustic modems in underwater
systems is becoming common. Generally, underwater systems
embody two modems: one in the vehicle and another on a
base station. Further to their role as a mechanism to exchange
data, these devices also provide the distance between them,
in real time. By taking advantage of these precise range mea-
surements, it is then possible to navigate accurately without
requiring any other beacons.

II. THE PROBLEM

Throughout this paper, we will consider the Autonomous
Underwater Vehicle (AUV) MARES. This vehicle was de-
veloped at FEUP (Faculty of Engineering of the University
of Porto) where its performances were already demonstrated
in previous works [6]-[8]. Beyond other characteristics, the
MARES AUV has the particular abilities to immobilize in

Fig. 1: Autonomous underwater vehicle MARES.



the column water and to dive independently of the forward
velocity. It is endowed by four thrusters: the vertical motion
(translation and rotation) relies on two propellers inserted
in the hull while the horizontal motion is ensured by two
propellers placed on the rear part of the vehicle.

Typical missions of MARES include environment sampling
and monitoring in which the motion of the vehicle is needed.
A set of equipment such as fluorometers, turbidity, CTD
(conductivity, temperature, depth) sensors are conveyed on
board. Angular variables are measured by a compass and
tilt sensors, while depth is indirectly measured by a pres-
sure sensor. These outputs are fairly precise, accurate and
noiseless. Nevertheless, horizontal localization does not profit
of the same advantage. The current solution for navigation
of MARES contemplates two acoustic beacons deployed on
the surface of the region of interest. Using a long baseline
(LBL) [7], the horizontal position of the vehicle is estimated
through combination of distances to each of the beacons and
dead-reckoning computation. Distances are derived by the
calculation of the time-of-flight of acoustic pulses emitted by
the beacons. Errors of the position estimation are typically in
the range of 1 to 2 meters.

In order to minimize the set-up deployment, specially
acoustic beacons, we aim at developing a solution that allows
for robust navigation with a single beacon. In this work, we
consider the particular case of homing. This task is useful for
applications in which the AUV has to be recovered from the
water, for example. Even in scenarios where the localization
of the vehicle is not an issue, the homing approach may be
interesting to the vehicle meet the beacon.

To analyze the motion of the MARES AUV, we will use the
same notation as in [9]. The position and angles of the vehicle
are expressed through the vector 7. = [z,y, 2, ¢,0,%]T € R®
in the inertial frame {Z}. The pair (x,y) define the horizontal
position of the vehicle, z the depth at which the vehicle is and
¢, 0, ¥ are the roll, pitch and yaw angles, respectively. The
velocities of translation and rotation, related to the fluid, are
given by the vector v, = [u,v,w,p,q,r]T € R, expressed in
the body frame {5}. It is assumed that the fluid is irrotational
and that only the horizontal components of velocity (water
current) are non-null. Hence, the fluid velocity vector is given,
in the inertial frame {Z} by vi. = [vg,vy,01%4]7 € RE.
Suppose there is linear transformation matrix .J,(n) € R6*¢
dependent on the angular position of the vehicle that maps
vectors in {B} to {Z}. The motion dynamics is described by
the following system:

Ne = Je(Ne)Ve + Vye (1)
M. = —(C(ve) + D(ve))ve + g(ne) + Pfy,  (2)

where M € R®*6 is the inertia matrix, C(v.) € R%*6 is the
Coriolis and centripetal terms matrix, D(v.) € R6*C is the
viscous damping matrix, g(7.) € RS is the restoring forces
and moments vector, P € R%X™ is the actuator distribution
matrix, where n is the number of motion actuator, and f, € R"
is the vector of actuator forces whose elements are the forces
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applied by each actuator. Further information and derivation
of these terms may be found in [9], [10] or, for the particular
case of MARES, in [6].

For simplicity, instead of considering the complete model,
several authors consider the motion of underwater vehicles
in a decoupled way [9], [10]. In our previous work [6], we
developed controllers that give to MARES the ability to move
independently in vertical and horizontal planes. This feature
allows us to be concerned only with the horizontal motion
for this paper. A reduced model of the dynamics (1), (2) is
used instead of the complete model (see [6]), in which n =
[z,y, 9T, v = [u,v,r]T and v} = [v,,vy,0]T are the reduced
vectors of position and velocities in the horizontal subspace.
The motion dynamics takes the same form as in (1) and (2).

Assuming that the inner loop (velocity loop) of the system
is closed and stable, we are able to give dynamic references to
velocity controllers. This approach was already implemented
and its operation was successfully demonstrated [6]. It allows
us to simplify our analysis and to abstract from the complex
motion dynamics. Hence, we assume that we can manipulate
the state variable u and r by setting the references u,.y and
rref on the velocity controller. Let’s consider the origin of
the inertial frame {Z} to be coincident with the beacon on the
surface. Its x-axis coincides with the north direction while the
y-axis coincides with the east direction. The kinematics of the
reduced model in (1) can be simply written as

x cos(vp) —sin(y) 0| |u Vg
n=|y| = [sin(¥) cos(y) 0| [v]|+ |vy
o 0 o 1| |r 0

= J(v + vy, )

assuming that roll and pitch angles are null, ¢ = 6 = 0.

Hence, homing is equivalent to stabilize the origin of (z,y)
in (3) through control laws u = 7, (n) and r = ,-(n).

However, the pair (z(t),y(t)) is unknown and has to be
estimated in order to obtain an apropriate behavior while
approaching the origin. The available measurements are the
range to the beacon R, the yaw angle ¢ and the depth z. While
the two later variables are reasonably noiseless, the range is
not:

R= @ TP T2 4w, @

where w, is a non-null mean, non-gaussian noise variable,
dependent on the amplitude of R, affected by multipath of
acoustic waves and interferences [4].

Part of the homing problem can be solved by estimating
Z, ¥, U, and ¥,. To achieve so, particle filter and Kalman
filter are methods that have been applied in several robotic
localization problems. However, in our case, due to questions
of observability, it is expected that the control laws and the
estimation cannot be decoupled. The control law has to take
into account the confidence on the estimates while it generates
trajectories that ensure stability. The next section describes
our implementation, discussing some of the major questions
of estimation and control.



III. NAVIGATION

A good navigation system is crucial to provide vehicle
localization and positioning, with strong impact on mission
performance. By measuring the time of flight of the acoustic
waves, it is possible to determine the distance between the
vehicle and the beacon. Nevertheless, this measurement only
provides information along one dimension. Thus it is aided
by a compass and a pressure sensor that makes it possible to
observe orientation and depth.

Localization is reduced to an estimation problem in which
Kalman filters and particle filters seem to be the most promis-
ing approaches. In order to verify and compare the two
methods, we developed both. Their formulations are shown
in the following subsections while initialization and control
questions are tackled in the last two.

A. Estimating the position: extended Kalman filter

Kalman filter is an optimal estimator for linear systems af-
fected by white noise in measurements and state. Its operation
for nonlinear system with gaussian noise was classified as
suboptimal [11]. However, it has been implemented in several
works ( see [1], [2], [4], for example) where the results are
convincent in terms of performances, even in the presence
of non-gaussian, non-null mean noise. This first approach
contemplates an extended Kalman filter (EKF) to estimate
the horizontal position (Z,¢) and the water current velocities
(92 1y)-

We assume that the state variable ¥ is directly obtained from
the compass and z is obtained from the pressure sensor. Due
to low noise of these sensor outputs, we consider that filtering
is not needed, which makes possible their direct inclusion
in (3) and (4). The use of a computational system implies
discretization of time. The step interval in a typical mission
with MARES is At = 100 milliseconds. At each time step, the
values of depth and compass are updated. However, because
of the natural propagation of acoustic waves in the water, the
update of the range is performed at lower frequency: generally
the overall acoustic system is set to a frequency of 0.5Hz.
Note that the reception of ping may fail due to occlusions,
interferences or reflections in non-homogeneous environments.
For the extended Kalman filter formulation (see [11]), let the
measurement at instant ¢, be given by

my = R(ty) = he(ne) + vk, @)

where hy, (n(tk)> = \/m(tk)Q + y(tk)Q + Z(tk)Q and vy ~
N(0,R,,) is assumed to be a noise variable that follows a
normal distribution with variance R,,,. As it was already stated,
this assumption is not true but, for this formulation, we will
assume so.

For precise localization, it is important to estimate the
water current for inclusion in dead-reckoning computation. In
Kalman filter formulation, it implies to include the current
components as state variables. Assuming they are constant,
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from (3), we can easily derive:

X F(X)
& 0 01 0f |z cos(yp) —sin(%)
gl _ [0 0 0 1 Y sin(¢))  cos() U
ol "o 0 0 ol e | 0 0 vl ©
Uy 0 0 0 0] |vy 0 0

+w

where w € R* ~ NV(0, Q) is the noise vector with null mean
and variance @) € R**4,

The formulation of the extended Kalman filter follows from
[11]. Whenever a new measurement R(¢x) is available, the
state estimate update is given by

X’k\k = Xklk—l + Ki[Ry, — hk(Xk\k—le)] )

where K, is the so-called Kalman gain at instant tg. This
vector is computed through the following expression:

Ky = Py HE (Hi Pyj—1 H{ + Ri) ™",

where Hj, is the Jacobian of hj at point X given by

Ohy 0z x/hy
1. — | Ohw/0y _ v/
k7 0hy /O, 0
8hk/6vy 0

X=Xpp-1 X=Xy -1

and P is the estimate covariance, which is updated at each
new range measurement through

Py = (I — K Hy,) Pyjp—1-

These updates occur only when a new measurement is avail-
able. However, the range is not observed at each time step
and the position estimate has to propagated through dead-
reckoning. From (1) and (2), one can easily derive the dis-
cretized formulation:

[Cﬁklkl} _ [@11@1} n )
Uk|k—1 Uk—1]k—1
cos(vr)  —sin(vr)| k-1 (o
. A + | . At
qsm(w;@) cos(Yr) | [Dk—1 Dy
where At = t; — ti_1. Here, the velocities @& and © are
estimated. Based on the model of equation (2), the velocity
is dead-reckoned according to the following expression:
g,
Upyr = |0 ©))
Tk
=0+ M (—(C+ D)y + g+ Pfoi) At

where C' = C(¥y), D = D(iy), g = g(¢r,0r). We recall
that in (8) and (9), the variable vy, is directly measured by the
compass, from which r = % is easily derived. Note that in
(9), the thruster forces f, are estimated externally. We have
to highlight that dead-reckoning relies on the accuracy of the
model for velocity estimation. Inaccurate models can strongly

degrade the estimation of the state.



At each dead-reckoning step, the covariance matrix evolves
as follow:

Pyjg—1 = Fr1Pooqp1 i1+ Q

where F' is the Jacobian of the function f(.X) in (6) at point
X:

(10)

0010
p_ X oo o0 1
X |x=x |0 0 0 0
0000

One of the major issues with the extended Kalman filter
is the initialization. To avoid divergence and guarantee fast
convergence of the estimate, the initial positions and water cur-
rent velocities have to be adequately initialized. This question
will be tackled later in subsection III-C. The next subsection
present a valid alternative to EKF though it can also be used
as an initialization method.

B. Estimating the position: particle filter

While the extended Kalman filter approach assumes the
presence of Gaussian noises on observations and on state
propagation, particle filters do not make any assumption on
the probability distribution of the noise [12], [13]. In fact,
the posterior probability distribution is approximated by a
finite number of particles which are vectors whose components
represent probable state estimates.

Although particle filter is a promising approach, it is com-
putationally costly when compared with EKF. Generally, the
number of particles is large to guarantee good coverage of the
belief distribution and grows substancially with the number
of state variables to estimate [13]. Once our computational
ressources are limited, there is a trade-off between accuracy
and processing requeriments. The computational system of
MARES manage several critical sensors and actuators whose
processing time is considerable. This makes the processing
time available for particle filter estimation narrower which leds
us to consider and estimate only horizontal positions while
water currents are considered disturbances.

The sampling importance resampling (SIR) particle filter
algorithm is composed by four steps [12], [13]: initialization,
prediction (or propagation), measurement update and resam-
pling. Here, we will present the particular implementation for
single beacon localization. Let us consider the set of particles
Xp = {X}, X2, ..., X7}, where X} = [2i,yi]7 € R? and
n is the number of particles. Associated to these particles,
a set of weights Wy, = {wj,w?,...,wl},wi € R, assign an
importance to the corresponding particle. For initialization, the
vehicle is stopped and the range is measured several times. The
mean of sequential consistent measurement Ry is computed
and each particle is sampled according to

[xé] _ |:(]?znz + T;) COSW;)
Yo| | (Rini +7y)sin(yy) |’

where rl ~ U(—d,,6,) and Y& ~ U(—m, ) are sampled from
uniform probability distributions.

(1)

978-1-4244-4333-8/10/$25.00 ©2010 IEEE

At each time step, each particle is propagated by dead-
reckoning similarly to (8) and (9). They differ only in an added
sample s; from a user-defined distribution p, for propagation:

Xy = F(XE02) + s (12

Whenever a measurement of range is available, the update

is performed. The weights are computed according to

wj, = wj,_,q(Ri| X}), (13)

where ¢ is an importance function that approach the likelihood.
In this case the function ¢ = ¢ (||||X}|| — Re||) is set to
be a monotically decreasing, positive definite function of its
argument. Our implementation makes use of an exponential
function. After computing the weights, normalization follows:
wi = w}i /> " wi. The estimate of the state is then obtained
through

Xk = Zw}sX}e

i=1

(14)

Note that this is not the only way to obtain the estimate. This
approach was considered in [13]. Other implementations may
contemplate only the most weighted particle, for example.

Due to their nature, after some iterations, it is common
that particle filters weight a set of few particles considerably
more than the remaining ones. In the single beacon local-
ization problem, this happens when a small set of particles
is iteratively in positions that are consistent with the range.
Their weights will increase while the remaining ones will
decrease. In such scenario, the reliability on the estimation
decreases, once the estimation relies on this small set. This
phenomenon is known as degenerancy. However, it can be
solved by resampling. The method consists in “populating”
the regions around the most weighted particles. This can be
achieved by sampling from an accumulative weight function
(see [12], for example) and setting all weights wi = 1/n.
Nevertheless, resampling should not be performed at each
iteration but only when the degenerancy is high. A commonly
used measure for degenerancy is the summation of the square
of the weights [12], [13]. Thus, resampling has to be done
whenever the following inequality holds:

1
3 < Nin,

20w,

where Ny, € [1,n] is a preset threshold.

Although particle filters provide an estimate based on vec-
tors distributed in the space, it may diverge. Divergence, in
this case, may be due to lack of coverage. Indeed, when the
particles are resampled, they likely concentrate in a region of
the space that may be too small which may originate lack of
representativity for the measurements. Of course, this can be
overcome by increasing the number of particles and tunning
the user-defined distribution function py such that the particles
are propagated within a broader range. But, once again it has
practical limitations related with computational capabilities.

(15)



C. Initialization

Although the particle filters include a step for initialization,
this is not yet solved for the EKF approach. Hence, in order
to guarantee fast convergence of the Kalman filter to the real
position, it is necessary to provide a fairly good guess of the
initial position while reducing the values of the covariances of
the corresponding variables. Unfortunately, the speed of con-
vergence is not the only issue: without adequate initialization,
the EKF will probably diverge and, as it is well-known, it
would hardly recover. Baccou and Jouvencel [1] implemented
an iterative mean square estimator for the initial position.
However, the estimator relies on an accurate model for dead-
reckoning or accurate knowledge on vehicle velocities. Our
implementation and simulation of least mean square method
revealed us that the initialization is very sensitive to vehicle
model uncertainties. On the other hand, least mean square
method is optimal for Gaussian noise and acoustic pings suffer
of non-Gaussian noise. Casey and Thomas [3] defined an
intuitive estimator, based on least mean square errors, relying
also on very accurate dead-reckoning.

Our approach makes use of the particle filter properties:
a particle filter estimates the initial position of the vehicle
which in turn is set as the initial estimate of the EKF. The
initialization includes the following sequential steps:

1) The particle filter is initialized as stated in the previous
subsection while the vehicle is stopped

2) The vehicle starts moving with an arbitrary orientation
describing a line during 20-30 seconds (for 1m/s)

3) The vehicle describes an arc of a circle (tipically half of
a circle)

4) The initial estimate of the Kalman filter is set with the
value of the particle filter estimate.

Clearly, this does not ensure accurate initialization. How-
ever, the simulations showed that, in most cases, the initial-
ization is fairly good and depends on the initial orientation,
model parameters and currents.

Divergence of the Kalman can be easily detected through
observation of the covariance matrix terms or large value of the
norm of the water current velocities. In such case, the Kalman
filter has to be re-initialized using the procedure presented
above.

D. Control

If the actual position of the vehicle and the currents were
known over the operation, the control law would be simple
and would make the vehicle move in a straight line to the
origin. However, it is easy to check that this linear motion
lacks observability along the axis orthogonal to the motion
when the position is being estimated. In fact, even with a
very accurate initialization, the uncertainty along the refered
axis would be high, which could make the filters diverge
from the actual position. A method is described in [14] which
makes it possible to compute the optimal control at each time
step such that a given criterion of observability is maximized.
However, the method is computationally expensive, since it
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implies the computation of Lagrange multipliers. Here, as in
[1], we consider a curvilinear motion to approach the origin
(beacon) (see fig. 2).

For control law derivation, let us consider the cylindrical
coordinates where p = /22 + y? is the distance of the vehicle
to the origin projected in the horizontal plane where the vehicle
is. Let 9, = arctan(y/x) be the angle of the segment that
joins the vehicle and the beacon. As it was stated in section
II, the control law has to stabilize the origin of (z,y), which
is equivalent to stabilize the origin of p. To derive the control
law, we will use nonlinear Lyapunov theory. Our approach is
based on backstepping (see [15]). Although a simple control
law can be almost empirically derived, taking » and r as inputs
of the system, Lyapunov theory and backstepping technique
provide a framework to analyze and guarantee stability. We
consider now the system:

p = ucos(thp — V) + vsin(ep — 1) + vy cos(tp)
+vy sin(ty)
-
We define the Lyapunov function candidate as V(p) =

1/2p? which satisfy the positive definiteness property. Its time
derivative results

(16)

v o a7
= plucos(¢, — ¥) + vsin(y, — )
+vz CO8 Py, + vy sin ).

In order to guarantee stability of the system, V has to be
negative semi-definite. Asymptotic stability is ensured only if
V < 0. Once p > 0, p has to be negative semi-definite to
achieve stability. Assuming that v > 0, as it is the natural
motion of the vehicle, from (17) follows that cos(, — ¢) <
0= €y, +7/2,%¢, +31/2[.

Considering that the lateral velocity is small compared to the
longitudinal one and the difference v, — ¢ is small (< 7/6),
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Fig. 2: Example of a homing trajectory.



we can write

p = ucos(p — ) + vy coshy +vysine,.  (18)

This assumption can be made since the yaw-rate r is small.
Otherwise, this approximation is no longer valid because v
grows with the increase of v and r, in the particular case of
MARES (see [6]). From this last equation, we derive easily
the constraint on the forward velocity:

ucos(yPp — ) < —vg cos(Wp) — vy sin(p).

Suppose that ¢p = £(1),,) stabilizes the system (16) and
makes the Lyapunov function satisfy the inequality VvV <
—W (p), where W is a positive semi-definite function. The
following expression satisfies the stabilization criteria:

5(1/);0) = wp+ﬂ-+woffa

where ¢,y €] —m/2,7/2[ is an offset angle that makes pos-
sible the curvilinear approach. This offset makes the vehicle
point to a virtual target on the side of the beacon. Defining
the error variable z = £ — 1), the system (16) can be written
as

19)

(20)

p=wucos(p — &+ z) +vsin(v, — Y)
+uy cos(p) + vy sin(ty)
z=r— §

ey

In what follows, we will use the fact that, for each z, there
exist a 0 such that cos(¢, — £ + 2) < cos(¢, — &) + d]|2]].
Using V' = V 4 1/222 as the new Lyapunov function, which
is obviously positive definite, its time derivative is given by:

V' & plucos(, — &+ 2)
+vz co8(Vp) + vy sin(vy)] + 22

< =Wip) + 92l + 2(r = &)

Choosing r = { — Kz— K’sign(z), being K’ chosen such that
the term d||z|| is canceled, stability is ensured. Nevertheless,
the stability will not be asymptotic due to the term v sin(.)
neglected above but it can be achieved by imposing v — 0
and r - 0 as p — 0.

So far in this subsection, we considered that the position of
the vehicle is perfectly known. Indeed, it has to be estimated
and uncertainties frequently grow when the vehicle describes
some trajectories. Although in particle filter it is not trivial to
infer about the confidence on the estimate, the Kalman filter
provides an estimate of the uncertainty through its covariance
matrix P. In general, the bigger the values of its entries, the
less the confidence on the estimate is. In such scenarios it
could be useful to change the trajectory. Here, the change
of approach side could be enough in order to reduce the
uncertainty on the estimate. Thus, our method makes use of
the offset angle introduced in (20): whenever the elements
of the covariance matrix grow above a preset threshold, the
approach side is changed by simply setting 1, ¢f = —1oys in
the control law. But the switching frequency has to be bounded
superiorly.
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IV. RESULTS

Implementation of our approach is demonstrated by real-
istic simulations using a six degree of freedom model of
the dynamics, whose accuracy was already proved through
comparisons in [6], and a non-gaussian time-of-flight noise.
For simulation, we consider an exponential distribution whose
domain is defined within the interval [0, co[. By sampling from
this distribution, we try to approximate the previously observed
behavior of the acoustic system.

In order to approach the real behavior of the dynamics,
constraints and issues of the real operation, the on-board soft-
ware is directly developed for the computational platform of
the MARES AUV and tested through a simulator in Simulink
(Matlab). Beyond validation of algorithms, this method en-
ables performance evaluation and parameters tunning, as well.
While the implementation code runs in its final version, the
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dynamics and the sensors are simulated accurately by the
model developed in Simulink. A communication interface in
the middle connects the two modules. Therefore the imple-
mentation code may be run in the local computer or in the
AUV itself, since it can access to the local area network.

In this section, we show the results of both particle filter and
Kalman filter approaches. We start by comparing the results
in the same conditions and then follow with the analysis of
the behavior of the best approach under different conditions.

A. Comparison

To find the best approach, the two estimators were imple-
mented. Several simulations under different initial conditions
were carried out and the final results were compared. However,
here we will focus on a representative simulation. The results
obtained from simulations with different initial positions and
different water currents are similar to the one addressed here
in terms of behavior. In order to make clear the algortihm
followed for this simulation, let us recall the main steps:

1) the vehicle is set in a unknown random position, with

an arbitrary heading

2) initialization is performed by the particle filter while

describing a line during few seconds (30 seconds in this
case) followed by an arc of circumference

3) Kalman filter is initialized with the last estimate of the

particle filter after the initial trajectory
« whenever the diagonal elements of the covariance
matrix P grow above a preset threshold (150 for
the simulation), the approach side is switched

4) the homing process ends when the vehicle is close to

the beacon (20 meters in this simulation)

The homing trajectory shown in fig. 3 starts at point
(z,y) = (—150,—180) with an arbitrary heading. The water
current variables were set to (vg,vy) = (0.3,—0.1). The
controller takes the estimations of the Kalman filter to generate
the trajectory, moving at a constant forward speed of 1m/s. In
the fig. 3a, we show the result of the estimation of the particle
filter. The estimate starts at (0,0) and then tends to approach
the real position. However, it can be seen that the particle
filter diverges after some steps. The cause of this divergence is
the lack of coverage of the particles: after re-sampling several
times, they occupy a small area and their propagation is not
enough to prevent divergence. After divergence, the particles
are basically driven by dead-reckoning. Propagation can be
made larger with an adequate choice of the distribution py
from which the “noise” of propagation is sampled. But this
approach has critical consequences, specially for filters with
small number of particles, since they may be propagated too
far from the real position. This issue could be overcome choos-
ing a larger number of particles and including the estimate of
the currents in the state vector to be estimated. Our experience
tells us that, for a number of particles between n = 100 and
n = 1000, the behavior remains similar. Therefore, a larger
number is needed and it has to be even much larger if the
water current variables are added. However, we were not able
to do so because of the computational constraints.
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Fig. 4: Position and current velocity estimations

On the other hand, the fig. 3b shows that the Kalman filter
converges to the true position of the vehicle, even with a
poor initialization. Some terms of the covariance matrix are
above the preset threshold which make the controller switch
the approach side several times. Most of the simulation showed
that the extended Kalman filter approach provides the best
results and the overall estimation is robust when it is initialized
with the particle filter. Next, we will focus on the results of
this approach.

B. EKF approach

The results shown above led us to conclude that the ex-
tended Kalman filter approach is the better than the particle
filter one. Moreover, the use of the covariance matrix to
infer about the confidence on the estimates provides to the
system robustness and ability to take decisions according to.
For example, re-initialization is specially appreciated in this
context.
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Fig. 5: Homing at 2m/s

In the following simulation, the vehicle is set at (z,y) =
(150, 150) with current velocity (v, v,) = (0.2, —0.1). In fig.
4 we show the estimation of the position and of the current
component velocities. As we can see, the estimation of the
these latter is slow and erroneous almost of the time. This
shows that the estimation of these variable is not critical.

In the present approach, the errors in the dead-reckoning
model of (8) and (9) are reflected on the estimation of the
current velocity. This fact is easy to explain: imagine that
the vehicle is moving in a straight line and the estimated
forward velocity is inaccurate. The difference between the
dead-reckoned and real forward velocities will be directly
reflected on the estimation.

Finally, we show the result of another homing mission
with different surge velocity (v = 2m/s) in the presence of
voluntary model uncertainty and current (v,,v,) = (0.4,0)
in fig. 5. The surge drag coefficient was set to be 30% less
than its actual value. This fact together with non modeled
current affect the initialization. In this case, the fig. 5b shows
that the initialization is made with an error of 43m. However,
one can remark that the estimation the EKF recover from
this error. The dashed line indicates the moment at which the
approach side is switched for the first time (~ 45s) and we
can see that observability is improved in such a way that the
error decrease quickly. These correction appear in fig. Sa like
“discontinuities” (roughly speaking) after the first curve.

These results reveal that this approach is robust even in
the presence of model uncertainties and possible inaccurate
initializations.
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V. CONCLUSION AND FUTURE WORK

In this paper we presented a complete single beacon navi-
gation solution. Although we focused on the homing problem,
the application of the concepts showed here are easily trans-
posed to other problems. We first described the main questions
to be approached, presenting the MARES autonomous under-
water vehicle as well as the localization system. We tackled
the problem of localization by developing two estimators
of different nature. Particle filter is a promising estimator
that does not make assumptions on the noise, however the
number of particles has to be large to ensure robustness and
good performances. On the other hand, the extended Kalman
filter make some assumption on the kind of noise and need
for initialization but it is generally less exigent in terms of
computational requirements. A method using both filters was
proposed: the particle filter estimates the initial position which
is used by the extended Kalman filter as the first estimate.
Control questions could not be decoupled from estimation
in this paper, since observability is directly related with the
trajectory. We derived control law such that the trajectory
changes according to the confidence on the estimation. Finally,
we showed the results of the implementation by means of
accurate simulations. While the performances of the extended
Kalman filter approach demonstrated robustness and accuracy,
the approach that use only the particle filter results frequently
in divergences of the estimates.

At time of writing this paper, experiments are being con-
ducted. We expect to test this solution under different con-
ditions such as position, distance water current. In a future
implementation, a gradient-based approach for homing is
envisioned, extending the concept of beacon to other domains
like environment monitoring.

REFERENCES

[1] P. Baccou and B. Jouvencel, “Homing and navigation using one
transponder for auv, postprocessing comparisons results with long base-
line navigation,” in Robotics and Automation, 2002. Proceedings. ICRA
'02. IEEE International Conference on, vol. 4, 2002, pp. 4004 — 4009
vol.4.

[2] P. Newman and J. J. Leonard, “Pure range-only subsea slam.” in
Proceedings of the IEEE International Conference on Robotics and
Automation, Taiwan, September 2003.

[3] T. Casey, B. Guimond, and J. Hu, “Underwater vehicle positioning based
on time of arrival measurements from a single beacon,” in OCEANS
2007, sept. 2007, pp. 1 =8.

[4] E. Olson, J. Leonard, and S. Teller, “Robust range-only beacon local-
ization,” in Autonomous Underwater Vehicles, 2004 IEEE/OES, 17-18
2004, pp. 66 — 75.

[5] G. Rui and M. Chitre, “Cooperative positioning using range-only mea-
surements between two auvs,” in OCEANS 2010 Sydney, Australia, May
2010.

[6] B. Ferreira, A. Matos, N. Cruz, and M. Pinto, “Modeling and Control of
the MARES Autonomous Underwater Vehicle,” MARINE TECHNOL-
OGY SOCIETY JOURNAL, vol. 44, no. 2, Sp. Iss. SI, pp. 19-36, MAR-
APR 2010.

[71 N. Santos, A. Matos, and N. Cruz, “Navigation of an Autonomous
Underwater Vehicle in a Mobile Network,” in OCEANS 2008, VOLS
1-4, ser. OCEANS-IEEE, IEEE. 345 E 47TH ST, NEW YORK, NY
10017 USA: IEEE, 2008, Proceedings Paper, pp. 1196-1200, OCEANS
2008 Conference, Quebec, CANADA, SEP 15-18, 2008.



[8]

[9]
[10]

[11]

[12]

(13]

[14]

[15]

N. A. Cruz and A. C. Matos, “The MARES AUV, a Modular Au-
tonomous Robot for Environment Sampling,” in OCEANS 2008, VOLS
1-4, ser. OCEANS-IEEE, IEEE. 345 E 47TH ST, NEW YORK, NY
10017 USA: IEEE, 2008, Proceedings Paper, pp. 1996-2001, OCEANS
2008 Conference, Quebec, CANADA, SEP 15-18, 2008.

T. 1. Fossen, Guidance and control of ocean vehicles. John Wiley &
Sons, Chichester, 1995.

T. Prestero, “Verification of a six-degree of freedom simulation model
for the remus autonomous underwater vehicle,” Master’s thesis, Mas-
sachussets Institute of Technology, 2001.

A. Gelb, Applied optimal estimation. MIT Press, 1974.

M. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial
on particle filters for online nonlinear/non-Gaussian Bayesian tracking,”
IEEE TRANSACTIONS ON SIGNAL PROCESSING, vol. 50, no. 2, pp.
174-188, FEB 2002.

F. Gustafsson, F. Gunnarsson, N. Bergman, U. Forssell, J. Jansson,
R. Karlsson, and P. Nordlund, “Particle filters for positioning, navigation,
and tracking,” IEEE TRANSACTIONS ON SIGNAL PROCESSING,
vol. 50, no. 2, pp. 425-437, FEB 2002.

H. Feder, J. Leonard, and C. Smith, “Adaptive mobile robot nav-
igation and mapping,” INTERNATIONAL JOURNAL OF ROBOTICS
RESEARCH, vol. 18, no. 7, pp. 650-668, JUL 1999.

H. K. Khalil, Nonlinear Systems. Prentice Hall, 2002.

978-1-4244-4333-8/10/$25.00 ©2010 IEEE



