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1INRIA, Centre Paris-Rocquencourt, France
2High Assurance Software Lab / INESC TEC & Univ. Minho, Portugal

Abstract. Inspired by the relational algebra of data processing, this paper addresses the foundations of
data analytical processing from a linear algebra perspective. The paper investigates, in particular, how
aggregation operations such as cross tabulations and data cubes essential to quantitative analysis of data
can be expressed solely in terms of matrix multiplication, transposition and the Khatri-Rao variant of the
Kronecker product.

The approach offers a basis for deriving an algebraic theory of data consolidation, handling the quanti-
tative as well as qualitative sides of data science in a natural, elegant and typed way. It also shows potential
for parallel analytical processing (OLAP), as the parallelization theory of such matrix operations is well
acknowledged.
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1. Introduction

In a recent article in the Harvard Business Review, Davenport and Patil [DP12] declare data scientist as
the sexiest job of the 21st century. Such high-ranking professionals should be trained to make discoveries
in the world of big data, this showing how much companies are wrestling with information that comes in
volumes never encountered before. The job calls for a lot of creativity mixed with solid foundations in maths,
statistics, probability, and computer science.

Leaving aside the enormous challenges posed by big unstructured data, a data scientist is expected to
live on data science, whatever this is. Concerning structured data, we see data science as a two-fold body
of knowledge, made of qualitative as well as quantitative ingredients. The qualitative side is provided by the
solid theory of databases [Mai83] which, formalized in logic and (relational) set theory, has led to standard
querying languages over relational data such as SQL. As for the quantitative side, we see similar efforts in the
formalization of data analytic techniques — put forward under the umbrella of the OLAP 1 acronym — but
such efforts seem less successful in setting up a thorough semantic basis for understanding and optimizing
analytical processing.

It is true that formal definitions for concepts such as multi-dimension database [GL97], data aggregation
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and data cube [DT99] have been given (among others), including an algebra of cube operators [DT99]. Little
is written, however, concerning algebraic properties of such operators. And those which are given either
address the qualitative side again (the dimension algebra [JLN00] rather than the measure one) or are
stated without proof (e.g. the two equalities in [GCB�97] concerning roll-up, group-by and cube).

These shortcomings are easy to understand: while relation algebra ”à la Codd” [Cod70] and naive set
theory work well for qualitative data science (focus on attribute and dimension structures), they are rather
clumsy in handling the quantitative side (focus on measure structures and their operations). In this paper
we propose to solve this problem by suggesting linear algebra (LA) as an alternative suiting both sides: the
qualitative one — by regarding it as a typed theory — and the quantitative one — by internalizing all details
of data consolidation and aggregation under the operations of matrix composition (namely multiplication)
and converse (transposition).

This approach builds upon previous work on typed linear algebra and its applications in computer
science, which include areas as diverse as data vectorization [MO13], probabilistic program calculation [Oli12],
weighted automata [Oli13], component-oriented design [MO11b, Oli14b] etc. Details and further examples
can be found in a technical report [MO11a] which also elaborates on the potential of the approach for OLAP
parallelization.

Contribution. The ideas presented in this paper derive from the authors’ work on typing linear algebra
[MO10, Mac12, MO13] which eventually drove them into the proposed synergy between linear algebra and
OLAP. Such a synergy is, to the best of their knowledge, novel in the field. Rather than relying on standard
OLAP state of the art developments, a cross-field perspective is put forward that may open new ways of
looking at this body of knowledge.

Overview of the paper. The remainder of this paper is structured as follows. Sections 2 and 3 explain
the shift from relational to linear algebra, imposed by the shift from qualitative to quantitative processing.
Section 4 gives a brief overview of typed linear algebra. Section 5 expresses cross tabulations solely in terms
of linear algebra matrix operations. Section 6 treats cross tabulation and “rolling up” along functional
dependencies, introducing dimension hierarchies into the game. Section 7 proves that the construction of
cross tabulations is incremental. Section 8 goes higher-dimensional into the LA construction of OLAP cubes.
Finally, section 9 reviews related work and section 10 draws conclusions and gives a prospect of future work.
Some technical details and proofs are deferred to the two appendices.

2. From relations to matrices

On-line analytical processing [DT99, PJ01, JPT10] aims at summarizing huge amounts of information in the
form of histograms, sub-totals, cross tabulations (namely pivot tables), roll-up/drill-down transformations
and data cubes, whereby new trends and relationships hidden in raw data can be found. The need for this
technology concerns not only large companies generating huge amounts of data every day (the “big data”
trend) but also the laptop spreadsheet user who wants to make sense of the data stored in a particular
workbook.

Since Codd’s pioneering work on the foundations of the relational data model [Cod70], relation algebra
has been adopted as the standard basis for formalizing data processing. Given the proximity between relation
and matrix algebra [Sch11, DGM14] the question arises: how much gain can one expect from translating
results from one side to the other? This paper will show how a particular construction in relation algebra
— that of a binary relational projection, defined in [Oli09, Oli11] to calculate with functional dependencies
in databases — translates matrix-wise into cross tabulations (namely pivot tables) which are central to data
analytical processing.

On the relational side, a binary relational projection is always of the form

πf,gR � tpf b, g aq | pb, aq P Ru

where R is the binary relation being projected and f and g are observation functions, usually associated to
attributes. Although less common in the database literature, the alternative definition

πf,gR � f �R � g� (1)
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Line Model Year Color Sales
1 Chevy 1990 Red 5
2 Chevy 1990 Blue 87
3 Ford 1990 Green 64
4 Ford 1990 Blue 99
5 Ford 1991 Red 8
6 Ford 1991 Blue 7

Fig. 1. Collection of raw data (adapted from [GC97]).

is simpler and easier to reason about, where the dot p�q between the symbols denotes relational composition
and p q� expresses the converse operation: pair pb, aq belongs to relation R� iff pair pa, bq belongs to R.2

Projection pattern (1) turns up often in relation algebra [BdM97]. When expressing data dependencies,
such projections take the form

fA � JT K � f�B (2)

where T is a database file, or table (a set of data records, or tuples), A and B are attributes of the schema of
T , fA (resp. fB) is the function which captures the semantics of attribute A (resp. B) 3 and JT K represents
set T in the form of a diagonal relation:

JT K � tpt, tq | t P T u

This somewhat redundant construction proves essential to the reasoning, as shown in [Oli11, Oli14a]. Ex-
pressed in set-theoretical notation, projection (2) is set-comprehension tptrAs, trBsq | t P T u where trAs (resp.
trBs) denotes the value of attribute A (resp. B) in tuple t.

Note how simple (2) is in its relying only on very basic combinators of relation algebra, namely com-
position and converse, which generalize to matrix multiplication and transposition, respectively. Under this
generalization, we will show below that cross tabulations can be expressed by a formula similar to (2),

tA � JT KM � t�B (3)

where M is a measure attribute and attributes A and B are the dimensions chosen for each particular cross
tabulation. Notation tA (resp. tB) expresses the membership matrix of the column addressed by dimension A
(resp. B) whose construction will be explained later. Also explained later, JT KM denotes the diagonal matrix
capturing column M of T .4

The construction of matrices tA, tB and JT KM will be first illustrated with examples. Cross tabulations
will be pictured as displayed by Microsoft Excel.

3. Cross-tabulations

In data processing, a cross tabulation (or pivot table) provides a particular summary or view of data extracted
from a raw data source. As example of raw data consider the table displayed in Figure 1 where each row
records the number of vehicles of a given model and color sold per year.

In general, the raw data out of which cross tabulations are calculated is not normalized and is collected
into a central database, termed a data warehouse or decision support database. Different summaries answer
different questions such as, for instance, how many vehicles were sold per color and model? For this particular
question, the attributes Color and Model are selected as dimensions of interest, Sales is regarded as measure
attribute and the corresponding cross tabulation is depicted in Figure 2, as generated via the pivot table
menu in Excel.

2 Recall from discrete maths that, given two relations R and S, pair pc, aq will be in the composition R � S iff there is some b
such that pc, bq is in R and pb, aq is in S. Thus, py, xq P f �R � g� in (1) means that y � f b and x � g a for some pb, aq P R, that
is, py, xq � pf b, g aq. Altogether, f �R � g� �

�
pb,aqPRtpf b, g aqu which reduces to the given set comprehension.

3 That is, given a tuple t P T , fAptq yields the value of attribute A in t, usually denoted by trAs (similarly for attribute B).
4 The shift from the binary relations of (2) to the matrices in (3) will be detailed in the sequel. Although relations can be
represented by Boolean matrices containing only 0s and 1s (more about this in appendix A), matrix JT KM will be a numeric
matrix in general holding real-life quantities and measures.
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Sum of Sales Model
Color Chevy Ford Grand Total
Blue 87 106 193
Green 64 64
Red 5 8 13
Grand Total 92 178 270

Fig. 2. Pivot table as extracted by Excel from the data in Figure 1.

Large scale cross tabulation generation is an essential part of quantitative data analysis. As already
mentioned, OLAP refers to the set of techniques performing such analysis over information stored in data
warehouses, whose complexity is well-known [PKL02]. Quoting [DT99]: The complexity of queries required
to support OLAP applications makes it difficult to implement using standard relational database technology.
Feeling the lack of a standard conceptual model for OLAP, the same authors [DT99] propose one based on
first order logic. Reference [VS99] provides a review of other efforts in defining logical models for OLAP.

Rather than trying to extend existing logic models towards accommodating OLAP semantics, the ap-
proach put forward in this paper changes strategy and calls for a synergy with the field of linear algebra.
The key resides in expressing analytic operations in the form of matrix algebra expressions. In the particular
case of reporting multi-dimensional analyses of data, one should be able to build three matrices as hinted by
formula (3): two associated to the dimensions (attributes) A and B being analysed and a third one recording
which measure or metric data are to be considered for consolidation.

This encoding of data into LA is quite smooth if matrix operations are typed in the way presented in e.g.
[MO13]. For self-containedness we give a very brief overview of such typed LA notation below.

4. Typed linear algebra

Matrices as arrows. A matrix M with n rows and m columns is a function which tells the value rM c
which occupies the cell addressed by row r and column c, for 1 ¤ r ¤ n, 1 ¤ c ¤ m. Note that we prefer
infix notation rM c to e.g. Mrc or even Mpr, cq for reasons to be explained later.

Following the arrow notation of [MO13] and writing n m
Moo to denote that matrix M is of type

nÐm (m columns, n rows), matrix multiplication can be expressed by arrow composition:

n m
Moo k

Noo

C�M �N

ff (4)

Point-wise, this operation is defined by:5

y pM �Nqx �
〈
Σ z :: yM z � z N x

〉
(5)

n

M

��

n
idnoo

M

��M}}{{
{{

{{
{{

m m
idm

oo

For every n there is a matrix of type n noo which is the unit of composition.

This is nothing but the identity matrix of size n, denoted by n n
idnoo or n n

1oo ,
indistinguishably. Therefore (diagram aside):

idm �M � M � M � idn

Subscripts m and n can be omitted wherever the underlying diagrams are well-defined and can be inferred
from the context.

5 This and other pointwise definitions and rules to come are expressed in the style of the Eindhoven quantifier calculus,
see e.g. [BM06]. Matrix multiplication is so-called because it can be regarded as an extension of numeric multiplication to
matrices. Phrase matrix composition emphasises the underlying categorial basis [MO13] of this operation, which is less widely
acknowledged. As types are central to the approach proposed in this paper, we will write composition instead of multiplication
unless quoting work which explicitly uses the latter terminology.
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Vectors as arrows. Vectors are special cases of matrices in which one of the dimensions is 1, for instance

v �

�
��

v1

...
vm

�
�� and w � rw1 . . . wns

Column vector v is of type mÐ 1 (m rows, one column) and row vector w is of type 1Ð n (one row, n
columns). Our convention is that lowercase letters (e.g. v, w) denote vectors and uppercase letters (e.g. M ,
N) denote arbitrary matrices.

Converse of a matrix. One of the kernel operations of linear algebra is transposition, whereby a given

matrix changes shape by turning its rows into columns and vice-versa. Given matrix n m
Moo , notation

m n
M�

oo denotes its transpose, or converse. The following laws hold: pM�q� � M (idempotence) and
pM �Nq� � N� �M� (contravariance).

m

n

M

>>||||||||||

i1
// n� p

�
M N

�
OO

π1oo π2 // p
i2

oo

N

``AAAAAAAAAA

t

P

``AAAAAAAAAA

�
P

Q

�
OO

Q

>>}}}}}}}}}}

Block notation. Matrices can be built of other matrices using block notation.
Two basic binary combinators are identified in [MO13] for building matrices out of
other matrices, say M and N , regarded as blocks, either stacking these vertically,�

M

N

�
, or horizontally, r M N s. Dimensions should agree, as shown in the

diagram aside, taken from [MO13], where m, n, p and t are types. Special matrices
i1, i2, π1 and π2 are fragments of the identity matrix and play an important role
in explaining the semantics of the two combinators. This, however, can be skipped
for the purposes of the current paper 6, sufficing to know a number of laws which
emerge from the underlying mathematics, namely converse-duality

r M N s
�
�

�
M�

N�

�
(6)

divide-and-conquer

r M N s �

�
P

Q

�
� M � P �N �Q (7)

which captures the essence of (parallelizable) matrix multiplication, two fusion laws

P � r M N s � r P �M P �N s (8)�
M

N

�
� P �

�
M � P

N � P

�
(9)

and the abide law 7�
r M N s

r P Q s

�
�

� �
M

P

� �
N

Q

� �
�

�
M N
P Q

�
(10)

which establishes the equivalence between row-major and column-major construction of matrices by blocks.
(Thus the four-block notation on the right.)

6 The rich algebra of matrix block-operations arises essentially from the fact that vertical and horizontal block aggregation
form a biproduct. The interested reader is referred to [MO13] for details.
7 Neologism “abide” (= “above and beside”) was introduced by Richard Bird [Bir89] as a generic name for algebraic laws in
which two binary operators written in infix form change place between “above” and “beside”, e.g.

a

b
�

c

d
�

a� c

b� d

in fraction calculus.
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Direct sum and Kronecker product. Given two matrices M and N , the direct sum of M and N is
defined as follows, using block notation:

M `N �

�
M 0
0 N

�
(11)

Mind the type k � j n�m
M`Noo for M and N of types k Ð n and j Ð m, respectively. Direct sum is a

standard linear algebra operator enjoying many useful properties [MO13]. The following equation, termed
the absorption law, specifies how block operator r s absorbs direct sum `, for suitably typed matrices
M,N,P and Q:

r M N s � pP `Qq � r M � P N �Q s (12)

M bN �

�
���

x11N x1nN

xk1N xknN

�
���

Given the same two matrices k n
Moo and j m

Noo , an-
other standard construction in linear algebra is the so-called Kro-

necker product k � j n�m
MbNoo . This operator can be defined by

block-wise decomposition,

r M N s b P � r M b P N b P s�
M

N

�
b P �

�
M b P

N b P

�

xbN � xN

where x is a scalar (1-to-1 matrix) and xN denotes scalar multiplication. The picture above describes the
outcome of the operation.

Khatri-Rao matrix product. Given matrices n m
Moo and p m

Noo , the so-called Khatri-Rao

[RR98] matrix product of M and N , denoted n� p m
M�Noo is a column-wise version of the Kronecker

product operator given above,

u � v � ub v
r M1 M2 s � r N1 N2 s � r M1 � N1 M2 � N2 s

(13)

where u, v are column-vectors and Mi, Ni are suitably typed matrices 8. As an example of operation relying
on this product consider row vector

s � r5 87 64 99 8 7s

of type 1 6
soo , capturing the transposition of the Sales column of Figure 1. The Khatri-Rao product

s � id yields the corresponding diagonal matrix:

6 6
s�idoo �

�
������

5 0 0 0 0 0
0 87 0 0 0 0
0 0 64 0 0 0
0 0 0 99 0 0
0 0 0 0 8 0
0 0 0 0 0 7

�
������

(14)

This conversion is essential to the LA encoding of cross tabulations, as shown in the sequel.
One can reduce over a matrix defined by rows on the right-hand side of a Khatri-Rao product whose

left-hand side is a row vector:

v �

�
M

N

�
�

�
v � M

v � N

�
. (15)

8 As shown in [Mac12], this product generalizes to arbitrary matrices the tupling operator known as split in the functional
setting [BdM97] or as fork in the relational one [Fri02, Sch11].
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Should the shape of the matrix on the right hand side be a direct sum, the equation can be rewritten into:

r v w s � pM `Nq � pv � Mq ` pw � Nq (16)

This follows from (15) and (13).

Type generalization. Matrix types (the end points of arrows) can be generalized from traditional numeric
dimensions to arbitrary denumerable types thanks to addition and multiplication of matrix elements being
commutative and associative. This ensures unambiguous definition of matrix composition because the sum-
mation inside the inner product of two vectors (5) can be calculated in any order. Typewise, our convention is
that lowercase letters (e.g. n, m) denote the traditional dimension types (natural numbers), letting uppercase
letters (e.g. A, B) denote other types and taking disjoint union A�B for m� n, Cartesian product A�B
for mn, unit type 1 for number 1, the empty set H for 0 and so on. Conversely, dimension n corresponds to
the initial segment t1, 2, . . . , nu of the natural numbers up to n.

There is another “type” associated with matrices, namely the type of the elements (cells). The default
view in linear algebra is to regard them as complex or real numbers, or (more generically) as inhabitants
of an algebraic field. The minimal structure for composition (5) to work is that of a semiring, e.g. the
natural numbers (N0) under addition and multiplication. Matrices whose cells are N0-valued are referred to
as counting matrices and addressed in appendix A. They include so-called Boolean matrices, whose cells are
either 0 or 1.9

5. Cross tabulations in LA

Recall that the core of cross tabulation generation is formula (3), which is the matrix counterpart to relational
projection (2). This section explains this construct starting by showing how the move from relations to
matrices is obtained by encoding functions as matrices.

Building projection functions. Let A be an attribute of raw-data table T and let n be the number of
records in T (namely rows, or lines in a spreadsheet). We write T pAq to denote the column of T identified by
attribute A, T pA, yq to denote the element occupying the y-th position (row) in such a column, and |A| to
denote the range of values which can be found in T pAq. Column T pAq can be regarded as a function which
tells, for each row number 1 ¤ r ¤ n, which value in |A| can be found in row r of such a column. Such a
function can be encoded as an elementary matrix tA of type |A| Ð n, defined as follows:

atA r �

"
1 if T pA, rq � a
0 otherwise (17)

These projections can be identified with the bitmaps of [WOS06], regarded as matrices. In our running
example (Figures 1 and 2) n � 6 and we want to build these matrices for attributes Model and Color. The

projection |Model| n
tModeloo associated to dimension Model is matrix

1 2 3 4 5 6
Chevy 1 1 0 0 0 0
Ford 0 0 1 1 1 1

(18)

and projection |Color| n
tColoroo associated to dimension Color is matrix

1 2 3 4 5 6
Blue 0 1 0 1 0 1

Green 0 0 1 0 0 0
Red 1 0 0 0 1 0

(19)

9 Boolean operations can be implemented in t0, 1u � N0 by defining a^ b � ab, a_ b � a� b� ab and  a � 1� a, which are
all closed in t0, 1u. This is not, however, required in the sequel.
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Note that, typewise, the composition of matrices tColor and t�Model makes sense, leading to matrix

tColor � t
�
Model �

Chevy Ford
Blue 1 2

Green 0 1
Red 1 1

(20)

of type |Color| Ð |Model|, which essentially counts the number of sale records per color and model. In
general, given attribute values a P |A| and b P |B|, the cell in tA � t

�
B addressed by a and b counts the number

of rows of the source dataset T in which both a and b occur in the A and B columns, respectively:

a ptA � t
�
Bqb �

〈
Σ n : T pA,nq � a^ T pB,nq � b : 1

〉
(21)

The derivation of (21) will be given shortly.10

The diagonal construction. In order to sum up the number of vehicles sold rather than just counting sale
records we need to identify a measure attribute, that is, a numeric attribute of T to be used for consolidation.
In the case of Figure 1 only Sales applies. Because such numeric data have to become available for both
projection matrices of (3), to the left and to the right, the chosen column is converted into a diagonal matrix
as already shown in (14).

Notation JT KM will be used to denote the diagonal matrix representation of measure attribute M in T .
Index-wise, this corresponds to the following definition:

j JT KM i �

"
T pM, jq if i � j
0 otherwise (22)

Definition (72) in appendix B gives a pointfree alternative to (22) which is better suited for calculational
purposes.

LA script for cross tabulation. We are in position to run formula (3) for T as in Figure 1, A � Color
and B � Model. The evaluation of tColor � JT KSales � t

�
Model yields another matrix of type |Color| Ð |Model|

Chevy Ford
Blue 87 106

Green 0 64
Red 5 8

(23)

which we will denote by ctabSales
ColorÐModelpT q relying on the definition

ctabM
AÐBpT q : |A| Ð |B|

ctabM
AÐBpT q � tA � JT KM � t�B (24)

— recall (3) — whose pointwise meaning is

a pctabM
AÐBpT qqb �

〈
Σ n : T pA,nq � a^ T pB,nq � b : T pM,nq

〉
(25)

as will be shown briefly. In words: we sum all cells T pM,nq with n ranging over all rows such that T pA,nq
and T pB,nq respectively hold the attribute values a and b being consolidated (ie. related). The derivation
of (25) relies on some rules for pointwise matrix manipulation given in appendix A. Note the style of the
equational proof where each step is labeled with references to the laws applied, written inside the curly

10 This situation (counting), which is what Excel outputs wherever the measure attribute chosen in pivot table calculation is
not numeric, corresponds to formula (3) wherever the middle matrix is the identity.
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braces that follow the equality symbol (�):

a pctabM
AÐBpT qqb

� t definition (24) u

a ptA � JT KM � t�Bqb

� t matrix composition (5) twice ; converse of tB u〈
Σ n :: patA nq �

〈
Σ m :: pn JTM Kmq � pb tB mq

〉〉
� t JTM K is diagonal (22) u〈

Σ n :: patA nq �
〈
Σ m : m � n : pn JTM Kmq � pb tB mq

〉〉
� t one point rule (quantifying over m � n) u〈

Σ n :: patA nq � pn JTM Knq � pb tB nq
〉

� t “trading” over Boolean cells atA n and b tB n (see appendix A) u〈
Σ n : atA n^ b tB n : n JTM Kn

〉
� t pointwise meaning of projections tA, tB (17) and diagonal JTM K (22) u〈

Σ n : T pA,nq � a^ T pB,nq � b : T pM,nq
〉

l

Clearly, (21) is a corollary of (25) since, for JTM K � id, n JTM Kn � 1:

a ptA � t
�
Bqb � a ptA � id � t

�
Bqb �

〈
Σ n : T pA,nq � a^ T pB,nq � b : 1

〉
Grand totals. If compared to Figure 2, cross tabulation (23) misses the two row and column grand totals.
These are easily obtained via “bang” matrices. Let us explain what these are and our choice of terminology.
In functional programing, the popular “bang” function, which is of type 1 Ð A (parametric on A, @A) and
usually denoted by symbol “!”, is a polymorphic constant function yielding the unique value which inhabits

the singleton type 1. The encoding of this function in LA format will be the row vector 1 A
!Aoo wholly

filled up with 1s. For instance, !|Model| will be the vector with |Model|-many positions all holding number
1.11

Clearly, the composition of row vector 1 A
!oo with any column vector of type A 1

voo computes
a scalar: the sum of all cells in v. Thus one can define a generic totalizer operator,

tot X �

�
id

!

�
�X �

�
id

!

��
(26)

which equips X with three other blocks�
X X � !�

! �X ! �X � !�
�

(27)

two sum (row and column) vectors and the grand total scalar ! �X � !�.12 By adding totals to ctab (24) we

11 For the purposes in this paper, type 1 can be regarded as the singleton set tallu. This corresponds to the Grand Total in
Figure 2 and is consistent with the way all is used in e.g. [GCB�97], as explained later in section 8.
12 The transformation of (26) into (27) follows immediately from the matrix laws of section 4.
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define

tctabM
AÐBpT q : |A| � 1 Ð |B| � 1

tctabM
AÐBpT q � totpctabM

AÐBpT qq �

�
tA

!

�
� JT KM �

�
tB

!

��
(28)

which computes the standard cross-tabulation of raw data table T with respect to dimensions A, B and
measure M . Note how types (dimensions) are added with 1, the singleton type containing the distinguished
element all labelling grand totals. In our running example, this corresponds to enriching (23) with the extra
row and column corresponding to the bang vectors of (26), both labeled with all:

Chevy Ford all
Blue 87 106 193

Green 0 64 64
Red 5 8 13
all 92 178 270

(29)

Such is the outcome of evaluating tctabSales
ColorÐModelpT q, which finally achieves the effect of Figure 2 involving

LA operations only.
As illustration of how these LA-based operations can be encoded in commercial languages dealing with

matrices, such as e.g. Matlab 13, listing 1 provides Matlab code for the generation of the bang vector of
size r, the tot operator (26) and the calculation of cross tabulations (24,28).

Finally, among several properties of bang vectors we single out

r ! ! s � ! (30)
! � A � A � A � ! (31)

where (31) identifies ! as the unit of Khatri-Rao product. Since this is associative too, one can rely on its
finitary extension to a sequence of n matrices Ai (all sharing the same input type, for 1 ¤ i ¤ n) by writing
On

i�1 Ai or even

O
iÐs

Ai (32)

where s is a finite sequence of indices.14 This extension will be useful in the generation of data cubes to be
given in section 8. Prior to this, we address below another operation central to OLAP: roll-up.

6. “Rolling up” on functional dependencies

Rolling up means replacing a dimension by another which is more general in some sense (e.g. grouping,
classification, containment). The latter is therefore “higher” in a dimension hierarchy which somehow acts
as a classification or taxonomy of data records.

A simple way of seeing roll-up at work is the acknowledgement of functional dependencies (FDs) in data
[Mai83]. Let us, for instance, augment the raw data of our running example with two new columns recording
the month and season of each sale, as displayed in Figure 3. Look, for instance, at the column labelled Season
telling in which season (Spring, Summer, Autumn or Winter) the particular sales took place. Clearly, FD
Season Ð Month holds, as no sales are recorded in the same month and in different seasons. This possibly
happens because the Season and Month columns result from a join of the original table with some other
table recording that Season is higher than Month in the temporal dimension hierarchy.15

13 Matlab TM is a trademark of The MathWorks R©.
14 Thus OiÐrs Ai � ! and OiÐpk:sq � Ak�pOiÐs Aiq, where rs denotes the empty sequence and pk : sq denotes the appending
of head k to sequence s.
15 The fact that T is not normalized in general reflects the preparation process of merging into the same data warehouse
different tables of a (normalized) database.
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function R = bang(r)
R = ones(1,r);

end

function R = tot(M)
[n,m] = size(M);
R = [ eye(n) ; bang(n) ] ∗ M ∗ [ eye(m) ; bang(m)]’;

end

function R = ctab(tA,c,tB)
[n,k] = size(c);
[a,i] = size(tA);
[b,j] = size(tB);
if ˜(k==1 & i==n & j == n)

error(’Dimensions must agree’);
else id = eye(n);

D = kr(c’,id);
R = tA∗D∗tB’;

end
end

function R = tctab(tA,c,tB)
R = tot(ctab(tA,c,tB))

end

Listing 1: Matlab encoding of bang (!), tot and of cross table calculation (ctab and tctab), where the measure
column is parameter c (a vector). This is converted to a diagonal as in (14) via the Khatri-Rao auxiliary
operator kr taken from the Tensorlab library [SBL14].

Model Year Color Sales Month Season
Chevy 1990 Red 5 March Spring
Chevy 1990 Blue 87 April Spring
Ford 1990 Green 64 August Summer
Ford 1990 Blue 99 October Autumn
Ford 1991 Red 8 January Winter
Ford 1991 Blue 7 January Winter

Fig. 3. Augmented collection of raw data.

Roll-up matrices. In general, a functional dependency B Ð A will hold in a table T iff no pair of rows
can be found in T in which the values of attribute A are the same and those of attribute B differ (“B is
determined by A”):

〈@ n, m : T pA,nq � T pA,mq : T pB,nq � T pB,mq〉 (33)

In the style of [Oli14a], we will write B A
Too to mean (33), abbreviated to BÐA wherever T is implicit.

As is shown in appendix A, (33) can be expressed solely in terms of projection matrices:

B A
Too ô t�A � tA ¤ t�B � tB (34)

Whenever B A
Too holds, B acts as a classifier for A, meaning that every cross tabulation involving

A can be rolled-up into another (less detailed) one involving B instead. In general, we define the roll-up

matrix |B| |A|
tBÐAoo associated to FD B Ð A by

tBÐA � ttB � t�Au (35)

where tM u denotes the support of a given matrix M (59): the matrix of the same type whose non-zero cells
are mapped to 1.

January March April August October
Spring 0 1 1 0 0

Summer 0 0 0 1 0
Autumn 0 0 0 0 1
Winter 2 0 0 0 0

For instance, let us compute tSeason � t
�
Month

(aside). This is a matrix of natural numbers
counting the number of records in which a par-
ticular relationship holds, for instance January
versus Winter, which turns up twice. Quantities
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are not that important here; what matters is the univocal relation between Month and Season (January
belongs to Winter only, not to two or more seasons) and this is obtained by taking the support of this
matrix, yielding the roll-up matrix

tSeasonÐMonth � ttSeason � t
�
Monthu �

January March April August October
Spring 0 1 1 0 0

Summer 0 0 0 1 0
Autumn 0 0 0 0 1
Winter 1 0 0 0 0

(36)

So, given a cross tabulation matrix |A| |C|
Xoo , the effect of rolling it up across a given FD B Ð A

is another cross tabulation given by matrix tBÐA �X of type |B| Ð |C|, to which totals can be added, e.g.
totptBÐA � Xq. Converse (transpose) caters for the same effect on the right-hand side: rolling X up across

another FD C Ð D yields matrix X � t�CÐD of type |A| |D|
Xoo . We illustrate this below by instantiating

X with a cross tabulation from Model to Month

ctabSales
MonthÐModelpT q �

Chevy Ford
January 0 15

March 5 0
April 87 0

August 0 64
October 0 99

(37)

which, once composed with roll-up matrix (36) yields the expected rolling up effect, once equipped with
totals:

totptSeasonÐMonth � ctabSales
MonthÐModelpT qq �

Chevy Ford all
Spring 92 0 92

Summer 0 64 64
Autumn 0 99 99
Winter 0 15 15

all 92 178 270

(38)

Note that we could have computed tctabSales
SeasonÐModelpT q in one go, without the help of the roll-up

matrix, obtaining the same result as (38). The general result expresses the fusion between roll-up matrices
and cross-tabulations as follows:

totptBÐA � ctabM
AÐCpT qq � tctabM

BÐCpT q ð B A
Too (39)

January March April August October
Blue 1 0 1 0 1

Green 0 0 0 1 0
Red 1 1 0 0 0

Chevy Ford
Blue 87 114

Green 0 64
Red 5 15

Chevy Ford
Blue 87 106

Green 0 64
Red 5 8

To prove (39) if suffices, looking at the definition
of tctab (28), to cancel tot on both sides and prove
that tBÐA�ctabM

AÐCpT q � ctabM
BÐCpT q holds modulo

the same side-condition.
Before doing this, let us see a counter-example in

which the side condition does not hold: we compose
(37) with tColorÐMonth (adjacent matrix, on top) ob-
taining the bottom-left adjacent matrix. This dif-
fers from the direct calculation of ctabSales

ColorÐModelpT q
(bottom-right adjacent matrix) because roll-up ma-
trix tColorÐMonth does not capture a functional de-
pendence: Month does not determine Color, as the
January column shows.16

The rest of the proof of (39) relies on properties of matrix supports which are deferred to appendix A.

16 The support of matrix (20), given earlier, is another example of roll-up matrix which does not capture a functional
dependence: Ford cars can be of any color, for instance.
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Mind that projections are matrices which represent functions:

tBÐA � ctabM
AÐCpT q � ctabM

BÐCpT q

ô t unfold definitions (35) and (24) u

ttB � t�Au � tA � JT KM � t�C � tB � JT KM � t�C

ð t Leibniz u

ttB � t�Au � tA � tB

ð t (66) in appendix A u

t�A � tA ¤ t�B � tB

ô t (34) u

B A
Too

l

Checking for FDs. Construction (35) enables us to check data sets for functional dependencies. In general,
FD B Ð A will hold wherever matrix tB � t�A is functional, or simple, equivalent to tBÐA being so. This
terminology is imported from relational algebra [BdM97]: a matrix S will be said to be simple iff its image
S � S� is diagonal.17 Instantiating S with tSeason � t

�
Month, for instance, it can be checked that its image

Spring Summer Autumn Winter
Spring 2 0 0 0

Summer 0 1 0 0
Autumn 0 0 1 0
Winter 0 0 0 4

is diagonal, while that of (20)

Blue Green Red
Blue 5 2 3

Green 2 1 1
Red 3 1 2

is not. Thus, FD Color Ð Model does not hold.

7. Incremental (parallel) construction

Cross tabulations as defined by formula (28) can be built incrementally under certain conditions. For instance,
suppose one is given yesterday’s cross tabulation and today’s new data. Then today’s cross tabulation (in
matrix form) will be obtained by adding (matrix-wise) to yesterday’s cross tabulation the cross tabulation
of today’s raw data.

Viewed from another perspective, this property allows one to parallelize the computation of a cross
tabulation by partitioning the raw data and then summing up the cross tabulation of each partition of the
raw data. Such a property, which can be regarded as generalization of the linearity property that makes
linear applications parallel, can be stated by writing, given dimensions A and B, measure M and raw data
sources T and T 1,

tctabM
AÐBpT ;T 1q � tctabM

AÐBT � tctabM
AÐBT 1 (40)

where T 2 � T ;T 1 denotes the append of the two data sources, i.e. T 2 is a raw data table with the records of
database T catenated with those of T 1. T can be regarded as yesterday’s raw data and T 1 as the new data,
assuming that T has remained the same (no updates, no deletes). Alternatively, one may regard T ;T 1 as a
partition of T 2 intended for divide-and-conquer construction of its tctabM

AÐB cross tabulation.

17 See appendix A for more details on this diagonal characterization of FDs.
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We show below that (40) follows from facts

t2A � r tA t1A s (41)
t2B � r tB t1B s (42)

JT ;T 1KM � JT KM ` JT 1KM (43)

where ` builds a diagonal matrix by direct sum (11) of two diagonal matrices. Equations (41) and (42)
express that projection matrices for T 2 can be built by gluing the corresponding projection matrices tA, t1A
and tB , t1B built for T and for T 1, respectively. Note that, for (41) and (42) to be properly typed, tA and
t1A (resp. tB and t1B) must have the same target type |A| (resp. |B|) which can be easily ensured by taking
sufficiently large |A| and |B|.

To prove facts (41) to (43) we need better definitions for projections (17) and diagonals (22) saving
expensive pointwise reasoning. Such definitions and proofs (given in appendix B) can be regarded as a detour
needed to smoothly move from first order database notation to linear algebra notation, linking projections
(bitmaps) and diagonals to the basic linear algebra of section 4.

Assuming (41) to (43), the proof of (40) follows from the definition of cross tabulation (28) by a simple
equational argument resorting to the laws of matrix algebra:

tctabM
AÐBpT ;T 1q

� t (28) u

�
t2A
!

�
� JT ;T 1KM �

�
t2B
!

��

� t (41) ; (42) and (43) u

�
r tA t1A s

!

�
� pJT KM ` JT 1KM q �

�
r tB t1B s

!

��

� t (30) twice ; abide law (10) twice u

� �
tA

!

� �
t1A
!

� �
� pJT KM ` JT 1KM q �

� �
tB

!

� �
t1B
!

� ��

� t absorption (12) ; converse-duality (6) u

� �
tA

!

�
� JT KM

�
t1A
!

�
� JT 1KM

�
�

�
���

�
tB

!

��
�

t1B
!

��
�
���

� t divide and conquer (7) u

�
tA

!

�
� JT KM �

�
tB

!

��
�

�
t1A
!

�
� JT 1KM �

�
t1B
!

��

� t (28) twice u

tctabM
AÐBT � tctabM

AÐBT 1

l

In retrospect, this proof establishes tctab (28) as a structure preserving map (homomorphism) between
raw data collection and (cross tabulation) matrix addition, enabling the extraction of parallelism in a formal
and direct way.
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8. Higher-dimensional OLAP

This section extends cross tabulations towards higher dimensions. The aim is to formulate a basis for a
general LA theory for n-dimensional OLAP, dealing with all data summary levels presented in [GCB�97],
from 0 to 3-dimensional summaries, respectively: aggregate, group-by, cross-tab and cube. The approach
goes further by allowing any number n of dimensions.

The proposed generalization depends on the Khatri-Rao product (13) that works as a Cartesian product
on matrix types, thus a Cartesian product of the dimensions. As an illustration, remember the projections
of our running example and apply the Khatri-Rao product to tModel (18) and tColor (19). The outcome is
matrix

1 2 3 4 5 6
Chevy Blue 0 1 0 0 0 0
Chevy Green 0 0 0 0 0 0
Chevy Red 1 0 0 0 0 0
Ford Blue 0 0 0 1 0 1
Ford Green 0 0 1 0 0 0
Ford Red 0 0 0 0 1 0

bearing type |Model � Color| Ð 6. This tells in which rows the particular dimension pairs appear, compare
with Figure 1. Put in other words, this matrix is the higher-rank projection tModel�Color of the Cartesian
product of the two dimensions. In general,

tA�B � tA � tB (44)

Thus tModel�Y ear�Color � tModel � tY ear � tColor, which is projection

1 2 3 4 5 6
Chevy 1990 Blue 0 1 0 0 0 0
Chevy 1990 Green 0 0 0 0 0 0
Chevy 1990 Red 1 0 0 0 0 0
Chevy 1991 Blue 0 0 0 0 0 0
Chevy 1991 Green 0 0 0 0 0 0
Chevy 1991 Red 0 0 0 0 0 0
Ford 1990 Blue 0 0 0 1 0 0
Ford 1990 Green 0 0 1 0 0 0
Ford 1990 Red 0 0 0 0 0 0
Ford 1991 Blue 0 0 0 0 0 1
Ford 1991 Green 0 0 0 0 0 0
Ford 1991 Red 0 0 0 0 1 0

(45)

capturing the whole dimensional part of the raw-data table of Figure 1.
Multidimensional cross tabulations are obtained via the same formula (28) just by supplying higher-rank

projections, for instance tctabSales
Model�ColorÐY earpT q which yields:

1990 1991 all
Chevy Blue 87 0 87
Chevy Green 0 0 0
Chevy Red 5 0 5
Ford Blue 99 7 106
Ford Green 64 0 64
Ford Red 0 8 8
all 255 15 270

corresponding to A � Model � Color and B � Y ear in (28). Furthermore, by composing JT KSales with the
projection of all dimensions given by (45) on the left and totalizing by !� on the right, we obtain the following
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column-vector representation of Figure 1,

tModel�Y ear�Color � JT KSales � !
� �

all
Chevy 1990 Blue 87
Chevy 1990 Green 0
Chevy 1990 Red 5
Chevy 1991 Blue 0
Chevy 1991 Green 0
Chevy 1991 Red 0
Ford 1990 Blue 99
Ford 1990 Green 64
Ford 1990 Red 0
Ford 1991 Blue 7
Ford 1991 Green 0
Ford 1991 Red 8

(46)

which, as we shall soon see, is a fragment of the CUBE operator.
MY C

tttt JJJ
J

MY

JJJ
JJ

MC

ttt
tt JJJ

JJ
Y C

ttt
tt

M

JJJ
JJ Y C

uuu
uu

H

A generalization follows from this example. Given a finite, ordered set of dimen-
sions D, one calculates the corresponding cube over some given measure attribute
by iterating over the powerset 2D of D, for instance that represented aside for
D � tM,Y, Cu where M , Y and C abbreviate Model, Y ear and Color, respec-
tively.

Let us denote by 2D
� the sequence of all elements of 2D ordered in some prede-

fined way induced by the ordering on the dimensions (e.g. M   Y   C). Thus 2D
�

is a sequence of (dimension) sequences and we can build the following projection matrix as an iteration of
(44) via (32)

t2D
�

: |2D
� | Ð n

t2D
�

�
�
��

�
��

sÐ2D
�

pO
dÐs

tdq (47)

all
Chevy 1990 Blue 87
Chevy 1990 Red 5
Ford 1990 Blue 99
Ford 1990 Green 64
Ford 1991 Blue 7
Ford 1991 Red 8
Chevy 1990 all 92
Ford 1990 all 163
Ford 1991 all 15
Chevy all Blue 87
Chevy all Red 5
Ford all Blue 106
Ford all Green 64
Ford all Red 8
all 1990 Blue 186
all 1990 Green 64
all 1990 Red 5
all 1991 Blue 7
all 1991 Red 8
Chevy all all 92
Ford all all 178
all 1990 all 255
all 1991 all 15
all all Blue 193
all all Green 64
all all Red 13
all all all 270

where
�
��

�
�� denotes the finitary extension of vertical blocking (recall section

4) thus stacking up the intermediate projection matrices provided by the
innermost iteration.

Note that (47) is not a function (functional matrix) although each contri-
bution OdÐs td is so.18 This redundancy is intentional, as (47) is intended
to record all possible combinations of dimension attributes — the shape of
the cube. To fill such a shape with the cube contents we multiply by the
measure diagonal and totalize with bang converse:

cubeM
D pT q : |2D

� | Ð 1

cubeM
D pT q � t2D

�

� JT KM � !� (48)

Thus the LA representation of a cube is a (column) vector. Aside we show a
tabular representation of cubeSales

tModel,Y ear,ColorupT q for our running example.
Note the usual convention of filling with all marks the ”missing attributes”
in each s in 2D

� .
Report [MO11a] gives a Matlab script which implements (48). A generic

formula for calculating other aggregations on given sub-sequences S of 2D
�

and measure M from a database table T is given by

aggM
S pT q : |S| Ð 1

aggM
S pT q � tS � JT KM � !� (49)

18 Given two functions f and g,

�
f

g

�
is never a function — it is a relation. Also note that |2D

� | �ΣsÐ2D
�

|s|.
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where tS generalizes (47). S tells which dimensions in D are handled and in what order, thus yielding
different standard operations for different S. For instance, for S containing only the empty sequence rs one
has trs � ! in (49), thus obtaining an aggregate [GCB�97] — the grand total block of tot (26,27). At the
other extreme, for S � 2D

� (49) is of course the same as (48), the whole data cube. Somewhere between these
limit cases one finds, for S � rss some singleton subsequence of 2D

� , the group-by s aggregation. Finally,
for S a prefix-closed subsequence of 2D

� — for instance, rrModel, Colors, rModels, rss — (49) evaluates a
roll-up.

SELECT Color, Sum(Sales)
FROM T
GROUP BY Color

The authors of [GCB�97] regard group-by as “an unusual relational
operator”. While the operator may look “unusual” in the context of the
relation algebra which supports the semantics of relational databases, it
makes perfect sense in the linear algebra semantics proposed in the current
paper for such constructions. Moreover, note that our LA semantics for
group-by not only covers the standard, one-attribute-only case — captured e.g. the SQL syntax aside,
which evaluates to

aggSales
rrColorsspT q �

all
Blue 193

Green 64
Red 13

— but also any sequence of grouping attributes — recall e.g. (46), which is the outcome of
aggSales

rrModel,Y ear,ColorsspT q. Clearly, any group-by, aggregate or roll-up is always a fragment of the
cube which represents the whole multi-dimensional analysis of the source data.

9. Related Work

An overview of data warehousing and OLAP technology can be found in [CD97]. Since Gray et al delivered
their seminal data cube paper in 1996 [GBLP96], most work in the field has been concerned with techniques
for efficient OLAP, given the small time window (usually at night) when warehouses can go offline for data
refreshing.

Another evolution since 1996 is the development of industry standards and specifications. Query languages
such as MDX [WZP02] relying on multidimensional expressions have emerged as SQL extensions providing
the features needed to perform OLAP queries. Our work can be seen as the beginning of a “SQL-free”
alternative to provide the same features. We focus on defining a semantics for such features which expresses
their meaning in terms of linear algebra operations, ultimately using such meaning to calculate the results.

Yang et al [YJA03] focus on the problem of data cube construction and show how a cluster middleware,
called ADR (originally developed for scientific data intensive applications) can be used for carrying out
scalable implementations of the construction of data cubes.

Bearing the ideal of making OLAP “truly online”, Ng et al [NWY01] develop a collection of parallel
algorithms directed towards online and offline creation of data cubes using low cost PC clusters to parallelize
computations.

Goil and Choudhary [GC01] address scalability in multidimensional systems for OLAP and multidi-
mensional analysis and describe the Parsimony system providing a parallel and scalable infrastructure for
multidimensional online analytical processing, used for both OLAP and data mining. Parallel algorithms are
developed for data mining on the multidimensional cube structure for attribute-oriented association rules
and decision-tree-based classification.

Literature on “end-to-end” system proposals for parallel OLAP servers is scarce. Sidera [EDD�10] is
one such proposal, providing OLAP-specific functionality gathering recent results in a common framework:
“the most comprehensive OLAP platform described in the current research literature” [EDD�10].

Closer to our approach, Sun and others [STF06, STP�08] introduce a technique based on the use of
tensors in the area of pattern discovery. (Tensors generalize vectors and matrices, as happens in the math-
ematical domain, and can be used to represent data-cubes.) To capture temporal evolution one uses tensor
streams or sequences that are time indexed structures of tensors, the advantage being a generalization of
traditional streams and sequences. On the background stays singular value decomposition (SVD), whose
matricial expression conspicuously resembles our starting point (3) and suggests a link between the two
approaches which we intend to study in the future.
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Our work also intersects with the area of index-based database-query (response time) optimization,
namely in what respects bitmap indices [WOS06]. Clearly, the projection matrices built in the current paper
are bitmaps regarded as matrices. Bitmaps were first implemented in IBM’s Model 204 [O’N89], becoming
a “de facto” device after compression techniques solved their outrageous memory space demands. They are
still in use in today’s commercial database systems, see [WOS06] for details.

10. Conclusions and Future Work

This paper addresses the foundations of quantitative data science [DP12] from a linear algebra perspective. In
particular, it shows how aggregation operations such as cross tabulations and data cubes used in quantitative
data analysis can be expressed solely in terms of matrix multiplication, transposition and the Khatri-Rao
product. The approach offers potential for deriving a truly algebraic theory of data consolidation, handling
the quantitative as well as qualitative sides of data science in an elegant and typed way. Moreover, all
operations involved, namely


 the conversion of dimension attributes into projection matrices

 the conversion of measure attributes into diagonal matrices

 the calculation of cross tabulations, and

 the calculation of data cubes

become parallel (“for free”) as immediate consequence of the very basic law of divide and conquer (7).
Our main aim is to set up a framework allowing for algebraic reasoning about data analysis operations

that have hitherto been described informally or by program code only. The approach is generic and exten-
sible, as much as the underlying mathematics is so. Take for instance the following matrix capturing the
SeasonÐMonth relationship in a more refined way:
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Spring 0 0 0.3 1 1 0.7 0 0 0 0 0 0
Summer 0 0 0 0 0 0.3 1 1 0.7 0 0 0
Autumn 0 0 0 0 0 0 0 0 0.3 1 1 0.7
Winter 1 1 0.7 0 0 0 0 0 0 0 0 0.3

(50)

In this case, FD Season Ð Month does not strictly hold, for equinoctial and solsticial months are doubly
classified in the seasons they border, in different proportions (70% for the season which ends, 30% for the
one which starts).

One may say that a “fuzzy” data dependency holds in (50). In spite of the possible complexity that
this extension to the standard situation might raise from a traditional OLAP perspective, in our setting it
doesn’t change anything, as such a “fuzzy” months-into-seasons roll-up process would work precisely in the
same way: using this matrix 19 in (38), for instance, one would obtain

Chevy Ford all
Spring 88.5 0 88.5

Summer 0 64 64
Autumn 0 99 99
Winter 3.5 15 18.5

all 92 178 270

indicating that some (between 3 and 4) of the 92 Chevys sold are likely to have been Winter sales rather
than Spring sales. Note that (50) can be regarded as a probabilistic function, meaning that the linear algebra
semantics of such functions as studied in e.g. [Oli12] can also be useful in this data (rather than algorithmic)
context.

19 Pre-composed with the obvious 5 Ñ 12 type coercion matrix embedding five into twelve months, of course.
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Future work. Further research in the direction of thoroughly justifying our approach is under way [MO14].
In the current paper, the data cube construction is derived from that of cross tabulation. [MO14] exploits the
alternative view of regarding the data cube as the primitive construction wherefrom the other 2D, 1D and
0D aggregators are derived. This makes it easier to prove a number of results, for instance the commutation
between cube construction and generic vectorization [MO13].

Moreover, we have to better cross-check our matrix encoding of OLAP (and FDs) with already existing
OLAP formal models [DT99, PKL02]. Mimicking OLAP algebra (whatever this means) in terms of linear
algebra may provide better and simpler proofs for existing results and generate new ones, as our experience
in pointfree calculation already shows in the relational algebra field [Oli14a]. This research agenda should
also include, of course, a closer look at [STF06].

Extending the LA encoding to other forms of data consolidation such as e.g. averaging is within reach.
Averaging rather than summing up measure vectors is obtained once again via bang matrices and scalar

division, avg v � p! � vq{p! � !�q, for n 1
voo and 1 n

!oo , where ! �v reduces vector v to the scalar which

records the sum of its elements. Averaging holds since (! � !�) is 1 1
noo , also a scalar. It is easy to see

that obtaining cross tabulations consolidated by averaging is a question of augmenting equation (3) with the
(index-wise) division of the cross tabulation matrix by the corresponding counting matrix:

tA � JT KM � t�B
tA � t�B

Extremes (min and max) are achievable by tuning multiplication and sum of matrix elements to suitable
semirings. But calculating more exotic data consolidation forms as e.g. population’s standard deviation
is challenging due to the complexity of the formulas. This is achievable with intensive use of Khatri-Rao
products and other non-trivial matrix operations, but further research is needed to evaluate the practicality
of such usage.

Another direction for future work is to benchmark a realistic implementation of our approach (derivable
from the Matlab scripts) against existing OLAP systems (e.g. those mentioned in section 9) thus testing
whether the parallelism inherent in the LA scripts materializes in real-life applications. Recall that our
approach is column-driven. Given that column-store databases for OLAP are being used as an alternative
to ROLAP (relational row-driven OLAP) or MOLAP (multidimensional OLAP), it would be interesting to
analyze if our LA semantics for OLAP could also improve its processing [Sor12].

Clearly, one needs to be able to process sparse matrices (which our projection bitmaps and diagonals
are) as efficiently as possible. Bell and Garland [BG09] explore the design of efficient sparse matrix-vector
kernels for throughput oriented processors and implement these kernels in a parallel computing architecture
developed by NVIDIA. The OSKI Library [WOV�09] is a collection of low-level C primitives that provide
automatically tuned computational kernels on sparse matrices, for use in solver libraries and applications.
OSKI has a BLAS-style interface, providing basic kernels like sparse matrix-vector multiply and sparse
triangular solve, among others.

Last but not least, Yang et al [YPS11] propose architecture-aware optimizations for sparse matrix mul-
tiplication on GPUs and study the impact of their efforts on graph mining. This work is another piece of
evidence suggesting that future OLAP and data mining should rely on linear algebra.
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A. Appendix on counting matrices and function injectivity

This appendix is concerned with functional dependencies and their relationship with counting matrices, that
is, matrices whose cells are natural numbers. Although some results below hold for arbitrary matrices, we
shall restrict to counting matrices for economy of presentation. As special case we have the Boolean matrices,
so called because they hold either 0 or 1 in their cells, which can be interpreted as the Boolean truth values.
Clearly, a counting matrix B is Boolean iff B ¤ J, where J denotes the everywhere-1 matrix of its type
obtainable by composing “bang” (30) with its converse: J � !� � !.

Boolean matrices represent binary relations in matricial form. Given Boolean matrices B and B1, B ¤ B1

expresses inclusion of the binary relations represented by such matrices, that is 〈@ y, x :: yBxñ yB1x〉
recalling our use of infix notation yM x to express the cell of matrix M addressed by row y and column x.20

Any function f is a special case of the Boolean matrix such that y f x � 1 if y � f x and y f x � 0
otherwise. Note the use of symbol f to denote two mathematical objects, the function itself (as in y � f x)
and its matrix representation (as in y f x � 1). This abuse of notation (common in relation algebra) enables
the following rules interfacing index-free and index-wise matrix notation, where f and g functional matrices:

y pg� �M � fqx � pg yqM pf xq (51)
y pf �Mqx �

〈
Σ z : y � f z : z M x

〉
(52)

y pM � f�qx �
〈
Σ z : x � f z : yM z

〉
(53)

These rules are expressed in the style of the Eindhoven quantifier calculus (see e.g. [BM06]) and are convenient
shorthands for the corresponding instances of matrix composition (5). Rule (51) extends to typed matrix

20 As advocated in [Oli13], this notation finds its inspiration in terms such as e.g. y ¤ x which one is familiar with since school
maths.
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algebra a similar rule known from relation algebra [BB04]. Note how (52) is obtained from (5) by “trading”
Boolean cell y f z with the corresponding Boolean formula y � f z, as explained in [Oli13]. This can be done
with any other Boolean term yBx.

Rule (51) is enough to derive the equalities

! � f � ! (54)
g� � pM θ Nq � f � pg� �M � fq θ pg� �N � fq (55)

for suitably typed functions f and g and matrix-cell binary operation θ promoted to a matrix operator
(with the usual notation overloading), that is, y pM θ Nqx � pyM xq θ pyN xq. From (54) and J � !� � ! one
immediately draws:

J � f � J (56)

Supports. Let n P N0 be a natural number and define its support tnu � if n ¥ 1 then 1 else 0 , that is,
tnu � n Ó 1 where m Ó n denotes the least of m or n. Clearly,

x ¤ tnuô x ¤ n^ x ¤ 1 (57)

that is, tnu is the largest “Boolean number” (0 or 1) at most n. Thus t0u � 0, t1u � 1 and, in general
tnu � n ô n ¤ 1: the support of a “Boolean number” (0 or 1) is itself.

Let us now extend tnu from naturals to matrices of naturals (counting matrices): 0 becomes K, the
everywhere-0 matrix of its type; 1 becomes J, the everywhere-1 matrix of its type and (57) becomes

X ¤ tN uô X ¤ N ^X ¤ J (58)

equivalent to the following, closed definition

tM u � M Ó J (59)

where y pM ÓNqx � pyM xq Ó pyN xq, overloading m Ó n.
Cancellation in (58) yields tN u ¤ N and tN u ¤ J, the latter saying that tN u is a Boolean matrix. All

equalities above extend to counting matrices, e.g. tN u � N ô N ¤ J: the support of a Boolean matrix is
itself. Moreover, t u is a monotonic function from counting to Boolean matrices. From (58) one also obtains
(via converses):

tM�u � tM u
� (60)

In general tM � N u �� tM u � tN u, since composition is not closed over Boolean matrices (J � J ¡ J, for
instance). Nevertheless, the special case

tM � f u � tM u � tf u � tM u � f (61)

holds:

tM � f u

� t (59); (56) u

pM � fq Ó pJ � fq

� t (55) u

pM Ó Jq � f

� t (59) u

tM u � f

l

From (61) the more general rule

tg� �M � f u � g� � tM u � f (62)
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can be derived by taking converses:

tg� �M � f u

� t contravariance ; idempotence u

tpM� � gq� � f u

� t (61) ; (60) u

tM� � gu
�
� f

� t (61) ; (60) u

ptM u
�
� gq� � f

� t contravariance u

g� � tM u � f

l

A counting matrix M is diagonal iff tM u ¤ id, that is, 〈@ y, x : y �� x : yM x � 0〉. An example of
diagonal matrix is the image g � g� of a function g since, by (53), b1 pg � g�qb �

〈
Σ a : b � g a : b1 ga

〉
which

is the same as
〈
Σ a : b1 � g a^ b � g a : 1

〉
trading term b1 � g a, since g is a function. Thus

b1 pg � g�qb �
〈
Σ a : b1 � g a^ b � g a^ b1 � b : 1

〉
(63)

and therefore b1 pg � g�qb � 0 for b1 �� b.

Functional injectivity. For M :� id one draws from (62) that g� � f is Boolean, tg� � f u � g� � f . Thus the
kernel of a function f [Oli14a]

f� � f � tf� � f u (64)

is Boolean. By (51), Leibniz rule x1 � x ñ f x1 � f x encodes into id ¤ f� � f , whereby one obtains (by
monotonicity) g ¤ g � f� � f and

g ¤ tg � f�u � f (65)

by taking supports and (61).
Functions can be compared by comparing their kernels: by unfolding f� � f ¤ g� � g once again by (51),

we get:

x1 pf� � fqx ¤ x1 pg� � gqx

ô t (51) twice u

pf x1qidpf xq ¤ pg x1qidpg xq

ô t b pidqa encodes b � a and ¤ over t0, 1u encodes implication u

f x1 � f xñ g x1 � g x

Colloquially: “g does not distinguish what f regards as equal”. Formally: g is less injective than f .21 The
following result

tg � f�u � f � g ð g is less injective than f (66)

21 Cf. e.g. [Oli14a], where the same inequality is handled relationally.
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is required in section 6 of the current paper and relies on the injectivity ordering on functions:

tg � f�u � f � g

ô t (65) u

tg � f�u � f ¤ g

ð t tg � g�u � g ¤ g by monotonicity of composition since g � g� is diagonal (63) u

tg � f�u � f ¤ tg � g�u � g

ô t (61) twice u

tg � f� � f u ¤ tg � g� � gu

ð t monotonicity of t u and of composition u

f� � f ¤ g� � g

l

B. Appendix on bitmaps, projections and diagonals

Bitmaps. Suppose an array a � rd1 d2 ... dns holds n elements of data type D. This uniquely deter-
mines the function fa : n Ñ D such that fapiq � di for 1 ¤ i ¤ n, that is, fa tells which datum lives in which
position of array a. Once such a function is represented as a Boolean matrix of type D Ð n one obtains a
bitmap matrix representation of a. Note that a itself can be regarded as a generalized 22 D-valued row vector
of type 1Ð n. Let this change of representation can be captured by function

bm : p1 D Ð nq Ñ pD Ð nq

where notation 1 D Ð n is intended to warn the reader that cells in bm ’s input are of type D, possibly not
a semiring essential for matrix composition to work. (More about this below.) We define bm inductively as

follows: for n � 1, bm d1 � D 1
d1oo , the Boolean (column) vector representing constant function d1; for

n ¡ 1, —bm— is defined by:

bm r a1 a2 s � r bm a1 bm a2 s (67)

Let a given raw data table T have n rows (records) and as many columns as the set of its attributes
S � tA,B, . . .u. Then T may also be regarded as a generalized matrix of type nÐ S whereby the raw-data
append operation T ;T 1 (catenation of T with T 1) is faithfully captured in matrix block notation by

T ;T 1 �

�
T

T 1

�
(68)

since both T and T 1 share the same input type S. For A P S, constant function S 1
Aoo is a Boolean

vector with 0s everywhere but a 1 in the row addressed by attribute A P S. Then T pA,nq, the value of
attribute A in the n-th row of T can be re-written as follows:

T pA,nq

� t using infix notation once T is regarded as a nÐ S matrix u

nT A

� t since S 1
Aoo is a constant function u

nT pA 1q

22 Generalized in the sense that it will hold any kind of heterogeneously typed data, not just numerical data.
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� t (51) u

n pT �Aq1

Thus

n 1
T �Aoo (69)

is the (column) vector which represents the A-column of T . This can be turned into a bitmap via bm,

tA � bm pT �Aq� (70)

providing a pointfree alternative to (17), as well as

t1A � bm pT 1 �Aq� (71)

for another raw-data set T 1 sharing A-values in the same range type |A|.
Fact (41) can then be calculated as follows:

r tA t1A s

� t (70) twice u

r bm pT �Aq� bm pT 1 �Aq� s

� t (67) u

bm r pT �Aq� pT 1 �Aq� s

� t converse-duality (6) u

bm
�

T �A

T 1 �A

��

� t fusion (9) u

bm p

�
T

T 1

�
�A�q

� t define T 2 �

�
T

T 1

�
� T ; T 1 (68) u

bm pT 2 �A�q

� t (70) u

t2A
l

The proof of (42) is the same, for attribute B instead of A.

Diagonals. Back to (22), let M P S be a measure attribute and let us rely on (69) to capture its diagonal-
ization, via (14):

JT KM � pT �Mq� � id (72)
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This definition is convenient for proving fact (43), as follows:

JT ;T 1KM

� t (68) u

J
�

T

T 1

�
KM

� t definition (72) u

p

�
T

T 1

�
�Mq� � id

� t fusion (9) ; id` id � id u

�
T �M

T 1 �M

��
� pid` idq

� t converse-duality (6) u

r pT �Mq� pT 1 �Mq� s � pid` idq

� t (16) since T �M and T 1 �M are row vectors u

ppT �Mq� � idq ` ppT 1 �Mq� � idq

� t definition (72) twice u

JT KM ` JT 1KM

l

Recall from section 7 that (43) is central to showing that cross tabulation evaluation is parallelizable (40).


	Introduction
	From relations to matrices
	Cross-tabulations
	Typed linear algebra
	Cross tabulations in LA
	``Rolling up'' on functional dependencies
	Incremental (parallel) construction
	Higher-dimensional OLAP
	Related Work
	Conclusions and Future Work
	References
	Appendix on counting matrices and function injectivity
	Appendix on bitmaps, projections and diagonals

