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Abstract. We study a finite decision model where the utility function is an
additive combination of a personal valuation component and an interaction
component. Individuals are characterized according to these two components
(their valuation type and externality type), and also according to their crowd-
ing type (how they influence others). We study how positive externalities lead
to type symmetries in the set of Nash equilibria, while negative externalities
allow the existence of equilibria that are not type-symmetric. In particular, we
show that positive externalities lead to equilibria having a unique partition into
a minimum number of societies (similar individuals using the same strategy,
see [27]); and negative externalities lead to equilibria with multiple societal
partitions, some with the maximum number of societies.

1. Introduction. A decision is in general a course of action resulting from a pro-
cess which involves selecting among several possible alternatives. The collective co-
existence and constant interaction of individuals necessarily creates a social frame
in which decisions are made and a social context to which the decision leads. Re-
gardless of whether these interactions are voluntary or not, they play a significant
role in the global patterns of behavior that emerge from the individual decisions.
Understanding what underlies a global behavior means understanding not only the
interactions among decision-makers, the personal evaluations of alternatives and the
interdependence between the two, but also having a grasp on the relation between
the characteristics of the decision-makers and the characteristics of the global out-
come. In fact, each decision composing this outcome, conveys information about
the decision maker, as it reveals a choice, be it either a selection of a product to
buy or a public service, be it an economic strategy, a political option, a social be-
havior, be it a life changing choice or a daily life decision, like choosing a bar to
go to friday night. Thus, the study of the global behaviour both presupposes and
enhances an understanding of what governs individual decisions. This is partic-
ularly relevant if it is assumed that individuals act rationally and the choice is a
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best response over the evaluation of the alternatives, in the sense of the existence
of a Von Neumann-Morgerstern utility (1944).1 At the core of a game theoretical
approach to the problem is the modelling of interactions between decision-makers.
Assuming decisions as a global mutual best response, one may use the concept of
Nash equilibrium (1951) to retrieve information not only on a global interacting
level, but also on an internal individual level, by analysing the interdependence of
these social characteristics and the individual personal evaluation processes. The
focus of this work is the relation between the characteristics of individuals and the
characteristics of the outcome, where the outcome is seen as the set of pure Nash
equilibria of a finite non-cooperative game.

The study of the dependence of global behaviour (as an equilibrium) on the char-
acteristics of individuals, and in particular the study of the dependence of individual
decision rules on the strategies of others, has a long tradition. Namely, in the work
of Schelling (1971, 1973, 1978) where, for example, di↵erent distributions of the level
of tolerances of individuals lead to residential segregations with di↵erent properties;
or in the work of Granovetter (1978), where small di↵erences on the distribution
of individual thresholds can lead to completely di↵erent collective behaviour; or in
Mas-Collel (1984), Pascoa (1993) where an atomless distribution of types leads to
symmetric equilibria; or other symmetry properties as in Wooders, Cartwright and
Selten (2006) and Wooders and Cartwright (2014), which, like our paper, describe
partitions of the set of players into groups that arise in equilibrium.

Our approach is to model the outcome of a decision process as the pure Nash
equilibria of a finite (both in players and strategies) non-cooperative, simultaneous
move game. The value of a given decision is measured through an utility function
that is an additive combination of two components: (i) how much the individual
personally values the decision, independently of the strategies of others; (ii) the
externalities arising from social interactions with those individuals who make that
same decision. This is, of course, a very broad class of utility functions included in
many models in the literature. The crucial aspect is the choice of how to model the
form of dependence on the strategies of others, i.e. how to model social interactions.
Let us highlight three main features of our approach to this choice, and position
our work in relation to the di↵erent approaches in the literature.

A first key feature is that we consider only dyadic interactions (see for example
[4], [11]). Dyadic means that, for any given strategy, the influence/impact of an
individual i on an individual j is independent of the decision of others. A class
of games that focuses only on this kind of interactions is for example the class
of polymatrix games, see [13], [17].2 Another option would be to introduce (also
or instead) a dependence of this influence on the whole strategy profile. In gen-
eral, excluding such a component usually means excluding some form of non-linear
anonymous aggregate dependence on the strategies of others. In fact, many games
can be captured by an appropriate dyadic component by using such an exclud-
ing assumption, as for example by making the appropriate restriction on singleton
weighted congestion games, or on the games presented in [4], [6], [18]. The dyadic
component is sometimes refered to as the local component of social interactions and

1The issue of rationality is beyond the scope of this work, nevertheless, as we will be looking
at the outcome and not at the decision process in itself, and as we will be working in a complete
information setting where the parameters are open to interpretation, underlying is in fact a very
mild rationality assumption.

2A first formal reference appears to be due to E. B. Yanovskaya in 1968.
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the latter dependence as the global component.3 Focusing on dyadic interactions
seems like a suitable approach for the case we wish to study.

A second feature is that we assume social interactions to be dichotomic, in the
sense of being restricted to whether individuals are using the same strategy or a
di↵erent one, a type of Independence of Irrelevant Alternatives assumption [19]. In
this work it can be better described and motivated in the following manner: given
a strategy profile, if an individual i changes her decision, the change only a↵ects
those in her new decision, because she will start interacting with them, and those
in her old decision, because she will no longer interact with them. Her influence on
the rest of the individuals was that she was making a di↵erent decision, and that
hasn’t changed. This is also in the spirit of Independence of Irrelevant Choices as
in [14], or no spillovers as in [15]. This assumption is important for some of our
results, which would not hold without it.

The third feature is that we will allow for social interactions to give rise to both
positive and negative externalities, and then study their e↵ects on equilibria and
society formation. The question here could be whether to restrict the dependence
to be in some sense ‘positive’ or complementary, leading to a conformity e↵ect; or
‘negative’ leading to a congestion e↵ect. On the strand of literature that treats
conformity e↵ects (those leading to a common (or symmetric) action which may
overcome personal or intrinsic preferences) are for instance the works on behav-
ioral conformity by Wooders, Cartwright and Selten [27], a theory of conformity by
Bernheim [3], a model of herd behavior by Banarjee [2], the threshold models of
collective action as in Granovetter [12], or even the equilibrium symmetry in super-
modular games as in Cooper and John [10]. On the strand of literature focusing
on congestion e↵ects is for example the class of congestion games as first proposed
by Rosenthal [20], later generalized by Milchtaich [16]; or the works of Quint and
Shubik [18], Konishi, Le Breton and Weber [14], to name a few.

Social interactions, regardless of whether they exhibit a conformity or congestion
e↵ect, should depend not only on the number of individuals in each choice, but
also on the characteristics of those individuals. This is a crucial aspect in the
works of Wooders ([24, 25, 26]) and of Conley and Wooders ([7, 8, 9]). Wooders’s
earlier papers allow preferences to depend on the characteristics of agents (their
types), while Conley and Wooders separate two sorts of characteristics: crowding
characteristics, which determine the e↵ects of a player on others, and tastes. In
our model we will use a type profile that characterizes individuals, or distinguishes,
according to three di↵erent aspects, or attributes. (Keep in mind though that for us
type does not mean Bayesian type, as we will be working on a complete information
setting and the type profile is something completely determined a priori.) Following
the work of Conley and Wooders, we will start with the use of a crowding space,
which distinguishes individuals by their impact on the utility of others. The use of
a crowding space has the advantage that allows the characterization of classes of
strategies where the relevant information is the number of individuals with the same
crowding type in each decision. Observe that there is no restriction here: depending
on the choice of the crowding space individuals may be all distinguishable or totally
anonymous. We then characterize individuals according to their utility function,
i.e. taste type, but we will subdivide the taste type into two components, using the

3The use of the terms local and global in this context seem amenable to critique, since one
could think of ‘global dyadic components’ or ‘local aggregative components’, hence we prefer the
terms dyadic and aggregative.
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two additive components of the utility function. This allows the characterization of
Nash equilibria according to the restrictions imposed on the relation between these
two components. Furthermore, dividing the taste type in this way, separates the
social part of the model, that captures the social interactions, from the ‘personal’
part given by the valuation component (sometimes called intrinsic preference, which
we wittingly avoid). A key advantage of the separate analysis of the valuation
component is that, besides comprising the intrinsic and personal perceived benefit
of the decision, it captures exogeneous changes and/or characteristics associated to
each decision. Namely, dependending on the decision in question, it may represent
prices, taxes, product quality, road quality, marketing, political campaings, bribes,
etc...

The present work starts as an extension of the two types dichotomic model by
Soeiro et al. [23] to a wider finite setting where there may be any number of types of
individuals facing a choice among any number of possible alternatives, but with the
focus on pure Nash equilibria. The latter work finds its inspiration from Brida et al.
[5], a socio-economic model that analyses how the choice of a service is influenced
by the profile of users of that same service; and, on a di↵erent line, from Almeida
et al. [1], where game theory and the field of social psychology are related through
the theories of Planned Behavior or Reasoned Action, proposing the Bayesian-Nash
equilibrium as one of the many possible mechanisms behind the transformation of
human intentions into behaviors.

In this work, the approach is essentially two-folded. First we start by taking a
crowding profile and a strategy profile as given, which we call a social context, and
study implications on the utility functions and on society formation for the case
when the strategy is a Nash equilibrium. As a natural follow-up, we will add the
externality profile, creating what we call a social context extension. The relation be-
tween the social context extension and the valuation profile is the basis for our next
step in the characterization of equilibria. We will further show that a social context
extension where there are only positive externalities always leads to type-symmetric
Nash equilibria and societal partitions with a minimum number of societies; on the
other hand, negative externalities allow the existence of Nash equilibria that are
not type-symmetric and have a high number of societies. Furthermore we provide
a procedure to find the personal decision values that turn any admissible strategy
profile into a Nash equilibria. Throughout this work, whenever we say Nash equi-
librium we shall always mean pure strategy Nash equilibrium, since we are only
considering pure strategies.

The work unfolds as follows: in section 2 we set up the model; in section 3 we
present the relation of our model to the concept of society in [27]; in section 4 we do
the separation of the taste component of the type profile and present a conformity
obstruction lemma. The lemma allows us to characterize the conditions in the type
profile for a given strategy to be admissible or feasible as a Nash equilibrium; in
section 5 we define the Nash domain of a strategy (in terms of utility parameters)
and characterize it completely; and finally, in sections 6 and 7 we prove the results
(and as such, these are more technical sections).

Notation. Throughout the work we will use in general: boldface for variables
that convey information about the whole set of players, called generally profiles;
caligraphic letters for spaces of such profiles; capital letters for sets and greek letters
for specific parameters of a game. The symbol ⌘ is used for definitions.
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2. The model. The decision model we present is based on a finite non-cooperative
simultaneous move game. We consider a finite set of individuals (players) I ⌘
{1, . . . , nI}, each having to choose independently and simultaneousy an element
from a finite set of alternatives D ⌘ {1, . . . , nD} (the common strategy set). We
describe the decisions of the individuals by a strategy map s : I ! D associating
to each individual i 2 I her decision si ⌘ s(i) 2 D, which in turn defines a (pure)
strategy profile s = (s1, . . . , snI ) 2 S ⌘ DnI . We will use the standard notation
(si; s�i) to represent strategy profile s, but highlighting the component of individual
i and the remaining strategy profile s�i. The utility of a given strategy profile s
for an individual i 2 I is measured through an utility function that is an additive
combination of two components: (i) how much the individual personally values
decision si, independently of the strategies of the others; and (ii) the externalities
arising from social interactions with those individuals who made the same decision
as her. The latter component thus determines the social impact of the strategy
profile s�i on individual i while making decision si.

The value for an individual i 2 I of each alternative d 2 D is given by the decision
value coordinate !d

i 2 R; these coordinates represent how much she likes or dislikes
to make a certain decision d. The impact of others on individual’s i decision is
given by the social weight coordinates ↵d

ij that indicate how much individual i is
influenced by an individual j when they are both making decision d. Let us denote
the set of individuals who decide d in a strategy profile s by s�1(d) ⇢ I. The utility
function u : I ⇥ S ! R is given by

u(i; s) = !si
i +

X

j2s�1(si)\{i}

↵si
ij .

The restriction of social interactions to those individuals who make the same deci-
sion is in line with some common assumptions in the game theoretic literature, as
that of Independence of Irrelevant Choices in [14], or no spillovers in [15]. These
are in general assumptions in the spirit of what’s most commonly known as a type
of Independence of Irrelevant Alternatives assumption (which has long been used,
but sometimes di↵ers depending on the context, see for example [19]).4 Let U be
the space of such utility functions. For a given utility function u 2 U , the decision
model we presented is a decision game � ⌘ �(I,D, u). We sometimes refer to deci-
sion games where there are only positive externalities as conformity games ; and to
games where there are only negative externalities as social congestion games.

We will study di↵erent invariances of a decision game that arise from such a
utility function, and then characterize games from di↵erent invariance classes. These
classes are related to how individuals may be distinguished in the game, be it either
because they have di↵erent utility functions or because they have di↵erent impact
on the utility function of others; or both. Following the work of Conley and Wooders
([7, 8, 9]) we start by separating those characteristics of individuals that influence
the utility of others, called the crowding type of the individuals. Let C be the set
of possible crowding types and let c ⌘ c(�) = (c1, . . . , cnI ) 2 C ⌘ CnI denote the
crowding profile of individuals in a decision game �. Two individuals j1, j2 2 I
have the same crowding type cj1 = cj2 = c 2 C if for all i 2 I and d 2 D we have

4In a game of complete information, the assumption is in fact one of dichotomic social influence,
as we stated in the introduction. That is, individuals are influenced by other individuals who make
the same decision, and also by those who make a di↵erent decision, but just by the fact that they
made a di↵erent decision, independently of what decision that is. This can be seen by making a
variable transformation on the social weights as is done in [23].
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↵d
ij1 = ↵d

ij2 ⌘ ↵d
ic. The utility function for an individual i 2 I can be rewritten

using the crowding space,

ui(si; s�i, c�i) ⌘ u(i; s) = !si
i +

X

j2s�1(si)\{i}

↵si
icj

.

The use of a crowding space in the characterization of a game has the advantage
that the utility of an individual i associated with a strategy profile s is invariant
under permutations of strategies of other individuals with the same crowding type.
Thus, the crowding space C induces a natural equivalence relation in the strategy
space S. This allows the characterization of classes of strategies where the rele-
vant information is the number of individuals with the same crowding type in each
decision. We thus define the crowding-aggregate decision matrix L(s, c) whose co-
ordinates, ldc = ldc (s), indicate the number of individuals with crowding type c 2 C
who make decision d 2 D in strategy profile s,

L(s, c) ⌘

0

B@
l11 . . . l1nC

...
. . .

...
lnD
1 . . . lnD

nC

1

CA .

We denote by L ⌘ {L(s, c) 2 RnD⇥nC : s 2 S, c 2 C} the set of all possible
crowding-aggregate decision matrices in a given game. Given a matrix L 2 L, there
is always a subset of strategy profiles S 2 S such that, for any s1, s2 2 S, we have
L(s1, c) = L(s2, c) = L. Thus, the set L characterizes the crowding equivalence
relation in the strategy space S induced by the crowding profile c, and we will refer
to the strategy class L 2 L to mean the equivalence class {s 2 S : L(s, c) = L}.
The utility function is fully characterized by the following (reduced) utility matrix
for each individual i 2 I,

Ui ⌘ U(i;D, C) ⌘

0

B@
!1
i ↵1

i1 . . . ↵1
inC

...
...

. . .
...

!nD
i ↵nD

i1 . . . ↵nD
inC

1

CA .

The utility matrix defined above defines the taste (or utility) type of an individual,
and the utility profile U ⌘ U(I;D, C) ⌘ (U1, . . . , UnI ) 2 (RnD⇥(1+nC))nI deter-
mines a decision game. The set of Nash equilibria of a decision game will naturally
depend on the utility profile. Nevertheless, di↵erent utility profiles may lead to the
same Nash equilibria. Hence, we will study properties of utility matrices of decision
games for which a given strategy class is a Nash equilibrium. For this analysis it
will be useful to rewrite the utility function using the strategy classes L. Recall
that in this work when we say Nash equilibria we will always mean pure Nash
equilibria. As it is natural when dealing with pure Nash equilibria, we will have
to make comparisons between pairs of decisions, and this can be done comparing
lines in the above matrices, since each line d of those matrices is associated with
the utility of the individual i when using strategy si = d. Hence, it will be useful
to introduce a notation for the line vectors associated with each decision. When
the choice of an individual i 2 I is d 2 D, the social influence that she is subject
to, in a given strategy profile s 2 S, may be summarized by two vectors: the social
preferences vector ~↵i(d) 2 RnC , comprised of the social weights given by individual
i to the aggregates of each crowding type in decision d; and the crowding-aggregate
vector ~l(d) 2 RnC whose coordinates correspond to the line d of matrix L, and thus
indicate the number of individuals with crowding c 2 C who make decision d in a
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given strategy class L,

~↵i(d) ⌘ (↵d
i1, . . . ,↵

d
inC

), ~l(d) ⌘ (ld1 , . . . , l
d
nC

).

The utility function can now be rewritten for strategy classes through the above
vectors. For an individual i 2 I it is given by

ui(si, ci;L) ⌘ ui(si; s�i, c�i) = !si
i + ~↵i(si) ·~l(si)� ↵si

ici

where · denotes the usual inner product. Note that determining the utility of an
individual using a strategy class L instead of a specific strategy profile s, forces the
need to add some extra information. Namely, each individual needs to know her
own crowding type due to the subtraction of coordinate ↵si

ici
. This is a consequence

of removing individual i from the aggregate lsici and assigning social weight to lsici �1
instead. However, this only means that individual i has no social weight on her
own utility, rather she has an individual value for that decision, !si

i (which might
nevertheless encompass a social interpretation of decision values). The aforemen-
tioned need for the knowledge of an individual’s own crowding type, reveals how
individuals may retrieve di↵erent information from the same aggregated structure
of a strategy class.

3. Societies. Given a strategy profile s and a crowding profile c, we define social
context as the pair (s, c). In studying social contexts that are based on a Nash
equilibrium strategy s, the characterization of the structure of an utility profile U
is naturally limited to studying subsets of individuals that are dintinguishable in
that social context, and therefore provide di↵erent information. Consider thus a
partition P(s, c) of the set of individuals I according to the social context (s, c),
meaning that every pair (d, c) creates a block P (d, c) of the partition whose elements
are all the individuals i 2 I with the same crowding type ci = c and using the same
strategy si = d. That is,

P (d, c) ⌘ {i 2 I : (si, ci) = (d, c) 2 D ⇥ C},

P(s, c) ⌘ {P (d, c) : (d, c) 2 D ⇥ C}.
This kind of partitions is particularly interesting to relate to the notion of society

defined in [27], and in fact inspired by it. A society is an element of a subpartition
of a block P (d, c) with an aditional property of convexity as defined properly below.
Let us first denote convex hull by con(·) and without ambiguity let us use the same
notation for the convex hull formed by the utilities of some individuals J ⇢ I, thus

con(J) ⌘
⇢X

j2J

�jUj : �j 2 R+
0 and

X

j2J

�j = 1

�
.

A set of individuals S 2 P (d, c) is called a society if it satisfies the following con-
vexity property: if for i 2 I, ci = c and Ui 2 con(S), then i 2 S (see [27]).
The society is maximal if there is no other society S0 2 P (d, c) such that S ⇢ S0.
Given a decision game and a block P (d, c) of a social context, let us denote by
SP (d, c) ⌘ {S1, . . . , Sk} a partition of P (d, c). Let now

SP(s, c) ⌘
[

i2I
SP (si, ci).

The partition SP(s, c) is called a societal partition if its blocks SP (d, c) are formed
by societies, and it is called a minimal societal partition if it is formed by maximal
societies.
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Definition 3.1 (Global minimum societal partition). A societal partition is a global
minimum if all its societies coincide with the P (d, c) block, i.e. for all S 2 SP(s, c),
S = P (d, c).

We observe that while a partition P(s, c) is based on a combinatorial concept,
societies are based on a topological one. A fundamental question is understanding
the minimal societal partition of a Nash equilibrium, and in particular if that par-
tition is a global minimum. We will show that, in the context of our work, when
there are only positive externalities between the P (d, c) blocks for a given strategy,
the societal partition is a global minimum. In particular, in a conformity game, the
minimal societal partition of a Nash equilibrium is always a global minimum, and
thus there are at most nDnC societies. That is not the case however for games with
negative externalities. We will show that social congestion games may not have
global minimum societal partitions of its Nash equilibria, and there may be up to
nI maximal societies. For a given block P (d, c), let

U(d, c) ⌘ {Ui : i 2 P (d, c)}.

We say that two sets I, J 2 I have positive externalities in strategy profile s, if for
all i 2 I and j 2 J ,

↵
sj
icj

+ ↵si
jci

> 0.

Theorem 3.2 (Positive externalities). Let (s, c) be a social context and s a Nash
equilibrium. If for two distinct decisions d, d0 2 D and a crowding type c 2 C,
P (d, c) and P (d0, c) have positive externalities in s, then

con(U(d, c)) \ con(U(d0, c)) = ;.

Theorem 3.2 relates directly to the notion of societies, and in particular to the
concept of global minimum societal partition.

Corollary 1 (Positive externalities). Let (s, c) be a social context and s a Nash
equilibrium. For every c 2 C let P (d, c) and P (d0, c) have positive externalities in
s, for every d, d0 2 D, with d 6= d0. There is a global minimum societal partition.

In particular, for every Nash equilibrium of a conformity game the minimal so-
cietal partition of a Nash equilibrium is a global minimum.

4. Externalities and valuations. The second step in our approach is to subdi-
vide each utility matrix into two components, which means we will subdivide the
taste type of an individual. The subdivision is done to separate the two additive
components of the utility function, namely separating the part that measures the
externality e↵ects from the part that measures the individual’s independent valu-
ation of the strategy set. We will then categorize individuals according to these
two components, so that we can characterize a Nash equilibrium according to the
restrictions it imposes on the relation between the two components. These two com-
ponents are: (i) the column vector of individual decision values ~!i ⌘ !i(D) 2 RnD ;
and (ii) the submatrix of social weights given to the aggregates of each crowding
type, the social preference (or externality) matrix ei ⌘ ei(D, C) 2 RnC⇥nD ;

~!i ⌘

0

B@
!1
i
...

!nD
i

1

CA , ei ⌘

0

B@
↵1
i1 . . . ↵1

inC

...
. . .

...
↵nD
i1 . . . ↵nD

inC

1

CA.
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We observe that the impact of the decision value vectors ~!i in this relation will
not be given by the precise value of their coordinates, but rather by the relative
preferences they induce, namely the di↵erence between each pair of coordinates.
That is, if a given decision d is a best response for an individual i, then if we
changed her vector of decision values by the same amount in each coordinate, d
would still be a best response. We will take this into account using a valuation
space V with the following property: if two individuals i, j 2 I have the same
valuation type vi = vj ⌘ v 2 V , then their vectors of decision values are in the same
relative valuation space. More precisely, the relative valuation space spanned by ~!i

is

W (~!i) ⌘ {~!i + k~1 : k 2 R}.
Hence, if the two individuals have the same valuation type v, then W (~!i) = W (~!j).
However, we do not ask the equivalence class to be maximal, i.e. there might be
individuals with diferent valuation types vi 6= vj such that the corresponding vec-
tores of decision values ~!i and ~!j satisfy W (~!i) = W (~!j). With a slight abuse
of notation we will refer to the decision values vector of individuals with the same
valuation type v as ~!v. The profile of decision value vectors of all individuals is de-
noted by ! ⌘ !(I;D) ⌘ (~!1, . . . , ~!nI ) 2 (RnD )nI . The valuation profile is denoted
by v ⌘ v(I) ⌘ (v1, . . . , vnI ) 2 V ⌘ V nI . Note that a profile of decision values
might or not be compatible with a valuation profile. The set of all social preference
matrices associated with the crowding profile c of a given game is described by the
externality profile e ⌘ e(I;D, C) ⌘ (e1, . . . , enI ) 2 E ⌘ EnI ⌘ (RnD⇥nC )nI . We
will use ↵d

eicj and ~↵ei(d) to refer, respectively, to coordinates ↵d
icj and vector ~↵i(d)

of an individual i with externality type ei.
The categorization of the individuals is thus given by a type map t ⌘ t� : I ! T

which indicates the type of an individual in the type space T = C ⇥ E ⇥ V . The
subscript on the type map (which we will omit) is there to reinforce that when we say
type we do not mean bayesian type, rather the type map reveals symmetries of the
utility profile U, and thus it is something known a priori, since we are considering
complete information games. The type map defines a type profile for the game
given by the triplet t = (c, e,v) in the space T = (C ⇥ E ⇥ V )nI , composed of:
(i) a crowding profile c characterizing individuals according to their crowding type;
(ii) an externality profile e characterizing individuals according to their externality
type; and (iii) a valuation profile v characterizing individuals according to their
valuation type. Note that the utility matrix is associated with the pair (ei, vi), an
individual’s taste type. An advantage of separating the taste into two components
is that now the pairs (ci, ei) are responsible for the ‘social’ part of the model; they
capture the social interactions in the model. We refer to this pair as the social
type of an individual. Hence, the valuation type component vi, that represents
the way an individual values the possible choices, may be analysed separately. A
key advantage of the separate analysis of the valuation component is that it may
capture exogeneous changes, as it may represent prices, taxes, product quality, road
quality, marketing, political campaings, bribes, etc...

The type profile of a decision game conveys information, or imposes restrictions,
on the characteristics of its Nash equilibria. On the subsequent sections we will
study the information one can retrieve about the structure of the utility profile of
a decision game from studying the restrictions imposed by the type profile. A first
natural problem is whether individuals of the same type may use di↵erent strategies
in a Nash equilibrium, hence, whether all Nash equilibria are type-symmetric. The
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next lemma is a result on the relation between a social type and its valuations in a
Nash equilibrium. Let us define for two individuals i and j the following measure
of influence in a strategy profile s,

Aij(s) ⌘ ↵sj
eicj + ↵si

ejci .

If Aij(s) > 0 we say that the individuals i and j have positive externalities in s.
Similarly, if Aij(s) < 0 we say that individuals i and j have negative externalities in
s. Note that if two individuals have positive (resp. negative) externalities in s, then
at least one of them would have a positive (resp. negative) externality by changing
(unilaterally) her strategy and joining the other in her decision.

Let dist(·, ·) be the distance given by the supnorm.

Lemma 4.1 (Conformity obstruction). Consider a decision game � and a Nash
equilibrium s. If i, j 2 I and si 6= sj then

dist(~!vi , ~!vj ) � Aij(s)/2� nIdist(ei, ej).

We call this an obstruction because, in the case of positive externalities, individu-
als need to be su�ciently di↵erent to make di↵erent decisions at a Nash equilibrium.
This is not the case when negative externalities are in place. The conformity ob-
struction lemma leads to the following theorem for positive externalities.

Theorem 4.2 (Positive externality). Let s 2 S be a Nash equilibrium and i, j 2 I
two individuals of the same social type (ci, ei) = (cj , ej) such that si 6= sj. If
Aij(s) > 0, then

dist(W (~!i),W (~!j)) � Aij(s)/2

We say that a strategy profile s 2 S is admissible with respect to a type profile
t = (c, e,v) if the following property holds: if i, j 2 I are two individuals of the
same social type (ci, ei) = (cj , ej) with si 6= sj and Aij(s) > 0, then they have
di↵erent valuation types vi 6= vj . Equivalently, if vi = vj and Aij > 0 then si = sj .

Corollary 2 (Nash equilibrium admissibility). A strategy s 2 S to be (c, e,v)
admissible is a necessary condition for s to be a Nash equilibrium.

Given a type profile t = (c, e,v), we say that a strategy profile s 2 S is t feasible,
if s satisfies the following two properties: (i) s is t admissible; and (ii) if i, j 2 I
are two individuals with di↵erent social types (ci, ei) 6= (cj , ej), then vi 6= vj . (Note
that this does not mean i and j have di↵erent decision values, but rather that they
are allowed to have di↵erent ones.)

Theorem 4.3 (Nash equilibrium feasibility). Given a strategy profile s 2 S and
a type profile t 2 T , if s is t feasible then there is a profile of decision values
! 2 RnD⇥nI compatible with the valuation profile v 2 V, such that s is a Nash
equilibrium.

We note that given a type profile t and a strategy profile s, to be t feasible is
not a necessary condition for s to be a Nash equilibrium.

5. Nash domains. The Nash Domain N (s, c) of a given social context (s, c) is
defined as the set of all utility profiles U for which s is a Nash equilibrium. For an
individual i 2 I the best response domain Ni(s, c) of a social context (s, c) is the
set of all utility matrices Ui such that si is a best response of individual i to s�i

under the crowding profile c.
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Remark 1 (Nash domain cone structure). Let (s, c) be a social context. We have,

(i) N (s, c) = N1(s, c)⇥ · · ·⇥NnI (s, c);
(ii) if A,B 2 Ni(s, c) then �A+ µB 2 Ni(s, c), for all �, µ > 0;
(iii) if si = sj and ci = cj then Ni(s, c) = Nj(s, c).

We note that by condition (ii) Remark 1 the best response domains Ni(s, c)
have a cone structure. Let s(I) (the image by the strategy map s) be the subset
of decisions chosen by individuals I ⇢ I in the associated strategy profile s. We
recall that individuals with the same crowding type retrieve the same information
from the aggregated structure of a strategy class L, and if they are using the same
strategy, they in fact share a best response (hence (iii)). Therefore, we can rewrite
the Nash domain of a social context as follows

N (s, c) = ⇥d2s(I),c2CN(d, c;L(s, c))l
d
c .

Given a crowding profile c, a strategy profile s is a Nash equilibrium if, and only if,
for every non-empty block P (d, c) of the partition of the respective social context
(s, c), we have

U(d, c) ⇢ N(d, c;L).

We note that the best response domains N(d, c;L) do not preserve externalities
in the following sense: given two best response domains N(d, c;L) and N(d0, c;L),
there are some utilities in N(d, c;L) with ‘positive externalities to’ some utilities
in N(d0, c;L), and there are some utilities in N(d, c;L) with ‘negative externalies
to’ some utilities in N(d, c0;L). Since it will be useful to study sets that preserve
externalities, we will add an externality profile to the social context, extending it
so that we can fiber the best response and utility Nash domains by the externality
profile e. Let (s, c, e) be the social context extension to externality profile e. For an
individual i 2 I the best response valuation domain N(si, ci, ei;L(s, c)) of a social
context extension (s, c, e) is the set of all vectors ~!i such that si is a best response
to s�i, in the profile context c, e. We observe that if ~!i 2 N(si, ci, ei;L(s, c)),
then W (~!i) ⇢ N(si, ci, ei;L(s, c)). Furthermore, the sets N(si, ci, ei;L(s, c)) are
convex, non-empty and preserve externalities. The Nash valuation domain of a
social context extension (s, c, e) is thus given by the cartesian product

N (s, c, e) = ⇥i2IN(si, ci, ei;L(s, c)).

Theorem 5.1 (Positive externalities). Let s 2 S be a Nash equilibrium. If the indi-
viduals i, j 2 I have the same social type (ci, ei) = (cj , ej) and positive externalities
in s, with si 6= sj, then

N(si, ci, ei;L(s, c)) \N(sj , cj , ej ;L(s, c)) = ;.

Let It be set of individuals with type t 2 T . For a given type t = (c, e, v) 2 T ,
the type best response valuation domain is

N(t;L(s, c)) ⌘
\

i2It

N(si, c, e;L(s, c)).

In a strategy profile s, individuals of type t 2 T are using best responses if ~!v 2
N(t;L(s, c)). If there are positive externalities within type t, Theorem 5.1 poses a
problem for strategies for which s(It) is not a singleton. Thus, it is clear that being
admissible with respect to the type profile, is a necessary condition for a strategy
profile to be a Nash equilibrium (Corollary 2).
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Theorem 5.2 (Nash domain characterization). If s is t admissible then for every
t 2 T , N(t;L(s, c)) is a (non-empty) convex set that is the closure of an open set
and

N (s, c, e) = ⇥t2TN(t;L(s, c)) 6= ;.
Furthermore, if s is t feasible then every ! 2 N (s, c, e) 6= ; is compatible with v.

Theorem 4.3 follows from the above theorem. Let Ic be the set of individuals
with a given crowding type c 2 C. Theorem 5.2 also has an interesting conection to
the number of societies in a minimal societal partition of a Nash equilibrium. Take
for instance for all the individuals i 2 I, ↵d

ic = �1, for every d 2 D and c 2 C.
Hence, all individuals have the same externality type given by the externality matrix
with all entries �1. Since for any given c 2 C, N(t;L(s, c)) contains an open set,
it is possible to choose an utility profile so that we can order the utilities of all the
individuals along a line in N(t;L(s, c)) with the order that we prefer. Each order
of the individuals along the line creates a number of societies that only needs to be
compatible with the combinatorics imposed by the number of individuals of Ic that
are in each block P (d, c). Thus, taking

Mc = min{2(nc � p̄c) + 1, nc},
where nc = #Ic and p̄c is the cardinality of the largest set P (d, c) ⇢ Ic, we obtain
the following corollary.

Corollary 3 (Negative externalities). Given a social context (s, c), for every c 2 C
choose qc such that #s(Ic)  qc  Mc. There are utility profiles U 2 N (s, c) such
that the minimal societal partition has cardinality

P
c2C qc.

As such, for any given social context (s, c), the following minimal societal parti-
tions can arise:

- (global minimum) there are utility profiles U 2 N (s, c) such that the minimal
societal partition is the global minimum societal partition;

- (no global minimum) if for some c 2 C there are decisions d, d0 2 D, with d 6=
d0, #P (d, c) � 1 and #P (d0, c) > 1, then there are utility profiles U 2 N (s, c)
such that there is not a global minimum societal partition;

- (maximality) if
P

c2C qc = nI , then there are utility profiles U 2 N (s, c)
such that the cardinality of the minimal societal partition is nI , and thus it
is maximal.

6. Conformity obstruction. In this section and the next we will prove the results
of the previous sections.

Let us define for any two individuals i, j 2 I and d 2 D, the following vector,

~"ij(d) ⌘ ~↵ei(d)� ~↵ej (d).

Lemma 6.1. Consider a decision game � and a Nash equilibrium s. For every
i, j 2 I, if si 6= sj then

!si
vi � !si

vj + !sj
vj � !sj

vi � ↵sj
eicj + ↵si

ejci + ~"ij(sj) · lsj � ~"ij(si) · lsi .

Proof. Consider a decision game � and let s be a Nash equilibrium of �. We have
that

ui(si; s�i) � ui(sj ; s�i)

and
uj(sj ; s�j) � uj(si; s�j).
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Now observe that

ui(sj ; s�i) = uj(sj ; s�j)� !sj
vj + !sj

vi + ~"ij(sj) · lsj + ↵sj
eicj

and similarly

uj(si; s�j) = ui(si; s�i)� !si
vi + !si

vj
� ~"ij(si) · lsi + ↵si

ejci .

which concludes the proof.

Proof (of Lemma 4.1). Lemma 6.1 imples that

!si
vi � !si

vj + !sj
vj � !sj

vi � ↵sj
eicj + ↵si

ejci � 2nIdist(ei, ej)

and for d equal to si or sj

2|!d
vi � !d

vj | � ↵sj
eicj + ↵si

ejci � 2nIdist(ei, ej).

Thus,
dist(~!vi , ~!vj ) � Aij(s)/2� nIdist(ei, ej).

6.1. Theorem 4.2.

Proof. Theorem 4.2 can be restated as follows: let s be a Nash equilibrium and
i, j 2 I be two individuals of the same social type (ci, ei) = (cj , ej), such that si 6= sj
and Aij(s) > 0. For all !̂i 2 W (~!j) and !̂j 2 W (~!i) and for all 0 < " < Aij(s)/2,
the open balls, in the l1 norm, centered at !̂i and !̂j , with radius " and Aij(s)/2�"
do not intersect,

B"(!̂i) \BAij(s)/2�"(!̂j) = ;.
This follows directly from Lemma 4.1.

6.2. Theorems 3.2 and 5.1.

Proof. (of Theorem 3.2) Let (s, c) be a social context and s be a Nash equilibrium.
Observe that for an individual i 2 P (d, c), if her utility is replaced by any utility
in con(U(d, c)), si = d is still a best response. Now note that if for two distinct
decisions d, d0 2 D and crowding type c 2 C, P (d, c) and P (d0, c) have positive ex-
ternalities in s, then for all Ui 2 con(U(d, c)) and Uj 2 con(U(d0, c)), the individuals
i and j would also have positive externalities. Thus, by Lemma 4.1, their utilities
must di↵er at least in decision d and d0.

Theorem 5.1 follows from Theorem 3.2.

7. Conformity thresholds. For the characterization of the Nash valuation do-
mains of a social context extension, let us start by the analysis of individual’s best
responses. We will then define thresholds for the valuation domains of those best
responses in terms of the decision values. Given a decision game � and a strategy
profile s, the best response of individual i 2 I is

bri(s�i) ⌘ br(ci, ei, vi;L(s, c)) = argmax
d2D

{!d
vi + ~↵ei(d) ·~l(d)� ↵d

eici}.
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A strategy profile s is a (pure) Nash equilibrium if, for every i 2 I, si = bri(s�i).
In a given social context extension, individuals with a same social type (ci, ei) =
(cj , ej) = (c, e) that make the same decision si = sj = d have the same individual
best response valuation domain N(d, c, e;L) ⌘ N(si, ci, ei;L(s, c)). Note that the
Nash domains of social contexts are characterized by the best response valuation
domains of social context extensions, since

N(d, c;L) =
[

e

N(d, c, e;L).

To characterize the best response valuation domains, we are going to define for a
given strategy profile s conformity thresholds Tei(si ! d; s�i), that represent the
surplus quantity that individual i has from social preferences, that could create
an incentive for her to change from her current decision si to decision d. This
threshold does not depend on the valuation type of the individual, but rather on the
externality context (s, c, e). In particular, as refered, it depends on the individual
social type and the strategy class to which s belongs. Let us first define the auxiliar
externality type-threshold between two decisions d, d0 2 D,

Te(d
0, d;L) ⌘ ~↵e(d) ·~l(d)� ~↵e(d

0) ·~l(d0).
Given a strategy profile s, the conformity thresholds are given for each individual
i 2 I with externality type ei and for all decisions d 2 D \ {si}, by

Tei(si ! d; s�i) ⌘ Tei(si, d;L(s, c)) + ↵si
eici ,

which will be useful to rewrite using strategy classes,

T(ci,ei)(si ! d;L(s, c)) ⌘ Tei(si ! d; s�i).

The notation reflects the idea of social incentive towards decision d from strategy
si. Thus, this is the quantity by which !si

vi (the value of decision si) has to over-
come !d

vi (the value of decision d), so that decision si is still ‘preferable’ for an
individual with social type (ci, ei) in the externality context (s, c, e). Observe that
when we talk about incentives for player i to change her decision, we might be
talking about desincentives, depending upon the sign of the conformity threshold
T(ci,ei)(si ! d;L(s, c)). Two opposite extreme cases appear when ~↵ei(si) has only
positive coordinates and ~↵ei(d) has only negative coordinates, making the threshold
negative, thus a desincentive to change; or when the opposite happens, making the
threshold positive, thus an incentive to change. Concluding, incentives or desincen-
tives are provoked by the relation between negative and positive coordinates in the
social preference matrix.

Lemma 7.1 (Best response valuation domains characterization). The best response
valuation domains N(d, c, e;L) consist of all ~! 2 RnD with the following properties:

(i) !d 2 R;
(ii) !d0 2 R satisfying the following threshold inequality

!d0
 !d � T(c,e)(d ! d0;L) (1)

for every decision d0 2 D \ {d}.

Hence, N (s, c, e) is non-empty and contains an open set in the space (RnD )nI .

Proof. The strategy profile s is a Nash equilibrium if, and only if,

ui(si, s�i) � ui(d, s�i)
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for every d 2 D and i 2 I. Let ti = (ci, ei, vi) = (c, e, v), the utility function can be
rewritten explicitly as

u(i; s) = !si
v + ↵si

ec(l
si
c � 1) +

nCX

c0 6=c

↵si
ec0 l

si
c0 (s).

Letting t = ti and ldt = ldt (s), we get

!si
v � ↵si

ec +
nCX

c0=1

↵si
ec0 l

si
c0 � !d

v +
nCX

c0=1

↵d
ec0 l

d
c0 .

Rearranging the terms, the previous inequality is equivalent to

!si
v � !d

v + ↵si
ec +

nCX

c0=1

�
↵d
ec0 l

d
c0 � ↵si

ec0 l
si
c0
�
.

Hence, si is a best response for i if for every decision d

!d
v  !si

v � T(c,e)(si ! d;L).

7.1. Theorems 4.3 and 5.2. Let t be a type profile and s be a t admissible
strategy profile, and denote its strategy class by L ⌘ L(s, c). For every t 2 T , let
St ⌘ {si 2 D : i 2 It} and let us use the subscript t on the parameters to mean
the corresponding coordinate of t, for example, if t = (c, e, v), then ↵d

tt means ↵d
ec.

Since s is t admissible, for each type t 2 T , there is at most one decision d 2 St

such that ↵d
tt > 0 (if there were two, they would violate the admissibility condition

on the valuation map). Let us start by defining, for every type t 2 T ,

d⇤t ⌘ argmax
d2St

{↵d
tt}.

Let i⇤ 2 It be an individual such that si⇤ = d⇤t , and let

✏t(s) ⌘

8
>><

>>:

0 if ↵
d⇤
t

tt � 0;

�↵
d⇤
t

tt

2
if ↵

d⇤
t

tt < 0.

Let ⌦ ⌘ ⇥t2T⌦t, where for a given type t 2 T , ⌦t are the open sets of all !t with
the following properties:

(i) !
d⇤
t

t 2 R;
(ii) if D \ St 6= ; then, for every d 2 D \ St,

!d
t  min

si2St

{!si
t � T(c,e)(si ! d;L)}; (2)

(iii) if St \ {d⇤t } 6= ;, then, for every si 2 St \ {d⇤t }

!
d⇤
t

t + T(c,e)(si ! d⇤t ;L) + ✏t(s)  !si
t  !

d⇤
t

t � T(c,e)(d
⇤
t ! si;L)� ✏t(s). (3)

Proof. (of Theorem 5.2) The proof is constructed over one type t = (c, e, v) 2 T by
showing that ; 6= ⌦t 2 N(t;L), which holds for all t 2 T , and thus ⌦ 2 N (s, c, e).
As we will be refering always to the same type and to the same strategy, let us, for
simplicity of notation, omit the subscript and the strategy class, hence, denote

T (d ! d0) ⌘ T(c,e)(d ! d0;L)
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Let’s start by showing that ⌦t 6= ;. Observe that it is enough to show that equation
(3) in the defintion of ⌦t refers to a non-degenerated interval, which translates into

�T (d⇤t ! si)� T (si ! d⇤t ) � 2✏t(s).

Hence, as

�T (d⇤t ! si)� T (si ! d⇤t ) = �↵si
tt � ↵

d⇤
t

tt ,

we get

�↵si
tt � ↵

d⇤
t

tt � 0 when ↵
d⇤
t

tt � 0,

and
�↵si

tt � ↵
d⇤
t

tt � �↵
d⇤
t

tt when ↵
d⇤
t

tt < 0.

Now recall that being t admissible implies that for individuals i and j of the same
type using di↵erent strategies Aij(s) = ↵si

tt + ↵
sj
tt  0. As s is t admissible, there is

for each type t 2 T at most one decision d 2 St such that ↵d
tt > 0, and that decision

is by definition d⇤t , hence, ↵
si
tt  0.

To see that ⌦ ⇢ N (s, c, e) we will show that the two equations setforth in the
definition of the sets ⌦t are su�cient to guarantee that inequalities (1) in lemma 7.1
are satisfied for every individual and every decision. It is straightforward to see from
equation (2) that no individual wants to change to decisions d /2 St. Let’s now check
that equation (3) implies that individuals do not want to change between decisions
within St. Individuals choosing d⇤t do not want to change to other decisions in St,
since ✏t(s) � 0 and

!
d⇤
t

t � !si
t + T (d⇤t ! si) + ✏t(s).

An individual i 6= i⇤ 2 It doesn’t want to change to d⇤t , since ✏t(s) � 0 and

!si
t � !

d⇤
t

t + T (si ! d⇤t ) + ✏t(s).

Finally, to see that an individual i 6= j 2 It does not want to change to any decision
sj 6= d⇤t ,

!si
t � !

sj
t � T (si ! d⇤t ) + T (d⇤t ! sj) + 2✏t(s),

but
T (si ! d⇤t ) + T (d⇤t ! sj) = T (si ! sj) + ↵

d⇤
t

tt ,

hence,
!si
t � !

sj
t + T (si ! sj).

Theorem 4.3 follows from 5.2.
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