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Abstract In this work, kriging with covariates is used to
model and map the spatial distribution of salinity measure-
ments gathered by an autonomous underwater vehicle in a
sea outfall monitoring campaign aiming to distinguish the
effluent plume from the receiving waters and characterize its
spatial variability in the vicinity of the discharge. Four dif-
ferent geostatistical linear models for salinity were assumed,
where the distance to diffuser, the west-east positioning,
and the south-north positioning were used as covariates.
Sample variograms were fitted by the Matèrn models using
weighted least squares and maximum likelihood estimation
methods as a way to detect eventual discrepancies. Typi-
cally, the maximum likelihood method estimated very low
ranges which have limited the kriging process. So, at least
for these data sets, weighted least squares showed to be the
most appropriate estimation method for variogram fitting.
The kriged maps show clearly the spatial variation of salin-
ity, and it is possible to identify the effluent plume in the
area studied. The results obtained show some guidelines for
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sewage monitoring if a geostatistical analysis of the data
is in mind. It is important to treat properly the existence
of anomalous values and to adopt a sampling strategy that
includes transects parallel and perpendicular to the effluent
dispersion.
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Introduction

The typical behavior of a sea outfall discharge is in a form
of a process that can be described as follows. The waste-
water is usually ejected as an array of turbulent buoyant jets
from ports spaced along the outfall diffuser. These turbulent
buoyant jets mix with the ambient seawater, usually result-
ing in rapid reductions of contaminant concentrations. The
seawater around coastal outfalls is often density-stratified
with density increasing with depth. The discharge, whose
density is close to fresh water, is lighter than the surrounding
ambient and the plumes rise due to buoyant forces until they
reach a level of neutral buoyancy where the effluent spreads
laterally, creating a horizontal spreading layer. Depending
on the strength of seawater stratification, currents, and other
variables, the horizontal spreading layer may be submerged
and will not be visible on the water surface. If the receiving
waters are homogeneous or weakly stratified, the plumes
will reach the surface and spread horizontally away from
the source (Tian et al. 2004a, b; Daviero and Roberts 2006;
Tian et al. 2006; Hunt et al. 2010).

The physical and biological coastal processes that deter-
mine the values of environmental variables are complex and
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still poorly understood (Niu et al. 2007; Rogowski et al.
2012). Usually, the observations are so unpredictable that
the spatial distribution of these variables appears to be
random (Washburn et al. 1992; Wu et al. 1994; Carvalho
et al. 2002; Petrenko et al. 1998; Ramos et al. 2007;
Ramos and Neves 2009). This randomness makes deter-
ministic solutions adequate to describe only the simplest
components (Goovaerts 1997; Webster and Oliver 2007).
The measurements of environmental variables are usually
obtained in very restricted areas and constitute a sample
from a continuum that cannot be recorded everywhere. Yet,
people aim to predict the spatial distribution of these vari-
ables from a more or less sparse data set. The maps made by
using the classical methods of spatial interpolation usually
display the spatial variation poorly. The interpolators of
these methods also fail to provide any estimates of the
error, which are desirable for prediction (Webster and Oliver
2007; Isaaks and Srivastava 1989). In this line of thought,
geostatistical prediction is the logical solution in the sense
that it provides a quantitative description of how the envi-
ronmental variable varies spatially and a prediction for the
places that were not sampled (Bivand et al. 2008). Addi-
tionally, geostatistics also provides estimates of the errors
of these predictions, so that we can assess the uncertainty
associated to the predicted plume behavior.

Methodology

REMUS AUV

Autonomous underwater vehicles (AUVs) are particularly
useful to detect and map sewage plumes because of their
easier field logistics, reduced cost per study, increased spa-
tial resolution, reduced spatial aliasing effects, and adaptive
sampling capabilities (Ramos and Abreu 2010). Isurus is a
REMUS class AUV acquired in the Woods Hole Oceano-
graphic Institution, USA (see Fig. 1). These vehicles are
low-cost lightweight AUVs specially designed for coastal
water monitoring. Their reduced weight and dimensions
make them extremely easy to handle, requiring no special
equipment for launching and recovery. Isurus has a diameter

Fig. 1 Isurus AUV

of 20 cm and is about 1.5 m long, weighing about 35 kg in
air. The maximum forward speed of the vehicle is 2 m/s;
however, the best energy efficiency is achieved at about
1 m/s. At this velocity, the energy provided by a set of
rechargeable lithium-ion batteries may last for over 20 h
(equivalent to traverse distances of over 40 nautical miles).
Although small in size, this vehicle can accommodate a
wide range of oceanographic sensors, according to mis-
sion objectives. For the field experiment described in this
paper, two specific sensors were integrated to measure the
height from the bottom: a CTD (conductivity, temperature,
depth), OS200 model from Ocean Sensors, Inc., USA, and
an altimeter, from Imagenex, Inc., Canada (see measuring
details in Ramos and Abreu (2010)).

Study site

The S. Jacinto outfall is located off the Portuguese west
coast near to the Aveiro estuary (see the map in Fig. 2). The
total length of the outfall, including the diffuser, is 3378 m
(the first 3135 m section has a diameter of 1600 mm and
the last 243 m section has a diameter of 1200 mm). The dif-
fuser, which consists of 72 ports alternating on each side,
nominally 0.175 m in diameter, is 332.5 m long. Currently,
only the last 20 of the 72 ports are working in a length of
98.2 m. These are discharging upwards at an angle of 30◦
to the horizontal axis; the port height is about 1.3 m. The
outfall has a true bearing direction of 290◦ and is discharg-
ing at a depth varying between approximately 14 and 17 m.
The sea floor near to the diffuser is moderately sloped, with
a sandy bottom and isobaths that are parallel to the coast-
line. In that area, the coastline itself runs at about a 200◦
angle with respect to true north. Flow variation through
the outfall in question is not typical of WWTPs since the
effluent is mainly of industrial origin. Effluent flowrate
ranges most frequently between 0.6 and 0.8 m3/s. During
the campaign, the discharge remained fairly constant with
an average flowrate of 0.61 m3/s.

Figure 2 shows a plan view of the AUV’s position
estimate during the plume tracking survey. A rectangular
area of approximately 200 × 100 m2 was covered starting
20 m downstream from the middle point of the outfall dif-
fuser (located at point (0,0)). Salinity measurements were
obtained at depths of 2 and 4 m where the effluent plume
was predicted to be horizontally dispersing. In each horizon-
tal trajectory, the vehicle described six parallel transects that
were perpendicular to the direction of the current, 200 m in
length and at 20 m intervals. When performing horizontal
trajectories, vertical oscillations of the AUV were less than
1 m (up and down) in the 2 m survey and less than 1 m–
down and less than 1.5 m–up in the 4 m survey. In the 2
m trajectory, the average depth of the AUV was 2.0 m with
a standard deviation of 0.20 m. In the 4 m trajectory, the
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Fig. 2 Map of the study site and plan view of the AUV’s position estimate during the plume tracking survey

average depth was 4.0 m with a standard deviation of
0.33 m. During the mission, the vehicle moved at a fairly
constant velocity of 1 m/s (2 knots). Salinity data were
recorded at a rate of 2.4 Hz. The geostatistical analysis
was carried using the statistical software R programming
language (R Development Core Team 2013) and the special-
ized package geoR (Ribeiro and Diggle 2001).

Results and discussions

Exploratory analysis

Exploratory analysis allows to identify the presence of
spatial dependence, the possible occurrence of anomalous
values, the existence of asymmetries in the distribution, and
the presence of any trends. Table 1 shows the summary
statistics of the two data sets gathered by the AUV at 2 and
4 m depths. At the 2 m depth, the salinity ranges from 35.15
to 35.61 psu. The mean value of the data set is 35.45 psu,
which is very close to the median value (35.46 psu). The

skewness coefficient is relatively low (−0.53), indicating
that the distribution is only slightly negatively skewed. The
low value of the variation coefficient (0.183) reflects the fact

Table 1 Summary statistics of salinity measured at depths of 2 and
4 m

Summary Salinity (2 m) Salinity (4 m)

Samples 2400 2803

Minimum 35.15 psu 35.10 psu

Lower quartile 35.41 psu 35.54 psu

Mean 35.45 psu 35.57 psu

Upper quartile 35.50 psu 35.61 psu

Median 35.46 psu 35.57 psu

Maximum 35.61 psu 35.71 psu

Skewness coefficient −0.53 −1.32

Kurtosis 0.22 6.43

Variation coefficient 0.183 0.147

Variance (10−3) 4.19 2.74

Standard deviation (10−2) 6.47 5.23



Environ Sci Pollut Res (2015) 22:5850–5863 5853

that the histogram does not have a tail of low values. At the
4 m depth, the salinity ranges from 35.10 to 35.71 psu. The
mean value of the data set is 35.57 psu, which is equal to
the median value. The skewness coefficient is a little higher
than the one at the 2 m depth (−1.32), indicating that the
asymmetry increased with depth. The variation coefficient
is also quite low as desired (0.147).

A vertical profile of the background salinity at the vicin-
ity of the diffuser was obtained by the AUV at the end
of the campaign. When considering the maximum vertical
oscillations of the AUV in performing the horizontal tra-
jectories, the background salinity at the 2 m depth ranged
from 35.52 to 35.56 psu and at the 4 m depth ranged from
35.61 to 35.66 psu. At the 2 m depth, the percentage of
salinity measurements below 35.52 psu was 84.8 % and, at
the 4 m depth, the percentage of salinity measurements
below 35.61 psu was 75.6 %, which indicates the presence
of the sewage plume at both depths and explains the negative
skewness due to some lower values. When data are log-
normally distributed, logarithmic transformation of the data
may be advisable (Lloyd 2011). Alternatively, more general
transformations such as the Box-Cox family, which include
the logarithmic transformation, may be used (Diggle and
Ribeiro 2007). We applied several appropriate transforma-
tions of the Box-Cox family to both data sets. However, no
significant changes were found on the results, and we de-
cided to use the raw data without any transformations.

By dividing the 2 m depth data set into quartiles and mak-
ing scatterplots of the measurements position of each subset
(south-north positioning versus west-east positioning), we
observed that values below the lower quartile were located
at the center of the survey area and values above the median

were located at the lateral edges, which suggested the exis-
tence of a spatial pattern at this depth. A similar analysis
was made for the 4 m depth measurements, and we con-
cluded that this behavior was not so evident. To explore
these spatial patterns more clearly, salinity versus west-east
positioning and south-north positioning was plotted (see the
scatterplots in Fig. 3). The scatterplot of salinity measured at
the 2 m depth versus the west-east coordinate shows clearly
a spatial variability with salinity increasing from the center
of the survey area to the lateral edges. In the scatterplot of
salinity measured at the 2 m depth versus the south-north
coordinate, salinity tends to increase as the south-north posi-
tioning decreases, i.e, as we move away from the diffuser.
Although not so evident, these trends are also visible in
the 4 m depth scatterplots. To investigate the relationship
between salinity and distance to diffuser, three-dimensional
Euclidean distances between the location of each measure-
ment and the ends and middle point of the diffuser were
computed, and the minimum of these three distances was
considered. From the scatterplot, it can be seen that salinity
increases as the distance to the diffuser increases and that is
more evident at the 2 m depth. The values of Pearson and
Spearman correlation coefficients between these two vari-
ables at the 2 m depth are 0.58 and 0.56, respectively. At
the 4 m depth, these coefficients are 0.26 and 0.22, respec-
tively. Therefore, we decided to account for such trends in
the subsequent analyses.

Variogram modeling and estimation

When there is a large-scale component of spatial variability,
that should be represented by a deterministic function in the

Fig. 3 Scatter plots of salinity
at depths of 2 m (upper panel)
and 4 m (lower panel) versus
west-east positioning,
south-north positioning, and
distance to diffuser
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geostatistic model (Webster and Oliver 2007). The assump-
tion of variable mean usually leads to better estimation, i.e.,
improved accuracy of predictions and more realistic evalu-
ation of the mean square error (Kitanidis 1997). According
to the exploratory analysis and to evaluate more clearly the
effect of the distance to diffuser (DD) and the south-north
and west-east positionings, the following geostatistical

Z(s) = m(s) + R(s) (1)

where Z(s) is salinity at location s = (x, y)–x is the west-
east coordinate and y is the south-north coordinate–R(s)
is the residual, and m(s) is a deterministic function of the
covariates DD, x and y, defined as follows:

– Model A: m(s) = m, where m is a constant;
– Model B: m(s) = β0 + β1DD;
– Model C: m(s) = β0 + β1DD + β2x + β3x

2;
– Model D: m(s) = β0 + β1DD + β2x + β3y + β4x

2 +
β5y

2 + β6x y.

Here, β0, . . . , β6 are the drift coefficients. Model A has
the simplest possible structure and was defined to serve as

a benchmarking for assessing the gains of the other models.
Ordinary least squares (OLS) regression was used to esti-
mate m(s) (in the case of models B, C, and D), and the
OLS residuals were used as input to the subsequent semivar-
iogram (or hereafter, variogram) calculations. The influence
of covariates on salinity was clearer by plotting histograms
of OLS residuals of each model (B, C, and D) and scatter-
plots of OLS residuals of each model versus west-east and
south-north coordinates. The same plots were obtained for
salinity data in the case of model A. A significant differ-
ence between the plots of model A and the plots of model
B for the 2 m depth measurements was observed which
reinforced the inclusion of DD covariate. The histogram of
the OLS residuals of model C was closer to a symmetric
shape than the histogram of the OLS residuals of model B,
and the scatterplot of OLS residuals versus west-east posi-
tioning of model C did not show any spatial variability,
unlike the corresponding plot of model B, justifying clearly
the inclusion of the quadratic function of x coordinate
for the 2 m depth measurements. No significant differ-
ences were observed between the plots of model C and the

Fig. 4 Omnidirectional
variograms of salinity/OLS
residuals at 2 m depth fitted by
the Matèrn models using WLS
and ML
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corresponding plots of model D, which suggested that the y

coordinate could be an irrelevant covariate for the 2 m depth
measurements. These differences were less evident for the
plots of 4 m depth measurements.

For cross-validation analysis, the salinity measurements
of both depths were randomly divided into a modeling set,
consisting of 70 % of the samples, and a validation set, with
the remaining 30 % of the samples. The modeling set was
used for variogram modeling and kriging on the locations
of the validation set; the measurements of the validation set
were used for comparison with their predictions.

The sample variograms also enabled us to analyze the
effect of covariates on spatial dependence. Sample vario-
grams for salinity (model A) and for OLS residuals
(models B, C, and D) are shown as plotted points in
Fig. 4 (2 m depth) and Fig. 5 (4 m depth). Anisotropy
was investigated by calculating directional variograms for
four different angles: 0, 45, 90, and 135. No anisotropy
effects were found. In the case of model A, this can be

explained by the few data in the south-north direction,
and in the case of models B, C, and D, it can be due
to the inclusion of the covariates. Therefore, all fitted
models presented here are isotropic. The cutoff value for
the several sample variograms was specified visually, taking
into account the maximum distance between measure-
ments and the value at which variograms leveled off. All
sample variograms show evidence of spatial correlation
with semivariance increasing with distance. The effect of
covariates is particularly visible in the sample variograms
at the 2 m depth. The inclusion of DD and x covari-
ates has lowered the total variability and has also reduced
the range of spatial dependence. No significant differences
are observed between the sample variograms of models C
and D.

All sample variograms were fitted by the Matèrn models
with different options for the smoothing parameter and
using weighted least squares (WLS) and maximum likeli-
hood (ML) estimation methods as a way to detect eventual

Fig. 5 Omnidirectional
variograms of salinity/OLS
residuals at 4 m depth fitted by
the Matèrn models using WLS
and ML
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Table 2 Parameters of variogram models for salinity at 2 m depth

Model k Weighted least squares Maximum likelihood

τ 2 σ 2 φ A τ 2 σ 2 φ A AIC BIC

A 0.5 0.0076 1.449 200.66 601.13 0.0053 5.401 200.50 600.64 −19.20 1.162

1.5 0.0840 0.766 44.82 212.64 0.0151 0.352 2.574 12.21 79.90 100.3

2.5 0.0960 0.694 30.32 179.45 0.0169 0.333 1.54 9.13 137.7 158.1

B 0.5 0.0788 0.6641 186.96 560.07 0.0050 5.090 186.6 559.04 −18.13 7.318

1.5 0.1115 0.3212 37.78 179.24 0.0140 0.241 2.067 9.81 13.05 38.50

2.5 0.1173 0.2896 25.60 151.54 0.0155 0.230 1.29 7.62 50.90 76.35

C 0.5 0.0582 0.1390 19.66 58.90 0.0006 0.189 5.23 15.67 −93.87 −58.24

1.5 0.0792 0.1154 10.72 50.85 0.0128 0.165 1.64 7.76 −62.80 −27.17

2.5 0.0844 0.1096 8.20 48.55 0.0143 0.159 1.07 6.32 −42.83 −7.197

D 0.5 0.0688 0.1310 24.26 72.67 0.0005 0.185 5.08 15.22 −89.55 −38.65

1.5 0.0894 0.1062 12.73 60.40 0.0127 0.162 1.61 7.64 −61.01 −10.11

2.5 0.0944 0.1002 9.67 57.28 0.0142 0.156 1.06 6.25 −41.93 8.97

discrepancies. The family of the Matèrn models is defined
by Webster and Oliver (2007) and Diggle and Ribeiro
(2007):

γ (h) =
(
τ 2 + σ 2

) {
1 − 1

2k−1� (k)

(
h

φ

)k

Kk

(
h

φ

)}
(2)

where τ 2 is the nugget variance, σ 2 is the structured com-
ponent of the variogram (excluding the nugget variance), φ

is the range-related parameter, k is the smoothness param-
eter, Kk is the modified Bessel function of the third kind
of order k, � is the gamma function, and γ (h) is semivari-
ance for the distance h. The Matèrn family is very attractive

due to its flexibility provided by the smoothness parame-
ter (Pardo-Igúzquiza et al. 2009; Diggle and Ribeiro 2007).
With respect to the estimation methods, WLS is preferred
to unweighted ordinary least squares since, in WLS, the
weights are proportional to the number of pairs at each lag.
Thus, lags with many pairs have greater influence in the
fitting of a model (Lloyd 2011). Estimating model param-
eters by maximizing the likelihood function under an
assumed model provides, under very general conditions,
estimators which are unbiased and efficient when applied to
large samples (Diggle and Ribeiro 2007). Therefore, the use
of ML estimation has become widespread not only amongst
geostatisticians. Variograms estimated by likelihood meth-
ods can differ quite substantially from the ones estimated

Table 3 Parameters of variogram models for salinity at 4 m depth

Model k Weighted least squares Maximum likelihood

τ 2 σ 2 φ A τ 2 σ 2 φ A AIC BIC

A 0.5 0.0841 0.2337 57.89 173.41 0.0027 0.2736 7.317 21.92 −79.80 −58.29

1.5 0.1094 0.1672 21.81 103.48 0.0153 0.2317 1.848 8.77 −8.66 12.86

2.5 0.1147 0.1556 15.73 93.13 0.0174 0.2218 1.191 7.05 28.77 50.29

B 0.5 0.0807 0.1699 35.51 106.38 0.0025 0.2554 6.72 20.12 −82.88 −55.98

1.5 0.1046 0.1312 16.31 77.36 0.0151 0.217 1.77 8.41 −22.19 4.713

2.5 0.1100 0.1230 12.13 71.78 0.0172 0.208 1.15 6.81 11.71 38.61

C 0.5 0.0887 0.1563 40.50 121.32 0.0053 1.1960 37.56 112.53 −31.50 6.16

1.5 0.1108 0.1181 18.06 85.68 0.0148 0.1968 1.668 7.91 −42.58 −4.918

2.5 0.1160 0.1102 13.45 79.63 0.0168 0.1889 1.093 6.47 −13.59 24.07

D 0.5 0.0746 0.1354 22.74 68.12 0.0018 0.2142 5.392 16.15 −91.25 −37.45

1.5 0.0950 0.1092 11.53 54.69 0.0146 0.1862 1.614 7.65 −51.88 1.917

2.5 0.0990 0.1038 8.61 50.98 0.0166 0.1790 1.064 6.30 −25.36 28.44
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Table 4 Cross-validation results for salinity measurements at 2 m depth

Model k Weighted least squares Maximum likelihood

ME RMSE MSSE ME RMSE MSSE

A 0.5 −0.000578 0.015929 0.154744 −0.000551 0.016057 0.087115

1.5 −0.000763 0.025802 0.075615 −0.000472 0.016793 0.093718

2.5 −0.000569 0.027319 0.075496 −0.000398 0.017167 0.094371

B 0.5 −0.000704 0.021424 0.050009 −0.000549 0.016070 0.087855

1.5 −0.000635 0.026497 0.060614 −0.000434 0.016846 0.095537

2.5 −0.000458 0.027735 0.063836 −0.000352 0.017189 0.097027

C 0.5 −0.000755 0.018957 0.047713 −0.000511 0.304011 0.092423

1.5 −0.000866 0.023801 0.065481 −0.000433 0.016941 0.097545

2.5 −0.000889 0.024918 0.068699 −0.000365 0.017205 0.099211

D 0.5 −0.000965 0.020107 0.047518 −0.001385 0.016414 0.091359

1.5 −0.000207 0.024610 0.062637 −0.001489 0.016910 0.096950

2.5 0.000070 0.025506 0.064761 −0.001441 0.017154 0.098626

by ordinary least squares, since they are not based on the
empirical variograms but on observed data (Lloyd 2011).
Figures 4 and 5 show the omnidirectional variograms fit-
ted by the Matérn models with k = 0.5, 1.5, and 2.5
using WLS and ML. The models fitted by the two estima-
tion methods are substantially different, with WLS fittings
closer to the variogram points as expected. Maximum like-
lihood estimation does not attempt to fit a model to an
empirical variogram but, instead, fits a multivariate Gaus-
sian model to the original data. In the case of ML, the
goodness of the fit of models to the variogram can be
compared through the use of the Akaike information crite-
rion (AIC) and/or the Bayesian information criterion (BIC).
The Akaike information criterion is based on the likelihood

function penalized by the number of parameters included
in the model. Bayesian information criterion includes the
data number in the penalty term. For both criteria, lower
values indicate best models, i.e., the one with the fewest
parameters that still provides an appropriate adjustment to
the data (Diggle and Ribeiro 2007).

The parameters of fitted models for the 2 and 4 m depth
modeling sets and the respective values of AIC and BIC
are presented respectively in Tables 2 and 3 (note that A

is the practical range). The values of model parameters
estimated by WLS and ML are quite different on both
data sets as expected, but they behave similarly with the
inclusion of covariates. From Table 2, it can be observed
that the inclusion of DD covariate (model B) reduces

Table 5 Cross-validation results for salinity measurements at 4 m depth

Model k Weighted least squares Maximum likelihood

ME RMSE MSSE ME RMSE MSSE

A 0.5 0.000395 0.298441 0.089067 0.000168 0.022651 0.163033

1.5 0.000510 0.033518 0.098134 0.000077 0.022984 0.166071

2.5 0.000436 0.034462 0.100071 0.000066 0.023213 0.165642

B 0.5 0.000392 0.029065 0.088512 0.000168 0.022644 0.162915

1.5 0.000584 0.032945 0.098239 0.000073 0.022961 0.166064

2.5 0.000590 0.033854 0.099888 0.000058 0.023183 0.165729

C 0.5 0.000688 0.029776 0.086034 0.000467 0.377699 0.142657

1.5 0.000804 0.033440 0.095708 0.000423 0.022991 0.166906

2.5 0.000736 0.034332 0.097490 0.000406 0.023193 0.166728

D 0.5 0.001324 0.030124 0.094750 0.001059 0.024469 0.179719

1.5 0.001562 0.033417 0.104845 0.000988 0.024600 0.187174

2.5 0.001612 0.034129 0.106761 0.000977 0.024733 0.186888
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Fig. 6 Spatial prediction of
salinity (psu) at 2 m depth
obtained using geostatistical
model C with a variogram fitted
by the Matèrn models with
k = 0.5, 1.5, and 2.5 (from up to
down) using WLS (left panels)
and ML (right panels)

substantially the variability, showing that this covariate is
definitely relevant for the study, but the range of spatial
dependence still remains quite high and, in some cases,
undefined relatively to the survey area. With the inclusion of
the quadratic function of x coordinate as covariate (model
C), an additional portion of the variability of the data is
explained as well as some large-scale trends, and the range
estimates are reduced to values consistent with the survey
area. No significant differences are observed between esti-
mates of model C and model D, so the more parsimonious
model C is considered as more appropriate for the 2 m depth
data set for both WLS and ML, which is in accordance with

the results of exploratory analysis. The values of AIC and
BIC also point to model C as the best of the four models
and k = 0.5 as its best smoothing parameter. The results
of Table 3 show that in the case of the 4 m depth modeling
set, the inclusion of the covariates also reduces the variabil-
ity of the variable but not so significantly. The variation of
range in this case may be due to sample fluctuations. This
reflects a usual pattern in the data analysis, in which long-
range dependencies are often due to variations that follow
the positioning of the data within the area. Unlike the 2 m
depth modeling set, the values of AIC and BIC do not give
a strong evidence of the best model.

Fig. 7 Spatial prediction of
salinity (psu) at 2 m depth
obtained using geostatistical
model C with a variogram fitted
by the Matèrn models with
k = 0.5 using WLS (left) and
ML (right) plotted on the same
scale
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Cross-validation

The comparative performances of the fitted variogram mod-
els can also be assessed through the examination of the
cross-validation errors. Cross-validation compares observed
values and corresponding predictions. The cross-validation
errors were calculated using the Eqs. 3–5 and are shown in
Tables 4 and 5 (Wackernagel 2003):

ME = 1

m

m∑
i=1

[
Z (xi ) − Ẑ (xi )

]
(3)

RMSE =
√√√√ 1

m

m∑
i=1

[
Z (xi ) − Ẑ (xi )

]2
(4)

MSSE = 1

m

m∑
i=1

[
Z (xi ) − Ẑ (xi )

]2

σ 2
K(xi )

(5)

where Z (xi ) and Ẑ (xi ) are, respectively, the measurement
and prediction at location xi , m is the number of measure-
ments in the validation set, and σ 2

K(xi )
is the kriging variance

at location xi . The availability of a large number of obser-
vations allows for dividing the data set into two subgroups:

one to characterize the behavior of the variable estimating
the parameters of the geostatistical model and another for
the validation process, comparing observations with pre-
dictions obtained by the fitted model. To model salinity,
data were organized in order to incorporate any relevant
covariates. These were separated of the set of data, and the
spatial pattern of the residuals was modeled. From Tables 4
and 5, it can be seen that the cross-validation of indicators
does not provide a consistent information to the best choice.
Frequently, different accuracy measures lead to different
results as to which model is best. Combining the variogram
fitting results, the likelihood analysis given by AIC and BIC,
the exploratory analysis, and the cross-validation results, we
conclude that model C is the most appropriate for both data
sets.

Mapping

Kriging with covariates by using model C was used to pre-
dict salinity at the 2 and 4 m depths. Figure 6 shows the
spatial prediction of salinity at the 2 m depth, with a var-
iogram fitted by the Matèrn models with k = 0.5, 1.5,
and 2.5 using WLS and ML, and Fig. 8 shows the spatial

Fig. 8 Spatial prediction of
salinity (psu) at 4 m depth
obtained using geostatistical
model C with a variogram fitted
by the Matèrn models with
k = 0.5, 1.5, and 2.5 (from up to
down) using WLS (left panels)
and ML (right panels)
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prediction of salinity at the 4 m depth, with a variogram
fitted by the Matèrn models with k = 0.5, 1.5, and 2.5
using WLS and ML. It can be seen that the two estima-
tion methods show differences in the predictions of salinity
which was expected since their fittings to the variogram
are substantially different. The amplitude of salinity values
predicted using ML is larger than the amplitude of salinity
values predicted using WLS, but the maps obtained using
WLS show more details of salinity distribution in the field.
In the case of 2 m depth kriged maps, WLS predictions
range from 35.23 to 35.52, 35.28 to 35.52, and 35.29 to
35.52 psu, respectively for k = 0.5, 1.5, and 2.5; ML pre-
dictions range from 35.19 to 35.53 psu for k = 0.5, 1.5,
and 2.5. In the case of 4 m depth kriged maps, WLS pre-
dictions range from 35.41 to 35.52, 35.46 to 35.64, and
35.47 to 35.65 psu, respectively for k = 0.5, 1.5, and 2.5;
ML predictions range from 35.31 to 35.68 and 35.30 to
35.67 psu, respectively, for k = 0.5 and for k = 1.5 and
2.5. In general, the ML method estimated very low ranges,
typically below 20 m, the space between parallel transects.
Consequently, in this case, when the prediction location is
close to one transect, the observations used in its prediction
are only those from that transect and therefore its value is
similar to the closest measurements. This fact is visible on

the maps in which the ML method was used, where some
predictions form the shape of the vehicle trajectory. It can
also be seen on these maps that as the distance to one tran-
sect increases, the predictions of salinity approach rapidly
to the average value. Exceptionally, in the 4 m depth kriged
map for k = 0.5, these effects are not visible since the esti-
mated range by the ML method is quite high (112.53 m) and
much higher than the estimated ranges by the ML method
for all other cases (7.91, 6.47, and 15.67 m, 7.76 m, 6.32 m).
The ML method may have estimated much lower ranges
than the WLS method due to the presence of anomalous
values in the data or local anomalies. Based on this analy-
sis, we conclude that the very low ranges estimated by the
ML method have limited the kriging process in the predic-
tion computation. So, at least for these data sets, the ML
method is not the most appropriate method for the vari-
ogram fitting. This problem could possible be minimized
by making some changes on the sampling strategy, namely
by considering also transects parallel to the current. In this
case, much more data would be available to characterize the
variability of the plume dispersion in that direction. Just for
reference, Fig. 7 shows the spatial prediction of salinity at
the 2 m depth with the variogram fitted by the Matèrn mod-
els with k = 0.5 using WLS and ML plotted on the same

Fig. 9 Standard error of
estimates at 2 m depth using
geostatistical model C with a
variogram fitted by the Matèrn
models with k = 0.5, 1.5, and
2.5 (from up to down) using
WLS (left panels) and ML (right
panels)
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color scale (Fig. 8 shows the spatial prediction of salinity
at the 4 m depth). When comparing these maps with their
counterparts of Fig. 6, we observe that certain details of
salinity distribution have been lost due to the use of the
same color scale. Therefore, to observe more clearly these
details, a different color scale for salinity was adopted for
each estimation method. Figure 9 shows the standard error
of kriging estimates at the 2 m depth using geostatistical
model C with variogram fitted by the Matèrn models with
k = 0.5, 1.5, and 2.5 using WLS and ML, and Fig. 10 shows
the standard error of kriging estimates at the 2 m depth
using geostatistical model C with a variogram fitted by the
Matèrn models with k = 0.5, 1.5, and 2.5 using WLS and
ML. The amplitude of standard errors obtained using ML is
larger than the amplitude of standard errors obtained using
WLS. In the case of 2 m depth maps, standard errors asso-
ciated with the WLS method range from 0.08 to 0.15 psu
and 0.09 to 0.15, respectively for k = 0.5 and k = 1.5, 2.5;
standard errors associated with the ML method range from
0.02 to 0.14 psu and 0.04 to 0.14, respectively, for k = 0.5
and k = 1.5, 2.5. In the case of 4 m depth maps, stan-
dard errors associated with the WLS method range from
0.09 to 0.17 psu and 0.10 to 0.16, respectively for k = 0.5

and k = 1.5, 2.5; standard errors associated with the ML
method range from 0.01 to 0.40 psu and 0.04 to 0.15, respec-
tively, for k = 0.5 and k = 1.5, 2.5. It can be observed that
the standard errors are smaller close to the sampling points,
i.e., along the trajectory of the vehicle. As the distance to
one transect increases, the standard errors approach rapidly
to the average value, in the case of maps in which the ML
method was used, an effect that was also observed in the pre-
diction maps of salinity distribution, a consequence of the
very low range estimates. In the vicinity of the diffuser, the
water column was weakly stratified due to both low temper-
ature and salinity variations. The total difference in density
over the water column was about 0.40σ units. This rela-
tively weak stratification explains the plume spreading near
the surface, as predicted by a prediction model used in the
field to specify the AUV survey. The 2 and 4 m depth maps
with a variogram fitted using WLS show the spatial vari-
ation of salinity at these depths in the area studied. From
these maps, it is possible to identify the effluent plume and
its dispersion downstream in the direction of the current.
It appears as a region of lower salinity when compared to
the surrounding ocean waters at the same depth. When tak-
ing the standard errors into account, at the 2 m depth, the

Fig. 10 Standard error of
estimates at 4 m depth using
geostatistical model C with a
variogram fitted by the Matèrn
models with k = 0.5, 1.5, and
2.5 (from up to down) using
WLS (left panels) and ML (right
panels)
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plume may be identified by the regions where salinity is less
than 35.4 psu and, at the 4 m depth, by the regions where
salinity is less than 35.5 psu. The plume exhibits a consid-
erably more complex structure than the compact shape of
the classical picture of the buoyant plume and as patchy as
in previous studies (Petrenko et al. 1998; Ramos and Neves
2009). The small plume-related anomalies in the local salin-
ity of Figs. 6 and 8 are evidence of the rapid mixing process.
Due to the large differences in density between the rising
effluent plume and ambient ocean waters, entrainment and
mixing processes are vigorous and the properties within
the plume change rapidly (Hunt et al. 2010). These results
therefore confirm that large gradients in background salin-
ity and the small differences in salinity between the effluent
plume and the ambient waters can easily obscure the signa-
ture of the plume. The results obtained in this study suggest
some improvements to the sampling strategy of the AUV if
a geostatistical analysis of the data is in mind. It is impor-
tant to prevent the existence of anomalous values, namely
low salinity measurements usually found very close to the
outfall discharge. If these values are present, they should
be correctly identified and treated properly in the analy-
sis. Otherwise, they can induce a false spatial correlation
between the data. A more competitive comparison between
the WLS and ML methods would probably be possible
if the AUV sampling strategy would have combined tran-
sects parallel and perpendicular to the effluent dispersion.
In that case, the y coordinate would probably be considered
a relevant covariate, since more data would be available in
the direction of the dispersion, and better results would be
obtained.

Conclusions

Through a geostatistical analysis of salinity measured by an
AUV at the 2 and 4 m depths in an ocean outfall moni-
toring campaign, it was possible to obtain kriged maps of
the sewage dispersion in the field. Based on an exploratory
analysis, four different geostatistical linear models for salin-
ity were assumed, where the distance to the diffuser, the
west-east positioning, and the south-north positioning were
used as covariates. Sample variograms of the raw data and
of the OLS residuals for both depths were fitted by the
Matèrn models, considering different values of the smooth-
ing parameter and using weighted least squares and max-
imum likelihood estimation methods, as a way to detect
eventual discrepancies. The performance of each compet-
ing model was compared via AIC and BIC and using the
split-sample approach. The results point to the geostatistical
model that includes the distance to diffuser and the west-
east coordinate as covariates, with the smoothing parameter
k = 0.5 as the most appropriate. Typically, the ML method

estimated very low ranges which have limited the kriging
process in the prediction computation. So, at least for these
data sets, WLS showed to be the most appropriate estima-
tion method for the variogram fitting. The 2 and 4 m depth
kriged maps with the variogram fitted using WLS show
the spatial variation of salinity in the area studied, and it
is possible to identify the effluent plume that appears as a
region of lower salinity when compared to the surround-
ing ocean waters dispersing downstream in the direction
of the current. The results obtained in this study suggest
some improvements to the sampling strategy of the AUV if
a geostatistical analysis of the data is in mind. It is impor-
tant to prevent the existence of anomalous values, and if
present, they should be correctly identified and treated prop-
erly; otherwise, they can induce a false spatial correlation
between the data. A more competitive comparison between
the WLS and ML methods would probably be possible
if the AUV sampling strategy would have combined tran-
sects parallel and perpendicular to the effluent dispersion.
In that case, the north-south coordinate would possibly be
considered a relevant covariate and better results would be
obtained.
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