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Abstract

Production planning and scheduling in the process industry in general and in the pulp and
paper (P&P) sector in particular can be very challenging. Most practitioners, however, address
those activities relying only on spreadsheets, which is time-consuming and sub-optimal. The lit-
erature has reported some decision support systems (DSSs) that are far from the state-of-the-art
with regard to optimization models and methods, and several research works that do not address
industrial issues. We contribute to reduce that gap by developing and describing a DSS that re-
sulted from several iterations with a P&P company and from a thorough review of the literature
on process systems engineering. The DSS incorporates relevant industrial features (which mo-
tivated the development of a specific model), exhibits important technical details (such as the
connection to existing systems and user-friendly interfaces) and shows how optimization can be
integrated in real world applications, enhanced by key pre- and post-optimization procedures.

Keywords: Decision Support System, Lot-sizing and Scheduling, MIP-based heuristics, Pulp
and Paper Industry, Continuous Production

1. Introduction

The pulp and paper (P&P) industry is highly capital intensive, which means that investments
in capacity can represent very long-term decisions. For instance, the modification of a single
paper machine requires a planning horizon of at least five years (Martel et al., 2005). Paper prod-
ucts are commodities, with their price being determined in the market and characterized by small
margins. Hence, companies must differentiate themselves by improving customer satisfaction
indicators, while keeping production costs as low as possible. Furthermore, the P&P production
process is also energy intensive. Producing one tonne of paper requires 5–17 GJ of process heat,
depending on the type of paper and on the technology applied (Szabó et al., 2009). The P&P
industry uses 84% of the fuel energy consumed by the forest products industry as a whole and is
one of the largest producers of greenhouse gas emissions (Jankunaite, 2006). Therefore, it is of
particular interest in the context of environmental discussions.

These three main factors (capital intensity, energy intensity and competitive market) make the
production planning an essential activity in the quest for improvements in operational efficiency
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and consequently economic gains. However, the planning process poses a variety of challenges,
both to practical and scientific fields (e.g. combinatorial nature of paper grades scheduling,
shifting bottlenecks, variable production rates, etc. – see Section 2). If these challenges are
successfully addressed, companies can achieve a true competitive advantage.

In most cases, production planning is addressed manually by practitioners, even in modern
mills with sophisticated automated systems. That applies not only to the P&P industry, but to
the process industry in general (see Harjunkoski et al. (2014)). Companies may use advanced
tools for particular tasks, such as the planning of the paper reels’ cutting, but when addressing the
overall planning activity (e.g. size and sequence of paper campaigns, production rates, etc.) most
practitioners rely only on spreadsheets. This manual process is time-consuming, sub-optimal (as
only few alternatives are considered) and completely dependent on the planners’ expertise.

Therefore, there is the need for optimization-based tools that support decision-making in the
operational production planning of these mills. Some decision support systems (DSSs) for this
particular industry were reported in the literature (e.g. Murthy et al. (1999); Respı́cio and Captivo
(2008)). Although these systems consider relevant industrial features and practical issues, the
underlying approaches are far from the state-of-the-art in production planning, as they are based
on simplistic models and heuristics. On the other hand, more research-oriented work does not
address the issues of an industrial implementation.

Even in other process industries, the literature on the implementation of this type of DSSs is
scarce. Bongers and Bakker (2006) describe a scheduling problem in a medium size ice cream
plant. However, the model has not been validated or compared against manual schedules. This
problem was subject to further studies and improvements/extensions (Kopanos et al., 2012; van
Elzakker et al., 2012), but it seems that they have not been implemented in practice. Janak
et al. (2006) and Shaik et al. (2009) address production scheduling problems in large-scale batch
and continuous plants, respectively, of a chemical company. Nevertheless, these papers have
not reported any industrial implementation. Wassick (2009) is one of the few comparing man-
ual schedules to schedules generated by optimization methods. The author has approached a
variety of optimization problems in an integrated chemical complex. The problems included
production planning, energy system scheduling, site reliability design and waste treatment net-
work scheduling. For the same chemical company, Wassick and Ferrio (2011) have developed
a generic formulation which they implement in a custom interface within Microsoft Excel and
apply to different optimization problems, including storage management, production scheduling
and container loading.

Our work helps to close the gap between research and practice, proposing an optimization-
based DSS, which improves on manual planning and contributes to the literature in the following
ways:

• exploring desirable characteristics of analytical models and methods;

• identifying relevant industrial features and how they should be included in the solution
approach;

• extending models of the literature, considering practical constraints and objectives;

• exhibiting important data processing in both pre- and post-optimization phases;

• illustrating required connections to existing systems and desirable aspects in the user in-
terface.
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We start by describing the industrial system and the planning challenge in Section 2. This
motivates the discussion in Section 3 on the different approaches to operational production plan-
ning in the literature. In that section we explore some desirable characteristics of optimization
models and identify relevant features for industrial practice. Based on that, we choose an appro-
priate mathematical model and extend it in order to include the practical issues identified. Our
formulation is presented in Section 4. Section 5 motivates and explores the solution method for
an efficient yet simple and flexible resolution of this complex problem. Section 6 details the inte-
gration of the optimization in the decision support system, describing pre- and post-optimization
steps, as well as the interfaces to the existing information systems and the final user. The usage
of the DSS is also discussed. In Section 7 we compare a plan obtained with the DSS to one
generated manually by production planners, and provide further details on the performance and
usage of the DSS at the company. Finally, the last section summarizes the benefits of our DSS,
discusses its applicability to other environments and shows possible directions for further im-
provement. Since the paper touches different fields and a variety of concepts, a complete list of
acronyms is provided in Appendix A. The full mathematical notation is condensed in Appendix
B.

2. The challenge

The P&P production process is illustrated in Figure 1. The variables depicted in this figure
will be introduced later in Section 4. In a first step, both virgin and recycled pulps are produced
out of wood and recycled paper, respectively. These pulps are then stored in tanks, waiting to
be pulled by the paper machine. The machine can produce different types of paper. Each type
of paper (or grade) is characterized by its grammage (measured in g/m2) and pulp mixture. The
configuration of the machine to produce a different grade is sequence-dependent, for instance,
changing from 170 g/m2 to 200 g/m2 is considerably less costly than from 115 g/m2 to 200
g/m2. Each setup leads to a loss in the production process in terms of time and quantity of a
lower quality paper produced (as the machine is never idle and the paper produced will not be
homogeneous, nor completely satisfy the customer requirements). The wasted paper (setup loss)
is dissolved and stored in the loss pulp tank, to be pulled again by the paper machine.

The master reel that results at the end of the paper machine, the jumbo, is cut into smaller
reels. The paper wasted in the cutting stage (trim loss) is also fed back to the production process.
Customers place orders for reels of different widths and grades. The orders may have different
priority levels. The maximum priority is given to those that travel by ship, since the company
has to schedule containers in advance and commit to a given due date. Then, the remaining is
divided into normal and priority orders.

In parallel, a by-product of the digester’s pulping process, the weak black liquor, is con-
centrated in evaporators and burnt in the recovery boiler to provide high-pressure steam and to
regenerate the chemicals applied in the pulping stage. The steam can either be used for the paper
drying process or be led to counter-pressure turbines which produce electrical energy to be sold
afterwards.

In other companies, the paper mill can be physically distant from the pulp and recovery
plants. However, integrated plants, like that of the case study, represent 65% of the industry
(CEPI, 2013) and are more capable of achieving high levels of both energy and economic effi-
ciency, due to:

• energy conservation (e.g. direct use of steam in the paper drying process);
3
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Figure 1: The integrated pulp, paper and recovery plant, with multiple distribution channels.

• absence of additional processes (e.g. pulp drying);

• material closed loops (e.g. recycling of paper machine setup and trim losses) which make
it possible to reduce waste production and energy;

• tightly integrated equipment, which reduces the required capacity.

Nevertheless, an integrated mill poses additional difficulties. The complex production process
described above (with convergent, divergent and loop flows) and the tightly integrated equip-
ment, with limited intermediate storage space, result in multiple and shifting bottlenecks. For
instance, the company under study produces two main products (KLB and VLB), which have
major differences with respect to the incorporation of virgin and recycled fibres. Hence, the bot-
tleneck stage clearly shifts according to the mixture being produced (for example, VLB quickly
exhausts the recycled pulp mill, whereas KLB is typically restricted by the recovery boiler).

Moreover, the orders placed by customers put a great pressure on production, as the system
operates in a make-to-order (MTO) policy. Still, adjusting the production sequence to better meet
market needs has to be done carefully, since the desired production cycles will be disrupted, and
some stages may be forced to drastically reduce their production rate or even to shut-down.
The start-up of the process after these interruptions is typically problematic and requires a large
expenditure of energy, increasing the environmental load of the mill. The rates of the various
resources need to be as steady as possible, as rough changes can cause quality deviations and
undesired wear of equipment. Therefore, the variation that results from production cycles is
conveyed as much as possible to the tank levels. Nonetheless, the system is subjected to process
variability (for instance, in production yield, required pulp mixture, etc.) and disturbances (such
as paper breaks, equipment failures, etc.). Thus, it is important to keep slacks in the intermediate
buffers, in order to prevent under and overflows.

In this capital intensive industry in general, and in this plant in particular, exploiting existing
capacity is a major concern. Therefore, the plant works on a 24/7 basis and backlog is tolerable.
When accepting orders, managers use a base sequence of grades, where they can verify the
earliest available slot for that grade and hence commit to a due date (available-to-promise). The
base sequence minimizes changeovers, since not only they consume time (i.e. capacity), but can
also be highly disruptive to the system, breaking the production stability and causing wear to
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Figure 2: Example of a production plan – cycle of grades (left axis) and cycle of virgin pulp tank, measured in tonnes
(right axis).

equipment. Nevertheless, at the operational level, the sequence must be adapted according to the
evolving state of the system.

The operational planning consists of determining the sequence and size of paper campaigns
(where each campaign represents one of the 29 commercial grades), and all the production rates
of the different resources (paper machine, pulp digester, recycled pulp mill, evaporators and
recovery boiler) for the following 10 to 15 days. This horizon is important to effectively check
production cycles and the impact on every unit. An example of a production plan is illustrated
in Figure 2. The cycle of grades is conveyed to a cycle of the virgin pulp tank level (as the
digester’s rate should be as smooth as possible). As VLB-type grades consume more recycled
pulp, the tanks of virgin pulp increase their stock throughout the VLB campaigns. This stock is
consumed during most KLB-type campaigns. The slacks of the tanks are kept to some desired
limits that will not impact the feasibility of the subsequent plans.

This planning process is conducted by two main entities: Sales and Production departments.
The former aims to fulfil the orders respecting due dates, whereas the latter is focused on opera-
tional costs and throughput maximization. As stated above, aligning these two main objectives is
problematic. Therefore, when devising a plan, several interactions are needed between both de-
partments. The lack of a holistic view and of an optimization-based DSS makes the generation of
feasible plans a difficult task and their quality is compromised. This is especially true in the pres-
ence of disturbances, scheduled maintenance or rush customer orders. The latter prevent the reels
cutting from being planned for the same horizon. Indeed, one late order can completely spoil the
cutting patterns. Therefore, managers choose to define those patterns just for the following 2 to
3 days.

3. Solution approach

Considering the aforementioned challenges to the production planning activity, we propose
an optimization-based DSS. Our system supports decision-making regarding the size and se-
quence of paper campaigns, the production rates for every unit and the fulfilment of individual
orders (with different priority levels). The planning of cutting patterns is not included for three
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reasons: (i) companies already have software packages for that task; (ii) the planning horizon is
radically different, as the cutting is only scheduled for a couple of days ahead; (iii) because there
are buffer areas between the paper machine and the cutting reels, jumbo storage is allowed to
some extent, making it possible to decouple the two processes.

However, at this planning level it is important to integrate lot-sizing and scheduling. Indeed,
the sequence dependent setups in the paper machine, with important costs related to production
stability, must be taken into account when defining production plans. This is not possible in plain
lot-sizing models. On the other hand, pure scheduling approaches are not appropriate either,
since this (capital intensive) continuous production plant has high utilization ratios. Therefore,
choosing the amounts to be produced and the respective sequence (leaving orders partially or
totally unmet or to be met later) is a key decision.

The literature on this industry has mainly focused on either lot-sizing (e.g. Rizk et al. (2008),
Poltroniere et al. (2008)) or scheduling (e.g. Akkiraju et al. (2001), Correia et al. (2012)). More-
over, these studies have not included the pulping and recovery stages. This is crucial in integrated
plants due to the tightly integrated equipment, and the existence of multiple and shifting bottle-
necks. Santos and Almada-Lobo (2012) were the first to integrate those stages. The proposed
model was based on the general lot-sizing and scheduling problem (GLSP), presented by Fleis-
chmann and Meyr (1997), and considered sequence dependent setup times and costs. Figueira
et al. (2013) then improved the resolution of the problem with a variable neighbourhood search,
whereas Furlan et al. (2015) developed a genetic algorithm for the multi-machine scenario.

GLSP is a small-bucket model (also known as time slot formulation), i.e., allows just one
setup in each (micro) time period. Having only one product in each period is a key aspect
in our case, since it allows the accurate evaluation of mass balances. This is crucial when the
intermediate tanks have tight capacities. In big-bucket models (also known as precedence-based),
multiple products with different rates are produced in the same period, whereas the mass balances
are only checked at the end of each period. Therefore, the tank limits may be violated within a
period, while being respected at the beginning and at the end. Verifying tank levels during each
period would not be impossible in big-bucket models, but it would certainly be more difficult,
and could require some simplifying assumptions. Still, these models are recommended if such
constraints are not critical, since they are considerably more efficient (Amorim et al., 2013).
These models, usually in the form of the so-called CLSD (capacitated lot-sizing with sequence
dependent setups), have been applied to similar process industries (Almada-Lobo et al., 2010;
Kopanos et al., 2011b,a).

Contrary to other small-bucket models (such as the discrete lot-sizing and scheduling prob-
lem DLSP (Fleischmann, 1994)), GLSP combines continuous- and discrete-time grids. Continuous-
time grids are important to accurately track the production of non-standard amounts, essential in
this MTO system. Discrete-time grids make it possible to assess the fulfilment of demand (at dis-
crete time points) during the planning horizon. This mixed grid thus makes the interface between
Production and Sales requirements.

Other works in the literature, in both the operations research (OR) and process systems engi-
neering (PSE) communities, sought to combine the advantages of continuous and discrete-time
grids. Maravelias (2005) and Westerlund et al. (2007) proposed models that use a discrete grid,
but where campaigns do not need to start or end at the exact grid points. This aspect was also ex-
plored by the continuous setup lot-sizing problem (CSLP), presented by Karmarkar and Schrage
(1985), and the proportional lot-sizing and scheduling problem (PLSP), proposed by Drexl and
Haase (1995). However, obtaining continuous amounts in these models implies idle times and/or
multiple products per period, which spoils the evaluation of intermediate tank levels.
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Figure 3: GLSP – each period t is divided into multiple continuous slots, where a grade j is produced.
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Figure 4: CGLSP – the discrete grid (of periods t) is crossed by continuous slots, where a grade j is produced.

Models based on GLSP have been extensively explored in the literature (e.g. Lim and Karimi
(2003), Erdirik-Dogan and Grossmann (2008), Castro et al. (2009), Amorim et al. (2011)).
Guimarães et al. (2014b) compare different GLSP formulations and show that the model pro-
posed by Clark and Clark (2000) performs best in the presence of minimum lot constraints.
Still, all these models divide each (macro) period into multiple slots (micro-periods). Thus, if a
campaign crosses a period, it will require more than one slot (see Figure 3). This increases the
difficulty of incorporating some practical constraints. For instance, in our case we need to fix
the amounts of the first campaigns, as they were already programmed for the cutting stage. In
those models we have to determine the number of slots for each of these campaigns. Since the
production rates are variable, and will have to be adapted according to the state of the system,
the appropriate number of slots can only be approximately estimated. This may compromise the
feasibility of the plans generated. Other constraints include maximum and minimum lot sizes
and a minimum distance between campaigns of the same grade.

Karimi and McDonald (1997) and Camargo et al. (2012) proposed other mixed grids for-
mulations, where (continuous) production slots may cross (discrete) time periods (see Figure 4).
This feature allows assigning only one slot to each campaign, and hence easily handle the afore-
mentioned issues. The authors concluded, however, that it is more difficult to solve these crossed
grids models (here called CGLSP) than the GLSP. There is thus a trade-off between modelling
accuracy and performance. For our P&P industrial problem, the CGLSP was found to be the
most appropriate choice. In fact, the flexibility in incorporating the numerous practical con-
straints (cf. Subsection 4.6), avoiding specific heuristics for the allocation of slots, was crucial
in this industrial implementation, as feasibility was occasionally compromised with GLSP.

In addition to the multi-stage environment and the sequence dependent setup times and costs
modelled by Santos and Almada-Lobo (2012), our system comprises a set of features that are
important for industrial practice, such as:

• fixing the size of certain campaigns (due to cutting programs);

• fixing the sequence of certain campaigns, critical when the production system is not re-
sponding well to certain grades;

• giving an initial sequence of campaigns, which can then be improved;

• scheduling stoppages in the paper machine and digester (for maintenance purposes or in a
disturbance situation);

• variable production rates for all the units, including the paper machine;
7



• smoothness of production rates (to be performed in post-optimization, in order to keep
model’s linearity);

• different priority levels for client orders;

• demand beyond the planning horizon (important in low demand periods).

The DSS was designed to support both Sales and Production staff, weighting their conflicting
objectives. Other studies in the literature (e.g. Murthy et al. (1999)) proposed multi-objective
approaches, where managers can evaluate different plans and choose the one that seems more
appropriate. However, in our case this evaluation appears to be time consuming. Indeed, at
the operational level managers do not have the time to properly evaluate different plans. There-
fore, they prefer to define a priori the trade-offs between objectives, according to the company’s
policies, and then use them in every plan generation.

4. Mathematical model

We present the mathematical formulation in four main parts:

• continuous time slots and their intersection with the discrete time grid;

• production system, namely the P&P production;

• demand fulfilment, discriminated by time period;

• objective function, with all the components of the production and marketing objectives;

An illustrative example is provided to help the understanding of the model. Two additional
sections are then presented to demonstrate the applicability of the model, namely:

• valid inequalities that help to improve the lower bound of the formulation;

• practice issues, such as steady production rates (essentially performed in post-optimization),
undesired sequence of campaigns and stoppages.

4.1. Time slots

The production slots’ lengths are variable and independent of the discrete time grid (they may
cross one or multiple periods – see Figure 4). Each slot contains only one paper campaign and
starts always with the changeover from the grade produced in the previous slot to the grade of
the current slot. This continuous-time representation prevents time slots from being split, which
will greatly facilitate the incorporation, in a straightforward manner, of industrial features, such
as lower and upper bounds on the quantity produced. On the other hand, (external) demand is
given for each (discrete) time period, and therefore there is a need to define the quantity pro-
duced in each of those time periods. The following set of constraints assure the coherence of this
two-level time grid.
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Indices and parameters
t Index for period (t ∈ [T ] = {1, . . . ,T })
s, u Indices for slot (s, u ∈ [S ] = {1, . . . , S })
j, k Indices for paper grades ( j, k ∈ [K] = {1, . . . ,K})
cap Period’s capacity (in hours)
hcap Planning horizon’s capacity (in hours): hcap = T · cap
slotsmax Maximum number of slots crossing one period
Decision variables
S start

s Starting time of slot s
S end

s Ending time of slot s
U start

js Starting time of slot s for grade j
Uend

js Ending time of slot s for grade j

Ets

1 if slot s intersects period t
0 otherwise

Y js

1 if the paper machine is set up for grade j in slot s
0 otherwise

Ns Length of slot s (in hours)

The maximum number (S ) of slots is given. The planning horizon starts with the first slot
(S start

1 = 0) and ends with the last S end
S = hcap. In case the slots are not all used, empty slots can

be moved to the end of the horizon as it will be shown later.

S start
s = S end

s−1, s ∈ [S ] \ {1} (1)

Ns = S end
s − S start

s , s ∈ [S ] (2)

Uend
js − hcap · Y js ≤ U start

js ≤ Uend
js , j ∈ [K], s ∈ [S ] (3)

S start
s − hcap · (1 − Y js) ≤ U start

js ≤ S start
s + hcap · (1 − Y js), j ∈ [K], s ∈ [S ] (4)

S end
s − hcap · (1 − Y js) ≤ Uend

js ≤ S end
s + hcap · (1 − Y js), j ∈ [K], s ∈ [S ] (5)

Constraints (1) prevent idleness by assigning the starting time of a slot to the ending time
of the preceding one. The length of each slot is computed in (2). The production time of each
campaign is limited to the respective bucket – see (3)–(5). When these constraints are active
(Y js = 1), clearly U start

js = S start
s and Uend

js = S end
s .

It is important to recall that the production resources have slots which are independent of
the time period’s boundaries. Now, the intersection between slots and time periods is assured by
variables E. Naturally, the first slot takes place in time period one (E11 = 1), and the last in the
last period (ETS = 1).

slotsmax · T · (1 − Ets) ≥
t−1∑
t′=1

S∑
s′=s+1

Et′s′, t ∈ [T ] \ {1}, s ∈ [S ] \ {S } (6)

Et−1,s + Et+1,s ≤ Ets + 1, t ∈ [T ] \ {1,T }, s ∈ [S ] (7)

The proper assignment of slots to time periods is established by (6). Because a slot s is assigned
to period t, a subsequent slot cannot be assigned to any precedent time period, which guarantees
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that the slots are in the correct order. If the slot spans from period t − 1 to period t + 1, then (7)
ensures that period t is also crossed by the same slot.

4.2. Production system

In this subsection we focus on the pulp plant and paper mill of the P&P manufacturing sys-
tem, although all the main production stages (except the reels cutting) are addressed in our DSS
(see Figure 1).

Parameters
Vdig

min

(
Vdig

max

)
Minimum (maximum) rate of the digester (in rpm)

α conversion factor of digester’s throughput (from rpm to tonnes per hour)
Ivirg
min

(
Ivirg
max

)
Minimum (maximum) level of virgin pulp stocked in the tanks (in
tonnes)

f j Percentage of water in paper grade j
tlb j Average trim loss (in percentage) of paper grade j that goes to the loss

pulp tank
bvirg

j Percentage of virgin pulp used in the production of paper grade j
bvirg

loss Percentage of virgin pulp in the loss pulp
slk j Paper lost in a changeover from grade k to j (in tonnes)
stk j Time lost in a changeover from grade k to j (in tonnes)
pmin

j minimum time (at machine’s maximum rate) to produce one tonne of
paper grade j (in hours)

pmax
j maximum time (at machine’s minimum rate) to produce one tonne of

paper grade j (in hours)
Decision variables
Xvirg

s Production of virgin pulp in slot s (in tonnes)
Ovirg

s Amount of virgin pulp fed into the paper machine in slot s (in tonnes)
Ivirg

s Inventory of virgin pulp at the end of slot s (in tonnes)
Xloss

s Production of loss pulp in slot s (in tonnes)
Oloss

s Amount of loss pulp used in slot s (in tonnes)
X jts Production of paper grade j in period t and slot s (in tonnes)

Zk js

1 if a changeover from grade k to j occurs at the beginning of slot s
0 otherwise

In terms of pulp production, the amount of virgin pulp produced by the digester in each slot
is bounded by its speed limits, according to (8). Produced pulp is stocked in tanks and then fed
into the paper machine (9). In (10), this stock is also limited by lower and upper bounds. The
reader is referred to Santos and Almada-Lobo (2012) for a thorough analysis of the constraints
of these two areas.

α · Vdig
min · Ns ≤ Xvirg

s ≤ α · Vdig
max · Ns, s ∈ [S ] (8)

Xvirg
s + Ivirg

s−1 = Ovirg
s + Ivirg

s , s ∈ [S ] (9)

Ivirg
min ≤ Ivirg

s ≤ Ivirg
max, s ∈ [S ] (10)
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The requirements of the recycled pulp and recovery plant are similar to those from the virgin
pulp plant, and therefore will not be presented here (such as the minimum and maximum pro-
duction of recycled pulp, liquors and steam; the inventory balance for recycled and loss pulps
and liquors; and the inventory limits for recycled and loss pulps and liquors).

∑
j

Y js = 1, s ∈ [S ] (11)∑
k

Z jks = Y j,s−1, j ∈ [K], s ∈ [S ] (12)∑
k

Zk js = Y js, j ∈ [K], s ∈ [S ] (13)

X jts ≤ cap · Y js, j ∈ [K], t ∈ [T ], s ∈ [S ] (14)

pmin
j · X jts ≤ cap · Ets, j ∈ [K], t ∈ [T ], s ∈ [S ] (15)∑
j

bvirg
j ·

(
1 − f j

)
·

∑
t

X jts +
∑

k

slk j · Zk js

 = Ovirg
s + bvirg

loss · O
loss
s , s ∈ [S ] (16)

Xloss
s =

∑
j

∑
k

(
1 − f j

)
· slk j · Zk js +

∑
j

∑
t

(
1 − f j

)
· tlb j · X jts, s ∈ [S ] (17)∑

t

pmin
j · X jts +

∑
k

stk j · Zk js ≤ Uend
js − U start

js , j ∈ [K], s ∈ [S ] (18)∑
t

pmax
j · X jts +

∑
k

stk j · Zk js ≥ Uend
js − U start

js , j ∈ [K], s ∈ [S ] (19)

When producing paper, from (11) exactly one grade must be produced in each slot. Con-
straints (12) and (13) link the grade changeover variables to the setup state variables on the
paper machine. A grade j is only produced in a given bucket in case the machine has been ap-
propriately set up (14). Naturally, variable X jts only takes positive values in case slot s crosses
period t, as ensured by equations (15). Note that the production quantity (X jts) is described per
period, i.e., the portion of slot s that crosses period t is taken into account to define the quantity
that meets the demand for that period. The virgin pulp used by the paper machine, defined in
(16), comes from the virgin pulp stored in tanks, together with (part of) the pulp that is recovered
from the production losses due to the grade setup changeovers and trim sub-process, which are
computed in (17).

Finally, according to (18)-(19) the time confined to the setup and production operations of
each grade on the paper machine in each slot is given by the length of the slot, where the machine
operates within its minimum and maximum speed limits. Note that in case grade j is not assigned
to slot s, from (3), Uend

js = U start
js , and therefore no operations take place. The definition of

the consumption of recycled pulp is modelled similarly to the consumption of the virgin pulp
presented before, and for that reason it is not presented here.

4.3. Demand fulfilment

Demand is met at the end of the discrete periods. The following equations look at the inter-
section of the continuous production slots with those discrete periods.
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Parameters
d jt Demand for paper grade j in period t (in tonnes)
tl j Average trim loss (in percentage) of paper grade j
I j0 Initial inventory of paper grade j (in tonnes)
IB j0 Initial backlog of paper grade j (in tonnes)
Decision variables
W start

jts Starting time of slot s for grade j in period t
Wend

jts Ending time of slot s for grade j in period t
I jt Inventory of paper grade j at the end of period t (in tonnes)
IB jt Backlog of paper grade j at the end of period t (in tonnes)

pmin
j · X jts ≤ Wend

jts −W start
jts , j ∈ [K], t ∈ [T ], s ∈ [S ] (20)

pmax
j · X jts ≥ Wend

jts −W start
jts , j ∈ [K], t ∈ [T ], s ∈ [S ] (21)

Wend
jts ≤ min

(
t · cap; Uend

js + hcap · (1 − Ets)
)
, j ∈ [K], t ∈ [T ], s ∈ [S ] (22)

W start
jts ≥ max

(t − 1) · cap; U start
js +

∑
k

stk j · Zk js − hcap · (1 − Ets)

 , j ∈ [K], t ∈ [T ], s ∈ [S ]

(23)∑
t

(
Wend

jts −W start
jts

)
+

∑
k

stk j · Zk js = Uend
js − U start

js , j ∈ [K], s ∈ [S ] (24)∑
s

(
1 − tl j

)
· X jts + I j,t−1 − IB j,t−1 = d jt + I jt − IB jt, j ∈ [K], t ∈ [T ] (25)

Variables W start
jts and Wend

jts define the respective production windows, which in turn limit the
production amounts (X jts) – see requirements (20)–(21). These variables are upper bounded
by (22) and lower bounded by (23). Figure 5 provides some examples to explain how these
constraints work and to show different production windows definitions. In case 5(a), the slot
crosses period t entirely, and therefore the production window bounds in period t match that
period’s boundaries. In case the slot ends in the middle of time period t, cases 5(c) and (d),
the ending date of the production window is the same as the ending time of the slot. Note that
the production window is contained within the slot, as it discards the setup time. In case slot s
does not intersect period t (i.e. Est = 0), requirements (22) and (23) are non-active. The relation
between the production window of grade j in slot s and the slot length is established in (24) –
the slot contains the production window and the setup times consumed in a grade changeover.
Then, the fulfilment of demand is obtained by (25), which allows backlogging orders to be met
in subsequent periods.

4.4. Objective function

Given that the system works with an MTO policy and the plant operates continuously on a
24/7 basis (no idle or extra times), orders may backlog at some points in time. The goal of op-
erational production planning and scheduling is then to minimize that backlog at the minimum
possible cost. Operational costs include grade setup, production and holding costs. Production
costs are mainly related to diluting the costs of the capital intensive equipment, which is achieved
by maximizing its utilization (sometimes producing beyond fixed orders). The setup costs, which

12



Figure 5: Production window of a slot definition in each time period.

are sequence dependent, concern not only the time and product lost in that process, but also the
wear to equipment. Equation (26) represents a cost function that aggregates these main objec-
tives.

Parameters
bc Cost of backlogging one tonne of paper per period
hc Cost of holding one tonne of paper in stock per period
sck j Setup cost of changing from grade j to k
po Benefit (negative cost) of producing paper

min
∑

j

∑
t

bc · IB jt +
∑

j

∑
t

hc · I jt +
∑

j

∑
k

∑
s

sck j · Zk js −
∑

j

∑
t

∑
s

po · X jts (26)

Other objectives are considered in the complete model. The driver of the P&P company is
not only to produce paper, but also to generate and sell energy based on the steam produced
(which is somehow proportional to the throughput of the digester). Therefore, any plan also aims
at maximizing the production of steam. Further terms of this objective function are revealed in
Subsection 4.6, where some practical issues are addressed.

4.5. Valid inequalities

This subsection introduces sets of valid inequalities to tighten the aforementioned mathemat-
ical formulation.
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∑
s

Ets ≥ 1, t ∈ [T ] (27)∑
t

Ets ≥ 1, s ∈ [S ] (28)∑
s

Ets ≤ slotsmax, t ∈ [T ] \ {T } (29)

Z j js ≤ 1 − Z jku, j, k ∈ [K] : k , j, s, u ∈ [S ] : u > s (30)
Z j js ≤ ET s, j ∈ [K], s ∈ [S ] (31)

Each time period is intersected by at least one slot, as pointed out by (27). Clearly, each slot
has to be assigned to at least one time period (28). The maximum number of slots per period is
reinforced by (29). Two consecutive non-empty slots produce different grades. In case there is
no need to use all the pre-defined slots, the null slots should be placed at the end of the horizon.
Requirements (30) and (31) force the fictitious changeovers (Z j js) to be moved to the end.

4.6. Practical constraints
In order to be used in practice, the model presented above needs to incorporate real-world

extensions. Some of the new features are related to customers’ satisfaction, while others have to
do with managing the resources in the smoothest way possible.

4.6.1. Sales requirements
To consider different types of orders with different priority levels, it is necessary to disaggre-

gate production, inventory and backlog variables. That way, it is possible to introduce different
penalties for backlogging specific orders. The suffix norm of the new variables refers to the nor-
mal priority level, whereas ship to ship orders and prio to the highest priority orders. Given that
multiple ships can be scheduled within the planning horizon, an index m ∈ [M] is introduced to
represent them. For instance, variable Xship

jtm denotes the amount of grade j produced in period t
to be distributed in ship m. The latest production time of an order to meet the departure of ship
m is given by ddm.

I j0 = Inorm
j0 + Iprio

j0 +
∑

m

I ship
jm , j ∈ [K] (32)∑

s

(
1 − tl j

)
· X jts = Xnorm

jt + Xprio
jt +

∑
m

Xship
jtm , j ∈ [K], t ∈ [T ] (33)

ddm∑
t=1

Xship
jtm + I ship

jm − IBship,ini
jm = dship

jm − IBship
jm , j ∈ [K],m ∈ [M] (34)

Inorm
jT − IBnorm

jT = dnorm
j,T+1 + Inorm

j,T+1 − IBnorm
j,T+1, j ∈ [K] (35)

The disaggregation of the initial inventory is performed by (32), where it is allocated to
normal, priority or ship orders (the three priority levels described in Section 2). Constraints (33)
disaggregate production. Note, however, that there is also aggregation regarding the different
slots that cross the period, since at this point we just need to know the completed amounts at the
end of each period.

14



The demand fulfilment equations for normal and priority orders are similar to constraints
(25), and for that reasons they are not detailed here. On the other hand, for ships the equations
are slightly different – see (34). In fact, each ship m has a single due date (ddm). Thus, demand
fulfilment is not verified in each period, but only in the ship’s due date. Therefore, production is
summed from the first period until the due date, and no inventory is left after that since there is
no other chance to fulfil that demand.

Finally, in (35) the fulfilment of demand beyond the planning horizon is verified. Given that
the machine is never idle and paper is not made to stock, if all the demand within the horizon
has been met, future demand should be considered. All this demand is then aggregated in an
additional term corresponding to period T + 1. Naturally, not fulfilling this demand will have a
lower impact on the objective function.

4.6.2. Paper campaigns
Here, we describe some constraints related to operational issues in executing paper cam-

paigns. Parameters Nmin and Nmax define the lower and upper bounds for the length (in time
units) of each grade campaign, respectively. Furthermore, LVLB

min refers to the minimum produc-
tion amount of each VLB-type campaign, |KVLB| to the number of VLB grades, and distmin to the
minimum distance between campaigns of the same grade.

Z jks = 0, s ∈ [S ], j ∈ [K], k ∈
[
Kna

j

]
(36)

Ns ≤ Nmax ·
∑

k

∑
j,k

Zk js, s ∈ [S ] (37)

Ns ≥ Nmin − Nmax ·
∑

j

Z j js, s ∈ [S ] (38)

(
1 − tl j

)
·
∑

t

X jts ≥ Lmin ·
(
Y js − Z j js

)
, j ∈ [K], s ∈ [S ] (39)

∑
j∈[KVLB]

∑
t

s+|KVLB |−1∑
s′=s

X jts′ ≥ LVLB
min ·

∑
k<[KVLB]

∑
j∈[KVLB]

Zk js, j ∈ [K], s ∈ [S ] : s ≤ S − |KVLB| + 1

(40)
s+distmin∑

s′=s

(
Y js′ − Z j js′

)
≤ 1 + violdist, j ∈ [K], s ∈ [S ] : s ≤ S − distmin (41)

The first constraints have to do with sequences that cannot be executed. In our case, quality
“A” grades should not be produced after basic ones. Indeed, if they do not meet the required
quality level, but there is a basic quality campaign following, they can still be used as basic
quality products, and the “A” quality has another opportunity to be produced. Therefore, for each
grade j, there is a list of forbidden grades [Kna

j ], which correspond to the better quality versions
(if any).

Constraints (37) and (38) define maximum and minimum lengths for campaigns, which
should be respected for the sake of the plant’s stability. Note that for all fictitious changeovers
(Z j js), the length is zero. Minimums are also defined in terms of the amounts produced (Lmin and
LVLB

min ) – see (39) and (40). The former applies a minimum lot to individual campaigns, whereas
the latter does that to a set of campaigns of the same type (VLB grades).
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Figure 6: Example of a plan not following the operational requirements.

Finally, (41) forces a minimum distance (distmin) between campaigns of the same grade.
The violation of this soft constraint (violdist) is penalized in the objective function. This issue
is somehow avoided with setup costs. However, these constraints penalize more explicitly the
production of the same grade twice in a short period of time. This type of constraints helps better
tailoring the plans to meet industrial requirements, which would otherwise require non-linear
cost functions.

Figure 6 provides an example of a plan that does not comply with the operational constraints
described here. The corrected version of the plan is that represented in Figure 2. Note that the
first part is fixed, since those campaigns were already programmed in the cutting stage. The first
campaign, which seems not to comply with the minimum lot size, is indeed in progress. The
above constraints are thus only applied after the last fixed campaign.

4.6.3. Production rates
The production rates of all resources should be as smooth as possible to avoid large energy

expenditures and wear of the equipment. Here, we illustrate how the digester’s rates can be
smoothed in the optimization process. Variables Vdig

s introduce the speed of the digester in slot
s.

Vdig
s − Vdig

s−1 = δ
dig+
s − δ

dig−
s , s ∈ [S ] (42)

Xvirg
s = α · Vdig

s · Ns, s ∈ [S ] (43)

The rate variations are assessed with equations (42). Minimizing the variables δdig+
s and δdig−

s
in the objective function will smooth rate variations. The former variable will then assess the
rates’ increase, whereas the latter will assess their decrease. These equations require an explicit
variable for the digester’s rate (Vdig

s ), as opposed to the implicit definition in constraints (8). That
results in a non-linear formulation, since the rate variable is multiplied by the slot’s length – see
(43). Therefore, in order to avoid the complexity of the non-linear formulation, these constraints
are only added in a post-optimization step where the slots are fixed.
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4.6.4. Recommended tank levels
In practice, the stock should not come close to the physical limits of the tank, since it may

trigger operational difficulties and would leave the system more vulnerable to disturbances. For
those reasons, recommended levels (below the capacity upper limit and above the lower limit)
are established. At some points in time the stock may range between the desirable and physical
limits, but the violation of the recommend levels is penalized in the objective function. The stock
of virgin pulp in the tank in slot s is now given by Ivirg

s + Ivirg,rec+
s − Ivirg,rec−

s , where variables
Ivirg,rec+

s denote the amount of stock above the recommended upper limit, and Ivirg,rec−
s the amount

of stock below the recommended lower limit. In addition, parameter Ivirg
slack− (Ivirg

slack+
) refers to the

slack between the upper (lower) recommended level and the upper (lower) physical limit.
Equations (9)–(10) should then be replaced by the following:

Ivirg
min + Ivirg

slack− ≤ Ivirg
s ≤ Ivirg

max − Ivirg
slack+

, s ∈ [S ] (44)

Ivirg
min ≤ Ivirg

s + Ivirg,rec+
s − Ivirg,rec−

s ≤ Ivirg
max, s ∈ [S ] (45)

Xvirg
s + Ivirg

s−1 + Ivirg,rec+

s−1 − Ivirg,rec−
s−1 = Ovirg

s + Ivirg
s + Ivirg,rec+

s − Ivirg,rec−
s , s ∈ [S ] (46)

Equations (44) force the regular variable (Ivirg
s ) to respect the recommended levels, while

extra level variables (Ivirg,rec+
s and Ivirg,rec−

s ) are included in the physical limits verification and
material balance equations – constraints (45) and (46), respectively.

4.6.5. Fixed schedule
A critical feature of the model, and one of the most important reasons that led to the choice

of CGLSP as the basic formulation, is the possibility of fixing production amounts without the
need to heuristically define the number of slots required for each campaign. In fact, as slots are
able to cross periods, only one slot is required per campaign. Therefore, both the sequence of
campaigns and their lot sizes can be easily fixed. The former is a simple assignment (Y js = 1, for
the respective grade and slot), while the latter is represented in constraints (47). These constraints
are essential to freeze campaigns in the DSS that have already been programmed in the cutting
stage, i.e. their cutting patterns have been optimized.

∑
t

X jts = X f ix
s , s ∈ [S ] < prodS , j ∈ [K] : Y js = 1 (47)

X f ix
s is the amount to be produced in slot s and prodS is the number of slots with fixed production.

This latter parameter has to be taken into account in some of the constraints presented previously.

4.6.6. Stoppages
Finally, in this last subsection we show the way stoppages were modelled. These stoppages

can occur in different production resources, such as the digester and the paper machine. We
consider all the stoppages’ starting and ending times as parameters stopstart

r and stopstart
r , where

r is the index of the stoppage. Then, we use binary variables Pstart
rs and Pend

rs to state if stoppage r
starts at the beginning or ends at the end of slot s.

17



stopstart
r − hcap ·

(
1 − Pstart

rs

)
≤ S start

s ≤ stopstart
r + hcap ·

(
1 − Pstart

rs

)
, r ∈ [R], s ∈ [S ] (48)

stopend
r − hcap ·

(
1 − Pend

rs

)
≤ S end

s ≤ stopend
r + hcap ·

(
1 − Pend

rs

)
, r ∈ [R], s ∈ [S ] (49)∑

s

Pstart
rs = 1, r ∈ [R] (50)∑

s

Pend
rs = 1, r ∈ [R] (51)

s∑
s′=1

Pstart
rs′ ≥

s∑
s′=1

Pend
rs′ , r ∈ [R], s ∈ [S ] (52)

Constraints (48) and (49) align the starting and ending times of slots with the starting and
ending times of stoppages, respectively. Then, (50) and (51) ensure that only one slot is aligned
with the start and/or the end of each stoppage. The last constraints prevent a stoppage from
ending before its start.

Variables Pstart
rs and Pend

rs are then used to constraint the output of the corresponding resources.
In the case of the digester, for instance, equations (8) would include these variables to enable or
disable the maximum and minimum production rates.

5. Solution method

The solution strategy followed is based on a heuristic solution of the problem’s mathematical
formulation. The reasons behind this choice come both from practical implications and algorith-
mic aspects. First and foremost, the large scale and complexity of the model described in the
previous section for a regular real-world instance prohibited the use of a commercial solver for
the complete model formulation because of its difficulty in even finding a feasible solution in
the time limit imposed by the DSS usage. The model suffers from its computational intractabil-
ity, especially when the number of time slots defined increases. Second, heuristics based on
mathematical programming techniques, also known as matheuristics, are a powerful framework
to explore the problem’s structure and take advantage of today’s computational and commercial
solvers’ power. A survey of these methods is given by Puchinger and Raidl (2005).

Matheutistics trade-off the solution quality obtained by solving the complete model formula-
tion in a commercial solver with the efficiency of heuristics and meta-heuristics. Moreover, these
algorithms yield substantial advantages when compared to traditional heuristics, as they require
less parameters, and consequently a much lower effort in tuning parameters, and can adapt to
changes in the mathematical formulation with limited or zero adjustments. Matheuristics often
provide quasi-optimal solutions for a variety of problems. For most companies, having a very
good solution is sufficient. Optimality often provides only a marginal improvement for a high
additional effort.

Decomposition methods are a popular category of matheuristics. The idea is to decompose
the problem into sub-MIPs of manageable size and solve them iteratively. The most popular
decomposition approach is based on the time horizon and is the idea of the so-called rolling-
horizon algorithms (Dillenberger et al., 1994; Dimitriadis et al., 1997). These methods have
been successfully applied in other decision support systems (Guimarães et al., 2014a). Here
we apply two decomposition approaches: one based on time slots, and another based on paper
grades.
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Our matheuristic has three main phases: initial solution, forward-pass and neighbourhood
search. All the phases decompose the problem or reduce its dimension by working on the set
Y defined by the variables Y js (setup of grade j in slot s) of the original problem. The overall
procedure is illustrated in Figure 7.

1. Initial Solution

2. Forward-Pass

Iteration 1

Iteration 2

...

Iteration n

3. Neighborhood Search

Slot-
oriented

Grade-
oriented

ω

φ

grades

slots

Y = 0 Y = 1 Y free

Figure 7: Solution method consisting of three phases: initial solution, forward-pass and neighbourhood search. A sub-
MIP is solved in each iteration.

In the first phase, the goal is to generate an initial feasible solution to the problem. For that,
the variables in set Y are fixed in the mathematical formulation, according to an initial sequence
provided by a company’s manager or a standard (pre-defined) sequence considering the current
grade on the paper machine. The value for the remaining variables in the problem is obtained by
solving the resulting sub-MIP.

The idea of the second phase is to improve the quality of the initial solution using a forward
pass over the continuous time slots. At each iteration of the second phase, a total of ω adjacent
slots are re-optimized in a sub-MIP where their corresponding Y js are set as binary, while the
remaining Y js variables keep their current value. We start at the beginning of the planning horizon
and re-optimize the solution corresponding to the first ω slots. Between iterations the selection
of the slots also uses φ as the number of overlapping slots, allowing for a smoother schedule.
Thus, in the next iteration the solution for the first ω − φ slots is fixed and we re-optimize the
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flowing ω slots. This process is repeated until the final slot is reached.
The third phase is a neighbourhood search that iteratively decomposes the overall problem.

Two neighbourhoods were defined: slot and grade oriented. The slot oriented neighbourhood is
similar to the second phase where all the Y js variables associated with a given sub-set of slots
are “free” in the model formulation, keeping the other slots unchanged. The main difference
lies on the fact that the the exploration of slots to re-optimize does not follow a forward pass
search, but a probabilistic selection. The grade oriented neighbourhood optimizes the variables
Y js of a given sub-set of grades over the entire planning horizon. The choice of the slots and
grades is guided by a procedure which uses the frequency and recency of selection to bias the
sub-sets. The more frequently or recently a slot or grade is selected, the lower the probability
of it being selected to be part of the sub-set to re-optimize. The exploration of a neighbourhood
corresponds to the sub-set creation and model re-optimization being performed until a maximum
number of consecutive iterations without improvement has been reached. The neighbourhood
search alternates between the two neighbourhoods, stopping when both are unable to yield any
improvement or the user defined time limit is reached.

6. Decision support system

This section starts by describing the system architecture and how the optimization component
is integrated in that framework. Then, the focus is shifted to the system’s usage, where the
features and information relevant to managers are detailed. In particular, specific activation and
deactivation rules are described, as well as the key performance indicators (KPIs) of the plant.

6.1. System architecture

The DSS was built following a typical setup of full-fledged “Software as a Service” (SaaS)
applications. SaaS applications are centrally hosted, and by porting this feature into a service-
oriented DSS, we address many problems related to the maintenance and evolution of software.
It is especially helpful when phasing out older versions (Gold et al., 2004). Updates and bug
fixes are made available in a transparent and immediate way, requiring no further action from the
user.

The architecture of this SaaS DSS is comprised of three main layers: the Data Layer, the
Optimization Layer and the Web Presentation Layer. The layers communicate and work in a
seamless way. Also, the DSS infrastructure interacts with the enterprise resource planning (ERP)
and related systems, following the best practices in the field (Harjunkoski et al., 2014). Figure 8
gives an overview of the system’s architecture.

The Data Layer component is in control of establishing the necessary connections with third-
party systems, namely with the manufacturing execution system (MES) to retrieve information
about the shop floor; and with the ERP, which contains typical customer and order management
figures. The connection is established over an on-demand VPN link to the data warehouse, after
which data is retrieved and mapped to a local data model schema stored in an SQL database
(SQL Server).

Data retrieved from the external systems is then made available to the Optimization Layer,
providing critical input parameters to the optimization algorithm. Optionally, data can also be
provided through an Excel spreadsheet. Excel is still a popular and ubiquitous tool for assem-
bling data from several sources and for assisting in such an iterative and time-consuming process
(Harjunkoski et al., 2014), despite being potentially more error-prone since users can manipulate
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Figure 8: Overview of the DSS architecture, composed by three main layers: Data, Optimization and Web Presentation.

it freely. Regardless of the input source chosen, the data is fed to the Optimizer, which will then
generate a solution and provide it as an Excel spreadsheet file.

The optimizer block (illustrated in Figure 9) generates a production plan by executing the
optimization algorithm described in the previous section, followed by a post-optimization phase,
where the time slots’ lengths are fixed and the production rates are smoothed (cf. Subsection
4.6.3). The overall optimization process is wrapped by pre- and post-processing stages. In the
former, the size of the mathematical model is reduced by removing paper grades with no demand
or backlog to meet. In addition, orders are aggregated by grade and priority level to match the
model’s parameters. After the optimization, the production amounts have to be disaggregated
again, in order to make sure that individual orders are met, and KPIs have to be computed. The
allocation of production to orders is achieved by applying the “earliest due date” rule.

None of the layers is directly accessible by the operator of the DSS. Instead, the user interacts
with the system through the Web Presentation Layer, where he can upload Excel files to be later
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Figure 9: The optimizer component includes the main and post-optimizations, as well as pre- and post-processing stages.

used by the Optimization Layer; consult the run history; download output files; or check the
log files. Moreover, advanced users with administrator privileges will also be able to change
certain configuration parameters that may interfere directly with the optimizer. In the limit, the
web interface could be used only as a gate to the algorithm, a situation in which the user would
only upload the Excel input file and then download the Excel output file generated. However,
the full potential of the web interface comes with the important information directly retrieved
from the ERP systems, along with the tools developed and incorporated in the DSS to assist in
the analysis. One of such tools is an advanced table editor (Handonstable) that allows in-place
editing and direct copy-paste from and to Excel. The main advantage is that critical business logic
constraints and error-checking can be implemented at the interface level, preventing potential
mistakes from propagating to the Optimization Layer or to be stored in the local database.

6.2. System usage

From a user perspective, our DSS assists both production planners and production managers
in obtaining the best production plans for a short-term planning horizon. The process to obtain
such plans is presented in Figure 10. As previously mentioned, in order to start the user needs to
select which type of data to use — Excel or database.

By choosing to use the database, the user further needs to select a profile (production planner
or production manager), and he may also fine-tune some parameters. This parametrization is
made directly on the system’s interface, which is divided in two main sections. One displays the
main steps to generate a plan, and comprises only the frequently changed parameters, in order
to expedite the process (Figure 11). The other section contains more structural parameters, such
as capacities and processing times, which are more stable and hence accessed only sporadically
(Figure 12).

These parameters are organized in different tables, which are interconnected. For instance,
when a grade is added to the corresponding table, the table of setups is updated. As illustrated
in the figure, this table also presents a gradient of colors which helps managers having a better
understanding of the different costs associated with the process.

In the plan generation interface, managers start by customizing the orders (e.g. cancelling,
assigning priorities), which are read from the ERP. A variety of filters can be applied to facilitate
this characterization. Then, managers check planned production quantities on the spot, as well
as their estimated starting and ending times. This table is used to fix the initial part of the plan
(essential for rescheduling purposes) and scheduling stoppages (cf. Subsection 4.6.6). To do that,
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User (manual) System (automated)

select type of 
input data

read inputs from
the system

select input file

select profile and
fine tune 

parameters

generate
production plan

build and store
output file

select to 
donwload

download file

[parametrized]

[else]

[file completed][else]

Figure 10: Process of generating a production plan as an activity diagram. The activities on the right-hand side are
automated in the decision Support system, and the actions on the left-hand side require an input by the user.

managers can insert new rows at any position of the table and assign either a specific paper grade
and production amount or a stoppage (with specified starting and ending times). In addition, a
variety of rules can be activated or deactivated, depending on the user’s judgement of the current
state of the plant. These options include:

• distinct priority levels (cf. Subsection 4.6.1);

• required quality sequence (cf. Subsection 4.6.2)

• maximum and minimum lot sizes (cf. Subsection 4.6.2);

• maximum and minimum campaigns’ lengths (cf. Subsection 4.6.2);

• minimum distance between campaigns (cf. Subsection 4.6.2);

• production rates smoothness (cf. Subsection 4.6.3);

• initial backlog clearance (imposing the fulfilment of the initial backlog orders until the end
of the planning horizon).
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Figure 11: Web interface of the DSS for generating a production plan (only frequently changed parameters are displayed).

When the setup of the input data is concluded, the system starts to generate the production
plan by running the Optimizer, which includes the MIP-based heuristic (cf. Section 5). After
running this module, the system builds and stores the output excel file that will serve as the basis
for the decision process. Figure 13 is an example of an output. The output file comprises different
spreadsheets for the multiple areas of the P&P mill, represented by different colors in the figure.
The first sheets concern the entire mill and display all the computed production figures in tables,
as well as relevant KPIs, such as average and final backlog of orders, equipment utilization
ratios and total production output. The area-specific sheets then represent Gantt charts depicting
the sequence of operations, trend charts displaying the forecasted evolution of inventories of
intermediate and final products, and a comprehensive reporting on order fulfilment with expected
dates of delivery. The fact that all charts are generated from the tables and the latter contain
formulas for a great part of their figures (for instance, intermediate inventories are not fixed
values in the spreadsheet, but depend on the respective production and consumption values)
allows a convenient adjustment of the resulting schedule to address unsolved business/production
issues or to perform what-if analysis. At the end, if the user wants to perform some sensitivity
analysis he may run another production plan or download the output file to his computer.

The system’s usage described can be performed in three main contexts:

• periodic planning – the managers typically determine an optimized plan on a weekly basis
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and revise it daily;

• reactive scheduling – in the presence of a disturbance situation which causes a serious
disruption to the original plan, recover from that disturbance using an appropriate sequence
of campaigns (sometimes not obvious to plant managers);

• what-if -analysis – supporting planning in hierarchically superior levels by checking the
effectiveness of practical rules, expanding storage and production capacities (and other
retrofit designs), changing weights of different objectives and scheduling maintenance.

The second context tackles both internal uncertainties (such as equipment disturbances) and
external uncertainties (such as product demand) in a reactive way. Proactive measures can also
be applied, but they have to be defined manually. Thus, backlog situations may be prevented by
increasing the demand considered (there is a parameter for that in the planning options tab), and
disturbance propagation can be mitigated by narrowing the recommended levels of the interme-
diate tanks (cf. Subsection 4.6.4).

7. Results

In this section we start by looking at the usage of the system during a period of four months,
and then delve into one plan generated by the system and its differences comparatively to the
manually generated counterpart. In the end, a plan considering a long stoppage is analysed.

7.1. Overall results of the system’s usage

Production planners and managers are not willing to wait more than 15 to 20 minutes for an
optimized plan in normal conditions. When facing an operational issue, such as a disturbance,
that time can be reduced to 5 to 10 minutes. With that time limit, state-of-the-art solvers such
as Cplex are not even able to find a solution for a regular instance. The focus here is thus much
more on feasibility and improvement over current practice than on proving optimality. For that
reason, a considerable amount of constraints are relaxed (becoming soft constraints) so that our
constructive heuristic is always able to find an initial solution. Then, the MIP-based heuristic
improves that solution to a point that satisfies plant managers, that is where soft constraints are
satisfied as much as possible and the plan performs well according to the objectives defined.

Our system was made available online for the company to use. Various iterations were per-
formed with the users in order to fine tune all the parameters and introduce additional constraints
to the mathematical model, so that the resulting plans met their requirements. Table 1 contains
information about 22 runs executed during four months after those iterations. Even though the
total number of grades is 29, the number of grades with demand or backlog to satisfy at each
moment is reduced to 16/17. This shows the importance of the pre-processing steps described
in the previous section. The maximum number of campaigns (i.e. time slots) is set to 35 (for
a horizon of 15 days) and the model can use them all or leave some empty. The fixed (frozen)
campaigns depend on what was already scheduled in the cutting stage and on additional consid-
erations managers might want to make.

The table reports the improvements achieved over the initial solution in runs executed by
the planners. We can see that those values are highly variable. Essentially, they will depend on
whether the initial solution is already good or not, and on the time limit given, which is defined
by the user in every run. Nevertheless, an average improvement of 34% was obtained, with
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Table 1: Company’s usage of the system from June to September 2014.

# Date Grades Fixed campaigns Total campaigns Improv over ini sol Time (min)

1 09/06/2014 17 4 35 75% 13
2 17/06/2014 17 7 34 81% 12
3 19/06/2014 17 9 28 26% 8
4 20/06/2014 17 8 33 51% 10
5 20/06/2014 17 20 27 5% 4
6 27/06/2014 17 10 30 29% 10
7 04/07/2014 17 14 28 0% 7
8 09/07/2014 16 7 35 4% 10
9 14/07/2014 16 3 31 1% 18

10 18/07/2014 17 4 35 45% 12
11 18/07/2014 17 27 28 3% 2
12 22/07/2014 17 9 32 8% 11
13 24/07/2014 17 4 30 6% 12
14 24/07/2014 17 7 31 7% 15
15 24/07/2014 17 13 29 63% 9
16 29/07/2014 17 5 30 87% 18
17 06/08/2014 17 5 30 93% 14
18 06/08/2014 16 5 32 46% 16
19 27/08/2014 17 9 33 55% 11
20 03/09/2014 17 7 29 6% 10
21 15/09/2014 16 6 31 18% 15
22 25/09/2014 17 9 29 48% 14

Avg – 17 9 31 34% 11

an average running time of 11 minutes, which shows the ability of the heuristic to correct and
improve production plans in short periods of time.

To validate the quality of those plans, they need to be compared to those generated manually
by the company. The system can also be useful in this regard. In fact, the system can be used
not only to optimize a plan from scratch, but also to test certain schedules by fixing the sequence
and amounts of paper campaigns. The table clearly shows that the company has applied these
two usages, comparing the output of both (for instance, runs 4 and 5, which have very different
numbers of fixed campaigns – run 4 refers to the optimum plan and run 5 to the so-called manual
solution). When fixing most campaigns, the algorithm is naturally much faster to finish. How-
ever, that should not be a reason for not allowing the system to optimize the plans, since just
providing the initial sequence guarantees a good solution in a few minutes, in case the sequence
is good, and makes it possible to improve on that solution.

The plan of run 4 (taking full advantage of the DSS) outperforms that of run 5 (manual plan)
by 59%. Regarding runs 10 (optimized) and 11 (manual), there was a 71% improvement. These
values are unreasonably high since some soft constraints were violated in the company’s plans,
whereas our system has addressed them. A more insightful comparison is performed in the next
subsection, where we look at the schedules and the main KPIs.

7.2. Optimized plan vs. manual plan – an example

Two production plans, one optimized by the system and the other defined manually (although
still generated by the system), are now examined. Figures 14 and 15 depict these two plans, in
particular the schedule of campaigns and the virgin pulp stock level (measured in tonnes). As
usual, the initial part of the plans is fixed. The differences thus start in the middle, where the
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optimized plan includes KLB275A and KLB170A (which were ignored by the manual plan) and
an additional campaign of KLB225, on the descending part of the sequence. Note that plans
tend to follow this smooth ascending and descending pattern of grades, in order to avoid costly
setups. Then, the cycle of the virgin pulp level is extended in the optimized plan to produce
a larger amount of KLB170 and to avoid another campaign of this grade. After that, the VLB
campaigns have to start in order to raise the level of virgin pulp again. In fact, these grades
incorporate considerably more recycled fibres and hence are used to balance the KLB grades,
which have the opposite composition - more virgin fibres. The manual plan ends with low KLB
grades, which were not repeated in the optimized plan.

To better understand the different planning approaches, we need to look at their impact on
the main KPIs. The relative improvement of the optimized plan over the manual counterpart is
given in Table 2.

Table 2: Comparison of the manual and optimized plans, with respect to main KPIs.

Backlog Setups Production Stock Overall

-6.4% -10.0% -1.8% -2.6% -7.4%

From the table, one may conclude that the additional campaigns in the optimized plan helped
to improve backlog by more than 6%. Moreover, the smoother grade changeovers and the ab-
sence of the second wave of KLB grades at the end of the manual plan (where KLB135 restarts)
made it possible to reduce setup costs by 10%. Furthermore, inventory was reduced by almost
3%. The only advantage of the manual plan is a 2% additional production. The optimization
method made a trade-off when extending the duration of the production cycle, which forced a
slight reduction of the paper machine’s rate (as it was exhausting the pulp tanks), but allowed
for a better fulfilment of demand and improvement of operational costs. In manual planning it is
difficult to grasp this kind of trade-offs and practitioners are forced to use simple rules, such as a
given production cycle, to generate feasible plans. Nevertheless, when programming stoppages
for equipment maintenance or when stoppages arise in disturbance situations, it is more difficult
to devise rules. In those cases, the DSS can bring additional value.

7.3. Plan considering stoppages

To conclude this section, a plan considering a long stoppage in the entire plant is studied. The
plan is illustrated in Figure 16, where the stoppage of the paper machine is represented as another
paper grade. The paper machine stops after the digester in order to consume all the pulp left in
the tanks. At the start-up, the digester is activated before the machine to create some inventory of
pulp. The machine starts with VLB165, which consumes significantly more recycled than virgin
pulp. This way, the virgin pulp inventory continues to rise until it reaches a level where the KLB
products (which consume more virgin pulp) can be produced.

Planning a stoppage takes the resources to their actual limits. Therefore, the rates have to
be carefully managed. When generating the illustrated plan, some simplifying assumptions were
made, such as the ability of the production rates to rise from (or fall to) zero instantly. The
aim there was just to obtain a rough idea of what the plan would be. Nevertheless, the system
allows considering maximum rates variations, as well as easily redefining maximum and mini-
mum rates. Hence, after this initial plan managers could generate a more accurate plan by further
customizing the system inputs.
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8. Conclusions and future work

The DSS reported in this paper has been developed to help a P&P company deal with the var-
ious challenges of their production planning and scheduling activities. Companies in this sector
have to differentiate themselves by providing the best customer service at minimum cost, since
paper prices are determined by the market. Therefore, multiple criteria have to be considered and
properly weighted when devising a production plan. However, managers do not have the time
at the operational level to thoroughly evaluate plans, which must satisfy a multitude of complex
constraints. Hence, the DSS supports the automatic generation of plans with different levels of
customization (e.g. fixing the sequence and/or amounts of paper campaigns).

Several iterations were performed with the company in order to include a set of essential
features for their planning tasks and to design user-friendly interfaces. The immediate updates
(due to the SaaS setup), in-place editing, direct copy-paste from and to Excel, input validation
procedures, automatic connection to existing systems, and separation of plan generation and fine
tuning interfaces are examples of technical details that were crucial for the usability of the sys-
tem. On the other hand, the optimization model provided the required flexibility in incorporating
operational constraints, such as fixing campaigns and scheduling stoppages. The method then
makes use of the model to generate good quality solutions in the short periods of time available
at the operational level.

As future work, additional features can be included, such as improving the interactivity of the
final schedules or providing more customization of the input data. These enhancements should
be done according to the company’s actual needs. In addition, the modular design of the system,
as well as the general-purpose of the optimization method, would make it easier to adapt or
extend to other similar plants. It would also be interesting to extend the comparison to a large
set of manual plans and perform some sensitivity analysis (regarding the savings obtained by the
DSS) on certain model parameters, such as product demands.

In terms of the DSS engine, the formulation may still be tightened by additional valid in-
equalities or reformulations. Comparing the formulations of Karimi and McDonald (1997) and
Camargo et al. (2012) could give some insights in this regard. Moreover, the “facility plant
location” reformulation could also improve the model’s solvability (Amorim et al., 2011). An-
other important aspect to be examined is the impact of the soft constraints on the optimization
performance, and how that could be addressed by the heuristic method. The latter could also be
improved with respect to the neighbourhoods used, possibly allowing it to add/remove campaigns
to/from certain positions, as suggested by Figueira et al. (2013).

Finally, as computational power increases and the efficiency of the methods improve, the
production planning problem can integrate more details of other activities (up or downstream in
the supply chain) or address important issues, such as process variability and disturbances. The
latter may have an important impact on the production system, and therefore its consideration in
a proactive planning approach is highly relevant.
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Appendix A. List of acronyms

Industry: Information technology:
KLB KraftLiner Board (with more virgin fibres) DSS Decision Support System
MTO Make-To-Order ERP Enterprise Resource Planning
P&P Pulp and Paper KPI Key Performance Indicator
RPM Revolutions Per Minute MES Manufacturing Execution System
VLB KraftLiner Board (with more recycled fibres) SaaS Software as a Service

Planning and scheduling: SQL Structured Query Language
CGLSP Crossed Grid Lot-sizing and Scheduling Problem VPN Virtual Private Network
CLSD Capacitated Lot-Sizing with Sequence Dependent setups Analytics:
CSLP Continuous Setup Lot-sizing Problem LP Linear Programming
DLSP Discrete Lot-sizing and Scheduling Problem MIP Mixed Integer Programming
GLSP General Lot-sizing and Scheduling Problem OR Operations Research
PLSP Proportional Lot-sizing and Scheduling Problem PSE Process Systems Engineering

Appendix B. Mathematical notation

Indices
t Index for time period (t ∈ [T ] = {1, . . . ,T })
s, u Indices for time slot (s, u ∈ [S ] = {1, . . . , S })
j, k Indices for paper grades ( j, k ∈ [K] = {1, . . . ,K})
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Parameters
cap Period’s capacity (in hours)
hcap Planning horizon’s capacity (in hours): hcap = T · cap
slotsmax Maximum number of slots crossing one period
Vdig

min

(
Vdig

max

)
Minimum (maximum) rate of the digester (in rpm)

α conversion factor of digester’s throughput (from rpm to tonnes per hour)
Ivirg
min

(
Ivirg
max

)
Minimum (maximum) level of virgin pulp stocked in the tanks (in
tonnes)

f j Percentage of water in paper grade j
tlb j Average trim loss (in percentage) of paper grade j that goes to the loss

pulp tank
bvirg

j Percentage of virgin pulp used in the production of paper grade j
bvirg

loss Percentage of virgin pulp in the loss pulp
slk j Paper lost in a changeover from grade k to j (in tonnes)
stk j Time lost in a changeover from grade k to j (in tonnes)
pmin

j minimum time (at machine’s maximum rate) to produce one tonne of
paper grade j (in hours)

pmax
j maximum time (at machine’s minimum rate) to produce one tonne of

paper grade j (in hours)
d jt Demand for paper grade j in period t (in tonnes)
tl j Average trim loss (in percentage) of paper grade j
I j0 Initial inventory of paper grade j (in tonnes)
IB j0 Initial backlog of paper grade j (in tonnes)
bc Cost of backlogging one tonne of paper per period
hc Cost of holding one tonne of paper in stock per period
sck j Setup cost of changing from grade j to k
po Benefit (negative cost) of producing paper
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Decision variables
S start

s Starting time of slot s
S end

s Ending time of slot s
U start

js Starting time of slot s for grade j
Uend

js Ending time of slot s for grade j

Ets

1 if slot s intersects period t
0 otherwise

Y js

1 if the paper machine is set up for grade j in slot s
0 otherwise

Ns Length of slot s (in hours)
Xvirg

s Production of virgin pulp in slot s (in tonnes)
Ovirg

s Amount of virgin pulp fed into the paper machine in slot s (in tonnes)
Ivirg

s Inventory of virgin pulp at the end of slot s (in tonnes)
Xloss

s Production of loss pulp in slot s (in tonnes)
Oloss

s Amount of loss pulp used in slot s (in tonnes)
X jts Production of paper grade j in period t and slot s (in tonnes)

Zk js

1 if a changeover from grade k to j occurs at the beginning of slot s
0 otherwise

W start
jts Starting time of slot s for grade j in period t

Wend
jts Ending time of slot s for grade j in period t

I jt Inventory of paper grade j at the end of period t (in tonnes)
IB jt Backlog of paper grade j at the end of period t (in tonnes)
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Figure 12: Web interface of the DSS for fine-tuning structural (less frequently changed) parameters.
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Figure 13: Output Excel file with tables and charts detailing the production plan (complete table, evolution of final
products stock / backorders, paper campaigns and machine’s production rate, respectively).
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Figure 14: Manual plan – generated by the system, fixing the sequence and size of paper campaigns (grades on the left
and virgin pulp on the right axis).
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Figure 15: Optimized plan – generated by the system, optimizing the sequence and size of paper campaigns (grades on
the left and virgin pulp on the right axis).
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Figure 16: Plan considering a long long stoppage – paper grades (bars) and digester’s rate (dashed line) represented on
the left axis and virgin pulp tank (solid line) on the right axis.
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