
Time-limited Bloom Filter ∗

Ana Rodrigues Ariel Shtul Carlos Baquero Paulo Sérgio Almeida

June 9, 2023

Abstract

A Bloom Filter is a probabilistic data structure
designed to check, rapidly and memory-efficiently,
whether an element is present in a set. It has been
vastly used in various computing areas and several
variants, allowing deletions, dynamic sets and work-
ing with sliding windows, have surfaced over the
years.

When summarizing data streams, it becomes rel-
evant to identify the more recent elements in the
stream. However, most of the sliding window schemes
consider the most recent items of a data stream with-
out considering time as a factor. While this allows,
e.g., storing the most recent 10000 elements, it does
not easily translate into storing elements received in
the last 60 seconds, unless the insertion rate is stable
and known in advance.

In this paper, we present the Time-limited Bloom
Filter, a new BF-based approach that can save infor-
mation of a given time period and correctly identify
it as present when queried, while also being able to
retire data when it becomes stale. The approach sup-
ports variable insertion rates while striving to keep a
target false positive rate. We also make available a
reference implementation of the data structure as a
Redis module.

∗This work is partially financed by National Funds through
the Portuguese funding agency, FCT - Fundação para a Ciência
e a Tecnologia, within project UIDB/50014/2020. This version
extends the 4 page version published in ACM SAC 2023 and
adds a section on Experimental Evaluation.

1 Introduction

Nowadays, there are several settings where searches
of small amounts of information are made in large
pools of data stored somewhere. Often, there is an
aim to optimize that search, making it a low latency
and high throughput operation, by trying to find new
data structures, technologies and mechanisms.

A Bloom Filter (BF) is a hash coding method with
allowable errors that can be used for “testing a series
of messages one-by-one for membership in a given
set of messages” [2]. In more recent years, the BF
scheme has been receiving a lot of attention, with
many variants surfacing, and is now being used in
a wide range of systems/applications, such as web
caches [11], networking [4, 7, 17] and databases [13]

Many of the BF-based approaches consider the
most recent elements of the data stream, i.e., a spec-
ified number of fresh items is stored. However, none
of them take time into account. This is important for
many real world scenarios, e.g., to avoid showing the
user the same commercial advertisement more than
once in a given time period or to be able to check the
IPs that connected to a system at a certain time, as
well as for fraud detection and prevention of denial
of service attacks.

An Age-Partitioned Bloom Filter (APBF) [16] is a
BF-based data structure able to hold a specified win-
dow of elements and evict those that are older. In this
paper, we present the Time-limited Bloom Filter, a
variant of the APBF method that forgets informa-
tion at a given time-based rate, but still, according
to the setup of the filter, provides high accuracy when
querying a specific time window (e.g., the last minute
or the last hour).

1

ar
X

iv
:2

30
6.

06
74

2v
1

 [
cs

.D
S]

 1
1

Ju
n

20
23

2 Bloom Filters

A Bloom Filter [2] is a space-efficient data structure
designed to represent a set of elements and check for
membership on that set. In its simple form, a BF
consists of a bit array of size m, with each bit ini-
tially set to 0. When an element is inserted, k bits of
the array are set to 1 by a set of k uniform indepen-
dent hash functions (h1, h2, . . . , hk). To query for its
presence, all bits to which the item is hashed to are
checked. If at least one bit is 0, then we are certain
the element is not in the BF, otherwise, if all bits
are 1, one considers the element to be present with a
certain error probability, known as false positive rate.

Usually the memory footprint of BF is defined ac-
cording to the number of elements to store and to the
allowed false positive rate.

3 Data streams and window
models

Since the size of a data stream may be infinite, it is
essential to have a mechanism that helps to control
which part of the stream is important to the problem
at hand. Many BF solutions revisit the concept of
window models to process these streams, the most
common ones being the Landmark Window [8, 14],
Sliding Window [14, 18] and Jumping Window [14,
20].

A Landmark Window handles disjoint segments of
the data stream, one at a time, each limited by a
specific landmark (a time interval, e.g., an hour or a
day). Since it only stores a segment of the entire data
stream at a time, it requires less space than the other
two models. However, it fails to establish element
relationships between windows, i.e., two duplicates
can be missed, if one of them occurs at the end of a
landmark and the other at the beginning of the next.

A Sliding Window considers only the most recent N
elements of the data stream, which means that for ev-
ery new element arriving, an old one must be evicted.
It is ideal for studying the data stream behavior in
real time. For this scheme, any data structure can be
used as long as it allows the deletion of elements.

The basic idea of the Jumping Window is to slide
the window in jumps as the data flows, by break-
ing the stream into smaller disjoint sub-windows of
fixed size. It ensures the freshness of the results and
does not need to store the whole window. However,
it cannot accurately represent the data stream ac-
tual state, since the number of elements varies as the
window jumps. This scheme requires the use of data
structures that can combine and subtract efficiently
their results.

4 Duplicate detection in
streams

Duplicate detection is an important operation in
many real world scenarios, such as in URL crawl-
ing [5, 12], to avoid the constant fetching of the same
URL, and in click streams [14], for fraud detection.
Nowadays, there are many different approaches to de-
tect duplicates in a data stream, which are essentially
based on Bloom Filters or Dictionaries.

4.1 BF-based

Most approaches for detecting duplicates in a stream
of elements are BF-based and basically consist of
mapping k cells to update using k hash functions.
Loosely, they can be based on counters, segments or
timestamps.

Counter-based methods were originally introduced
with the purpose of allowing the deletion of data in
a set. The Stable Bloom Filter [8] is an example of
a counter-based approach that ages the filter by ran-
domly choosing some counters (if greater than 0) to
decrement at every insertion. However, this scheme
introduces false negatives and doesn’t guarantee that
the elements being expired are actually the oldest in
the filter.

Segmented-based approaches make use of more
than one segment. Double Buffering [6] uses two
buffers, an active and a warm-up, where the first
holds the more recent data and the other is a sub-
set of the first. When the active becomes full, the
two buffers switch roles and the now warm-up buffer

2

is cleared out to receive fresher elements. Some-
what similar, A2 Buffering [19] also uses two buffers,
active1 and active2, but simultaneously. The first
buffer stores the more recent data and the second
holds older recent elements. When the active1 be-
comes full, everything in active2 is cleared out and
the two buffers switch roles. Comparing these two
schemes, A2 Buffering is more memory efficient, since
both buffers store distinct elements, while Double
Buffering introduces data redundancy.

Timestamping solutions use counters to record
the insertion of an element, instead of decrementing
them periodically over time. The Detached Counting
Bloom Filter Array [18] associates a timer array to
each of its filters, so to keep track of when data is
inserted as well as when it needs to be retired. This
scheme works well with the sliding window model,
however, it is expensive in terms of memory use.

4.2 Dictionary-based

Dictionary-based approaches are mostly compara-
ble to hash tables, but instead of storing the en-
tire data, only a fingerprint of the element is saved.
Although there are more BF-based schemes for du-
plicate detection, the ones with better performance
results are dictionary-based, the most common ones
being the Cuckoo Filter [10], Morton Filter [3] and
SWAMP [1].

The Cuckoo Filter is based on the Cuckoo Hash
Table [15] and consists of an array of buckets, where
each can have multiple entries, and one entry is able
to hold one fingerprint. An element has always two
possible buckets to be stored in, determined by hash
functions h1 and h2. To check for its presence, only
the two candidate buckets for the item need to be
queried.

The Morton Filter is somewhat similar to the pre-
vious method, but bias decisions in favor of h1 in-
stead and employs a compression strategy called the
Block Store. It improves, in terms of space usage and
throughput, comparatively to the Cuckoo Filter.

SWAMP is the most recent state of the art
dictionary-based approach. It functions as a cyclic
buffer and maintains a TinyTable [9] to keep track
of the various fingerprints’ frequencies. This scheme

keeps the most recent data of the stream, by evicting
the oldest entry when a new one is added, and is able
to check, in constant time, if an element is present
and how many distinct items are stored in the buffer.

5 Age-Partitioned Bloom Filter

Many of the methods previously discussed either aim
to optimize space utilization at the expense of using
more complex algorithms, or are simple yet inefficient
in terms of memory usage. To balance these proper-
ties (time complexity, space efficiency and algorithm
complexity), Age-Partitioned Bloom Filters [16] of-
fer a BF-based data structure that improves over
prior BF-based schemes and is able to compete with
dictionary-based techniques.

5.1 Structure

An APBF follows the segmented approach and
partitions the filter in a series of k + l slices
(s0, s1, . . . , sk+l−1), each with m bits. This scheme
also makes use of k + l independent hash functions,
one fixed per bit array, and maintains a counter n, to
keep track of how many elements have been inserted
since the filter creation. Each desired false positive
rate can be obtained by different combinations of k
and l, each combination providing a different trade-
off in terms of operation speed and memory footprint.

Like a Bloom Filter, an APBF has two basic oper-
ations: insert and query. However, unlike the latter,
it can hold a specified window of the most recent
elements and is able to expire stale information by
shifting its slices.

5.2 Insert

Incoming data is stored in the first k slices of the
filter, by setting the corresponding k bits to 1. After
some time, an insertion may trigger a shift and the
slices move up in the array, i.e., s0 becomes s1, s1
becomes s2, and so on. Consequently, the last slice
is discarded, to evict older elements, and a new one
is added at location 0, to receive more recent ones.

3

In practice, slice sk+l−1 is emptied out and is then
reused as the new slice s0.

The number of insertions made in the filter until
a shift occurs is called a generation (g). Slices shift
whenever one of the k slices reaches its maximum
capacity. Note that, a slice hits an optimal use when
its fill ratio (defined below) is equal to 1/2.

5.3 Query
For an element to be deemed as present, it needs to
be found in k consecutive slices. The query algorithm
starts at slice l and moves up if a match is found while
adding 1 to the counter c of consecutive matches.
Otherwise, it goes down k slices, saves the number
of matches already found in the counter p, resets c
and repeats the process once again. The algorithm
terminates when the k consecutive matches are found
or when there are no more slices to check.

In this scheme, all elements inside the APBF slid-
ing window are always guaranteed to be reported as
present, i.e., no false negatives are observed.

5.4 Fill ratio
The fill ratio r of a slice is defined as the ratio of
its set bits and depends on its size (m) and on the
number of elements it has stored (n). Given this, it
can be obtained by

r = 1−
(
1− 1

m

)n

≈ 1− e−
n
m . (1)

Due to shifting, slices have different fill ratios. The
filter reaches a steady state after k + l shifts, point
when it stores between l and l+1 generations. In the
worst case, just before a shift occurs, the expected fill
ratios r0, r1, . . . , rk+l−1 are approximately given by

ri ≈

{
1− 2−

(i+1)
k if i < k,

1/2 otherwise.
(2)

6 Time-based Age-Partitioned
Bloom Filter

The Time-based Age-Partitioned Bloom Filter adapts
the APBF model to hold a specified time window of

Table 1: Notations.

Variable Description

si Slice at location i
mi Size of slice i in bits
ci Number of elements slice i can store (capacity)
ni Number of elements inserted into slice i

g Number of elements inserted until a shift occurs
(generation size)

tspan Time span specified by the user
ti Timestamp of the last update made to slice i

ui
Number of updates that can still be done until
slice i gets full

elements. It is structured as a series of k + l slices,
each with mi bits and a fixed hash function. Only
k independent hash functions are used, seeing that
slices that are apart by k positions are not used for
the same insertions and, therefore, can share the same
hash function.

One of the things to take notice of in this new
solution is the insertion rate. In the majority of cases
(if not all), this parameter will not be known a priori,
so the filter must be able to adapt dynamically to its
variation. The strategy is then to allow the filter to
scale its number of slices, up and down, to adapt to
the rate of insertions and be able to keep a time span
of elements, while also adjusting the new slice s0 size.

For a better understanding of the notations used
in the following sections, Table 1 presents a list of
variables and their meaning.

6.1 Slice life-time
As previously stated, the time-based APBF should be
able to add more slices, if needed, to accommodate
the elements of a given time period. However, it must
also be capable of retiring those same slices whenever
they become stale. For a slice to be expired, its times-
tamp must be older than the time span. Therefore,
slice si is retired when

ti < now()− tspan , (3)

where now() is the timestamp in the present moment.
To avoid the cost of doing this at every insertion,
checking whether a slice should be retired can be done
only when a shift is triggered.

4

6.2 Shift triggering

The shifting mechanism guarantees that none of the
first k slices surpasses its maximum capacity. Now
that slices can have different sizes, the number of up-
dates a slice can take until it reaches its optimal use
depends on its size, the number of insertions already
received and the amount of shifts left until it gets
to position k, point when it stops receiving new ele-
ments. This means that the number of insertions left
for slice i, from that position, is distributed by the
remaining k − i shifts:

ui = ⌊mi × ln2− ni

k − i
⌋ . (4)

Therefore, the actual number of updates the filter can
receive until a shift is triggered is

g = min{ui | i ∈ [0, k − 1]}. (5)

This value is obtained right after a shift and can be
saved on a counter that gets decremented by 1 at
every insertion, triggering a shift when it reaches 0.

6.3 Slice size

After every shift, a new slice s0 is added to the fil-
ter with size m0. In the original APBF, this value
is static and the same for all slices. However, in the
time-based scheme, the size of s0 can be updated ac-
cording to the insertion rate.

The fraction tspan

l represents the target time to
have between shifts, so the number of slices remains
constant (= k + l), ts is the time that passed since
last shift and g the number of insertions made in that
period. The target generation size, i.e., the number
of elements the filter should aim to insert between
shifts, is then obtained by

tg =
g × tspan
ts × l

. (6)

The next step is to look at the remaining k slices,
from 1 to k−1, and calculate how many more updates
can be done, at most, until (if ever) the new s0 be-
comes the new limit. Applying Equation 5 to slices
1 to k − 1 gives the minimum number of updates

function query(x)
i := numSlices− k, p := 0, c := 0
while i ≥ 0 do

if si[hi(x)] = 1 and ti ≥ now() − tspan
then

c := c+ 1, i := i+ 1
if p+ c = k then

return t rue
else

i := i− k, p := c, c := 0
return f a l s e

Algorithm 1: Query algorithm.

possible until one of those slices reaches its full ca-
pacity. Consider sj to be the slice with the minimum
amount of possible insertions. The new capacity for
s0 is given by

c0 = count+ i× tg , (7)

where count is the total number of updates possible
from position j to k and i the number of shifts needed
until s0 reaches location j. Therefore, the size of the
new slice is given by

m0 = ⌈ c0
ln2

⌉ . (8)

6.4 Query

The query algorithm of this new scheme follows the
same logic as the original APBF, detailed in Sec-
tion 5.3, the only difference being an additional check
to see if the slices, that are being queried for the el-
ement, are still within the specified time period. If
not, then they are not considered in the search. Al-
gorithm 1 shows the detailed process of the query
operation.

7 Experimental Evaluation

In this section, the time-based APBF is evaluated in
terms of the number of slices in the filter, the size of
s0, the memory use per element of interest and the

5

false positive rate. For this purpose, a C implemen-
tation of this scheme was developed and is publicly
available at Redis Bloom in the AgePartitionedBF
branch.

7.1 Number of slices and size of slice
0

As previously stated, the number of slices in a time-
based APBF can increase to accommodate more data
when necessary, but should also decrease back to the
base value of k + l when the filter stabilizes. Re-
garding the size of s0, it should adapt to the inser-
tion rate, by increasing and decreasing when needed,
and remain constant when the filter reaches a steady
state.

In this experiment, a total of 10 filters, with the
same error rate of 0.1, a time span of 300 seconds
(equivalent to 5 minutes), an insertion rate of 0.1
seconds, and different initial capacities and k and l
combinations, were subject to a data stream of 10000
distinct elements. Figures 1 and 2 show the results of
measuring the number of slices and the size of slice
0, at every insertion, when the filters are under and
over-dimensioned, respectively.

In the first case, when the initial capacity is 1000,
the filters are under-dimensioned and so an increase
of the number of slices, as well as the size of slice 0, is
observed, as expected. When the filters stabilize, i.e.,
start inserting the exact aimed number of elements
between shifts, the number of slices begins to decrease
back to the base value of k + l and the size of s0
remains constant after reaching its optimal value.

When the filters are over-dimensioned, the num-
ber of slices doesn’t suffer any alterations, since slices
have more space allocated than necessary and, there-
fore, there’s no need to add more. However, at the
very first shift, the size of s0 is updated down to
the optimal value to conserve the memory space and
avoid unnecessary waste.

Furthermore, by looking at the filters with (k = 4,
l = 3) and (k = 8, l = 56), it’s safe to say that
filters with lower k and l combinations take longer to
stabilize, since their slices are larger and, thus, take
longer to fill and, consequently, to shift, which is the
point when the size of slice 0 is updated.

0 2000 4000 6000 8000 10000
0

15

30

45

60

75

Number of insertions

N
um

be
r

of
 s

lic
es

K=4 L=3
K=5 L=7
K=6 L=14
K=7 L=28
K=8 L=56

(a)

0 2000 4000 6000 8000 10000
0

1000

2000

3000

4000

5000

6000

Number of insertions

S
iz

e
of

 s
lic

e
0

K=4 L=3
K=5 L=7
K=6 L=14
K=7 L=28
K=8 L=56

(b)

Figure 1: (a) Number of slices, at every insertion, of
each filter with an initial capacity of 1000; (b) Size of
slice 0, at every insertion, of each filter with an initial
capacity of 1000.

6

https://github.com/RedisBloom/RedisBloom/tree/AgePartitionedBF

0 2000 4000 6000 8000 10000
0

15

30

45

60

75

Number of insertions

N
um

be
r

of
 s

lic
es

K=4 L=3
K=5 L=7
K=6 L=14
K=7 L=28
K=8 L=56

(a)

0 2000 4000 6000 8000 10000
0

4000

8000

12000

16000

20000

Number of insertions

S
iz

e
of

 s
lic

e
0

K=4 L=3
K=5 L=7
K=6 L=14
K=7 L=28
K=8 L=56

(b)

Figure 2: (a) Number of slices, at every insertion, of
each filter with an initial capacity of 10000; (b) Size
of slice 0, at every insertion, of each filter with an
initial capacity of 10000.

Table 2: Range of bits per element allocated for each
error rate.

Error rate 0.1 0.01 0.001 0.0001 0.00001
Bits per
element

Min 10 19 26 32 41
Max 13 24 35 45 56

7.2 Memory use per element

Another important metric to analyze is how many
bits are allocated to each stored element inside the
target time window. In this experiment, a total of 10
filters, with the same error rate of 0.1, a time span
of 300 seconds (equivalent to 5 minutes), an insertion
rate of 0.1 seconds, and different initial capacities and
k and l combinations, were subject to a data stream
of 10000 distinct elements. Fig. 3 shows the results
of measuring the bits per element, at every insertion,
when the filters are under and over-dimensioned, re-
spectively.

As expected, over-dimensioned filters take longer
to reach a steady state due to their initial over-sized
slices. Still, in both cases, the number of bits per
element stabilizes around values between 10 and 13.

When analyzing this metric for different error rates
(Table 2), an increase in the range of bits used per
element is observed for higher precisions.

7.3 False positive rate

To measure the false positive rate (FPR), a total of 6
filters, with the same time span of 300 seconds (equiv-
alent to 5 minutes), an insertion rate of 0.1 seconds,
and different error rates, initial capacities and k and l
combinations, were subject to a data stream of 10000
distinct elements. At every insertion, each filter with
an error rate of 1/10i was queried for 10i × 10000
distinct elements, known not to be present. Figures
4 and 5 show the results of measuring the FPR, at
every insertion, when the filters are under and over-
dimensioned, respectively.

As seen before, when filters are under-dimensioned,
the number of slices increases to make room for more
information. From Fig. 4, it’s possible to affirm that
this increase in the amount of slices doesn’t affect
much the FPR, with it just going a bit over the pre-

7

defined threshold.
When an over-dimensioning of the filter happens,

the false positive rate takes longer to stabilize and
reach the configured maximum rate because of the
initial over-sized slices. Since they’re too big, they’ll
never reach their target fill ratio and, therefore, the
probability of finding a false positive is lower. Only
after a number of shifts, when those initial slices are
discarded, does the FPR reach the predefined thresh-
old.

In both cases, as the data is inserted, the FPR
stabilizes around the configured error rate. The zig
zag effect seen is the result of filling up the slices (the
peak represents the state right before a shift) and of
discarding the last one and adding a new empty slice
at position 0 (the lower end represents the state just
after a shift). This effect is attenuated in higher k
and l combinations, as well as in higher precisions.

A simple test was also made to confirm that all
elements inserted within the specified time span were
correctly identified as present and, as intended, no
false negatives were registered.

8 Conclusion

In this paper, we presented the Time-limited Bloom
Filter, a segmented-based approach that partitions
the filter in k + l slices. When necessary, this data
structure can increase its number of slices, so as to
accommodate more data, and adapt the size of slice
0 accordingly. Symmetrically, slices can also be re-
tired when their data becomes stale, i.e., when it no
longer belongs to the specified time span. Further-
more, slices that are apart by k positions can share
the same hash function, since they will not be used
for the same insertions, and so, only k hash func-
tions need to be used for this scheme. Elements that
are inserted within the time window are always re-
ported as present, which means this solution has no
false negatives. Also, the false positive rate stabilizes
around the predefined maximum rate. Even when
the number of slices increases, the FPR doesn’t jump
abruptly, only goes slightly above the configured er-
ror rate.

Another interesting metric analyzed was the mem-

ory use per element belonging to the target time win-
dow. It was observed that lower precisions use fewer
bits per item, between 10 and 13, and that as the
error rate decreases the memory use increases, reach-
ing values between 41 and 56 bits per element in the
highest precision.

Regarding the slices retirement, the minimum
value the number of slices of a time-based APBF can
decrease to, in this work, is k + l. However, poten-
tially it is possible to decrease the number of slices
as low as k without affecting the false positive rate,
an interesting aspect to analyse in the future.

The mechanism presented in this paper was im-
plemented in C and is available as a Redis mod-
ule, loadable into a Redis server instance, and can
be used with the command line Redis client or from
client libraries in several languages. Implementation
is available at https://github.com/RedisBloom/
RedisBloom/tree/AgePartitionedBF.

References
[1] E. Assaf, R. B. Basat, G. Einziger, and R. Fried-

man. Pay for a sliding bloom filter and get count-
ing, distinct elements, and entropy for free. In
IEEE INFOCOM 2018 - IEEE Conference on
Computer Communications, pages 2204–2212,
Apr 2018.

[2] B. H. Bloom. Space/time trade-offs in hash cod-
ing with allowable errors. Communications of
the ACM, 13(7):422–426, Jul 1970.

[3] A. D. Breslow and N. S. Jayasena. Morton fil-
ters: Faster, space-efficient cuckoo filters via bi-
asing, compression, and decoupled logical spar-
sity. Proc. VLDB Endow., 11(9):1041–1055, May
2018.

[4] A. Broder and M. Mitzenmacher. Survey: Net-
work applications of bloom filters: A survey. In-
ternet Mathematics, 1, Nov 2003.

[5] A. Z. Broder, M. Najork, and J. L. Wiener. Effi-
cient url caching for world wide web crawling. In
Proceedings of the 12th International Conference
on World Wide Web, pages 679–689, 2003.

8

https://github.com/RedisBloom/RedisBloom/tree/AgePartitionedBF
https://github.com/RedisBloom/RedisBloom/tree/AgePartitionedBF

[6] F. Chang, W. Feng, and K. Li. Approximate
caches for packet classification. In IEEE IN-
FOCOM 2004, volume 4, pages 2196–2207, Mar
2004.

[7] L. H. M. K. Costa, S. Fdida, and O. C. M. B.
Duarte. Incremental service deployment us-
ing the hop-by-hop multicast routing proto-
col. IEEE/ACM Transactions on Networking,
14(3):543–556, Jun 2006.

[8] F. Deng and D. Rafiei. Approximately detect-
ing duplicates for streaming data using stable
bloom filters. In Proceedings of the 2006 ACM
SIGMOD International Conference on Manage-
ment of Data, pages 25–36, Jan 2006.

[9] G. Einziger and R. Friedman. Counting with
tinytable: Every bit counts! IEEE Access,
7:166292–166309, 2019.

[10] B. Fan, D. G. Andersen, M. Kaminsky, and
M. D. Mitzenmacher. Cuckoo filter: Practically
better than bloom. In Proceedings of the 10th
ACM International on Conference on Emerg-
ing Networking Experiments and Technologies,
pages 75–88, 2014.

[11] L. Fan, P. Cao, J. Almeida, and A. Z. Broder.
Summary cache: a scalable wide-area web cache
sharing protocol. IEEE/ACM Transactions on
Networking, 8(3):281–293, Jun 2000.

[12] A. Heydon and M. Najork. Mercator: A scal-
able, extensible web crawler. World Wide Web,
2(4):219–229, 1999.

[13] L. F. Mackert and G. M. Lohman. R* optimizer
validation and performance evaluation for local
queries. SIGMOD Rec., 15(2):84–95, Jun 1986.

[14] A. Metwally, D. Agrawal, and A. El Abbadi. Du-
plicate detection in click streams. In Proceedings
of the 14th International Conference on World
Wide Web, pages 12–21, 2005.

[15] R. Pagh and F. F. Rodler. Cuckoo hash-
ing. Journal of Algorithms, 51(2):122–144, May
2004.

[16] A. Shtul, C. Baquero, and P. S. Almeida.
Age-partitioned bloom filters. CoRR,
abs/2001.03147, Jan 2020.

[17] A. C. Snoeren, C. Partridge, L. A. Sanchez,
C. E. Jones, F. Tchakountio, B. Schwartz, S. T.
Kent, and W. T. Strayer. Single-packet ip trace-
back. IEEE/ACM Transactions on Networking,
10(6):721–734, Dec 2002.

[18] J. Wei, H. Jiang, K. Zhou, D. Feng, and
H. Wang. Detecting duplicates over sliding
windows with ram-efficient detached counting
bloom filter arrays. In 2011 IEEE Sixth Interna-
tional Conference on Networking, Architecture,
and Storage, pages 382–391, Jul 2011.

[19] M. Yoon. Aging bloom filter with two active
buffers for dynamic sets. IEEE Transactions
on Knowledge and Data Engineering, 22(1):134–
138, Jan 2010.

[20] Y. Zhu and D. Shasha. Statstream: Statistical
monitoring of thousands of data streams in real
time. In Proceedings of the 28th International
Conference on Very Large Data Bases, pages
358–369, 2002.

9

0 2000 4000 6000 8000 10000
0

10

20

30

40

50

Number of insertions

B
its

 p
er

 e
le

m
en

t

K=4 L=3
K=5 L=7
K=6 L=14
K=7 L=28
K=8 L=56

(a)

0 2000 4000 6000 8000 10000
0

10

20

30

40

50

Number of insertions

B
its

 p
er

 e
le

m
en

t

K=4 L=3
K=5 L=7
K=6 L=14
K=7 L=28
K=8 L=56

(b)

Figure 3: (a) Bits per element, at every insertion, of
each filter with an initial capacity of 1000; (b) Bits
per element, at every insertion, of each filter with an
initial capacity of 10000.

0 2000 4000 6000 8000 10000
0

5

10

15

20

25

Number of insertions

N
um

be
r

of
 s

lic
es

FPR=0.100 K=4 L=3
FPR=0.010 K=7 L=5
FPR=0.001 K=10 L=7

(a)

0 2000 4000 6000 8000 10000
0.000001

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

Number of insertions

Fa
ls

e
po

si
tiv

e
ra

te

FPR=0.100 K=4 L=3
FPR=0.010 K=7 L=5
FPR=0.001 K=10 L=7

(b)

Figure 4: (a) Number of slices, at every insertion, of
each filter with an initial capacity of 1000; (b) False
positive rate, at every insertion, of each filter with an
initial capacity of 1000.

10

0 2000 4000 6000 8000 10000
0

5000

10000

15000

20000

25000

Number of insertions

S
iz

e
of

 s
lic

e
0

FPR=0.100 K=4 L=3
FPR=0.010 K=7 L=5
FPR=0.001 K=10 L=7

(a)

0 2000 4000 6000 8000 10000
0.000001

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

Number of insertions

Fa
ls

e
po

si
tiv

e
ra

te

FPR=0.100 K=4 L=3
FPR=0.010 K=7 L=5
FPR=0.001 K=10 L=7

(b)

Figure 5: (a) Size of slice 0, at every insertion, of
each filter with an initial capacity of 10000; (b) False
positive rate, at every insertion, of each filter with an
initial capacity of 10000.

11

	Introduction
	Bloom Filters
	Data streams and window models
	Duplicate detection in streams
	BF-based
	Dictionary-based

	Age-Partitioned Bloom Filter
	Structure
	Insert
	Query
	Fill ratio

	Time-based Age-Partitioned Bloom Filter
	Slice life-time
	Shift triggering
	Slice size
	Query

	Experimental Evaluation
	Number of slices and size of slice 0
	Memory use per element
	False positive rate

	Conclusion

