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Predicting Taxi-Passenger Demand
using Streaming Data

Luis Moreira-Matias, João Gama, Michel Ferreira, João Mendes-Moreira, Luis Damas

Abstract—Informed driving is becoming a key feature to
increase the sustainability of taxi companies. The sensors installed
in each vehicle are providing new opportunities to automatically
discover knowledge, which in return deliver information for real-
time decision making. Intelligent transportation systems for taxi
dispatching and time-saving route finding are already exploring
this sensing data. In this paper, we introduce a novel methodology
to predict the spatial distribution of taxi-passenger in a short-
term time horizon using streaming data. We have done so by
firstly aggregating the information into a histogram time series.
Then, we combined three time series forecasting techniques to
output our prediction. Experimental tests were done using the
online data transmitted by 441 vehicles of a fleet running in
the city of Porto, Portugal. Our results demonstrated that the
proposed framework can provide an effective insight into the
spatiotemporal distribution of taxi-passenger demand in a 30
minutes horizon.

Index Terms—taxi-passenger demand, mobility intelligence,
GPS data, data streams,time series forecasting, auto-regressive
integrated moving average (ARIMA), time-varying Poisson mod-
els, ensemble learning.

I. INTRODUCTION

ADVANCES in sensor and wireless communications such
as GPS (Global Positioning System), GSM (Global Sys-

tem for Mobile Communications) and WiFi have provided
a new way to communicate with running vehicles whilst
collecting relevant information about their status and location.
The majority of taxi vehicles are now equipped with these kind
of technologies, producing a new source of rich spatiotemporal
information. Intelligent transportation systems for efficient
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taxi dispatching [1], time-saving route finding [2], [3], fuel-
saving routing [4] and taxi-sharing [5] are already successfully
exploring these kind of data and/or interfaces.

The rising cost of fuel has been decreasing the profit of
both taxi companies and drivers. It causes an unbalanced
relationship between passenger demand and the number of
running taxis, thus decreasing the profits made by companies
and also the passenger satisfaction levels [6]. S. Wong pre-
sented a relevant mathematical model to express this need for
equilibrium in distinct contexts [7]. An equilibrium fault may
lead to one of two scenarios: (Scenario 1) excess of vacant
vehicles and excessive competition; (Scenario 2) larger waiting
times for passengers and lower taxi reliability. However, a
question remains open: Can we guarantee that the taxi spatial
distribution over time will always meet the demand? Even
when the number of running taxis already does?

The taxi driver mobility intelligence is an important factor
to maximize both profit and reliability within every possible
scenario. Knowledge about where the services (i.e. the
transport of a passenger from a pick-up to a drop-off location)
will actually emerge can be an advantage for the driver -
especially when there is no economic viability of adopting
random cruising strategies to find their next passenger. The
GPS historical data is one of the main variables of this topic
because it can reveal underlying running mobility patterns.
Multiple works in the literature have already explored this
type of data successfully with distinct applications such as
smart driving [3], modeling the spatiotemporal structure of
taxi services [8]–[10], building passenger-finding strategies
[11], [12] or even predicting taxi location through a passenger-
perspective [13] (in a Scenario 2 urban area). Despite their
useful insights, the majority of the techniques reported are
tested using offline test-beds, discarding some of the main
advantages of this type of signal. In other words, they do not
provide any live information about passenger location or the
best route to pick-up one in this specific date/time while the
GPS data is mainly a live data stream (i.e. a time ordered
sequence of instances produced in real-time [14]).

In our work, we focus on the real-time choice problem
about which is the best taxi stand to go to after a passenger
drop-off (i.e. the stand where we will pick-up another passen-
ger quicker). An intelligent approach regarding this problem
will improve the network reliability for both companies and
clients: a clever distribution of vehicles throughout stands
will decrease the average waiting time to pick-up a passenger
while the distance traveled will be more profitable. Passengers
will also experience a lower waiting time to get a taxi
(automatically dispatched or directly picked-up at a stand).
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On the other hand, this can present a true advantage for a
fleet when facing other competitors.

The stand-choice problem is based on four key variables:
the expected revenue for a service over time, the distance/cost
relation with each stand, the number of taxis already waiting at
each stand and the passenger demand for each stand over time.
The taxi vehicular network can be a ubiquitous sensor of taxi-
passenger demand from where we can continuously mine the
reported variables. However, the work described here will just
focus on the passenger demand spatiotemporal complexity.

In this paper, we present a model to predict the number of
services that will emerge at a given taxi stand. Specifically,
it predicts the passenger demand over space (taxi stand) for
a short-time horizon of P-minutes. This model reuses the
information constantly transmitted/received by the telematics
installed in each taxi about the current period to predict what
will happen in the next one. Our goal is to predict at the instant
t how many services will emerge during the future period
[t, t + P ] at each existent taxi stand, reusing the real-time
service count of [t, t+P ] to do the same for the instant t+P
and so on (i.e. the framework runs continuously in a stream).
To do so, we adapted well-known time series forecasting
techniques such as the time varying Poisson model [15] and
ARIMA (AutoRegressive Integrated Moving Average) [16] to
our problem. There are some works in the literature related
to this problem, namely: 1) mining the best passenger-finding
strategies [11], [12] and 2) dividing the urban area into attrac-
tive clusters based on the historical passenger demand (i.e.:
city zones with distinct demand patterns) [8]–[10] predicting
the passenger demand at certain urban hotspots [17]–[19]. The
major contribution of this work facing this state-of-the-art is
to build predictions about the spatiotemporal distribution of
the taxi-passenger demand using streaming data. In fact, the
reported works present offline test-beds while our framework
was tested in an online environment.

As a case-study, we have selected a large-size taxi fleet
running in the city of Porto, Portugal. The city contains a
total of 63 taxi stands and two taxi companies running one
fleet each. We used the data transmitted by the biggest one -
which has 441 vehicles. In this network, each vehicle waits on
average 44 minutes to pick-up a passenger (Scenario 1 city).

Our study just uses as input/output the services received
directly at the stands or automatically dispatched to the parked
vehicles, ignoring the remaining ones. This was done because
the passenger demand at each taxi stand is the main feature
to aid the taxi drivers’ decision, since it represents 76% of
the total number of services (note that calls to the taxi central
are preferentially assigned to vehicles already parked at a taxi
stand).

The test-bed ran continuously over a total of 9 months
between August 2011 and April 2012. However, the model
just produced predictions (i.e. it was stream-tested) in the
last four. The results obtained demonstrated both efficiency
and success: our framework had an aggregated error of just
23.97% using a predictive time horizon of just 30 minutes.
The model used, in average, 38.12 seconds of processing time
during our real-time test-bed. Such output clearly demonstrates
that this model is an advance facing the existing state-of-art

on predicting the spatiotemporal distribution of taxi-passenger
demand in an urban area.

The remainder of the paper is structured as follows. Section
2 revises the existing literature regarding this topic. Section
3 formally presents our model. The fourth section describes
how we acquired and preprocessed the dataset used as well
as some statistics about it. The fifth section describes how
we tested the methodology in a concrete scenario: firstly, we
introduce the experimental setup and metrics used to evaluate
our model; then, the obtained results are detailed, followed by
some important remarks about them. Finally, conclusions are
drawn as well as our future work.

II. LITERATURE REVIEW

In the last decade, GPS-location systems have attracted
the attention of both researchers and companies due to the
new type of information available. Specifically, the ubiquitous
characteristics of this location-aware sensors (i.e. portable;
available everywhere) and of the information transmitted (i.e.
a stream) increases the challenge. Moreover, they are usually
tracking human behavior (individual or in group) and they can
be used collaboratively to reveal their mobility patterns. Trains
[20], Buses [21], [22] and Taxi Networks [17] are already suc-
cessfully exploring these traces. Gonzalez et. al [23] uncovered
the spatiotemporal regularity of human mobility, which were
demonstrated in other activities such as electricity load [24]
or freeway traffic flow [15], [25], [26].

Recently, multiple works have used the GPS historical data
to analyze the spatial structure of the passenger demand. Deng
et. al [8] mined this type of data to build and explore an origin-
destination matrix in the city of Shanghai, China. Liu et. al
[9] uses a 3D clustering technique to analyze the mobility
intelligence spatial-patterns for both top and ordinary drivers.
Yue et. al [10] discover the Level of Attractiveness (LOA) of
urban-spatiotemporal clusters.

The works focused on passenger/taxi-finding strategies com-
monly use data from Scenario 2 cities, where the demand
is largely superior to the supply. An innovative study was
presented by Bin et. al [17]. Their goal was to validate the
triplet Time-Location-Strategy as the key features to build
a good passenger finding strategy. They used a L1-Norm-
SVM as a feature selection tool to discover both efficient and
inefficient passenger finding strategies in a large city in China.
They made an empirical study on the impact of the selected
features and its conclusions were validated by the feature
selection tool. Lee et. al [12] constructed a framework to
describe the spatiotemporal structure of the passenger demand
on Jeju Island, South Korea. A customer-focused research
was developed by Phithakkitnukoon et. al [13]: they aimed
to predict where the vacant taxis will be over space and time
to aid the clients in their daily scheduling and planning.

Ge et. al [27] provided a cost-efficient route recommenda-
tion model which was able to recommend sequences of pick-
up locations. Their goal was to learn from the historical data
transmitted from the most successful drivers to improve the
profit of the remaining ones. Yuan et. al presented in [28] a
very complete work containing methods about a) how to divide
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the urban area into pick-up zones using spatial clustering; b)
how a passenger can find a taxi; and c) which trajectory is
the best to pick-up the next passenger. Although their results
are promising, both approaches are focused on improving the
trajectory of a single driver, discarding the current network
status (i.e. the position of the remaining drivers).

Little works regarding the demand prediction problem exist.
Kaltenbrunner et. al [18] detected the geographic and temporal
mobility patterns over data acquired from a bicycle network
running in Barcelona. It also directly addresses the prediction
problem using an ARMA (AutoRegressive Moving Average)
model. Their goal was to forecast the number of bicycles at
a station to improve the stations spatial deployment. Chang
et. al [19] presented a novel insight on demand prediction:
they applied clustering to data extracted from large Asian
cities. They used some key features besides location/time such
as the weather. Their output was a hotness probability ratio
over spatial clusters (i.e. real agglomeration of roads/streets)
dependent on the driver location, discarding however the other
taxis position.

In fact, the ARIMA models are well-known time series fore-
casting models by its short-term prediction performance [17]–
[19], [26], [29]–[31] . The traffic flow short-term prediction is
approached by Min et. al [26]: they use both historical data
and spatial correlations between road segments to forecast the
speed and the volume of the traffic within a road network.
Despite the usefulness of their contribution, the spatial corre-
lations are difficult to maintain/update in a real-time test-bed
(their own is offline). The most similar work to our own is
presented by Li et. al [17]. They present a recommendation
system to improve the driver mobility intelligence. To do so,
they used data from a taxi network running in Hangzhou,
China (Scenario 2). Firstly, they calculated the city hotspots:
urban areas where pick-ups occur more frequently. Secondly,
they used ARIMA to forecast the pick-up quantity at these
hotspots over periods of 60 minutes. Thirdly, they presented
an improved ARIMA dependent both on time and daytype.
Finally, they proposed a recommendation system based on the
following variables: 1) the number of taxis already located
at each hotspot; 2) the distance from the driver location to
the hotspot in time and 3) the prediction about the number
of services to be demanded in each one of them. Despite
their good results, this approach has three weak points when
compared against our own: 1) it just uses the most immediate
historical data, discarding the mid and long-term memory
of the system; 2) their test-bed uses minimum aggregation
periods of 60 minutes over offline historical data (i.e. the next
value prediction task on a time series goes easier as long as
you increase its aggregation period) while we use short-term
periods of 30 minutes; 3) the paper does not clearly describes
how they update both the ARIMA model and the weights used
by it.

All reported works (including the two last ones) have a
common characteristic: they are tested using mainly historical
data and their results were calculated using an offline test-bed.
Our framework is a short-term prediction model which uses
short, mid and long-term historical data as input. It reuses
the real-time service count from each stand to calculate the

demand for the next period. It was tested using an online test-
bed along a real time period of nine months. The contribution
of this work is to produce short-term predictions about the
demand at a fixed point as a computational lightweight process
without discarding the long-term system memory (i.e. histor-
ical data). To the best of our knowledge, such approach has
no parallel in the literature. This model is formally presented
in the following section.

III. THE MODEL

This model is an extension of the one already presented
in [32]. Let S = {s1, s2, ..., sN} be the set of N taxi stands
of interest and D = {d1, d2, ..., dj} be a set of j possible
passenger destinations. Our problem is to choose the best taxi
stand at instant t according to our forecast about passenger
demand distribution over the time stands for the period [t, t+
P ]. However, the present work (and model) is just focused on
the prediction problem.

Consider Xk = {Xk,0, Xk,1, ..., Xk,t} to be a discrete time
series (aggregation period of P-minutes) for the number of
demanded services at a taxi stand k. Our goal is to build a
model which determines the set of service counts Xk,t+1 for
the instant t+1 and per each taxi stand k ∈ {1, N}. To do so,
we propose three distinct short-term prediction models and a
well-known data stream ensemble framework to use them all.
We formally describe those models along this section.

A. Time Varying Poisson Model

The following section presents a model firstly proposed in
[15]. The demand for taxi services exhibits, like other modes
of road transportation [21] , a periodicity in time on a daily
basis that reflects the patterns of the underlying human activity,
making the data appear non-homogeneous. Fig. 1 illustrates a
one month taxi service analysis extracted from our dataset that
illustrates this periodicity (the dataset is described in detail in
Section IV).

Consider the probability to emerge n taxi assignments in
a determined time period - P (n) - following a Poisson
Distribution. We can define it using the following equation

P (n;λ) =
e−λλn

n!
(1)

where λ represents the rate (averaged number of the demand
on taxi services) in a fixed time interval. However, in this
specific problem, the rate λ is not constant but time-variant.
So, we adapt it as a function of time, i.e. λ(t), transforming
the Poisson distribution into a non homogeneous one. Let λ0
be the average (i.e. expected) rate of the Poisson process over
a full week. Consider λ(t) to be defined as follows

λ(t) = λ0δd(t)ηd(t),h(t) (2)

where δd(t) is the relative change for the weekday d(t) (e.g.:
Saturdays have lower day rates than Tuesdays); ηd(t),h(t) is the
relative change for the period h(t) in the day d(t) (e.g. the peak
hours); d(t) represents the weekday 1=Sunday, 2=Monday, ...;
and h(t) the period in which time t falls (e.g. the time 00:31
is contained in period 2 if we consider 30-minutes periods).
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Fig. 1. One month data analysis (total and per shift).

Consider λ(t) to be a discrete function (e.g.: an histogram
time series of event counts aggregated in periods of P min-
utes). The equation (2) requires the validity of both equations

7∑
i=1

δi = 7 (3)

I∑
i=1

ηd,i = I, ∀d (4)

where I is the number of time intervals in a day. As result, we
have a discrete time series per stand representing the expected
demand during an entire week: λ(t)k. Each value of this series
is an average of all the demands previously measured in the
same daytype and period (i.e. the expected service demand for
a Monday from 8:00 to 8:30 is the average of the demand on
all past Mondays from the 8:00 to 8:30).

B. Weighted Time Varying Poisson Model

The model previously presented can be faced as a time-
dependent average which produces predictions based on the
long-term historical data. However, it is not guaranteed that
every taxi stand will have a highly regular passenger demand:
actually, the demand in many stands can often be seasonal.
The sunny beaches are a good example of the seasonality
demand : the taxi demand around them will be higher over
summer weekends rather than over other seasons throughout
the year.

To face this specific issue, we propose a weighted average
model based on the one presented before: our goal is to
increase the relevance of the demand pattern observed in the
previous week by comparing it with the patterns observed sev-
eral weeks ago (e.g. what happened on the previous Tuesday
is more relevant than what happened two or three Tuesdays
ago). The weight set ω is calculated using a well-known time
series approach to these type of problems: the Exponential
Smoothing [33].

We can define ω as follows

ω = α ∗ {1, (1− α), (1− α)2, ..., (1− α)γ−1}, γ ∈ N (5)

where γ is the number of historical periods considered and
0 < α < 1 is the smoothing factor (i.e. γ and α are user-
defined parameters). Then, based on the previous definition of

λ(t)k, we can define the resulting weighted average µ(t)k as
follows

µ(t)k =

γ∑
i=1

Xt−(θ∗i) ∗ ωi
Ω

,Ω =

γ∑
i=1

ωi (6)

where θ represents the number of time periods contained in a
week.

C. AutoRegressive Integrated Moving Average Model

The two previous models assume the existence of a regular
(seasonal or not) periodicity in the taxi service passenger
demand (i.e. the demand at one taxi stand on a regular Tuesday
during a certain period will be highly similar to the demand
verified during the same period on other Tuesdays). However,
the demand can present distinct periodicities for different
stands. The ubiquitous features of this network force us to
rapidly decide if and how the model is evolving and to adapt
to these changes instantly.

The AutoRegressive Integrated Moving Average Model
(ARIMA) [16] is a well-known methodology to both model
and forecast univariate time series data such as traffic flow
data [26], electricity price [29] and other short-term prediction
problems like our own. The ARIMA main advantages when
compared to other algorithms are two: 1) it is versatile to
represent very different types of time series: the autoregressive
(AR) ones, the moving average ones (MA) and a combination
of those two (ARMA); 2) on the other hand, it combines the
most recent samples from the series to produce a forecast and
to update itself to changes in the model. A brief presentation
of one of the simplest ARIMA models (for non-seasonal
stationary time series) is enunciated below following the
existing description in [30] (however, our framework can also
detect both seasonal and non-stationary ones). For a more
detailed discussion, the reader should consult a comprehensive
time series forecasting text such as Chapters 4 and 5 in [31].

In an autoregressive integrated moving average model, the
future value of a variable is assumed to be a linear function of
several past observations and random errors. We can formulate
the underlying process that generates the time series (taxi
service over time for a given stand k) as

Rk,t = κ0 + φ1Xk,t−1 + φ1Xk,t−2 + ...+ φpXk,t−p
+εk,t − κ1Xk,t−1 − κ1Xk,t−2 − ...− κqXk,t−q

(7)

where Rk,t and εk,t are the actual value and the random error
at time period t, respectively; φl(l = 1, 2, ..., p) and κm(m =
0, 1, 2, ..., q) are the model parameters/weights while p and q
are positive integers often referred to as the order of the model.
Both order and weights can be inferred from the historical time
series using both the autocorrelation and partial autocorrelation
functions as has been proposed by Box and Jenkins in [16]
They are useful to detect if the signal is periodic and, most
important, which the frequencies of these periodicities are.
A study conducted on time series from the demand of taxi
services in one of the busiest taxi stands is displayed in Fig.
2.
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Fig. 2. Autocorrelation profile for data about the demand on taxi service (13
weeks) obtained from one of the busiest taxi stands in the city (periods of
60-minutes). The x-axis has the different period lags studied and the y-axis
has the correlation within the signal. Note the peaks for each 12h periods.

D. Sliding Window Ensemble Framework

We already proposed three distinct predictive models which
focused themselves to learn from the long, medium and short-
term historical data. But a question remains open: how can
we combine them all to improve our prediction? In the last
decade, regression and classification tasks on streams attracted
the community attention due to its drifting characteristics. The
ensembles of such models were specifically addressed due to
the challenge related with this type of data. One of the most
popular models is the weighted ensemble [34]. The model we
propose below is based on this one.

Consider M = {M1,M2, ...,Mz} to be a set of z mod-
els of interest to model a given time series and F =
{F1t, F2t, ..., Fzt} to be the set of forecasted values to the
next period on the interval t by those models. The ensemble
forecast Et is obtained as

Et =

z∑
i=1

Fit
Υ
,Υ =

z∑
i=1

(1− ρiH) (8)

where ρiH is the error of the model Mi in the periods
contained on the time window [t−H, t] (H is a user-defined
parameter to define the window size) while compared with the
real service count time series. As the information is arriving
in a continuous manner for the next periods t, t+ 1, t+ 2, ...
the window will also slide to determine how the models are
performing in the last H periods.

To calculate such error, we used the Symmetric Mean
Percentage Error (sMAPE), which is formally described in
section V of this paper.

IV. DATA ACQUISITION AND PREPROCESSING

As a case-study, we focused on the stream event data of
a taxi company operating in the city of Porto, Portugal. This
city is the center of a medium size urban area (consisting of
1.3 million habitants) where the passenger demand is inferior
to the number of running vacant taxis, resulting in a huge
competition between both companies and drivers - according
to a recent aerial survey of the road traffic of the city [35],
taxis represent 4% of the running vehicles during a non-rush
hour period. The existing regulations force the drivers to not
run randomly in search of passengers but to choose a specific
taxi stand out of the 63 existing ones in the city to wait for

the next service immediately after the last passenger drop-off.
A map of the stand spatial distribution is presented in the Fig.
3.

There are three main ways to pick-up a passenger: (1) a
passenger goes to a taxi stand and picks-up a taxi – the
regulations also force the passengers to pick-up the first taxi in
line (First In, First Out); (2) a passenger calls the taxi network
central and demands a taxi for a specific location/time – the
parked taxis have priority over the running vacant ones in the
central taxi dispatch system; (3) a passenger picks a vacant
taxi while it is going to a taxi stand, on any street.

In this section, we describe the studied company, the data
acquisition process and the preprocessing applied to it.

A. Data Acquisition

The data was continuously acquired using the telematics
installed in each one of the 441 running vehicles of the
company fleet. This taxi central usually runs in one out of three
8h shifts: midnight to 8am, 8am-4pm and 4pm to midnight.
Each data chunk arrives with the following six attributes: (1)
TYPE – relative to the type of event reported and has four
possible values: busy - the driver picked-up a passenger; assign
– the dispatch central assigned a service previously demanded;
free – the driver dropped-off a passenger and park - the driver
parked at a taxi stand. The attribute (2) STOP is an integer with
the ID of the related taxi stand. The attribute (3) TIMESTAMP
is the date/time in seconds of the event and the attribute (4)
TAXI is the driver code; the attributes (5) and (6) refers to
the LATITUDE and the LONGITUDE corresponding to the
acquired GPS position. This data was acquired over a non-stop
period of nine months. Our study just uses as input/output the
services obtained directly at the stands or those automatically
dispatched to the parked vehicles (more details in the section
below). We did so because the passenger demand at each taxi
stand is the main feature to aid the taxi drivers’ decision.

B. Preprocessing and Data Analysis

As preprocessing, a time series of taxi demand services
aggregated for a period of P-minutes was developed. There are
three types of accounted events: (1) the busy set directly at a
taxi stand; (2) the assign set directly to a taxi parked at a taxi
stand and (3) the busy set while a vacant taxi is cruising. We
consider both a type 1 and type 2 event as service demanded.

Fig. 3. Taxi Stand spatial distribution over the city of Porto, Portugal.
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However, for each type 2 event, the system receives a busy
event a few minutes later – as soon as the driver effectively
picked-up the passenger – this is ignored by our system. Type
3 events are ignored unless they occur in a radius of W meters
from a taxi stand (where W is a user defined parameter).
If it does, it is considered as being a type 1 event related
with the nearest taxi stand according the defined criteria. This
was done because many regulations prohibit the picking-up of
passengers in a predefined radius of a stop (in Porto a 50m
radius is in place). Some statistics about the studied period are
now presented. Fig. 4 has the sample distribution of the cruise
time of the services demanded. Table I details the number of
taxi services demanded per daily shift and day type. Table
II has information about all the services per taxi/driver and
per cruise time. The service column in Table II represents the
number of services picked-up by the taxi drivers, while the
second one represents the total cruise time of every services
done. Additionally, we could state that the central service
assignment is 24% of the total service (versus the 76% of
the one demanded directly in the street) while 77% of the
service is demanded directly to taxis parked in a taxi stand
(and 23% is assigned while they are cruising). The average
waiting time (to pick-up passengers) of a taxi parked at a taxi
stand is 42 minutes while the average time for a service is
only 11 minutes and 12 seconds. Such low ratio of busy/vacant
time reflects the current economic crisis in Portugal and the
inability of the regulators to reduce the number of taxis in the
city. It also highlights the importance of our recommendation
system, where the shortness of services could be mitigated by
getting services from the competitors.

The data in Tables I and II sustain that, despite the regularity
exhibited in the service (especially on the weekends), there are
big differences among the services performed per each driver
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Fig. 4. Frequency Distribution of Taxi Cruise Time.

TABLE I
TAXI SERVICES VOLUME (PER DAYTYPE/SHIFT)

Daytype Total Services Averaged Service Demand per Shift
Group Emerged 0am to 8am 8am to 4pm 4pm to 0am

Workdays 957265 935 2055 1422
Weekends 226504 947 2411 1909

All Daytypes 1380153 1029 2023 1503

TABLE II
TAXI SERVICES VOLUME(PER DRIVER/CRUISE TIME)

Services per Driver Total Cruise Time (minutes)

Maximum 6751 71750
Minimum 100 643
Mean 2679 33132
Std. Dev. 1162 13902

(i.e. a large variance in services number and profit) related with
their distinct levels of mobility intelligence. Fig. 4 focuses on
the length of the services: 75% of them last 15 minutes or less.
These statistics sustain the importance of a smart decision on
the stand-choice problem: an accurate sensor on the passenger
demand can be a major advantage in urban areas where a
highly competitive scenario – like our own - is in place.

V. EXPERIMENTAL RESULTS

In this section, we firstly describe the experimental setup
developed to test our model on the available data. Secondly, we
enumerate the metrics used to evaluate our methods. Finally,
we present and discuss the results achieved.

A. Experimental Setup

Our test-bed was based on prequential evaluation [36]: data
about the events occurring in the network was continuously
acquired. We used an H-sized sliding window to measure
the error of our model before each new prediction about the
service count on the next period (the metrics used to do so are
defined in the section V-B). Each new real count was used to
update our predicting model.

Each data chunk was transmitted and received through a
socket. The model was programmed using the R language [37].
The prediction effort was divided into three distinct processes
running on a multicore CPU (the time series for each stand
is independent from the remaining ones) which reduced the
computational time of each forecast. Fig. 5 illustrates the
described test-bed: the PPi...PPt(t = 3) are the independent
predicting processes – each one handle a predetermined group
of taxi stands. The pre-defined functions used and the values
set for the models parameters are detailed along this section.

An aggregation period of 30 minutes was set (i.e. a new
forecast is produced each 30 minutes; P=30) and a radius of
100m (W = 100 > 50 defined by the existing regulations).
This aggregation was set based on the average waiting time at
a taxi stand, i.e. a forecast horizon lower than 42 minutes.

The ARIMA model (p, d, q values and seasonality) was
firstly set (and updated each 24h) by learning/detecting the un-
derlying model (i.e. autocorrelation and partial autocorrelation
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Fig. 5. Illustration about our streaming test-bed.

analysis) running on the historical time series curve of each
stand during the last two weeks (i.e. period t− 2θ, t). To do so,
we used an automatic time series function in the [forecast] R
package [38] - auto-arima – with the default parameters. The
weights/parameters for each model are specifically fit for each
period/prediction using the function arima from the built-in
R package [stats]. The time-varying Poisson averaged models
(both weighted and non-weighted) were also updated every 24
hours. A sliding window of 4 hours (H = 8) was considered
in the ensemble.

A sensitivity analysis was conducted on parameter α based
on a simplified version of Sequential Monte Carlo method
(the reader can consult the survey in [39] to know more about
this topic). Our goal was to calibrate our model by finding
the optimal subregion on the input space α ∈ [0, 1] which
maximizes our predictive performance. To do so, we generated
100 distinct samples as admissible values for α and we tested
them using an older and smaller dataset containing data very
similar to the one tested on our experiments (i.e. the same
feature space). As result, we determined the ideal value as
α = 0.4. This value demonstrated to be robust - changes on
it do not have a significant impact on the model output since
they remain stable on the following input space: 0.4 ± 0.1.
Therefore, we considered α = 0.4 in our experiments. The γ
value was set respecting the following definition

γ = max(N) : ωγ ≥ 0.01 (9)

which represents the limit for the weight ωi>γ ∼ 0. According
to this, α = 0.4 =⇒ γ = 8.

Table III resumes the information about the learning periods
used by each algorithm.

B. Evaluation Metrics

We used the data obtained from the last four months to
evaluate our framework (where 506873 services emerged). A
well-known error measurement was employed to evaluate our
output: the Symmetric Mean Percentage Error (sMAPE) [40].
We formally define it below.

Consider R = {Rk,1, Rk,2, ..., Rk,t} to be a discrete time
series (aggregation period of P -minutes) with the number of
services predicted for a taxi stand of interest k in the period
{1, t} and X = {Xk,1, Xk,2, ..., Xk,t} the number of services
actually emerged in the same conditions. The (sMAPEk)

TABLE III
DESCRIPTION OF THE LEARNING PERIODS

Algorithm Sliding Window Nr. of Periods Considered

Poisson Mean All Data {1, t} N/A: it is calculated incrementally
W. Poisson Mean Last two weeks γ = 8
ARIMA Last two weeks 2 ∗ θ
Ensemble Last four hours H = 8

(i.e.: the error measured on the time series of services predicted
to the stand k) can be defined as

sMAPEk =
1

t

t∑
i=1

|Rk,i −Xk,i|
%k,i

(10)

%k,i =

{
Rk,i +Xk,i if (Rk,i > 0 ∨Xk,i > 0)
1 if (Rk,i = 0 ∧Xk,i = 0)

(11)

where t is the number of time periods considered. However,
this metric can be too intolerant with small magnitude errors
(e.g. if two services are predicted on a given period for a
taxi stand of interest but no one actually emerges, the error
measured during that period would be 1). To produce more
accurate statistics about series containing very small numbers,
we can add a Laplace estimator [41] to (10). In this case,
we will do it by adding a constant c to the denominator (i.e.:
originally, it was added to the numerator to estimate a success
rate [41]). Therefore, we can re-define sMAPEk as follows

sMAPEk =
1

t

t∑
i=1

|Rk,i −Xk,i|
Rk,i +Xk,i + c

(12)

where c is a user-defined constant. To simplify the theorem
application, we will consider its most common use: c = 1
[41].

This metric is focused just on one time series for a given taxi
stand k. However, the results presented below use an averaged
error measure based on all stands series – AG. Consider β to
be an error metric of interest. AGβ,t is an aggregated metric
given by a weighted average of the error measured in all stands
in the period 1, t. It is formally presented in the following
equations:

AGβ,t =

N∑
k=1

βt,k ∗ ψk
Ψ

(13)

ψk =

t∑
i=1

Xk,i,Ψ =

N∑
k=1

ψk (14)

where ψk is the total of services emerged at the taxi stand k;
βt,k is the error measured by β at the stand k and Ψ is the
total of services emerged at all stands so far.

C. Results

The results are presented over four distinct perspectives:
1) averaged error of the proposed methods; 2) a comparative
analysis of the ensemble performance versus the remaining
models; 3) a direct analysis of some output examples and 4)
a small report about the computational time needed to predict
the next period.
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Firstly, the error measured for each model is presented
in Table IV. The results are firstly presented per shift and
then globally. The results were aggregated using the AGβ
previously defined.

Secondly, Fig. 6 presents a comparison between our En-
semble and the other predictive models on a typical workday.
These values were calculated using the same 4-hours sliding
window of the ensemble (the error of the instant t is the error
measured at the period [t−H, t], H = 8).

Thirdly, three distinct weekly analysis of the discrepan-
cies between the demand predicted and the services actually
emerged are displayed in Fig. 7. Our model forecasted the
spatiotemporal taxi-passenger demand for every 30-minute
period using (on average) 38.12 sec. of processing time (i.e.
1.906 sec. per time series/stand) as result of the computational
parallel approach presented before. This method reduced the
computational time by 70% (i.e. in the first three weeks,
we tested our model using just one iterative process – one
program, one CPU core – and it lasted, on average, 99.77
seconds). The ARIMA model update was also fast: 48.12
seconds (mean value). These results are discussed next.

D. Discussion

The overall performance is very good: the maximum value
of the error was 28.23%. The sliding window ensemble is
always the best model in every shift and period considered:
the error measured was always lower than 26%. The models
just present slight discrepancies within the daily shifts.

Our ensemble methodology is robust when compared with
the remaining models: in Fig. 6 it is possible to identify a
point where the ensemble maintained its performance while
two other methods had a huge drop, highlighting the inherited
learning of the ensemble approach. Fig. 7 presents two distinct
scenarios to compare the demand forecasted with the real one:
in A), the demand corresponds to an irregular taxi stand where
services do not have an usual pattern to emerge (even if the
demand is low); in B) the chart corresponds to a completely
regular stand behavior. The two examples illustrate that our
ensemble can actually correctly forecast the demand in distinct
scenarios, periods and time horizons.

In our scenario, the target variable is the number of services
to arise along a taxi stand network during a pre-defined period
of time. It was chosen due to the stand relevance in this
scenario (where 76% of the total number of services is directly
demanded on them). However, this is not the reality in many
big cities around the world due to their (de)regulation [6]. Most

TABLE IV
ERROR MEASURED ON THE MODELS USING sMAPE

Periods
Model

00h−08h 08h−16h 16h−00h 24h

Poisson Mean 27.54% 24.00% 24.87% 25.09%
W. Poisson Mean 26.48% 24.34% 25.18% 24.84%
ARIMA 28.23% 24.70% 24.93% 27.00%
Ensemble 25.85% 23.12% 23.89% 23.97%

of the literature about this topic divide their scenarios/urban
areas into spatial clusters - as exemplified in Fig. 8 - to
predict and/or characterize the pick-up quantity distribution
on a short-term time horizon [8]–[10], [17], [19], [27], [28].
Our mathematical model does not depend on how the services
historical data is spatially aggregated (i.e. by stand or by
spatial cluster) but only on the aggregation period of P -
minutes (which is user-defined). Therefore, it also represents
a straightforward contribution to previous work.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we present a novel application of time series
forecasting techniques to improve the taxi driver mobility
intelligence. We did so by transforming both GPS and event
signals emitted by 441 taxis from a company operating in
Porto, Portugal (where the passenger demand is lower than
the number of vacant taxis) into time series of interest to use
firstly (1) as learning base to our model and secondly (2) as a
streaming test framework. As a result, our model was able to
predict the taxi-passenger demand at each one of the 63 taxi
stands at 30-minute period intervals.

Our model demonstrated a more than satisfactory perfor-
mance, correctly predicting the 506873 tested services with
an aggregated error measure lower than 26%. We believe that
this model is a true novelty and a major contribution to
the area through its adapting characteristics:

• It mines both the periodicity and seasonality of the
passenger demand, updating itself regularly;

• It simultaneously uses long-term, mid-term and short
term historical data as a learning base;

• It takes advantage of the ubiquitous characteristics of a
taxi network, assembling the experience and the knowl-
edge of all vehicles/drivers while they usually use just
their own;

This approach meets no parallel in the literature also by its
test-bed: the models were tested in a streaming environment,
while the state-of-art presents mainly offline experimental
setups.

This model will be used as a feature for a recommendation
system (to be done) which will produce smart live recommen-
dations to the taxi driver about which taxi stand he should head

Fig. 6. Ensemble evaluation on a typical Saturday.
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Fig. 7. Weekly comparison between the services forecasted and the services emerged on two distinct scenarios / taxi stands and weeks.

Fig. 8. Example of a possible spatial clustering of the city of Porto, Portugal.

to after a drop-off. This decision support framework will also
address other features such as the distance or the live traffic
conditions, among others. We believe that the deployment of
such a system in a taxi fleet will contribute to increase its
competitivity facing other taxi fleets in a Scenario 1 network
(e.g. like the studied one, where the average waiting time to
pick-up a passenger at a taxi stand is three times higher than
the average service duration) by improving the distribution of
the vacant vehicles throughout the stands.
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