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MRVs: Enforcing Numeric Invariants in Parallel Updates to
Hotspots with Randomized Splitting

NUNO FARIA, INESCTEC and University of Minho, Portugal

JOSÉ PEREIRA, INESCTEC and University of Minho, Portugal

Performance of transactional systems is degraded by update hotspots as conflicts lead to waiting and wasted

work. This is particularly challenging in emerging large-scale database systems, as latency increases the

probability of conflicts, state-of-the-art lock-based mitigations are not available, and most alternatives provide

onlyweak consistency and cannot enforce lower bound invariants.We address this challengewithMulti-Record

Values (MRVs), a technique that can be layered on existing database systems and that uses randomization to

split and access numeric values in multiple records such that the probability of conflict can be made arbitrarily

small. The only coordination needed is the underlying transactional system, meaning it retains existing

isolation guarantees. The proposal is tested on five different systems ranging from DBx1000 (scale-up) to

MySQL GR and a cloud-native NewSQL system (scale-out). The experiments explore design and configuration

trade-offs and, with the TPC-C and STAMP Vacation benchmarks, demonstrate improved throughput and

reduced abort rates when compared to alternatives.
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1 INTRODUCTION
High throughput transactional systems exploit parallelism in processor cores and distributed nodes

with multiple concurrent operations. Transactional isolation does however mean that invalid

outcomes (anomalies) are avoided and that a correctness criterion such as Serializability or Snapshot
Isolation is met [7]. This creates the illusion that each transaction is executing alone, greatly

simplifying application development.

Unfortunately, transactional workloads often exhibit hotspots [39, 45, 63]: Some items are ac-

cessed by concurrent transactions with high probability, meaning that locking and validation

mechanisms used for isolation have a severe impact on usable throughput. Hotspots arise in stock

trading, shopping, banking, and numerous applications. Some are as simple as counting events,

such as user votes or advertisement impressions in Web sites. Some of these applications, such as

prepaid telco plans, selling event tickets, or keeping track of remaining inventory, in addition to
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counting, also need to enforce a bound invariant, that ensures that the quantity being tracked does

not cross a set threshold.

Besides considering their impact in high-performance concurrency control systems [14, 21, 61,

70], dealing with hotspots in numerical values by explicitly allowing parallelism has attracted

considerable interest, and a spectrum of proposals exists. For traditional database systems based on

locking, escrow locking greatly reduces contention by avoiding long-lived locks [38]. Inmainmemory

many-core database systems, phase reconciliation splits the quantity into multiple variables that can

be independently accessed by different cores [36]. Both solutions are forms of reservations [5, 42],

in which parts of the total value are set aside for different operations.

In this paper, we address the same issue in emerging distributed or cloud-based database man-

agement systems such as Spanner [11], Aurora [62], CockroachDB [58], SingleStore [44], MySQL

GR [12], and MongoDB Replica Set [25]. These systems are challenging as escrow locking is not

applicable (e.g., locks in MySQL GR are local and transactions in different nodes run optimistically),

distributed synchronization has a considerable impact on latency, or the unpredictability makes

them ineffective (e.g., how many separate splits are needed in a serverless system). Although there

are other reservation mechanisms, they focus on mitigating round-trip times and availability during

partitions and do not solve contention or are unable to enforce a lower bound. Section 6 discusses

previous proposals and explains their shortcomings in this new environment. Moreover, we address

the challenge of providing a solution that works in current cloud-based and off-the-shelf systems,

that is, using only their application programming interfaces.

In a nutshell, our proposal is a form of value splitting, as we split a contended value into 𝑛 parts

and allow concurrent transactions to access each of them. In systems where a row is atomic in

terms of isolation (i.e., row-level locking or validation), this means splitting a contended value

over multiple records, hence the name of Multi-Record Values (MRVs). As described in Section 2.2,

our main insight is using randomness to route each client operation: Each access starts from a

random position and efficiently traverses an index to one or more records as needed, without static

assignment or knowing the number of splits. Our second insight is that existing transactional

isolation provides all the coordination needed between concurrent clients and maintenance tasks,

thus avoiding additional explicit distributed interaction. Finally, we dynamically balance and

maintain the appropriate number of records for each item fully in the background, as made possible

by the random access technique. Therefore, our main contributions are:

• The proposal of the Multi-Record Values technique, including operations and maintenance

algorithms (Section 2);

• A thorough discussion of how the proposal is implemented, including a middleware-level

implementation that can be used in existing applications (Section 3);

• An evaluation of the design decisions and how system parameters influence performance

(Section 4);

• An evaluation with different benchmarks and database management system architectures,

also in comparison with state-of-the-art alternatives [14, 36, 38, 61, 70] (Section 5).

All the code, scripts, and raw data is available online.
1

2 MULTI-RECORD VALUES
The proposal for Multi-Record Values relies on how the value in a particular column is split into

multiple records in an auxiliary table; on intercepting and modifying the operations for adding

and subtracting to that value; and on background worker tasks that adjust and balance the values

stored in multiple records.

1
https://github.com/nuno-faria/mrv
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2.1 Assumptions
We assume a database structured as collections of data items. This can be a relational database,

where each collection is a table and each item a row with multiple columns, or it can also be an

extended relational or document model, with a nesting structure. To simplify the presentation, we

refer to them as tables and rows, although we later describe implementations in document-oriented

systems such as MongoDB.

We also assume that there is an index providing efficient random access to rows by a composite

key. Although not strictly necessary, we also take advantage of sequential traversal by key order.

This maps to tree-structured indexes found in most database systems [6, 37]. When a composite

key is not available, it can be simulated by concatenating the columns in a way that respects

ordering [15].

We assume that a simple equi-join operation traversing a 1-to-𝑛 relation can be done, either by

a query engine or directly by the application by looking up the relevant rows. We can also take

advantage of views, which make this transparent to the application by exposing a logical table

that encapsulates the join operation, and of rules that translate updates to such logical table to the

original physical tables. Note that logical views are not materialized, do not add storage overhead,

and do not cause consistency issues.

We also assume multi-operation transaction isolation and recovery with fine-grained row-level

locking or validation. MRVs preserve the underlying isolation level and are compatible with

optimistic (OCC) and pessimistic (two-phase locking, or 2PL) systems. MRVs are not compatible

with Serializability resulting from table-level locking, but work on row-grained Serializability, such
as Serializable Snapshot Isolation [10, 41]. The key requirement is that read and update operations

on different rows of the same table do not conflict. We also assume that transactions can be rolled

back on request, as a result of a failed validation, or to break deadlocks, recovering according to

the selected isolation level.

2.2 Key insights
The general strategy in Multi-Record Values (MRVs) is to change the database schema by replacing

the column holding the contended numeric values with a separate table that keeps multiple records

for each original row, using the original table’s key and a unique record identifier. To add or

subtract to the value, one needs to add or subtract to any of these records. To read the current

value, one needs to sum them all. Given the assumptions of fine-grained transaction isolation, this

preserves application semantics and correctness while avoiding update conflicts. Moreover, the

read operation with Snapshot Isolation does not cause conflicts and is still very efficient. The key

insight and contribution of MRVs is how each transaction is assigned to a physical record and how

the various records, holding parts of the total value, are managed efficiently.

First, as different clients might have different access patterns, we avoid statically assigning them

to records (as done to processor cores in phase reconciliation [36] or nodes in most distributed

reservation systems [5]). To ensure that accesses are evenly spread, our first insight is to use a

random number, for each access, to determine which record to use. Assuming that the number 𝑛𝑖
of records for each item 𝑖 is big enough, this results in a small probability of conflict. This avoids

the need for explicit coordination of clients, which would be costly in a distributed environment.

Subtractions might not be fully possible on a single record if its current value is lower than

what is being subtracted. Thus, the subtraction might require multiple accesses to complete. This

could be done simply by keeping the remainder after a first subtraction and carrying it on to a

second random one, and so forth, until it is fully done. This, however, makes it difficult to determine

unsuccessful termination, which happens after all records have been visited and there is still a

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 43. Publication date: May 2023.
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remainder. Moreover, when the underlying mechanism is using exclusive locks on update, accessing

multiple items in a random order increases deadlock probability. We address this by performing

only one random lookup and then scanning to the next record. After the last record (𝑛𝑖 − 1) we

wrap around and restart the process on the first (0), treating the records for each item as a circular

structure. As we will show in Section 2.4, variations of this algorithm also work for efficiently

filtering with a lower bound without full materialization, by stopping when the target is met.

Second, we address the issue of reconfiguring the number of records for each item 𝑖 such that it

remains optimal in face of changing workloads. This means that 𝑛𝑖 is no longer a constant and needs

to be determined for each item before generating the random number to access a record. Storing 𝑛𝑖
for each itemmeans additional space overhead and might be an additional source of contention. One

alternative is to determine 𝑛𝑖 before each access by counting the number of records. However, this

would introduce overhead that is larger precisely for those items that are accessed more frequently

and thus need more records, and potentially an extra round-trip from the application to the server.

In fact, the mere act of counting the rows can conflict with any concurrent updates.

Our second insight is to decouple the random number used for lookup from the number used

for the records’ keys as follows: We select some constant 𝑁 such that 𝑁 ≫ 𝑛𝑖 for all items 𝑖;

We tag each record with a random number in [0, 𝑁 [; For each access, we generate a random 𝑟𝑘 ′

between [0, 𝑁 [ and choose the record with the smallest key ≥ 𝑟𝑘 ′, or the smallest of all if none

exists. Interestingly, with a tree-structured index, the lookup and scan operations are the same,

with the same cost as those with sequentially labeled records. The remaining challenge is how to

dynamically adjust the number of records for each item and balance existing value among them,

while minimizing the space and time overheads.

2.3 Data structure
A column 𝑣 in some table with primary-key 𝑝𝑘 is transformed into a Multi-Record Value (MRV) as

follows: An additional table is created with 1-to-𝑛 relation from the original one, established by

the original’s primary key (𝑝𝑘𝑖 ). We have thus one or more reservation records with 𝑣𝑖, 𝑗 amount

for each original value 𝑣𝑖 . Each of these is identified by the pair (𝑝𝑘𝑖 , 𝑟𝑘𝑖, 𝑗 ), where 𝑟𝑘𝑖, 𝑗 is a unique
integer between [0, 𝑁 [. Therefore, the original value 𝑣𝑖 corresponding to 𝑝𝑘𝑖 is no longer stored in

the original table but reconstructed by joining both tables on 𝑝𝑘𝑖 and then as the sum of 𝑣𝑖, 𝑗 , for

all 𝑗 . In database management systems without a relational join operation, this means a second

lookup to the values table.

This data structure means that parts of a value – records with the same 𝑝𝑘𝑖 – are seen as organized

in a ring structure of size 𝑁 . Figure 1 represents this logical ring for some item 𝑖 with primary key

𝑝𝑘𝑖 and currently holding some value 𝑣𝑖 . Solid black circles represent currently existing records,

holding reservations of the value, while empty circumferences represent indices not yet assigned

to any record. Note that the current number of records is not kept anywhere or used in any of the

operations and that a separate logical ring exists for each item (i.e., row) in the original table.

Besides the core advantage of splitting a value for concurrent access, this structure has the

interesting property that multiple accesses by the same transaction are ordered by 𝑟𝑘 , which

reduces the possibility of introducing deadlocks on accesses to the various records for the same

value. The downside is that the original row is split across two tables, which impacts memory

locality and processor cache usage. This means that MRVs should be judiciously applied only to

columns containing concurrency hotspots.

2.4 Operations
We now describe the following operations: 𝑟𝑒𝑎𝑑 (read the current value),𝑤𝑟𝑖𝑡𝑒 (write a new value),

𝑏𝑜𝑢𝑛𝑑 (check the value for a lower bound), 𝑎𝑑𝑑 (add to the value), and 𝑠𝑢𝑏 (subtract from the value

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 43. Publication date: May 2023.
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Fig. 1. Diagram of the structure of MRV 𝑝𝑘𝑖 with 𝑛𝑖 = 9, the respective table representation, and various

possible transactions alternatives (𝑇1 ..𝑇4).

with an implicit bound). The key advantage of MRVs is that 𝑎𝑑𝑑 , 𝑠𝑢𝑏, and 𝑏𝑜𝑢𝑛𝑑 can be combined or

executed concurrently without conflicts, when possible, but still enforcing transactional isolation.

With Snapshot Isolation (SI), 𝑟𝑒𝑎𝑑𝑠 are conflict-free, leading to some performance advantages but

needing a slightly different algorithm for the 𝑏𝑜𝑢𝑛𝑑 operation as follows.

To read (𝑟𝑒𝑎𝑑) some value 𝑣𝑖 , one scans all corresponding records and sums 𝑣𝑖, 𝑗 . This conflicts

with all other operations that might be updating the same value (or none if using SI or similar).

To write (𝑤𝑟𝑖𝑡𝑒) some value 𝑣𝑖 , one deletes all existing records and inserts a new one with a

random 𝑟𝑘 ′ in the range [0, 𝑁 [. This conflicts with all other operations that might be accessing the

same value (or, with SI, only with those updating the same value).

To add (𝑎𝑑𝑑) some value to 𝑣𝑖 , one must first pick a random 𝑟𝑘 ′ in the range [0, 𝑁 [ to lookup a

record. The record selected is the one whose 𝑟𝑘 is equal to 𝑟𝑘 ′ or, if it does not currently exist, the

one that comes immediately after 𝑟𝑘 ′. This is shown in Figure 1 by transaction 𝑇1, which starts

with 𝑟𝑘 ′ = 4, which does not exist, and goes on to use 𝑟𝑘 = 6. In an ordered index such as a B-tree,

the operation to select the first existing 𝑟𝑘 given some random 𝑟𝑘 ′ results in a simple index scan

(unless it has to wrap around).

To subtract (𝑠𝑢𝑏) some 𝛿 from 𝑣𝑖 while enforcing that 𝑣𝑖 ≥ 0, one starts with a random 𝑟𝑘 ′

and completes if the next 𝑣𝑖, 𝑗 ≥ 𝛿 . If not, 𝑣𝑖, 𝑗 is set to 0 and the remainder carries on to the next

record. Figure 1 illustrates this with 𝑇2, that starts with 𝑟𝑘
′ = 8, sets 𝑣𝑖,3 to 0, and subtracts the

remainder from 𝑣𝑖,4. Again, a key advantage of this strategy is that a second lookup can be avoided

by continuing the index scan to the next value. Finally, an attempt to subtract more than the total

value will iterate over the entire MRV and, once it reaches back to the initial record, it will still not

be done. In this case, it will have to rollback to preserve the lower limit of zero.

To check a lower bound (𝑏𝑜𝑢𝑛𝑑), one proceeds to visit enough records 𝑣𝑖, 𝑗 to meet the desired

quantity. We can also combine 𝑏𝑜𝑢𝑛𝑑 with a 𝑠𝑢𝑏 that decrements a smaller value (e.g., decrement

by 1 if greater than 10). Note however that with SI, one needs to update each visited record with its

current value to ensure that concurrent 𝑠𝑢𝑏 operations do not invalidate them.

In Figure 1, note that 𝑇1 and 𝑇2 do not conflict and can be adding, subtracting, and checking the

invariant at the same time, possibly in different sites in a distributed system. The probability of

conflict can be decreased by increasing the number of records, but conflicts cannot be fully avoided.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 43. Publication date: May 2023.
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For instance, in Figure 1, 𝑇3 starts with 𝑟𝑘
′ = 16, 𝑇4 starts with 𝑟𝑘

′ = 17, and both end up trying to

modify the value of 𝑟𝑘𝑖,7 = 18. MRVs are designed to take advantage of the underlying concurrency

control mechanisms. This means that one of 𝑇3 or 𝑇4 is automatically rolled back/locked by the

database system, as both attempt to update the same physical record.

Note also that these operations rely on the underlying system providing multi-operation trans-

actional isolation and recovery. For instance, a 𝑠𝑢𝑏 relies on triggering a conflict with operations

that are concurrently subtracting from the same records (blocking/aborting one of them) and being

able to undo partial updates. An interesting corollary is that multiple operations on the same or on

different values can be combined in a single transaction.

2.5 Background worker tasks
A set of background worker tasks determines the appropriate 𝑛𝑖 for each item and, if 𝑛𝑖 > 1, splits

values among the resulting 𝑛𝑖 records, to minimize both conflicts and overhead. Adjusting the

number of records or rebalancing values needs to be done dynamically to react to changes that

create new hotspots. Thus, the base for the background workers is the ability to keep a directory of

items that are currently update hotspots and estimate how many conflicts are caused by each of

them. The key insight here is, precisely because we are addressing hotspots, that relevant items are

a small minority of all stored items and state can be kept in a rolling window. This makes MRVs

efficient even in databases with a huge number of values, that can be adjusted and balanced with

minimal impact on foreground workload. Analogous to operations on MRVs, both workers also

rely on the underlying isolation for correctness.

The adjust worker determines howmany records are needed for each item. Increasing the number

of records decreases conflict probability (Section 2.6) but harms read performance and storage

size, thus we cannot blindly set 𝑛𝑖 to an arbitrarily high value. In addition, zero-value records are

counterproductive for subtractions.

This worker is implemented by defining an acceptable conflict rate – 𝑎𝑟𝑔𝑜𝑎𝑙 – and proportionally

changing the number of records such that the observed conflict rate converges to that. We also

consider an absolute minimum (𝑛𝑟𝑚𝑖𝑛) and maximum (𝑛𝑟𝑚𝑎𝑥 ) number of records for each MRV,

useful with bursty workloads and extreme contention. A 𝑚𝑖𝑛_𝑎𝑣𝑔_𝑣𝑎𝑙𝑢𝑒_𝑝𝑒𝑟_𝑟𝑒𝑐𝑜𝑟𝑑 can also

be set to avoid growing the number of records when the total value nears zero, as conflicts are

then inevitable. Finally, we also consider an 𝑎𝑟𝑚𝑖𝑛 , below which we consider removing records

as the lower abort rate does not justify the higher read and storage overheads. Although these

targets might vary with applications, we found them to be stable, and for all the evaluation results,

𝑎𝑟𝑔𝑜𝑎𝑙 = 5% and 𝑎𝑟𝑚𝑖𝑛 = 1%.

The balance worker redistributes the total value 𝑣𝑖 among the 𝑛𝑖 existing records for each item.

This is needed as common workloads may lead to an imbalance in the distribution of the total value

among records and degrade performance. For example, a stock of some product would probably

have frequent 𝑠𝑢𝑏 operations of a few units – i.e., clients buying the product – and less frequent

𝑎𝑑𝑑 operations of many units – i.e., the store restocking. This would lead to most records having a

zero value and some having large amounts, thus defeating the purpose of having multiple ones.

Perfect balancing is achieved by reading the value and equally dividing the amount (𝑎𝑙𝑙 algorithm).

Although this ensures that records end up balanced in one iteration, it also means that it has to

update the entire set, which conflicts with any concurrent update and thus will likely require a few

tries to succeed. We found out that the best alternative for database systems that do not acquire

locks on reading is to select the 𝐾-maximum and 𝐾-minimum records based on their amount

and balance the partial sum among them. We call this the𝑚𝑖𝑛𝑚𝑎𝑥 algorithm. It greatly improves

convergence when dealing with a relatively high number of records. For systems that acquire
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Fig. 2. Relation between collision probability (𝑎𝑟 ), number of records (𝑛), and number concurrent writes (𝑤 )

in MRVs.

shared locks for reading, finding the max and min might lead to contention. In this case, we can

randomly select 𝑘 items and balance the partial sum among them (𝑟𝑎𝑛𝑑𝑜𝑚 algorithm).

The balanceworker is further optimized by executing only if the difference in percentage between

the maximum and minimum selected records is greater or equal to some value (defaults to 10%).

Additionally, in situations where there are a large number of subtractions and just a few large

additions, the 𝑎𝑑𝑑 operation can itself be distributed over a small subset of low-value records.

To provide the information on current hotspots needed by both workers we consider another

structure – Tx_Status, volatile and updated asynchronously – to count commits and concurrency-

induced rollbacks to MRVs. If a transaction updates MRVs and succeeds, the respective commit

counters are incremented. If a transaction aborts while updating an MRV, the respective abort

counter is incremented. Periodically, Tx_Status is cleaned as only recent information is relevant.

2.6 Collision and complexity analysis
Intuitively, increasing the number of records in an MRV (𝑛) reduces collision probability, while

increasing the number of concurrent writes (𝑤 ) has the opposite effect. To determine the collision

probability (𝑎𝑟 ), MRV writes can be modeled as a generalization of the Birthday Problem – where 𝑛

represents the days and𝑤 represents the people – assuming each write only accesses one record,

which should be the norm. As only one concurrent write per record will commit, 𝑎𝑟 is simply

determined by𝑤 minus the records accessed, divided by𝑤 . To find the number of records accessed,

we first compute the number of records that have not been written. The probability of some record

having no accesses is (1− 1

𝑛
)𝑤 (the first write not picking it, × the second write not picking, and so

on), thereby the number of records without any write is 𝑛 times that. Consequently, the number of

records accessed is 𝑛 minus the records without any writes. Thus, the collision probability becomes:

𝑎𝑟 (𝑛,𝑤) =
𝑤 − (𝑛 − 𝑛 · (1 − 1

𝑛
)𝑤)

𝑤
(1)

Figure 2a shows how 𝑎𝑟 evolves based on 𝑛 and 𝑤 . Increasing 𝑤 will increase the collision

probability for the same 𝑛. It is also clear from Figure 2a that as the target 𝑎𝑟 tends to zero, we

will need an exponentially higher 𝑛. Figure 2b exhibits this in detail, where the 𝑛 required to reach

some 𝑎𝑟 , based on𝑤 , increases exponentially with the decreasing 𝑎𝑟 target. On the other hand, for

the same 𝑎𝑟 target, 𝑛 increases linearly with the increasing contention.

Increasing 𝑛, although reducing the collision probability, will negatively impact the time complex-

ity of the MRVs operations. Assuming a tree-structured index over the MRV, the lookup operation
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a) b)

T T(T_Orig+T_v1)
k1 k2 v1 v2 k1 k2 v1 v2

T_Orig T_v1

k1 k2 v2 k1 k2 rk v1

Fig. 3. Before (a)) and after (b)) converting column 𝑣1 of table𝑇 into MRV. T_Orig is the original table without

𝑣1; T_v1 contains the records of MRV column 𝑣1; and 𝑇 is now a view that reconstructs the original table by

joining T_Orig with T_v1.

has a complexity of𝑂 (log(𝑛)). This means that the 𝑎𝑑𝑑 operation has a complexity of𝑂 (log(𝑛)), as
only one lookup is required. Meanwhile, the 𝑠𝑢𝑏 and 𝑏𝑜𝑢𝑛𝑑 operations have a complexity of 𝑂 (𝑛),
as one lookup is needed and then possibly the traversal of all records. However, with balanced

records, a single iteration will suffice and, in practice, will be as efficient as 𝑎𝑑𝑑 . Finally, the 𝑟𝑒𝑎𝑑

and𝑤𝑟𝑖𝑡𝑒 operations have𝑂 (𝑛) complexity. Nevertheless, if an MRV is not a hotspot, 𝑛 = 1, making

all these operations 𝑂 (1) by default.

3 IMPLEMENTATION
We implement multiple proof-of-concepts of Multi-Record Values, baselines, and competing alterna-

tives. Besides being used in experiments in Sections 4 and 5, these implementations illustrate how

MRVs can be approached with three different strategies; how they can be applied in data systems

with very different architectures and interfaces; and finally, how they suit various applications.

3.1 Strategies
MRVs admit an efficient application-level implementation that makes it possible to judiciously

address hotspots without changes to the database management system, being ideal for closed-source

cloud services. It is used for the microbenchmark, described in Section 3.2, in PostgreSQL, MySQL

GR, MongoDB, and a closed-source cloud-native system (System X ).
For each column to be transformed into MRV, we move it to an additional table (or collection).

We then modify queries that read the current value to sum all records. We use additional threads in

the application and explicitly collect commits and concurrency-induced rollbacks for background

worker tasks. These data are then inserted asynchronously in the 𝑇𝑥_𝑆𝑡𝑎𝑡𝑢𝑠 table (or collection).

In this strategy, both reads and writes must be translated by the application, either by manually

changing the SQL code or with a wrapper that performs that translation. If the system supports

views, as is the case with PostgreSQL, MySQL, System X, and MongoDB, then the application does

not need to translate reads. Instead, we create a regular view in place of the original table to perform

the computation. If the system also supports rules, as is the case with PostgreSQL [20], then writes

can also be handled by the database engine, without changes to the application. We call this the

middleware-level strategy, using it with PostgreSQL for the more complex benchmarks, namely,

TPC-C and STAMP Vacation.

The middleware implementation can be used as follows: First, we specify the columns to model

as MRVs and the configuration parameters. A Python script will then do the following for each

table 𝑇 containing MRVs: The table is renamed to 𝑇_𝑜𝑟𝑖𝑔, keeping only non-MRV columns; a table

is created for each MRV column𝑚𝑟𝑣_𝑛𝑎𝑚𝑒 that stores the modeled MRVs (𝑇_𝑚𝑟𝑣_𝑛𝑎𝑚𝑒); and a

view with the original table’s name, which joins the tables and computes MRVs’ 𝑡𝑜𝑡𝑎𝑙_𝑣𝑎𝑙𝑢𝑒 , is

also created. Figure 3 provides an example of a table where we want to model 𝑣1 as MRV. Next, the

Insert/Update/Delete statements over 𝑇 are rewritten using rules. Finally, background worker

tasks are implemented using a standalone daemon program. We identify each MRV in Tx_Status
with the corresponding table name and primary key.
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Table 1. SQL API for application and middleware-level MRVs. All operations target MRV MRV𝑗 of table T𝑖 .
gt: MRV > 𝑣 , gte: MRV ≥ 𝑣 .

Operation SQL Code (SELECT ...) Middleware

𝑅𝑒𝑎𝑑 (𝑘) sum(v) FROM T𝑖_MRV𝑗 WHERE pk=𝑘 View

𝐴𝑑𝑑 (𝑘, 𝛿) update_T𝑖_MRV𝑗(𝑘, 𝛿) Update rule

𝑆𝑢𝑏 (𝑘, 𝛿) update_T𝑖_MRV𝑗(𝑘, −𝛿) Update rule

𝐵𝑜𝑢𝑛𝑑 (𝑘, 𝑣) (gt|gte)_T𝑖_MRV𝑗(𝑘, 𝑣) -

𝑊𝑟𝑖𝑡𝑒 (𝑘,𝑤) write_T𝑖_MRV𝑗(𝑘, 𝑤) -

𝐼𝑛𝑠𝑒𝑟𝑡 (𝑟𝑜𝑤) insert_T𝑖(𝑟𝑜𝑤 ) Insert rule

𝐷𝑒𝑙𝑒𝑡𝑒 (𝑘) delete_T𝑖(𝑘) Delete rule

Table 1 specifies the SQL API for applicational and middleware-level MRVs. In the middleware

implementation, the 𝑏𝑜𝑢𝑛𝑑 operation cannot be translated and theWrite operation is not fully

transparent due to the ambiguity with 𝑎𝑑𝑑/𝑠𝑢𝑏.

Finally, implementing MRVs at engine-level can use a similar approach, but fully hiding the

auxiliary structures from the client. This results in greater transparency and can allow DDL (Data

Definition Language) statements to be used by the application. Another option is to model the

additional tables and metadata as internal structures and offer MRVs as a new data type. In this

option, the workers can be fully implemented at engine-level and MRVs can achieve minimum

overhead. We use it in DBx1000 [69], which implements an experimental in-memory data system

targeted at high-concurrency workloads. Here, MRV records are stored using array structures and

thus lookups are performed using position indices.

3.2 Benchmarks
To find the optimal parameters and evaluate MRVs’ performance, we consider the following

benchmarks:

Microbenchmark – Models the stock of several products, used to explore the effective over-

head/performance gain in a wide range of configurations. Operations can subtract or add several

units to a random product (write) or compute a product’s total stock (read). Unless otherwise stated,

each test runs for 65 seconds, with the first 5 removed from the results. Compiled with openjdk-11.
TPC-C – TPC-C [46] is used as an example of how MRVs perform in a more general, widely used

workload. The top conflicts, presented in Table 2, led us to model add-only columns w_ytd and d_
ytd as MRVs. Column d_next_o_id is not modeled as MRVs to not violate its uniqueness property,

as required by TPC-C.
2
Each test runs for 60 seconds. Executed with sysbench 1.0.20[40].

TPC-C DBx1000 – Another TPC-C implementation to compare against escrow locking and

different concurrency techniques (DBx1000[68]). It executes only the payment transaction – as it

is the only one where MRVs and escrow locking are used – modified to evaluate add and subtract

performance. No workers are used due to the additional implementation complexity. Each test runs

until 100k transactions are committed. Compiled with g++-7.
STAMP Vacation – The Vacation benchmark [35] contains a large number of increment, decre-

ment, and read operations on numeric values. The topmost abort causes, presented in Table 3, led

us to model columns numFree and numTotal of the different items as MRVs. Each test runs for 60

seconds. Compiled with openjdk-11.

2
Conflicts generated from monotonically increasing identifiers, such as d_next_o_id in TPC-C, can be avoided with

auto-incremented fields, with the caveat of being non-contiguous if a transaction aborts after advancing them, or with

non-monotonic identifiers (e.g., UUIDs). Otherwise, there is no parallel solution to this problem [18].
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Table 2. Top 3 most common abort causes in the TPC-C benchmark (Repeatable Read). The presented queries

concern updating a warehouse’s year-to-date by some amount (1), incrementing a district’s next order identifier
(2), and updating a district’s year-to-date by some amount (3).

Statement %

UPDATE Warehouse SET w_ytd += __h_amount ... 37

UPDATE District SET d_next_o_id += + 1 ... 28

UPDATE District SET d_ytd += __h_amount ... 27

Table 3. Top 3 most common abort causes in the STAMP Vacation benchmark. The presented queries concern

decrementing a reservation’s stock (1,2) and incrementing a reservation’s stock (3).

Statement %

UPDATE car_reservation SET numFree -= 1 WHERE id = $1 52

UPDATE flight_reservation SET numFree -= 1 WHERE id =$1 28

UPDATE room_reservation SET numFree += 1 WHERE id = $1 14

3.3 Database management systems
We consider five different database management systems:

PostgreSQL – PostgreSQL 12 represents a traditional centralized SQL system, also relevant

as a managed cloud service. It is an example of how MRVs can be implemented transparently

to the application. We use Repeatable Read – which results in Snapshot Isolation – and Read

Committed isolations – which does not generate aborts on concurrent updates but serializes them

with statement locking [19].

MongoDB – We use MongoDB 4.2.2 as our NoSQL single-writer cluster, deployed in a replica set
to support transactions [25]. To have a consistency similar to Snapshot Isolation, we use the following
setup: Read preference: primary, to avoid stale data aborts [24]; Read concern: snapshot [23];
Write concern: majority [26].

MySQL Group Replication – MySQL Group Replication is a multi-writer architecture where

transactions execute optimistically and, at commit, are totally ordered, using consensus, and then

certified and committed/aborted by all sites [12]. MySQL Server 8.0.17 is used in three sites with

Repeatable Read isolation.

System X – System X is a codename for a geo-distributed, multi-writer, closed-source NewSQL

database management system. Since ensuring geo-availability incurs a higher commit latency

due to synchronous replication, it is a perfect target for MRVs. Additionally, it is an example of

a system where we cannot modify the internal engine but still can make use of MRVs with an

application-level implementation. Read-write transactions execute under Serializable guarantees.

DBx1000 – DBx1000 [69] is used for the MRVs engine-level implementation and to compare

with escrow locking and high-performance concurrency control. It uses Serializable isolation.

4 PARAMETERS AND DESIGN DECISIONS
This section explores the impact of configuration parameters and design decisions. Besides the

impact of the number of records for each item, we consider dynamically adjusting the number of

records to the workload, balancing the values, and using a limited history window for the workers.

For this purpose, we use the microbenchmark of Section 3.2. All tests are executed on Google

Cloud Engine virtual machines (N1 Series), configured with Ubuntu 18.04 LTS. The tests with
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Fig. 4. Comparison of the response time ratio between MRVs and baseline (single record) in the microbench-

mark, for PostgreSQL (PG) and MongoDB (MD).

PostgreSQL use a 24 vCPUs, 24 GB RAM, and 500 GB SSD instance. The tests with MongoDB use a

Replica Set for transactional isolation with 3 instances of 8 vCPUs, 8 GB RAM, and 165 GB SSD.

4.1 Number of records
We assess the impact of varying the number of records for each item in the read and write operations

by measuring the average response times. The adjust worker is disabled in these experiments, such

that the number of records is constant. Each test executes with 1 client and 1 product (meaning

there are no conflicts), performing either a 𝑟𝑒𝑎𝑑 (read test) or an 𝑎𝑑𝑑/𝑠𝑢𝑏 of multiple units (write

test). In the MRV write, the 𝑠𝑢𝑏 operations should only need to update one record, since frequent

adds and the balance worker keep the records with enough stock. Figure 4 presents the write results,

using PostgreSQL (Figure 4a) and MongoDB (Figure 4b), and the read results, using PostgreSQL

(Figure 4c) and MongoDB (Figure 4d).

Write results for PostgreSQL (Figure 4a) show that the 𝑎𝑑𝑑 response time is 1.06× (1 record) to

1.42× (1024 records) higher than the baseline (i.e., before splitting the target value to a separate

MRVs table), while the 𝑠𝑢𝑏 response time is 1.08× to 1.49× higher. The write response time when

dealing with a high number of records is the result of a more expensive index lookup. As for the

MongoDB results (Figure 4b) the ratio is on average 1.12× higher. The lower overhead is explained

by the native operation itself having a higher response time than in PostgreSQL (3ms vs 1ms), so

the overhead is not as noticeable. These are encouraging results, as they present a low overhead for

a low number of records while the higher overhead for a higher number of records can be easily

justified by reducing the collision probability on hotspots.

Read results with PostgreSQL (Figure 4c) show a higher difference when comparing to the writes,

being between 1.25× and 3.92×. Although this confirms that the MRV read complexity grows

with the number of records, it doesn’t increase linearly with its number (e.g., between 1 and 1024

records, the response time only increases by a factor of 3). MongoDB results (Figure 4d) also follow

a similar evolution. However, the ratios are considerably higher, being between 9.75× and 18.18×.
The main cause is that we rely on the aggregation framework, which is more expensive than the

find instruction used by the baseline code.

Note that the baseline read results are relatively small, e.g., with PostgreSQL being 0.08ms, which

makes the MRVs with 1024 records (0.31ms) seem comparatively high. However, the baseline

write is 12× more expensive than the baseline read, meaning that even with an equal number

of writes and reads, tackling write performance can be easily justified by the more expensive

reads. Section 5 confirms that the reduction in the conflict probability in workloads with hotspots

offsets the overhead of reads. Also note that as MRVs are dynamic, only hotspots will suffer higher

overheads, while solutions relying on static splitting must pre-allocate in excess.
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Fig. 5. Evolution of the number of records and abort rate based on different load changes in MRVs. ×𝑛 means

an 𝑛 times increase in the number of clients between 60 and 120 seconds.

Table 4. MRVs storage overhead relatively to the baseline.

# of clients 1 2 4 8 16 32 64 128 256 512
1 hotspot 1 43 119 182 393 683 1k 1k 1k 1k
1 column 2.03 2.25 2.43 2.25 2.29 2.25 2.18 2.25 2.09 2.55

TPC-C 1.00 1.00 1.01 1.02 1.05 1.08 1.09 1.01 1.01 1.00

1 col. static ~250

4.2 Adjust worker
Next, we show how the adjust worker makes MRVs adapt to changing workloads. To do so, we

consider the following test: We start with 8 clients and 256 products, which results in a small

probability of conflict; At the 60-second mark, we increase the number of clients by 2×, 3×, and 4×;
Finally, at the 120-second mark, we decrease the number of clients back to the original 8. We also

apply the 4× test to MRVs with no adjust worker (Static), to serve as a baseline. Figure 5a displays

the total number of records over time, while Figure 5b displays the overall abort rate over time.

The dynamic results show that in the first 60 seconds, the total number of records is relatively

stable with 1 record per product (Figure 5a). With the increased load at the 60-second mark, there

is an abort rate spike in all tests, above the established goal of 0.05 (Figure 5b). However, the adjust

worker adds more records, depending on the abort rate seen for each product. As the load increases,

so does the probability of conflict, meaning different loads will require different numbers of records

to meet the goal. As the load decreases back to the original at the 120-second mark, the adjust

worker starts removing unnecessary records, which in practice means lower read and storage

overheads. On the other hand, static splitting shows that while the initial records are enough for

the initial load, they do not adapt when it increases, raising the abort rate. The alternative would be

to pre-allocate in excess, trading off lower abort rates for higher execution and storage overheads.

Reducing conflict probability with MRVs increases the amount of storage space used. The results

in Table 4 display the storage used in relation to the native single-record baseline, based on the

number of clients. The first (1 hotspot) shows the impact on a single hotspot value. As expected,

it increases with contention and converges to the 𝑛𝑟𝑚𝑎𝑥 configuration parameter. This does not,

however, reflect the cost of MRVs, as only a few values turn out to be hotspots. The second (1
column) shows the space overhead on a single column modeled as MRVs with 100k records and
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client accesses according to a power law distribution, that creates realistic hotspots. In this case, the

overhead ranges from 2 to 2.55. Finally, as real data is likely to contain many columns with only a

few modeled as MRVs, we check the space overhead in the TPC-C benchmark with one warehouse

(high contention). In this case, the space overhead is negligible with at most 9% over the baseline.

This should be the norm for the average practical use case. Table 4 also shows that the storage

overhead of pre-allocating enough records in static splitting to meet the target abort rate in the 1
column test is around 250× higher than the baseline, or more than 100× higher comparatively to

MRVs, again exemplifying the limitations of static splitting.

In short, the adjust worker is able to adapt to a changing workload and configure the number of

records necessary to reduce the probability of conflict. Moreover, in realistic applications with a

skewed workload leading to some hotspots in only a few columns, the storage overhead is negligible.

4.3 Balance worker
Next, we consider the optimal algorithm to balance values among existing records, in particular,

trying to avoid records with zero value that are useless but add to the overhead. The first tests,

presented in Figure 6, compare the execution time (Figure 6a), percentage of records with zero

value (Figure 6b), throughput (Figure 6c), and abort rate (Figure 6d) of the different algorithms,

with no balancing background worker as a baseline (none). The benchmark runs under the uneven
operation distribution (on average, one 1000-unit add for every 1000 1-unit subs), as generating

more unbalanced records is the worst-case scenario for the worker. It uses 64 clients, 64 products

(same access probability) with no initial stock, to simulate a low-stock workload, and a variable

number of initial records per product (no adjust worker). The balance worker runs every 100ms.

Both 𝑟𝑎𝑛𝑑𝑜𝑚 and𝑚𝑖𝑛𝑚𝑎𝑥 balance two records every iteration.

We first conclude that, with a low number of records per product, all three algorithms perform

in a similar fashion, which is expected since at a low number both minmax and random will tend

to equal all. In addition, we can already notice the benefit of using a balance worker, given that

without one it results in twice as many zero-valued records (Figure 6b). However, as the number of

records increases, the differences become evident. random will tend to perform the same as the

alternative with no worker, since the probability of selecting two zero-value records for balancing

increases, wasting an iteration (Figure 6b). The minmax and all algorithms perform similarly in

terms of throughput up to 32 records per product (Figure 6c). After that, all loses a considerable
amount of performance, as forcing an update to all records in one transaction results in a higher

abort rate (Figure 6d) and long iteration times (Figure 6a). Meanwhile, minmax not only presents a

higher throughput (Figure 6c) and lower abort rate than the other alternatives (Figure 6d), it also

iterates as fast as random (Figure 6a). The exception is after 128 records, as the worker does not

balance two records that have the same value, which is often the case with random. Thus, minmax
will be used for all remaining tests.

We consider next howminmax behaves based on the number of records it updates in one iteration.

A 𝐾 of 1 means it will balance the max and min records (default), a 𝐾 of 2 means it will balance

the two max and two min records, and so on. A 𝐾 of
#records

2
equals the all algorithm. Since 𝐾 = 1

provides the optimal execution time and 𝐾 = #records

2
achieves equilibrium in just one iteration,

there should be some 𝐾 that is the optimal trade-off. A similar experiment to the one in Figure 6 is

performed, presented in Figure 7. Each cell represents the product of the number of zero-valued

records and balance time ratios in relation to 𝐾 = 1, i.e., 𝑐𝑖 =
Zeros𝐾=𝑖

Zeros𝐾=1
· Time𝐾=𝑖

Time𝐾=1
. As we want to

minimize both, the optimal 𝐾 is the one with the smallest 𝑐 . Intuitively, if 𝐾 = 2 results in half the

number of zeros but doubles the execution time, 𝑐 = 1.0 and so we consider it the same as 𝐾 = 1. If

𝐾 = 2 results in half the number of zeros but the same time, 𝑐 = 0.5 and thus better than 𝐾 = 1.
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Fig. 6. Comparison between different balance algorithms.
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Fig. 7. Comparison between different balance sizes (K) in MRVs performance (𝑐𝑖 =
Zeros𝐾=𝑖

Zeros𝐾=1
· Time𝐾=𝑖

Time𝐾=1
). Lower

is better.

By analyzing the results (Figure 7), we conclude that there is indeed a better 𝐾 than 1 for most

tests. A rough estimate let us conclude that 𝐾𝑜𝑝𝑡 = 2 when #𝑟𝑒𝑐𝑜𝑟𝑑𝑠 = 4, 𝐾𝑜𝑝𝑡 =
1

8
· #𝑟𝑒𝑐𝑜𝑟𝑑𝑠 when

#𝑟𝑒𝑐𝑜𝑟𝑑𝑠 < 64 and 𝐾𝑜𝑝𝑡 =
1

16
· #𝑟𝑒𝑐𝑜𝑟𝑑𝑠 when #𝑟𝑒𝑐𝑜𝑟𝑑𝑠 ≥ 64.

4.4 Window size
Finally, we evaluate the impact of different balance and adjust windows – the oldest information that

is considered for the balance/adjust workers. This is key to bounding the amount of memory used

and is desirably not longer than the period of the worker. The microbenchmark’s accessDistribution
is set to power law, meaning a product’s access probability is (𝑥 + 1)−1, where 𝑥 is its index
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Fig. 8. Effects of different windows in the MRVs workers.

(𝑥 ∈ [0, 99999]). This models a workload with a large number of products but few hotspots. The

balance tests (Figure 8a) execute only 𝑠𝑢𝑏𝑠 , with each product having a fixed 64 records, where

one has the entire stock while the other 63 have none, to evaluate the balance effectiveness. The

adjust tests (Figure 8b) execute 𝑎𝑑𝑑𝑠 and 𝑠𝑢𝑏𝑠 evenly and each product starts with one record. The

window is defined as a percentage of the worker’s respective period that is for balance and adjust

workers, respectively, 100ms and 1000ms.

The balance tests (Figure 8a) show that a window of 0%, which is equivalent to not using the

worker, results in a client abort rate of around 70%, clearly undesirable. Increasing the window

until 100% quickly decreases the abort rate, with a relatively low impact on the execution time.

However, growing the window past that point results in a considerably higher execution time, as

the worker must consider a larger set of products, and in turn, actually outputs a higher abort rate.

The optimal window for this workload is between 50% and 100%. The adjust tests present a similar

trend. A window of 0% results in the highest abort rate, while increasing it up to 40% results in a

substantially lower one. After that, the adjust time increases while the abort rate stays roughly

the same. We consider the optimal adjust window for this workload to be 25%. Although different

workloads might have different optimums, we use these values for the remaining tests and achieve

good results.

5 PERFORMANCE EVALUATION
This section compares MRVs with competing approaches and then to a native numeric column as a

baseline in different environments, including centralized and distributed systems. We use the same

experimental conditions of Section 4 for PostgreSQL and MongoDB. Likewise, tests with DBx1000

use a 24 vCPUs, 24 GB RAM instance. The tests with MySQL Group Replication run on 3 instances

of 8 vCPUs, 8 GB RAM, and 165 GB SSD. And finally, System X uses 3 read-write replicas deployed

in relatively close proximity to the 24 vCPU client.

5.1 Comparison with Phase Reconciliation
First, we compare MRVs to phase reconciliation [36], which is also a form of reservations and close

to MRVs in terms of the problem addressed. In contrast to other reservation mechanisms, instead

of partitioning by site, phase reconciliation partitions by core in its split phase. Additions and some

subtractions can execute concurrently, while reads must wait for the joined phase, where the partial

values are merged into a single global one (phase is specific for each record).
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Fig. 9. Comparison between baseline (native), MRV, and phase reconciliation using the microbenchmark with

a variable read percentage (PostgreSQL Repeatable Read).

To implement the phase reconciliation technique we use a split for each client. The coordinator

determines if a record changes phase every 20ms, as specified by the paper. The conditions that

trigger a phase change are, however, not as clear, as exact values were not specified in the paper. We

thus consider three different metrics: abort rate per record, clients waiting for the joined phase, and

transactions that aborted due to no stock. We optimized the first two metrics for the first workload

using a grid search algorithm, where we found that it is best to convert a record to the split phase
when the abort rate per record is > 65%, and to convert a record to the joined phase when 1) there

is a client waiting for that record and 2) the total ratio of clients waiting for the joined phase is

> 25%. Finally, we also optimized the third metric, this time for the second workload, and found

that it is best to join a record as soon as there is a client which hit a no-stock abort for that record.

We compare phase reconciliation with MRVs using the microbenchmark with two workloads

(PostgreSQL Repeatable Read, 32 clients, 32 products): The first uses a variable ratio of read/write

transactions, which allows us to see how both techniques adapt to varying workloads
3
(Figure 9;

we show the read results from 50% to 100% for readability, as they are similar under 50%); The

second uses the uneven operation distribution (just writes) with varying scales (1 to 100), where “1”

means one 𝑎𝑑𝑑 of value 1 for every 𝑠𝑢𝑏, while “100” means 𝑎𝑑𝑑 100 for every 100 𝑠𝑢𝑏 operations of

value 1, in addition to populating each record with a reduced initial stock of 1000 (Figure 10). Many

𝑠𝑢𝑏𝑠 and few 𝑎𝑑𝑑𝑠 is the worst-case scenario for both solutions, as will it lead to more out-of-stock

records. Thus, it will let us better compare the MRVs balance worker with the phase reconciliation’s
join and split to distribute stock among records, as well as measure the impact of static splitting for

reduced stocks. We also show static splitting (32 records; good baseline for these tests) to emphasize

the relevance of background workers on performance, specifically the adjust in the first test and

the balance in the second.

The first conclusion from the results with a variable percentage of read transactions (Figure 9)

is that, with only writes or only reads, phase reconciliation is slightly better than MRVs, with 9%

better throughput for both cases. For writes, phase reconciliation completely removes conflicts,

while MRVs only reduce their probability. For the reads, the MRVs SQL code has a higher planning

cost at the engine, even though both alternatives use only one record for this extreme. However,

running reads and writes concurrently show us the main drawback of phase reconciliation: having
to choose between fast writes and blocking reads or slow writes and non-blocking reads. This

3
Since this is a variable workload, the number of initial records per product in MRVs is set to just one, instead of the usual

one record per client.
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Fig. 10. Comparison between baseline (native), MRV, and phase reconciliation using the microbenchmark

with various uneven scales (writes only; PostgreSQL R. Read). 𝑥 = 1: 1-unit 𝑎𝑑𝑑 per 1-unit 𝑠𝑢𝑏; 𝑥 = 5: 5-unit

𝑎𝑑𝑑 per five 1-unit 𝑠𝑢𝑏𝑠 , and so on.

causes the overall performance to be similar to or even worse than the baseline. In fairness to phase
reconciliation, we did not batch the reads and writes, which should result in higher throughput, as

this would be more complex to implement. However, even with batching, it would still result in

higher response times and, consequently, lower throughput than MRVs, as the transaction rate is

dictated by the clients. MRVs, on the other hand, allow both reads and writes to execute concurrently,

resulting in an overall higher throughput even if the both on their own are slightly slower than

phase reconciliation. Regarding static splitting, although writes are faster than phase reconciliation
and even match MRVs, the negative impact on reads is evident, given the over-allocation of records.

Overall, in this test, static splitting is 14% slower than MRVs when reading.

Results with uneven numbers of adds and subs (Figure 10) show that increasing the uneven scale

results in a considerable performance drop for phase reconciliation. As the stock takes longer to

replenish and only affects one record at a time, the probability for the amount in some record to

deplete increases, which will require changes to the joined phase, increasing overhead and conflict

probability. On the other hand, by allowing subs to access multiple records, as well as employing

the comparatively lighter balance worker, MRVs suffer only a small drop in performance as the

skew between adds and subs increases. Without the balance worker, static splitting relies only on

the increasingly sparse 𝑎𝑑𝑑𝑠 to keep records with stock, leading to a higher number of zero-valued

records and increasing the number of conflicts for 𝑠𝑢𝑏𝑠 (on average, it has 50% more aborts than

MRVs). However, static splitting is still faster than phase reconciliation in this workload, highlighting
the performance impact of phase switching in dynamic workloads.

5.2 Comparison with Escrow Locking
Next, we compare MRVs with escrow locking [38], which is the proposal aimed at the same problem

as MRVs in a centralized lock-based environment, using DBx1000 (with 2PL) [69]. Escrow locking
is implemented by modifying the locking code to not acquire exclusive locks on 𝑎𝑑𝑑 and 𝑠𝑢𝑏

operations, but instead manipulate an escrow local to each transaction within a row latch [38]. As

for MRVs, we use 128 records for each item. Figures 11a and 11b show the throughput and abort

rate, respectively (32 clients).

The results show that with one warehouse, which causes maximum contention, MRVs result in

almost 50% higher throughput than escrow locking, but at the same time displays a higher abort

rate, given the probabilistic nature of MRVs. As the number of warehouses increases, decreasing

contention, the two options converge to similar results, meaning that the MRVs technique has
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Fig. 11. Comparison between baseline (native), MRV, and escrow locking using TPC-C’s payment in DBx1000.

comparable performance to escrow locking in a centralized database. This is good news, given that

escrow locking is the closest proposal in terms of goals but restricted to a centralized lock-based

implementation.

5.3 Varying workloads
We now compare the performance of MRVs to a native numeric column with different workloads:

microbenchmark (Figure 12a), TPC-C (Figure 12b), and STAMP Vacation (Figure 12c). The initial

number of records for the MRVs columns is the same as the number of clients, except for the

Read Committed tests, where it is twice as much as there is no adjust worker, and the STAMP

Vacation, which is based on a ratio between the number of clients and the number of items, to

limit read overhead for low collision tests. We vary the number of clients and benchmark scale

to evaluate how MRVs adapt in different scenarios. Results are presented as heatmaps that depict

the throughput ratio between MRVs and native.
4
The bottom right corner of each chart displays

situations of extreme contention, where dozens to hundreds of clients compete for write access to

the same logic row, while the top left corner has little to no collisions.

Microbenchmark results (Figure 12a) show an increased throughput over the native as the

number of clients grows and the number of products decreases, i.e., higher conflict probability.

MRVs throughput ends up being up to 24× higher than with native numeric columns, as a result

of a higher success probability. The only exception is the results with 1 client, where it ends up

reaching around 0.9× the rate of the native since there are no conflicts, and as such MRVs offer

nothing but overhead. Meanwhile, MRVs abort rate ranges between 1× and 0.01× (avg. 0.22×)
higher than the native, while the response time ranges between 0.95× and 24× (avg. 2.36×), as in
the native only the fastest transactions commit. Likewise, experiments with Read Committed

result in similar improvements, even though no aborts are generated due to locking. It reaches

up to 18× the native throughput, since a transaction in the single-record solution has longer wait

times due to lock contention. Consequently, the response time is lower, ranging between 1.22×
and 0.08× (avg. 0.76×). We also evaluated the microbenchmark with the uneven distribution (100

𝑠𝑢𝑏𝑠 for a single 𝑎𝑑𝑑), where it reached up to 12× the native throughput, and with each transaction

updating three products instead of one, reaching up to 27×.
TPC-C results (Figure 12b) show the MRVs overhead when the number of clients is low and

the number of warehouses is high, i.e., a low conflict probability. This makes MRVs have around

0.9× the throughput of the native. As the number of clients increases, so does the throughput ratio,

which reaches up to 3× more. Again, this is due to the reduced abort rate, being between 0.29×
4
The corresponding charts for the abort rate and response time, can be found together with the source code.
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Fig. 12. Throughput comparison between MRVs and baseline (native) using different workloads with Post-

greSQL’s Repeatable Read. A value of 1.0 means MRVs and native have the same throughput, 2.0 means

double the throughput for MRV, and so on.

and 1× (avg. 0.5×), while the response time is between 0.33× and 1.34× (avg. 0.88×). Although
not shown, experiments with Read Committed also show improvements, reaching up to 2.6× the

native throughput as a result of the lower response time (up to 0.36× higher). This shows that

MRVs not only can be integrated with a more complex application, but also improve a workload’s

overall performance even when numerical write hotspots are only a small part of it.

Initial tests with the STAMP Vacation benchmark produced surprising results: Measured through-

put varied widely in the baseline and, with an increasing workload, MRVs resulted in up to 40×
higher throughput. Upon careful examination, we found that most problems were due to deadlocks,

as operations randomly choose a set of services to acquire for one trip. By reducing conflicts, MRVs

would thus also reduce deadlocks across different products. In addition, a small number of items

led to stock depletion very quickly.

Thus, Figure 12c’s results were obtained using the following modifications that reduce the

disadvantage of native numeric columns and would likely have been implemented by application

developers: Item writes are ordered by their ids, to avoid deadlocks; and the initial stock and the

initial number of clients are increased. Furthermore, we also consider two optimizations for MRVs:

we replaced the numFree > x predicates with our 𝑏𝑜𝑢𝑛𝑑 operation that does exactly that but more

efficiently, in order to avoid, if possible, reading the entire set; and replaced the UPDATES to MRVs

by manual calls to functions that do the same. The reason for this is because PostgreSQL’s UPDATE
rules always materialize the current value, resulting in a read per update.

The results show a positive correlation between a high number of clients/low rows per table and

a high throughput ratio, where MRVs reach up to more than 4× the native’s throughput, while the

abort rate is between 0.09× and 1.18× (avg. 0.57×). Even though this benchmark is modeled using

a higher number of numerical updates comparatively to the TPC-C, it uses even more reads and

inserts,
5
explaining why it does not reach as high as the microbenchmark. Just like with TPC-C,

we have some overhead for situations with low collision probability, where MRVs reach between

0.8× and 0.9× the native’s throughput. Without the optimizations described above, MRVs reach up

to 3.3× the native, while the overhead is slightly higher (between 0.7× and 0.9×). If we instead use

static splitting (based on optimized MRVs), the overhead is considerably higher, reaching down

5
In the most frequent procedure (Make Reservation), there are ten MRV reads, one regular read, four inserts, and just three

MRV writes.
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(a) Single-writer SQL
(PostgreSQL)
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(b) Single-writer NoSQL
(MongoDB)
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(c) Multi-writer SQL
(MySQL Group Replication)
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(d) Multi-writer cloud-native
NewSQL (System X )

1 2 8 32 64 128 512
Clients

2048
512
128

32
8
2
1

Sc
al

e

0.9 0.8 0.8 0.9 0.9 0.9 0.9
0.8 0.8 0.8 0.9 0.9 0.9 0.9
0.9 0.8 0.9 0.8 1.0 1.1 1.2
0.9 0.8 0.9 1.3 2.0 1.8 1.9
1.0 0.9 1.5 2.3 2.8 2.6 3.0
1.0 1.3 2.3 2.5 3.3 4.4 3.2
0.9 1.3 2.7 3.5 3.7 3.3 3.6

Relative transaction rate

0

1

2

Re
la

tiv
e 

th
ro

ug
hp

ut

Fig. 13. Throughput comparison betweenMRVs and baseline (native) using themicrobenchmarkwith different

database management systems. A value of 1.0 means MRVs and native had the same throughput, 2.0 means

double the throughput for MRV, and so on.

to 0.5× the native due to over-partitioning, while at the same time not reaching ratios as high as

MRVs, as more records have depleted stock. Overall, MRVs are 15% faster than static ones.

In short, these tests show that MRVs have performance advantages whenever there are conflicts,

even if in the context of varied multi-operation transactions and with the generic middleware.

Moreover, they show a surprising advantage in reducing deadlocks and that minor changes to

application code, that avoid the overhead of the generic implementation, are feasible and useful.

5.4 Varying database management systems
These experiments aim at evaluating MRVs on different database management systems, including

distributed systems where solutions such as escrow locking are not applicable. To do so, the MRVs

technique is compared to the native (single-record) versions in the microbenchmark using: a single-

writer SQL system with PostgreSQL’s Repeatable Read (Figure 13a); a single-writer NoSQL data

store with MongoDB (Figure 13b); a multi-writer SQL database with MySQL Group Replication

(Figure 13c); and a cloud-native, multi-writer NewSQL system with System X (Figure 13d). For

System X, we model MRV rows with the key and 𝑟𝑘 encoded in a single column (e.g., ’p0.0123’),
as the composite key ⟨𝑝𝑘, 𝑟𝑘⟩ led to false conflicts due to how the underlying storage works. Again,

we rely on heatmaps showing the difference between MRVs and native, where the top left corner

refers to low-collision runs while the bottom right corner refers to high-collision ones.

Figure 13 shows a pattern throughout all systems: Increasing the collision probability leads to

relatively higher throughput with MRVs. We can also see that the MRVs in all SQL systems have a

similar overhead, presenting a throughput of around 0.9× the native when there are no collisions.

On the other hand, the NoSQL MRVs results present a relatively higher performance loss, even
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Fig. 14. Throughput comparison between different concurrency control techniques with and without MRVs.

2PL a) is equivalent to native of Figure 11; 2PL b) is equivalent to mrv in Figure 11.

when the number of clients is greater than one, as we can infer from the results with lower collision

probability (128-2048), which is in line with the overhead presented in Figure 4b and is due to the

limitations of its query processing mechanism.

Experiments with single-writer SQL systems show up to 24× the throughput of the corresponding

native baseline, the single-writer NoSQL up to 18×, the multi-writer SQL up to 17×, and the multi-

writer cloud-native NewSQL up to 100×, due to the lower abort rates (down to 0.01×, 0.01×, 0×,
and 0× higher than the native, respectively), even if increasing response times (up to 24×, 1.36×,
1.7×, and 1.52×, respectively). Experiments with System X highlight one of the advantages of

application-level MRVs: Improving the performance of update hotspots even when we do not have

access to system internals. Furthermore, reducing conflict probability in cloud databases such as

System X is especially important, as they are paid by the hour and by the maximum number of

queries per second. This means that aborts not only have an impact on the response time seen by

the client, but also limit the available resources and increase costs to meet demand.

In short, these experiments show that the MRVs technique is widely feasible and advantageous in

a spectrum of different database management systems, including distributed and NoSQL systems.

5.5 Varying concurrency controls
One of the main advantages of MRVs is the fact that they can be layered on top of existing con-

currency control, easing implementation and taking advantage of state-of-the-art optimizations.

Figure 14 compares the throughput of various concurrency control techniques provided by DBx1000,

using the same configuration as Figure 11 (TPC-C payment, 32 clients), with and without MRVs:

common two-phase locking (2PL) [8] implemented with WAIT_DIE and timestamp-ordering imple-

mented with multi-version concurrency control (MVCC) [48]; and high-performance Hekaton [14],

Tictoc [70], and Silo [61]. Escrow locking is also evaluated [38].

The first conclusion is that MRVs, even when based on common 2PL and MVCC techniques,

match or even outperform high-performance concurrency control techniques in high contention

scenarios (i.e., very few warehouses). MRVs (Figure 14b) achieve the optimum with around 2-4

warehouses, for all techniques, while the MRV-less techniques (Figure 14a) require 32 warehouses.

The second is that MRVs take advantage of better-performing underlying concurrency control

techniques, as the combination with TicToc or Silo achieves close to optimum performance even

with extreme contention.
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Table 5. Comparison between MRVs and related work.

Technique Limit
invariant?

Primary
target

Parallelism
technique

Consistency
level

Multi-Record Values (MRVs) yes numeric fields
reservations +
commutativity

strong

Single record (baseline) yes - - strong

Escrow locking [38] yes numeric fields reservations strong

Phase reconciliation [36] yes
numeric and
set fields

reservations +
commutativity

strong

RedBlue [28] / ℐ-confluence [3] yes
commutative
operations

commutativity
strong/strong
eventual

Timestamp splitting [22] yes records multi-ts records strong

Parallel transaction chopping [17, 53, 64] yes transactions
transaction
chopping

strong

Distr. reservations [4, 29, 33, 42, 66, 67] yes
inter-site

numeric fields
distributed
reservation

strong
eventual

Cassandra’s Counters [65] no
inter-site

numeric fields
distributed
partitioning

strong
eventual

Delta transactions [57] no numeric fields commutativity strong

Counting sets [56] no set fields commutativity
strong
eventual

Operation transformation [16] no
various

operations
delayed
resolution

strong
eventual

CRDTs (w/o BCounter) [27, 51, 52] no various fields commutativity
strong
eventual

Post-Commit Rules [59, 60] no
various

operations
delayed
resolution

eventual

6 RELATEDWORK
Table 5 summarizes the main competitors to MRVs discussed in this section. We start off by

comparing proposals addressing the same problem, i.e., update conflicts in numerical values and

enforcing a lower bound, that are thus direct competitors to Multi-Record Values. A classical

solution for locking systems is escrow locking [38]. Instead of acquiring a lock for the duration of

a transaction, the change to the value is kept in escrow until transaction commit and, otherwise,

undone. This is efficient when implemented as part of locking mechanisms in a database engine.

The challenge with the distributed systems that we consider is that they get their performance from

executing transactions locally and then validating writes at the end, in a single distributed step. In

both cases, we cannot assign splits to individual nodes, either due to full replication (e.g, MySQL

GR [12] and CockroachDB [58]) or layering (e.g., Spanner [11] and Aurora [62]), so a node does not

own any rows exclusively. Managing an Escrow would need additional distributed coordination

steps, for instance, to a central coordinator, which is precisely what these systems avoid for good

performance. Although it has been proposed at the application-level and in a distributed system [54],

given the overhead of remote synchronization, it is feasible only for long-lived transactions to cope

with disconnection and not for fine-grained concurrency hotspots, unlike MRVs.

In memory-based systems, phase reconciliation [36] splits a record for each core when it becomes

contended, by moving it from the joined (single record) to the split phase. As each core has its

own partial value, this precludes conflicts. However, read operations must block until the record
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is joined back. Additionally, for numeric values, subtractions with lower bound invariant must

abort/block until the joined phase if there is not enough amount in the corresponding split. As

shown in Section 5, explicit allocation of splits and the synchronization on phase change impose a

significant overhead in systems other than memory-based multi-core databases.

Similarly for distributed systems, selecting the appropriate parallelism for each operation, either

implicitly (e.g., RedBlue [28]) or explicitly from invariants (e.g., ℐ-confluence [3]), allows executing
some operations asynchronously and in parallel in various sites, but is ineffective for update

hotspots when enforcing a bound, as all subtract operations would have to be considered not

parallel.

Second, there are high-performance concurrency control techniques [14, 21, 61, 70] that alleviate

contention in general, mainly on validating the transaction, but are not specific to numerical

records. Timestamp splitting [22] uses different timestamps for subsets of columns in the same

table, allowing operation in different sub-sets to execute concurrently. Although our solution was

designed to alleviate contention to updates of the same field, it also somewhat addresses the same

problem as timestamp splitting, since it does not trigger conflicts with other MRVs or non-MRVs

columns. Timestamp splitting also employs a technique to delay updates to commit time, which

precludes conflicts but does not decrease response time, as updates are still serialized. It is also

possible to improve performance by executing operations of the same transaction in parallel, in

high-performance concurrency control based on the concept of transaction chopping, i.e., dividing a
large transaction into multiple sub-transactions [17, 53, 64]. All of these are useful but do not address

the issue of concurrent updates on the same numerical field. However, they are complementary to

MRVs and can be easily and advantageously combined with them as shown in Section 5.

A third category includes reservation techniques for distributed systems [42, 43] inwhich different

sites are assigned different parts of some value that can then be accessed (read or updated) locally,

thus improving response times. The goal here is not to deal with concurrent transactions and

update conflicts but to avoid the large penalty of remote data access. When decrementing the value,

if the site does not locally have the necessary amount, it will have to either abort the transaction

or reconfigure, updating reserves from others. This technique has been generalized to enforce

abstract predicates instead of simple lower bounds [29, 33, 66, 67]. There are two main fundamental

differences in our proposal: First, distributed reservation systems are not concerned with routing

clients to splits, as there is a trivial choice of using the local one. In contrast, the randomized

method used in MRVs is a key part of our contribution. Second, in the distributed systems that

we target, nodes do not own rows exclusively. They are either fully replicated (e.g., MySQL GR,

MongoDB Replica Set) or hosted in a separate storage layer (e.g., Spanner, Aurora), hence, all splits

are accessed equally efficiently by all clients and always lead to remote communication for commit,

even if stored in private rows or tables. This means that, unlike MRVs, these techniques cannot be

easily layered by application developers on top of existing systems as they would need changes

to server source code or be infeasible in the case of cloud services. Simply using multiple server

instances in each node to deal with concurrent updates is also not an option, as this would not be

transparent to clients and would lead to a large space overhead as the number of splits could not

be adjusted separately for each row.

Finally, there are numerous techniques based on replication and commutativity targeted at

distributed systems, mainly for availability in a partitionable system [9]. Like MRVs and phase
reconciliation, Cassandra’s counters [65] are physically split into multiple structures (shards). Each

site applies updates to one of them and the total is computed with a sum. Delta transactions [57]
aims to convert two transactions that would otherwise conflict into multiple that commute, for

example, by updating not to some value but by some value. Another approach to avoid conflicts of

concurrent operations is to transform the operations themselves to achieve the same final state
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across replicas [16]. Conflict-free counting set objects [56] generalize these techniques to sets and

Conflict Free Replicated Data Types (CRDTs) [27, 51, 52] to a variety of data structures. These have

been widely used to improve the availability of distributed databases [1, 32, 47, 50, 55]. Since some

operations cannot commute (e.g., update with delete), some propose discarding one update in favor

of the other when merging data replicas. A custom merge procedure can be used [59], but the

most common conflict-solving rule is the last writer wins [60], used in various systems [2, 13, 30–

32, 34, 49]. However, none of these solutions provides strong consistency: They are unable to

enforce lower a bound invariant and in some cases arbitrarily discard data and operations, which

we assume that it is not acceptable. The exception is the Bounded Counter CRDT [4], which employs

escrow reservations [42, 43].
In short, MRVs are the only solution that enforces limit invariants – unlike most solutions based

on commutativity – are viable in distributed systems – unlike escrow locking – and maximize

parallelism - unlike RedBlue/ℐ-confluence, where 𝑠𝑢𝑏 operations with lower limit invariants are

not commutative.

7 CONCLUSIONS AND FUTUREWORK
We address a classical problem in transactional data processing that has resurfaced in modern

distributed database systems: Mitigating the effects of update conflicts on usable throughput while

at the same time preserving strong isolation criteria. The novelty of our proposal, Multi-Record

Values (MRVs), hinges on: The use of randomness to coordinate access to a value partitioned across

multiple records, without expensive synchronization; and an implementation strategy that leverages

existing transactional and query processing mechanisms of existing database management systems.

We then demonstrate the usefulness of the technique in a variety of database management

systems (PostgreSQL, DBx1000,MongoDB,MySQLGR, and a cloud service) and standard benchmark

workloads (TPC-C and STAMP Vacation), in all cases achieving at least 3× higher throughput in

high-contention scenarios, and up to 100× higher in microbenchmarks. This is competitive with

existing state-of-the-art in centralized systems and unprecedented in distributed systems.

By being easily implemented on client APIs and without changes to the database engine, MRVs

can be readily deployed on existing systems, even on closed-source cloud ones. This also makes it

easy to combine with state-of-the-art high-performance concurrency control to better cope with

extreme throughput environments.

The question that now remains is whether the MRVs technique can be applied to other data struc-

tures. Since splitting-based techniques have previously been applied to non-numerical structures,

such as top-𝑘 sets [36], future work can study the possibility of using MRVs in different contexts.
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