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Abstract— In order to reduce the curtailment of renewable
generation in periods of low load, operators can limit the import
net transfer capacity (NTC) of interconnections. This paper
presents a probabilistic approach to support the operator in
setting the maximum import NTC value in a way that the risk of
curtailment remains below a pre-specified threshold. Main
inputs are the probabilistic forecasts of wind power and solar
PV generation, and special care is taken regarding the tails of
the global margin distribution (all generation - all loads and
pumping), since the accepted thresholds are generally very low.
Two techniques are used for this purpose: interpolation with
exponential functions and nonparametric estimation of extreme
conditional quantiles using extreme value theory. The
methodology is applied to five representative days, where
situations ranging from high maximum NTC values to NTC=0
are addressed. Comparison of the two techniques for modeling
tails is also comprised.
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I. INTRODUCTION

The integration of large amounts of renewable energy
sources, the completion of the internal electricity market, as
well as a new energy generation mix, which means more
fluctuating renewable energy in the system and less
conventional fossil fuel generation, requires the development
of new reliability methodologies to compute reserve capacity
on a transmission network. Traditionally, power system
reliability studies for static and operating reserve capacity
were mainly concerned with the risk of failing to satisfy the
load, as the result of loss of generation due to forced outages
and load forecast errors [1].

When the integration level of renewable energy sources
(RES) in the power system becomes noteworthy, the impact of
RES uncertainty on the load-generation balance becomes
critical. For long-term reserve capacity planning (or
monitoring of the adequacy of supply) several methodologies
were proposed in the literature to include RES uncertainty, see
[2] and [3], For short-term operating reserve setting, the
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current state of the art consists in including information from
RES uncertainty forecasts (e.g., forecasted quantiles, temporal
trajectories) in risk-based decision tools [4], Recent work has
been focused in quantifying intra-hourly RES variability by
including probabilistic information about load and RES
variability [5],

All these studies and methodologies are mostly focused in
upward reserve capacity and little attention was given to
scenarios with extreme RES generation and high probability
of having more generation than load in the system. In non-
interconnected systems and in the absence of sufficient
flexibility from the demand-side (e.g., demand response
products, storage), these scenarios result in curtailment of RES
generation, which is not desired due to environmental (and
regulatory in some case) reasons. In interconnected systems,
restricting in advance the maximum import value of the Net
Transfer Capacity (NTC) with neighboring control areas
might mitigate this risk. However, due to the uncertainty of
RES generation and considering that restricting import NTC
value could also lead to market restrictions on boundary
systems, a risk-based methodology is required.

The current literature on this topic is mainly driven to
study the adequacy of the current European transmission
network and evaluate the necessity for future expansions from
a planning domain perspective. For instance, Farahmand et al.
in [6] conducted a cost-benefit analyses to assess the
transmission grid needed to integrate wind generation distant
from load centers and explore hydropower flexibility in
Nordic countries; Hagspiel et al. in [7] applied copula theory
to model the impact of wind generation in the European
interconnected network in terms of risk of overloading and to
prioritize necessary grid reinforcements.

In the operating time domain, several authors studied the
impact of wind power generation (and its forecasts) in the
NTC. For instance, Salic and Rebours in [8] conducted a 
statistical analysis with regression models to evaluate the
impact of the day-ahead forecasts of German wind generation
on the day-ahead NTC from Germany to France, which results
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show a significant impact on the NTC; Rious et al. in [9]
studied the impact of German wind power generation on the
Available Transfer Capacity (ATC) calculation between
France and Belgium and concluded that the impact varies with
the geographical distribution of the wind generation in
Germany.

Perninge in [10] developed a Monte Carlo simulation
method to estimate the risk of violating the Total Transfer
Capacity (TTC), by including probability distributions from
load, generation and grid state. The main limitation of this
work is that probabilistic information from forecasting tools is
not included in the model. Furthermore, scenarios with
extreme RES generation are not covered.

The present paper addresses these limitations by adapting a 
probabilistic methodology described in [11] for setting
operating reserve requirements from load and RES
probabilistic forecasts in order to estimate the maximum
import value in the cross-border interconnection. The original
contribution from this paper is a risk-based methodology that
determines the maximum value for the import NTC that
respects a maximum limit (risk threshold defined by the
decision-maker) the probability of wasting renewable
generation. Results from a real-world operational test for the
Portuguese power system are presented, particularly for
specific days with high wind generation levels.

The remaining of the paper is organized as follows: section
II describes the risk-based methodology to estimate the
maximum import NTC; section III presents the results for
Portugal for days with extreme RES generation levels; finally,
section IV presents the conclusions.

II. RISK-BASED METHODOLOGY

A. Components of the Methodology 
Fig. 1 depicts the input data, components and output of the

proposed methodology. Every day, the Transmission System
Operator (TSO), at day D and before daily market for day D+L,
can revise (if necessary) the maximum hourly import NTC
value for the next day D+L. The aim of the proposed
methodology is to support the TSO to determine the maximum
import NTC value that ensures that a certain risk level is not
exceeded. Risk here means the probability of having more
generation than load in the system, as a result of uncertainty in
RES and load forecasting.

It is important stress that the objective is not to discuss the
complementary problem that is how much operating reserve is
required to limit the probability of loss of load and RES
curtailment, which is covered by [11].

The input data consists of the following variables: wind
power, small-hydro, combined heat and power (CHP) and
solar power probabilistic forecasts, total load in the system,
minimum conventional generation capacity that must be in the
system due to stability reasons, and maximum pump storage
power capacity of the system (considering operational
constraints such as water reservoir levels), for each look-ahead
time step of day D+L.

The selection of these inputs is intended to create an
extreme operating scenario with conventional generation at
the minimum level and pump storage at its maximum value in
order to study the probability of having surplus of RES
generation.
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Generation
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Generation —
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Generation

S: Uncertain Solar Power
Generation

System Generation
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Fig. 1. Structure of the proposed method for setting the maximum import NTC.

The core of the methodology is based on the calculation of
the probability distribution of the balance system equation,
given by the difference between generation and load
(including maximum pump capacity).

This tool uses a probabilistic approach to build the system
generation's margin distribution and its probability
distribution results from convolving the probability mass
functions of each random variable component, as in [11], An
important assumption is independence between each random
variable (i.e., forecast errors). For the real case-study
described in section III, the Spearman's rank correlation
between wind power and load was -0.025 forecast errors, and
between wind and solar power errors was -0.077. Therefore,
this assumption is perfectly reasonable for this case. Otherwise,
copula theory can be used for modelling the dependency
structure of forecast errors [7],

The output is a suggestion of the maximum import NTC
value for each hour of the next day that ensures a certain
maximum risk fixed by the operator. Furthermore, information
about the forecast interval composed by the quantiles 5% and
95% (centered in the median) is also presented to the operator
in order communicate the level of uncertainty (of sharpness) 
of the probabilistic forecasts. With this approach, and in hours
where the suggested maximum import NTC is low, the
operator has additional information about the level of
uncertainty associated to each generation technology.

B. Input Data Modelling 

a) Uncertainty modelling: Probabilistic forecasts,
represented by a set of quantiles ranging between 5% and
95%, are generated with a statistical model (see [12] and [13]
for more details) to wind power, small-hydro, CHP and solar
power since these generation technologies are under a feed-in
support scheme in Portugal (called special regime generation)
and are the last in the merit-order of curtailment actions. This
representation follows the methodology proposed in [11],

A probability mass function (pmf) is derived from the
forecasted cumulative distribution function since it enables the
application of convolution techniques to the random variables



(see section II.C). The following procedure is adopted to
create pmf: (a) the forecasted cumulative function is linearly
interpolated; (b) from the interpolated function, the value of
equally spaced quantiles is derived and the corresponding
probability is assigned to the central point between the two
quantiles' values.

The load forecasting uncertainty is modeled by a Gaussian
distribution centered in the point forecast and standard
deviation calculated from the Mean Absolute Percentage Error
(MAPE) [11],

For the pump storage power capacity and conventional
generation only deterministic information is considered.
However, the proposed methodology is compatible with the
inclusion of unplanned outages in a capacity outage
probability table.

b) Forecasting the distribution tails: modelling of the
distribution tails is a critical factor to a proper modelling of the
risk. The regulatory framework imposes risk aversion to TSO,
thus the admissible risk level is always below 1% which
estimation quality highly depends from the distribution tails'
estimation.

Two different models were explored to model the tails: (a)
interpolation with exponential functions as used in [11] and
[14], but estimating the rate parameter as in [15] and then
using it to obtain the thickness parameter; (b) nonparametric
estimation of extreme conditional quantiles using extreme
value theory [16],

Very briefly, the first method considers that the range of
generation variables is within 0 and 1 (the data is therefore
normalized by dividing by the maximum power installed) and
so the physical constrains of generation are respected. First, a 
δ value is chosen and all points are assumed to be in the
interval [δ,\- δ\, otherwise they are replaced by values spaced
by δ, beginning in δ if less than δ or ending in 1- δ if greater
than l-δ. The values are then sorted and are supposed to be
different, otherwise they are subsequently increased by δ; in
this work, δ is chosen to be 0.01.

After that, using the 90-quantiles estimated in the first
phase (ranging between 5% and 95% with 1% increments), the
estimation of the cumulative distribution function is extended
to the estimated quantiles of Eq. 1.
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not correct to assume that an observation, where the 50%
quantile estimation is small, has the same mean/ thickness
generation than an observation where the estimated 50%
quantile takes a higher value. To try mitigating this limitation,
the historical sample is divided into 10 intervals according to
the sampling quantiles of the estimated quantile 50%, spaced
by 10% increments. With these intervals, the p[a,b] parameter is
estimated by

Σ yi
P\a,b} - ' N

(2)

where a, b are two successive sampling quantiles computed, I 
is a indicatrix function

I a b M r ' ) = 
[0, if qf0%) ί [a, b]
ll, if q ^ 6 [a, b]

(3)

An important parameter in this method is the ρ parameter
that corresponds to the thickness parameter for the exponential
extrapolation of generation variable. However, computing
more than one value is needed of this parameter because it is

and the ql.50%) is the estimated quantile 50% from the
historical observation which the observed generation were y., 
i e {l,..., N}. Note that for the first interval the lower limit is 0,
and for the last interval the upper limit is the maximum
installed power.

The second method is also a conditional estimation
assuming that the power generation variable Y is conditioned
by a second variable X. In our case study, the variable X is
considered the quantile 50% of the first phase of the quantile
estimation.

The first step is to compute a quantile regression that
reduces the sample size and uses the historical observations
more similar with the present forecast [16], With the resulting
sample, the tail index parameter is estimated using the
general maximum likelihood method and the correspondent
extreme conditional quantiles formula [16],

The methods were evaluated and compared using the
quantile score and calibration measures from [17], The
corresponding results are presented in Appendix. The
conclusion is that the first method better models our data in
the tails, and it will be used for the results presented in
section IV.
C. Downward System Margin Estimation 

Firstly, the tool computes the probability distribution of
the system's total generation for each day-ahead time step, by
summing the wind (W), thermal (T), hydro (H) and solar (S)
generation forecast uncertainty, and the deterministic value of
minimum conventional generation (c). Secondly, the
probability distribution of the system balance equation is
obtained by subtracting the load uncertainty (L) and the
deterministic value of maximum pump capacity (p).

A convolution with the Fast Fourier Transform (FTT) is
performed in pairs. We first compute the probability mass
function of the sum between wind and thermal
generation (Ql = W + T) as showed in (1). Assuming
independence, this sum can be computed convolving the two
random variables:



PGi(W + T = ζ) = £ PW (W = ζ - k).PT (T = k) (4)
k--<»

The next step is to sum the hydro
generation (G2 = W + T + H = Gl + H): 

ω
PGi(G1 + H = Ζ) = X P^G, = ζ - k).PH ( H = k ) (5)

k--<»

Analogously, we sum the solar generation and obtain the
mass function of the random variable G3 = W + T + H + S · 
Then, the total generation (G) of the system is computed
integrating the c constant (G = W + T + H + S + c)· 

After which the mass function of the difference between
total generation and load is computed as:

ω
P G (G - L = ζ) = X P G (G = ζ + k).PL (L = k) (6)

k--TO

Finally, the system margin is obtained subtracting the
constant p. An example of system margin generation equation
probability mass distribution is illustrated in Fig. 2.

The classical measures of reliability can be calculated from
the system generation margin distribution, e.g., probability of
wasting special regime generation (PWG). In our work, the
PWG measure was used for pragmatic reasons: the risk value
can be interpreted as the probability that the RES (wind,
thermal, hydro and solar generation) must be curtailed or the
energy exported increased.

In the example of Fig. 2, if the TSO takes an import NTC
level equal to 0, the probability of having excess of generation
is 0%. On the other hand, if the TSO decides to set the import
NTC to 1000 MW then the curve presented in Fig. 3 is
translated 1000 MW to the right, as canbe seen in Fig. 3, and
the associated risk becomes 0.5% (red region in the figure). In
this case, if the TSO is comfortable with a PWG equal to 0.5%,
the import NTC capacity canbe set to 1000 MW.

In order to compute the suggested level of the NTC with
that metric, it is possible to directly use the cumulative
distribution of M and calculate the greatest I value such
that P(M < I) < 1 -a, where α is the value of the risk measure
fixed by the TSO. Two possible scenarios can occur to the
signal of I:

• Negative I: the probability of having more generation
than load is less than the risk value so the NTC tool
should suggest a -I value for the import NTC level.

• Positive I: the probability of generation exceeding the
load in the system is already greater than the risk value,
therefore the NTC tool should suggest a zero value for
NTC level. In this case, information about the expected
energy curtailment can be calculated by summing the
product of the positive values of I by its probability.
This gives to the operator additional information about

the expected magnitude of the special regime
generation curtailment1.

D. Decision Rules 
The adopted methodology requires the choice of a 

threshold value for the maximum acceptable risk. The TSO
might find that the suggested maximum import NTC level
leads to excessive risk, in which case the TSO might want to
consider reducing the suggested level. Therefore, the TSO
must continuously analyze the results to better define the
relation between risk and value for the maximum import NTC.

With this approach, a risk/import NTC curve is
constructed and the import level automatically computed
when a new risk level is fixed. Fig. 4 and Fig. 5 shows the
correspondent curve risk/ maximum import NTC level for the
situation represented by Fig. 2. In this case, if the SO fixes a 
risk value of 0.5% (corresponding to a cumulative probability
of 99.5% in margin system distribution), the suggested import
NTC level is 1150MW. For a risk level of 1%, the suggestion
is approximately 1300MW. These two examples correspond
to the first scenario of negative I in the cumulative distribution
function.

£ 3 e - 0 4

1

Fig. 2 Probability mass function of the margin for a specific time step.

g . 3 e - 0 4

1

System Generation Margin (MW)

Fig. 3 Probability mass function of the margin for a specific time step and for
a maximum import NTC oflOOO MW.

1 Risk index analogous to the Expected Energy Not Supplied (EENS).
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Fig. 4 Curve risk/ maximum import NTC level for a specific time step.
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Fig. 5 Negative tail zoom of Fig. 4.

I I I . CASE-STUDY

A. Portuguese Power System 
The capacity mix in the Portuguese power system in the

end of 2015 was: 5,724 MW of large hydropower plants,
5,585 MW of thermal generation and 7,224 MW of generation
remunerated by feed-in tariffs support schemes. The
generation under a tariff remuneration scheme consists of
small-hydro (422 MW), CHP (1548 MW), wind power (4826
MW), and photovoltaic (429 MW) - totalizing 7224 MW. The
installed pump storage power is 1618 MW.

In 2015, the maximum peak power was 8618 MW. The
load-factor of the wind power generation was 32% and 10%
for solar power in 2015; 23% of the annual consumption
(48.964 TWh in 2015) was supplied by wind power, in
contrast to 18% from large hydropower plants and 39% from
thermal generation.

Fig. 6 depicts the percentage of total load supplied by wind
generation in five days between December 2015 and March
2016.

For the same days, Fig. 7 depicts the percentage of total
load supplied by special regime generation.

These days constitute good examples of situations where
special regime generation, and in some cases wind power
alone, are sufficient to meet the load, or even exceed it. In

these extreme circumstances, only curtailment (or export) is
possible, but when load still exceeds generation, a certain
amount of power can be imported, so it is possible to set a 
maximum import NTC>0, maintaining the risk of curtailment
of special regime generation below the threshold set by the
operator.

Time [15 min]

Day

— 28-12-2015 —10-01-2016 - 07-02-2016

— 03-03-2016 — 07-03-2016

Fig. 6. Percentage of total load supplied by wind generation in five days
between December 2015 and March 2016.

During these days, pump storage power also played an
important role in RES integration. For instance, in 28-12-2015
a maximum of 1264.9 MW (78% of installed capacity) was
reached at 02:15, during which only 11 MW were being
exported to Spain.
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Fig. 7. Percentage of total load supplied by special regime generation in five
days between December 2015 and March 2016.

B. Numerical Results 
The days mentioned in Section III.A were chosen to

illustrate the methodology. In some hours of those days, the
total generation was very high and, as expected, the import
NTC tool suggests a zero import NTC level.

In Fig. 8 the maximum import NTC tool suggestions are
presented relatively to PWG levels between 0.01% (light
green) and 5% (red). Note that a negative value leads to a 
recommendation of NTC equal to 0. Furthermore, the curve
that corresponds to the balance equation value (see Fig. 1)
using the observed values of special regime generation and
load is also presented. Note that this type of fan chart is
particularly useful to communicate the risk associated to a set
of alternative decisions to dispatch center' operators.

In all these days, the highest proportion values between
special regime generation and load were registered in the time



horizon between 1:00AM and 6:00AM. And, with the
exception of day 03-03-2016, in all of these hours, these
proportions were greater than 100%.

Margin System Equation
— with Observed Special Reg.

Generation and Load

Fig. 8. Import NTC Levels suggested to a PWG between 0.01% and 5%.

At day 03-03-2016, the special regime generation was less
than the load so it is not a surprise that the suggested a 
maximum import NTC level would be greater than in the rest
of the days. In fact, the maximum import NTC value that
ensures that a PWG of 5% is not surpassed is greater relatively
to the other days. As can be observed, an increase in the
proportion between special regime and load is accompanied

by a decrease of the import NTC level. Analogously, in the
hours in which a decreasing of the proportion occurred, the
import NTC tool estimated mostly an increase of the required
import NTC.

Some important remarks about the results: at days 28-12-
2015 and 03-03-2016, the solid curve has registered a big
deviation relatively to the represented quantiles. This means
that the expected value of the computed pmf of load
uncertainty and/ or RES generation has a considerable
deviation relative to the observed values. During the night
period of day 10-01-2016, the import NTC capacity was
negative (which means that the limit should be set to zero) for
any risk value between 5% and 0.01%. In this case, even with
the import NTC set to zero there is a high risk of generation
curtailment. The methodology can also inform the operator
about the expected energy curtailment (or generation that
needs to be exported), e.g. 282 MWh at 6:00, 300 MWh at
7:00.

In the specific case of 28-12-2015, this difference was
essentially due to load uncertainty. As detailed above, the load
forecasting uncertainty is modeled by a Gaussian distribution
centered in the point forecast and, in that day, the point
forecasts has a big deviation relatively to the observed values.
At 10:00AM, for example, a difference was registered of
almost 700MW between these two measures; this means that
the NTC tool considered more load than the observed and so
allocated more import NTC level than adequate.

In the other end, at 03-03-2016, the largest deviation was
registered in the RES generation. In 9:00AM, the biggest
deviation registered had a difference of 1000MW between the
expected RES energy and the observed value.

IV. CONCLUSIONS

This paper presents a decision support method to help the
system operator in defining a maximum import NTC value by
taking into account an extreme scenario where the required
pump storage power level is assumed to be the technical
available and that the conventional generation will take the
minimum possible value (i.e., must-run units). The
methodology also considers the wind, thermal, hydro and solar
power forecast uncertainty and load forecast uncertainty. With
these components, the system margin pmf is modeled and a 
maximum value of import NTC that ensures that a certain risk
of curtailment is not surpassed canbe obtained.

The results obtained for five days, between Dec. 2015 and
Mar. 2016, with extreme integration levels of special regime
generation (mainly wind power) showed the following
conclusions: (a) under extreme RES integration, the event
associated to generation surplus becomes also critical, even in
the present high storage capacity; (b) uncertainty forecasts can
be useful to support decisions at the dispatch center level, but
additional work is required to better communicate information
about uncertainty and related decisions; (c) the modelling of
probability distribution tails is critical for decision-makers,
such as TSO, that are only willing to take a very low risk.

Future work consists in improving the tails forecasting
with conditional extreme value theory and develop innovative



approaches to communicate information about uncertainty to
dispatch center operators.

APPENDIX - TAILS ' ESTIMATION QUALITY

The following tables show the evaluation results of the two
methods considered to estimate the extreme quantiles in the
tails. The model parameters were estimated using 120 days of
hourly observations and then tested using 21 days, for a total
of 504 observations. The exponential interpolation is denoted
by EI and conditional extreme value theory values by CEVT.

TABLE I 
AVERAGE VALUES OF THE QUANTILE SCORE.

Lower Upper
Tail Tail

CEVT -126 -153

EI -95 -123

T A B L E II
LOWER TAIL CALIBRATION.

Quantile 2% 1% 0.5% 0.1% 0.05% 0.01%

CEVT 0.0200 0.0100 0.0050 0.0010 0.0005 0.0001
EI 0.0081 0.0080 0.0050 0.0010 0.0005 0.0001

TABLE III
UPPER TAIL CALIBRATION.

Quantile 98% 99% 99.5% 99.9% 99.95% 99.99%

CEVT -0.0200 -0.0100 -0.0050 -0.0010 -0.0005 -0.0001
EI -0.0002 -0.0021 -0.0030 -0.0010 -0.0005 -0.0001

Table I shows the results obtained with the quantile score
presented in [17], From the Table I it can be concluded that
the quality of the results in terms of mean quantile scoring was
better in the EI method. However, the calibration, presented in
Tables II and II, is also an important measure and the conjoint
analysis of the two measures is needed to evaluate the quality
of the methods. So, in terms of calibration, the exponential
interpolation is also the method with better performance.

Note that, for the nominal proportions 0.01%, 0.05%,
0.1% , 0.5% and 99.5%, 99.9%, 99.95% ,99.99%, the
calibration have the same value in the two methods but the
quantile scoring of the exponential interpolation is the smallest
possible value. This means that the sharpness of the estimated
quantiles computed by the CEVT method is higher than those
estimated by the EI method.
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