
1

F-IDE 2016 Preliminary Proceedings

3rd workshop on Formal Integrated Development

Environments

Satellite event of FM 2016
Limassol, Cyprus

2

Preface

F-IDE 2016 is the third Formal Integrated Development Environment Workshop (F-IDE 2016) held in

Limassol, Cyprus, on 8 November, 2016 as a satellite workshop of the FM conference.

High levels of safety, security and also privacy standards require the use of formal methods to specify

and develop compliant software (sub)systems. Any standard comes with an assessment process, which

requires a complete documentation of the application in order to ease the justification of design choices

and the review of code and proofs. An F-IDE dedicated to such developments should comply with several

requirements. The first one is to associate a logical theory with a programming language, in a way that

facilitates the tightly coupled handling of specification properties and program constructs. The second

one is to offer a language/environment simple enough to be usable by most developers, even if they are

not fully acquainted with higher-order logics or set theory, in particular by making development of proofs

as easy as possible. The third one is to offer automated management of application documentation. It

may also be expected that developments done with such an F-IDE are reusable and modular. Moreover,

tools for testing and static analysis may be embedded in this F-IDE, to help address most steps of the

assessment process. The workshop is a forum of exchange on different features related to F-IDEs.

We solicited several kinds of contributions: research papers providing new concepts and results,

position papers and research perspectives, experience reports, tool presentations. The current edition

is a one-day workshop where eight communications are given, offering a large variety of approaches,

techniques and tools. Some of the presentations took the form of a tool demonstration. Each submission

was reviewed by three reviewers.

We have the honor to welcome Professor Kim G. Larsen from Aalborg University and he will give

a keynote entitled Verification, Optimization, Performance Analysis and Synthesis of Cyber-Physical

Systems.

We would like to thank the PC members for doing such a great job in writing high-quality reviews

and participating in the electronic PC discussion.

We would like to thank all authors who submitted their work to F-IDE 2016. We are grateful to

the FM Organisation Committee, which has accepted to host our workshop. The logistics of our job

as Program Chairs were facilitated by the EasyChair system and we thank the editors of Electronic

Proceedings in Theoretical Computer Science who accepted to publish the papers.

Catherine Dubois

Paolo Masci

Dominique Méry

F-IDE 2016 Program Chairs

To appear in EPTCS.

Verification, Optimization, Performance Analysis and

Synthesis of Cyber-Physical Systems

Kim G. Larsen

Department of Computer Science, Aalborg University, Denmark

kgl@cs.aau.dk

Timed automata and games, priced timed automata and energy automata have emerged as useful

formalisms for modeling real-time and energy-aware systems as found in several embedded and cyber-

physical systems. In this talk we will survey how the various component of the UPPAAL tool-suite over

a 20 year period has been developed to support various type of analysis of these formalisms.

This includes the classical usage of UPPAAL as an efficient model checker of hard real time con-

straints of timed automata models, but also the branch UPPAAL CORA which have been extensively

used to find optimal solutions to time-constrained scheduling problems. More ambitiously, UPPAAL

TIGA allows for automatic synthesis of strategies and subsequent executable control programs for

safety and reachability objectives. Most recently the branch UPPAAL SMC offers a highly scalable sta-

tistical model checking engine supporting performance analysis of stochastic hybrid automata, and the

branch UPPAAL STRATEGO which supports synthesis (using machine learning) of near-optimal strate-

gies for stochastic priced timed games. The keynote will review the various branches of UPPAAL and

highlight their concerted applications to a selection of real-time and cyber-physical examples.

EPTCS ??, 20??, pp. 1–15, doi:10.4204/EPTCS.??.??

© S. Mitsch, A. Platzer
This work is licensed under the
Creative Commons Attribution License.

The KeYmaera X Proof IDE
Concepts on Usability in Hybrid Systems Theorem Proving

Stefan Mitsch
Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA

smitsch@cs.cmu.edu

André Platzer
Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA

aplatzer@cs.cmu.edu

Hybrid systems verification is quite important for developing correct controllers for physical sys-
tems, but is also challenging. Verification engineers, thus, need to be empowered with ways of
guiding hybrid systems verification while receiving as much help from automation as possible. Due
to undecidability, verification tools need sufficient means for intervening during the verification and
need to allow verification engineers to provide system design insights.

This paper presents the design ideas behind the user interface for the hybrid systems theorem
prover KeYmaera X. We discuss how they make it easier to prove hybrid systems as well as help learn
how to conduct proofs in the first place. Unsurprisingly, the most difficult user interface challenges
come from the desire to integrate automation and human guidance. We also share thoughts how the
success of such a user interface design could be evaluated and anecdotal observations about it.

1 Introduction

Cyber-physical systems such as cars, aircraft, and robots combine computation and physics, and provide
exceedingly interesting and important verification challenges. KeYmaera X [11] is a theorem prover for
hybrid systems, i. e., systems with interacting discrete and continuous dynamics, which arise in virtu-
ally all mathematical models of cyber-physical systems.1 It implements differential dynamic logic (dL
[23, 24, 27]) for hybrid programs, a program notation for hybrid systems. Differential dynamic logic
provides compositional techniques for proving properties about hybrid systems. Despite the substan-
tial advances in automation, user input is often quite important, since hybrid systems verification is not
semidecidable [23]. Human insight is needed most notably for finding invariants for loop induction and
finding differential invariants for unsolvable differential equations [24]. But even some of the perfectly
decidable questions in hybrid systems verification are intractable in practice, such as the final step of
checking the validity of formulas in real arithmetic2 in a dL proof.

To overcome those verification challenges, KeYmaera X combines automation and interaction capa-
bilities to enable users to verify their applications even if they are still out of reach for state-of-the-art
automation techniques. The central question in usability, thus, is how interaction and automation can
jointly solve verification challenges. For isolated strategic aspects of the proofs, such user guidance is
easily separated, for example when using system insights to provide loop invariants and differential in-
variants. Other aspects of human insights are more invasive, such as picking and transforming relevant

1KeYmaera X is available at http://keymaeraX.org/
2Decision procedures are doubly exponential in the number of quantifier alternations [9], and practical implementations

doubly exponential in the number of variables.

http://dx.doi.org/10.4204/EPTCS.??.??
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/
http://keymaeraX.org/

2 The KeYmaera X Proof IDE

formulas to make intractable arithmetic tractable. Users have to link the logical level of proving (e. g.,
the conjecture, available proof rules and axioms) to the abstract interaction level (e. g., visualization of
formulas in a sequent) and decide about concrete interaction steps (e. g., where to click, what to type) [3].
Hence, going back and forth between automated proof tactics and user guidance poses several challenges:

• Users need to be provided with a way of understanding the proof state produced by automated
tactics. What are the open proof goals? How are these goals related to the proof of the conclusion?
And why did the automated tactic stop making progress?

• Users need to be provided with efficient ways of understanding the options for making progress.
What tactics are available and where can they be applied? What input is needed? And what
interactions provide genuinely new insights into a proof that the automation would not have tried?

• Users need efficient tools for executing proof steps. How to provide gradual progress for novices?
How to let experienced users operate with minimal input? How to reuse proof steps across similar
goals? And how to generalize a specific tactic script into a proof search procedure for similar
problems?

Users may additionally benefit from picking an appropriate interaction paradigms, such as proof as pro-
gramming, proof by pointing, or proof by structure editing [3].

This paper discusses how KeYmaera X addresses these challenges through its web-based user in-
terface. The complexity of larger hybrid systems verification challenges require that users be granted
significant control over how a proof is conducted and what heuristics are applied for proof search. To
this end, KeYmaera X separates user interaction and proof search from the actual proof steps in the
prover kernel to ensure soundness while providing reasoning flexibility [11]. All proof steps follow
from a small set of axioms by uniform substitution [26, 27]. This paper further introduces an evaluation
concept to determine how effectively alternative user interaction concepts implemented in KeYmaera X
address these challenges, as well as whether or not the combination of these concepts compare favorably
to our previous hybrid systems theorem prover KeYmaera [28]. The experiments are yet to be conducted;
our reports on the effectiveness of the user interaction concept remain anecdotal based on feedback from
external users and students.

2 Preliminaries: Differential Dynamic Logic

This section recalls the syntax and semantics of differential dynamic logic by example of the motion of
a person on an escalator. This example serves for illustrating prover interaction throughout the paper.

Syntax and semantics by example. Suppose a person is standing on an escalator, which moves up-
wards with non-negative speed v≥0, so the person’s vertical position x follows the differential equation
x′ = v. If the person is not at the bottom-most step (?x>1), she may step down one step (x := x− 1)
or may just continue moving upwards; since she may or may not step down, even if allowed, we use
a non-deterministic choice (∪). We want to prove that the person never falls off the bottom end of the
escalator (x≥0) when stepping down and moving upwards are repeated arbitrarily often (modeled with
the repetition operator ∗).

x≥ 2∧ v≥ 0→︸ ︷︷ ︸
initial conditions

[
(
(?x > 1;x := x−1)∪ x′ = v

)∗︸ ︷︷ ︸
hybrid program

]x≥ 0︸ ︷︷ ︸
safety condition

(1)

The formula (1) captures this example as a safety property in dL . Suppose, the person is initially
at some position x ≥ 2 when the escalator turns on. From any state satisfying the initial conditions

S. Mitsch, A. Platzer 3

x≥ 2∧v≥ 0, all runs of the hybrid program ((?x > 1;x := x−1)∪ x′ = v)∗ reach only states that satisfy
the safety condition x≥ 0. More detailed examples on modeling hybrid systems are in [29].

Manual proof in dL . Formulas in dL , such as the simple example (1), can be proved with the dL
proof calculus. Proofs in dL are sequent proofs: a sequent has the shape Γ ` ∆, where we assume all
formulas Γ in the antecedent (to the left of the turnstile `) to show any of the formulas ∆ in the succedent
(right of the turnstile). The sequent notation works from the desired conclusion at the bottom toward the
resulting subgoals at the top. While sometimes surprising for novices, this notation emphasizes how
the truth of the conclusions follows from the truth of their respective premises top-down. This notation
also highlights the current subquestion at the very top of the deduction. Steps in the sequent proof are
visualized through a horizontal line, which separates the conclusion at the bottom from the premises at
the top. The name of the deduction step is annotated to the left of the horizontal line. For example, the
proof rule [∪] says that to conclude safety of a non-deterministic choice of programs α ∪β (below the
bar) it suffices to prove safety of both α and β individually (above bar).

φ ` [α]ψ ∧ [β]ψ
[∪]

φ ` [α ∪β]ψ

Manual proof example. Starting from the formula (1) at the very bottom of the deduction, we develop a
safety proof as follows. As first step, the rule→ R moves the assumptions from the left-hand side of an
implication into the antecedent. Next ∧L splits the conjunction x ≥ 2∧ v ≥ 0 into individual facts (i. e.,
we get to assume both, x ≥ 2 and v ≥ 0 individually). Then, we use loop induction with the invariant
x > 0. We have to show three cases: the loop invariant must hold initially (base case x ≥ 2→ x > 0), it
must be strong enough to entail safety (use case x > 0→ x ≥ 0), and it must be preserved by the loop
body (induction step [(?x > 1;x := x−1)∪ x′ = v]x > 0).

∗
QE x>0,v≥0,x>1 ` x−1>0
[:=] x>0,v≥0,x>1 ` [x := x−1]x>0

[?],→R x>0,v≥0 ` [?x>1][x := x−1]x>0
[;] x>0,v≥0 ` [?x>1;x := x−1]x>0

∗
QE x0>0,v≥0 ` ∀t≥0∀0≤s≤t (x = x0 + vs→ x>0)

ODE x>0,v≥0 ` [x′ = v]x>0
∧R x>0,v≥0 ` [?x>1;x := x−1]x>0∧ [x′ = v]x>0
[∪] . . .

(base case) ∗
QE x≥2,v≥0 ` x>0

(use case) ∗
QE x>0 ` x≥0

(induction step)
x>0,v≥0 ` [(?x>1;x := x−1)∪ x′ = v)]x>0

loop x≥2,v≥0 ` [((?x>1;x := x−1)∪ x′ = v)∗]x≥0
∧L x≥2∧ v≥0 ` [((?x>1;x := x−1)∪ x′ = v)∗]x≥0
→R ` x≥2∧ v≥0→ [((?x>1;x := x−1)∪ x′ = v)∗]x≥0

Here, the base case and use case can be shown easily using quantifier elimination QE. The induction
step proceeds using the proof rule [∪] for non-deterministic choice that we saw above, followed by ∧R
to split the induction step proof into two branches. On the first branch, we first turn the sequential
composition (;) into nested boxes ([?x > 1][x := x−1]x > 0), and then use the test condition (x > 1) as an
additional assumption using rule [?] followed by→ R. We show safety of the assignment x :=x−1 using
quantifier elimination QE to close the proof. On the second branch, we show safety of the differential
equation x′ = v using the proof rule ODE followed by QE.

4 The KeYmaera X Proof IDE

3 KeYmaera X Proof Automation

As a basis for understanding how KeYmaera X searches for proofs and where and why it asks for user
guidance, this section gives a high-level explanation of KeYmaera X tactics.

KeYmaera X automates the tedious task of proving steps that follow unambiguously from the struc-
ture of the conjecture. It further provides (heuristic) tactics to generate and explore invariant candidates
for loop induction and differential equations. One might imagine KeYmaera X to try to solve differential
equations and use the solution to guide a differential invariant proof, before it resorts to more involved
differential invariant proofs. KeYmaera X provides proof tactics for propositional reasoning, reasoning
about hybrid programs, and closing (arithmetic) proof goals, which are combined into a fully automated
proof search tactic. For example, with a loop invariant candidate annotated in the KeYmaera X input file,
the running example in this paper proves fully automated.

Propositional reasoning prop and program unfolding unfold of hybrid programs follows along propo-
sitional sequent rules and the axioms of dL . These tactics successively match on the shape of a formula
to transform it into simpler parts, before the tactics descend into the resulting parts. Program unfolding
focuses on the decidable fragment of reasoning about hybrid programs: it stops and asks for user guid-
ance when it encounters loops or ODEs. The following proof snippet applies unfold to just the induction
step of the escalator proof.

Induction step by unfold. The tactic unfold applies hybrid program axioms and splits conjunctions in the
succedent into proof branches, but stops when it encounters loops or ODEs. The resulting two subgoals
correspond to the two (logically unfolded) paths through our running example: we have to show safety
of the discrete assignment x := x−1 as well as of the differential equation x′ = v.

x>0,v≥0,x>1 ` x−1≥ 0 x>0,v≥0 ` [x′ = v]x>0
unfold x>0,v≥0 ` [?x>1;x := x−1∪ x′ = v]x>0

KeYmaera X ships with proof search tactic auto, which combines propositional reasoning with pro-
gram unfolding, loop invariant exploration, certain automated proof techniques for differential equations,
and proof closing by quantifier elimination. Even though the auto tactic finds proofs for important classes
of hybrid systems automatically, it still may stop exploration and ask for user guidance in complicated
cases (e. g., when none of the explored differential invariants helps closing the proof).

4 KeYmaera X User Interaction

When the automated tactics shipped with KeYmaera X fail to find a proof (due to a wrong model, missing
loop or differential invariants, or intractable arithmetic), user interaction is needed to improve the model
and make progress with the proof. This section introduces the KeYmaera X user interaction concepts
and their implementation in a graphical web-based user interface. The user interface of KeYmaera X is
based on these principles and hypotheses:

Familiarity Prover user interfaces benefit from a familiar look&feel that resembles how proofs are
conducted in theoretical developments and that are compatible with the way that proof rules are
presented.

S. Mitsch, A. Platzer 5

1

2

3

4

5

6

Figure 1: Screenshot of KeYmaera X with annotated user interface elements: 1© proof-by-search; 2©
sequent view; 3© proof programming and tactic extraction; 4© proof branch; 5© tactic suggestion; 6©
tactic step highlighting.

Traceability Sophisticated verification challenges, especially in hybrid systems, need a way of mixing
automation with user guidance in a way that the user can trace and understand the respective
remaining questions.

Tutoring Interactive proof-by-pointing at formulas and terms are an efficient way of learning how to
conduct proofs and help internalizing reasoning principles by observation. Tactic recording is an
efficient way of learning how to write tactics by observing to which interactive proof steps they
correspond.

Flexibility Humans reason in more flexible ways than automation procedures. User interfaces should
allow proof steps at any part of a proof as well as free-style transformations of formulas, and they
should embrace multiple reasoning styles, such as explicit proofs, proof-by-pointing, and proof-
by-search.

Experimentation A strict separation of prover core and prover interface not only helps soundness, but
also enables more agile experimentation with new styles of conducting proofs and of interacting
with provers.

Figure 1 shows a screenshot of the KeYmaera X user interface with user interface elements annotated
by their interaction purpose. We discuss these design choices in more detail in the following paragraphs.

6 The KeYmaera X Proof IDE

4.1 Familiarity

The KeYmaera X prover kernel implements Hilbert-style proofs by uniform substitution from a small
set of locally sound axioms [27] together with a first-order sequent calculus [23]. The user interface of
KeYmaera X presents proofs in sequent form as in Figure 2, which enables users to equivalently read the
logical transformations as either sequent proof rule uses [23] or axiom uses [27]. The rendering is con-
sistent with the notation used in Section 2 and in the Foundations of Cyber-Physical Systems course [25],
which should make it easy to switch between proof development on paper and proving in KeYmaera X.
Proof suggestions for tactics are rendered by their primary nature either as axioms (e. g., the dL axiom
[∪], see Figure 2b), proof rules (e. g., the propositional proof rule ∧L, see Figure 2c), or proof rules with
input (e. g., the sequent proof rule loop, which requires input, combines multiple axioms in a tactic to
implement a proof rule, and creates multiple subgoals, see Figure 2d).

The hypothesis is that the ability to work from a small number of reasoning principles, which is cru-
cial for a small prover core, helps human understanding as well. The experience with the Foundations of
Cyber-Physical Systems course [25], in which KeYmaera and KeYmaera X have been used, suggests that
equivalence axioms indeed make it easier for students to understand reasoning principles than explicit
sequent proof rules [23], which obscure inherent dualities for novices. For example, the equivalence
[a∪b]P↔ [a]P∧ [b]P characterizes nondeterministic choices under all circumstances. Its conjunction ∧
and the rules for ∧ make it apparent that such nondeterministic choices will branch in the succedent but
not in the antecedent:

[∪],∧R
Γ ` [a]P,∆ Γ ` [b]P,∆

Γ ` [a∪b]P,∆
[∪],∧L

Γ, [a]P, [b]P ` ∆

Γ, [a∪b]P ` ∆

Of course, it is exactly the same reasoning principle either way, but understanding the direct sequent
proof rules still requires two logical principles at once compared to the single axiom.

4.2 Traceability

When switching from automated mode to user guidance, it is important to visualize just enough contex-
tual information about the open proof goals to understand where the present subgoals came from and
how they relate to the proof of the ultimate conclusion. KeYmaera X shows local views of proofs that
illustrate the way how the current question came about and how it is related to the proof of the conclu-
sion. The idea is that this enables traceability and gives local justifications while limiting information to
the presently relevant part of the proof.

Visualizing the proof state. Visualizing the entire proof tree that unfolds from the original conjecture
as tree root is not a viable option, since proofs in dL unfold into many branches and therefore easily
exceed the screen width when rendered in a single tree. Even simple models, such as the escalator ex-
ample with only four branches (induction base case, induction use case, and stepping down plus moving
upwards in the induction step) become hard to navigate and keep track of when both horizontal and ver-
tical scrolling is needed. KeYmaera X, therefore, renders a proof tree in sequent deduction paths from
the tree root representing the original conjecture at the bottom of the screen to a leave representing an
open goal at the top, see Figure 1.

The sequent deduction paths are arranged in tabs; branching occurs when a deduction step has more
than one premise, so that premises are spread over multiple tabs and interconnected with links between
the tabs.

S. Mitsch, A. Platzer 7

(a) Sequent proof with step → R; the position where → R was applied in the original formula (below the horizontal sequent
line) is highlighted with a dotted line, the specific operator with a solid line.

(b) Axiom [∪] (c) Sequent rule ∧L (d) Sequent rule loop

Figure 2: Sequent proof, axioms, and proof rules rendered with standard notation.

Proof navigation. Users can focus solely on the open goal by collapsing the entire deduction path (�),
or they can keep some part of the proof structure visible, e. g., by collapsing only between branching
points in the proof, see Figure 1. Triangles left of the sequent path identify groups: when uncollapsed,
down/up arrows (�) indicate the group borders; when collapsed (〉), the steps in a group are abbreviated
into “. . . ”. Additionally, sequents can be expanded over multiple lines (H, one formula per line) or
collapsed into a single line (I).

When proof automation hands over to the user, the topmost line in a sequent deduction path represents
an open goal. This means that either the goal cannot be proved at all because the model is wrong, or it
is not yet proved because user guidance is needed. In the former case, the counterexample tool allows
users to find concrete values that make all formulas on the left of the sequent true but violate all formulas
on the right. In the latter case, users are interested in what to do next (see Section 4.3).

4.3 Tutoring

Suggesting possible proof steps. KeYmaera X analyzes the shape of formulas to suggest proof steps
on demand. A tactic comes with a description of the shape of its conclusion (must match the current open
goal so that the tactic is applicable), a description of the premises that remain to be proved after applying
the tactic, and a description of required user input (such as invariants for loops). Such meta-information
allows tactic suggestion in two different flavors, as depicted in Figure 3:

• When users know where to continue with the proof (i. e., exactly on which formula or term or
part thereof), KeYmaera X displays a dialog with important applicable tactics and their required

8 The KeYmaera X Proof IDE

input, which resembles the user interaction of KeY [1, 2] and its hybrid systems descendant
KeYmaera [28].

• When users know what to do next, KeYmaera X searches for formulas or terms where the desired
tactic is applicable.

For example, when pointing to a loop, KeYmaera X suggests the induction tactic loop as well as loop
unrolling [∗] as shown in Figure 3. The tactic loop requires a loop invariant j(x) as input and produces
three branches that remain to be proved to conclude safety of the program with the loop. Loop unrolling
[∗] turns a formula of the shape in boldface (left-hand side [α∗]P of the equivalence) into a formula of
the right-hand side P∧ [α][α∗]P of the equivalence.

For reasons of flexibility, KeYmaera X supports contextual reasoning to apply axioms deeply nested
inside a formula, not only on the top-level operator as in Figure 3. As a consequence, users may have
many options to work on a single formula. In the induction step of the escalator example

` x>0→ [(?x>1;x := x−1)∪ x′ = v]x>0

we used → R top-level to get x>0 ` [(?x>1;x := x−1)∪ x′ = v]x>0 as a next goal. Alternatively, the
non-deterministic choice tactic [∪] on the right-hand side of the implication would result in a conjunction
` x>0→ [?x>1;x := x−1]x>0∧ [x′ = v]x>0.

1

2

3

4

Figure 3: Two ways of asking KeYmaera X for help: 1© Know what to do, but not sure where search
tactics in the toolbox menu instruct KeYmaera X to apply a specific tactic to the first applicable formula.
2© Know where, but not sure what to do tactic suggestion in the context menu of a formula: 3© tactic

with input; 4© apply an axiom.

S. Mitsch, A. Platzer 9

tactic extraction

position highlighting

Figure 4: Tactic editor below sequent view. The tactic is extracted automatically from the point-and-
click interaction: the proof closed both the induction base case and the induction use case by quantifier
elimination QE; the sequent view shows two open goals in the induction step, which result from using
unfold (splits the choice, handles the test and the assignment, but stops at the differential equation). The
tactic editor displays tactic suggestions akin to the tactic popover in the sequent view. Here, it display
suggestions for the formula at position “1”, which is also highlighted in the sequent view.

For novice users, it is often easiest to focus on the top-level operator and work on formulas outside-
in, i. e., apply→ R first and then [∪] next. But it quickly becomes more convenient to apply proof rules
in any order anywhere in the middle of the formulas to follow whatever line of thought the user may
have in mind. Such proofs in arbitrary order also often reduce the branching or repetition of proof steps
in different branches.

Tactic extraction. In order to conduct proofs effectively, interactive theorem provers typically ship
with extensive tactic libraries (e. g., Coq [20], Isabelle [22]), accompanied with library documentation
and examples to facilitate learning. Still, extensive tactic libraries incur a steep learning curve. We
conjecture that observing how tactics evolve while doing a proof (similar to observing an expert) can
reduce the steep learning curve associated with extensive tactic libraries. KeYmaera X automatically
generates tactics that correspond to the point-and-click interaction that the user performed and displays
these tactics below the graphical sequent view, see Figure 4.

10 The KeYmaera X Proof IDE

The graphical sequent view and the tactic editor operate on the same proof, so that users can switch
between both interaction concepts as they see fit. As a rule of thumb, the sequent view is designed for
conducting specific steps at specific positions (e. g., use a specific equality x = y to rewrite x into y in
some other term), while the tactic editor is intended for describing proof search (e. g., repeat some step
exhaustively ∧L(’L)* or follow a high-level proof strategy such as unfold & ODE & QE).

4.4 Flexibility

To allow users to reason in flexible ways and reduce manual proof effort, KeYmaera X supports proof
steps by pointing at formula parts and lets users transform and abbreviate formulas as well as execute tac-
tic scripts. As underlying technique for proof-by-pointing and flexible reasoning anywhere in formulas,
KeYmaera X provides contextual reasoning CQ and CE [27], so that questions about contextual equality
or equivalence in a context C{. . .} reduce to reasoning about arguments as follows.

` f () = g()
CQ ` C{p(f ())}↔C{p(g())}

` P↔ Q
CE ` C{P}↔C{Q}

When contextual reasoning is combined with uniform substitution US and axiom lookup, axioms can be
applied inside formulas, which enables proof by pointing at the desired formula part. Often, the next
proof step follows unambiguously from just the shape of the pointed formula part by indexing [27], so
that the proof advances without further user input.

` y > 2∧7 > 5

∗
ax [:=] ` [x := f ()]p(x)↔ p(f ())

US ` [x := 7]x > 5↔ 7 > 5
CE ` y > 2∧ [x := 7]x > 5↔ y > 2∧7 > 5

cut ` y > 2∧ [x := 7]x > 5︸ ︷︷ ︸
unifies with underlined key in axiom [x:=f ()]p(x)↔p(f ()) replace with p(f ()), which is 7>5

Note that side branches with contextual reasoning, uniform substitution, and axiom lookup (as in
the proof above) close fully automatically. Hence, the user interface displays only the result of applying
axioms by pointing, while it hides the minutia of the side deductions from the user as in the following
example.

` P→ ([x′ = 2]x≥ 5)∨Q
useAt ` P→ ([x′ = 2∪ x := 5]x≥ 5︸ ︷︷ ︸

[β]B→([α∪β]B↔[α]B)

)∨Q

4.5 Experimentation

The prover kernel and the prover interface are strictly separated, to the extent that the prover kernel
only knows about making single deduction steps and combining them, but is completely oblivious of
organizing these steps in a tree structure. For soundness, it suffices to know that any step between the
original conjecture and the current subgoals must have been done in the prover kernel. Intermediate steps
are only necessary to repeat a proof from the original conjecture, and can therefore be tracked outside the
prover kernel. As a result, proof organization features (such as undoing proof steps, pruning the proof
tree) can be implemented conveniently in the user interface without affecting soundness.

The separation between the prover core and the tactics becomes especially useful when adding com-
piled tactics to the server-side implementation. Complementing the interpreted tactics from the web-
based user interface, server-side tactics can base on a rich implementation language (Scala) to try proof

S. Mitsch, A. Platzer 11

steps that are only sound in the usual cases and just rely on the prover core to catch when they happen to
be applied in one of the unsound corner cases.

5 Evaluation Concept

Compared to its predecessor KeYmaera [28], the clean-slate implementation KeYmaera X introduces
significant changes in user interaction. Although the user interaction changes are based on informal feed-
back from KeYmaera users and our own observations on how students used KeYmaera, it still remains to
be checked by an experimental user study which style of user interaction is more effective. Additionally,
KeYmaera X introduces new interaction concepts (e. g., tactic programming and tactic recording), which
seem promising for experienced users to conduct large proofs, but are not yet backed by evidence that
indeed prover interaction is improved compared to only mouse-based interaction. Similar user-related
research questions were addressed in a recent controlled user experiment [13], which followed methods
from empirical software engineering [32] to compare two very different user interfaces of the KeY the-
orem prover [1, 2]. The obtained results are encouraging pointers towards controlled user experiments
being an appropriate method for testing theorem prover interaction.

Such controlled experiments, however, require a large number of participants with varying experi-
ence and deliberately exposing them to different user interaction concepts. In order to avoid adverse
effects from pre-assigned interaction styles, we propose gathering data from normal operation on how
often users rely on certain interaction patterns (e. g., clicking vs. automated tactic), how often they use
a certain functionality during a proof, and how successful they were, even if that might lead to selection
bias. Learnability of theorem provers can be measured based on cognitive dimensions [8], such as visi-
bility (how easy are relevant steps accessed), juxtaposability (different notations side-by-side), viscosity
(resistance to change), premature commitment (to an order how to do steps), error-proneness (how likely
are errors), and consistency (similar information presented in similar ways). Theorem provers, especially
in education and also in industrial applications, should have high visibility and juxtaposability, high con-
sistency, and low viscosity [12]. The following metrics should be easily recordable from KeYmaera X
without changing user interaction and give insights into cognitive dimensions.

Interaction concept Number of proof steps by clicking/tactic programming/automated proof search.
Supporting evidence: number of proof steps at top-level/inside formulas; for clicking: number of
steps executed by pointing/from tactic suggestion. Related to visibility and premature commit-
ment.

Functionality Number of undo operations, length of pruned deduction paths with distance to next
branching point above and below, number of find counterexample operations. Number of interac-
tions in pruned proofs. Related to viscosity and error-proneness.

Time Proof duration (including estimates of user time and number of reproof attempts)

Trends Compare trends as students gain experience and examples become more complex

We believe this data should enable a study that tests the following hypotheses.

Interaction preference Novice users prefer automated proof search over clicking over tactic program-
ming. Novice users prefer working top-level over working inside formulas. Experienced users
balance interaction.

Functionality Novice users either undo short paths or entire proofs and end up with more open branches.
Experienced users undo branching and exercise branching control techniques.

12 The KeYmaera X Proof IDE

Trends Automated usage drops with increased example complexity and student experience, while use
of tactic programming increases; the focus on applying steps top-level drops while applying steps
inside formulas increases with experience.

Influence Students that engage more direct control over proofs also for simpler examples are more
productive in conducting proofs of complex cases than students who relied on full automation
earlier on.

The quantitative insights from these metrics could be augmented with qualitative evaluation tech-
niques, as demonstrated being effective for theorem provers, e. g., with focus groups [7] (users sub-
jectively express their perception of or opinion on the user interface), with questionnaires [6], or by
co-operative evaluation [15] (users verbalize their interactions while using the theorem prover).

6 Related Work

The verification landscape spans a wide variety of approaches from automated theorem provers and
reachability analysis tools to interactive theorem provers.

Automated theorem provers (e. g., Vampire [16]) and reachability analysis tools (e. g., SpaceEx [10])
strive for fully automatic verification without user interaction, but their scope is inherently limited in
cases that are not semidecidable, such as hybrid systems.

Auto-active verifiers (e. g., Dafny [17, 18], AutoProof [30]) put the model or code first and hide the
verification engine, but support user guidance through annotations in the code. The basic idea is to make
verification an integral part of (software) development that should be performed in the background by an
IDE, much like background compilation. The downside of such an approach is that the verification steps
are hidden entirely from the user, which can make it hard to resolve proofs with additional annotations
when the verifier is stuck because the proof state and the verifier’s working principles are opaque. The
KeY interactive verification debugger [14] combines code annotations with interactive verification in
KeY [1, 2] to supplement manual proofs when automated proving fails at some goals.

Interactive theorem provers, such as Coq [20] and Isabelle [22], primarily interact with users through
tactic scripts, such as structured proofs in Isabelle/Isar [21]. Their user interfaces (e. g., CoqIDE [20],
ProofGeneral [5], jEdit [31]) focus on text editing support for writing tactics and let users inspect the
proof state and open goals by placing the cursor in the tactic script. Navigation with cursors introduced
a limited form of proof by pointing [4] to fold or unfold equations. KeYmaera X advances proof-by-
pointing to transform all or parts of a formula following the shape of an axiom or fact. PeaCoq3 aims to
make the proof state more accessible to users by providing a proof tree.

KeYmaera X combines concepts from automated, auto-active, and interactive theorem proving: it
comes with fully automated proof search tactics for hybrid systems of limited scope (i. e., when a loop
invariant can be found, a symbolic solution of a differential equation can be found to serve as an oracle for
differential invariants, and the resulting arithmetic is tractable); it supports annotations for loop invariants
and differential invariants, since both serve as model documentation as well as proof guidance; and
finally, it allows users to conduct and finish proofs themselves with tactics and a graphical user interface.

3http://goto.ucsd.edu/peacoq/

http://goto.ucsd.edu/peacoq/

S. Mitsch, A. Platzer 13

7 Conclusion

The user interface of KeYmaera X is based on the principles of familiarity, traceability, tutoring, flexibil-
ity, and experimentation. It supports several different user interaction styles to make progress in proofs.
The web-based user interface applies proof steps when clicking on formulas in the sequent view, and it
batch-runs proof steps by automated search tactics as well as through tactic programming.

Future work includes evaluation in controlled user experiments, as described in the evaluation con-
cept. On the basis of user studies, we expect to gain insights into how to best teach hybrid systems
theorem proving, tactic programming, tactic generalization, and proof search. We are working on im-
proved proof exploration, e.g., with timeouts (e. g., allow QE 5s to close; if it does not close within the
budgeted time, try something else). Failed proof attempts or expired timeouts need a robust approach to
making proofs portable and repeatable.

Acknowledgments The authors thank Nathan Fulton, Brandon Bohrer, Jan-David Quesel, Ran Ji, and
Marcus Völp for their support in implementing KeYmaera X, Sarah Loos, Jean-Baptiste Jeannin, João
Martins, Khalil Ghorbal, and Sarah Grebing for feedback and discussions on the user interface, as well
as the anonymous reviewers for feedback on the manuscript.

References

[1] Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, Richard Bubel, Martin Giese, Reiner Hähnle, Wolfram
Menzel, Wojciech Mostowski, Andreas Roth, Steffen Schlager & Peter H. Schmitt (2005): The KeY tool.
Software and System Modeling 4(1), pp. 32–54, doi:10.1007/s10270-004-0058-x.

[2] Wolfgang Ahrendt, Bernhard Beckert, Daniel Bruns, Richard Bubel, Christoph Gladisch, Sarah Gre-
bing, Reiner Hähnle, Martin Hentschel, Mihai Herda, Vladimir Klebanov, Wojciech Mostowski, Christoph
Scheben, Peter H. Schmitt & Mattias Ulbrich (2014): The KeY Platform for Verification and Analysis of
Java Programs. In Dimitra Giannakopoulou & Daniel Kroening, editors: Verified Software: Theories, Tools
and Experiments - 6th International Conference, VSTTE 2014, Vienna, Austria, July 17-18, 2014, Revised
Selected Papers, LNCS 8471, Springer, pp. 55–71, doi:10.1007/978-3-319-12154-3 4.

[3] J. Stuart Aitken, Philip D. Gray, Thomas F. Melham & Muffy Thomas (1998): Interactive Theorem Proving:
An Empirical Study of User Activity. J. Symb. Comput. 25(2), pp. 263–284, doi:10.1006/jsco.1997.0175.

[4] David Aspinall & Christoph Lüth (2004): Proof General meets IsaWin: Combining Text-Based And Graphi-
cal User Interfaces. Electr. Notes Theor. Comput. Sci. 103, pp. 3–26, doi:10.1016/j.entcs.2004.09.011.

[5] David Aspinall, Christoph Lüth & Daniel Winterstein (2007): A Framework for Interactive Proof. In Manuel
Kauers, Manfred Kerber, Robert Miner & Wolfgang Windsteiger, editors: Towards Mechanized Math. As-
sistants, 14th Symp., Calculemus, 6th Int. Conf., MKM, Hagenberg, Austria, June 27-30, 2007, Proc., LNCS
4573, Springer, pp. 161–175, doi:10.1007/978-3-540-73086-6 15.

[6] Bernhard Beckert & Sarah Grebing (2012): Evaluating the Usability of Interactive Verification Systems.
In Vladimir Klebanov, Bernhard Beckert, Armin Biere & Geoff Sutcliffe, editors: Proceedings of the 1st
International Workshop on Comparative Empirical Evaluation of Reasoning Systems, Manchester, United
Kingdom, June 30, 2012, CEUR Workshop Proceedings 873, CEUR-WS.org, pp. 3–17.

[7] Bernhard Beckert, Sarah Grebing & Florian Böhl (2014): A Usability Evaluation of Interactive Theo-
rem Provers Using Focus Groups. In Carlos Canal & Akram Idani, editors: Software Engineering and
Formal Methods - SEFM 2014 Collocated Workshops: HOFM, SAFOME, OpenCert, MoKMaSD, WS-
FMDS, Grenoble, France, September 1-2, 2014, Revised Selected Papers, LNCS 8938, Springer, pp. 3–19,
doi:10.1007/978-3-319-15201-1 1.

http://dx.doi.org/10.1007/s10270-004-0058-x
http://dx.doi.org/10.1007/978-3-319-12154-3_4
http://dx.doi.org/10.1006/jsco.1997.0175
http://dx.doi.org/10.1016/j.entcs.2004.09.011
http://dx.doi.org/10.1007/978-3-540-73086-6_15
http://dx.doi.org/10.1007/978-3-319-15201-1_1

14 The KeYmaera X Proof IDE

[8] Alan F. Blackwell, Carol Britton, Anna Louise Cox, Thomas R. G. Green, Corin A. Gurr, Gada F. Kadoda,
Maria Kutar, Martin Loomes, Chrystopher L. Nehaniv, Marian Petre, Chris Roast, Chris Roe, Allan Wong &
R. Michael Young (2001): Cognitive Dimensions of Notations: Design Tools for Cognitive Technology. In
Meurig Beynon, Chrystopher L. Nehaniv & Kerstin Dautenhahn, editors: Cognitive Technology: Instruments
of Mind, 4th International Conference, CT 2001, Warwick, UK, August 6-9, 2001, Proceedings, Lecture
Notes in Computer Science 2117, Springer, pp. 325–341, doi:10.1007/3-540-44617-6 31.

[9] James H. Davenport & Joos Heintz (1988): Real Quantifier Elimination is Doubly Exponential. J. Symb.
Comput. 5(1/2), pp. 29–35, doi:10.1016/S0747-7171(88)80004-X.

[10] Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cotton, Rajarshi Ray, Olivier Lebeltel, Rodolfo
Ripado, Antoine Girard, Thao Dang & Oded Maler (2011): SpaceEx: Scalable Verification of Hybrid Sys-
tems. In Ganesh Gopalakrishnan & Shaz Qadeer, editors: CAV 2011, Snowbird, UT, USA, July 14-20, 2011.
Proc., LNCS 6806, Springer, pp. 379–395, doi:10.1007/978-3-642-22110-1 30.

[11] Nathan Fulton, Stefan Mitsch, Jan-David Quesel, Marcus Völp & André Platzer (2015): KeYmaera X: An
Axiomatic Tactical Theorem Prover for Hybrid Systems. In Amy P. Felty & Aart Middeldorp, editors: CADE,
LNCS 9195, Springer, pp. 527–538, doi:10.1007/978-3-319-21401-6 36.

[12] D. Diaper G. Kadoda, R. G. Stone (1999): Desirable features of educational theorem provers - a cognitive
dimensions viewpoint. In: 11th Annual Workshop of Psychology of Programming Interest Group, PPIG, pp.
1–6.

[13] Martin Hentschel, Reiner Hähnle & Richard Bubel (2016): An empirical evaluation of two user interfaces of
an interactive program verifier. In Lo et al. [19], pp. 403–413, doi:10.1145/2970276.2970303.

[14] Martin Hentschel, Reiner Hähnle & Richard Bubel (2016): The interactive verification debugger: effective
understanding of interactive proof attempts. In Lo et al. [19], pp. 846–851, doi:10.1145/2970276.

[15] Michael J. Jackson (1997): Evaluation of a Semi-Automated Theorem Prover (Part II).

[16] Laura Kovács & Andrei Voronkov (2013): First-Order Theorem Proving and Vampire. In Natasha Sharygina
& Helmut Veith, editors: Computer Aided Verification - 25th Int. Conf., CAV 2013, Saint Petersburg, Russia,
July 13-19, 2013. Proc., LNCS 8044, Springer, pp. 1–35, doi:10.1007/978-3-642-39799-8 1.

[17] K. Rustan M. Leino (2013): Developing verified programs with Dafny. In David Notkin, Betty H. C. Cheng
& Klaus Pohl, editors: 35th Int. Conf. on Software Engineering, ICSE ’13, San Francisco, CA, USA, May
18-26, 2013, IEEE Computer Soc., pp. 1488–1490, doi:10.1109/ICSE.2013.6606754.

[18] K. Rustan M. Leino & Valentin Wüstholz (2014): The Dafny Integrated Development Environment. In
Catherine Dubois, Dimitra Giannakopoulou & Dominique Méry, editors: Proceedings 1st Workshop on For-
mal Integrated Development Environment, F-IDE 2014, Grenoble, France, April 6, 2014., EPTCS 149, pp.
3–15, doi:10.4204/EPTCS.149.2.

[19] David Lo, Sven Apel & Sarfraz Khurshid, editors (2016): Proceedings of the 31st IEEE/ACM Interna-
tional Conference on Automated Software Engineering, ASE 2016, Singapore, September 3-7, 2016. ACM,
doi:10.1145/2970276.

[20] The Coq development team (2015): The Coq proof assistant reference manual. LogiCal Project. Available
at http://coq.inria.fr. Version 8.5.

[21] Tobias Nipkow (2002): Structured Proofs in Isar/HOL. In Herman Geuvers & Freek Wiedijk, editors: Types
for Proofs and Programs, 2nd Int. Workshop, TYPES 2002, Berg en Dal, The Netherlands, April 24-28, 2002,
Selected Papers, LNCS 2646, Springer, pp. 259–278, doi:10.1007/3-540-39185-1 15.

[22] Tobias Nipkow, Lawrence C. Paulson & Markus Wenzel (2002): Isabelle/HOL - A Proof Assistant for Higher-
Order Logic. LNCS 2283, Springer.

[23] André Platzer (2008): Differential Dynamic Logic for Hybrid Systems. J. Autom. Reas. 41(2), pp. 143–189,
doi:10.1007/s10817-008-9103-8.

[24] André Platzer (2012): Logics of Dynamical Systems. In: LICS, IEEE, pp. 13–24, doi:10.1109/LICS.2012.13.

[25] André Platzer (2013): Teaching CPS Foundations With Contracts. In: CPS-Ed, pp. 7–10.

http://dx.doi.org/10.1007/3-540-44617-6_31
http://dx.doi.org/10.1016/S0747-7171(88)80004-X
http://dx.doi.org/10.1007/978-3-642-22110-1_30
http://dx.doi.org/10.1007/978-3-319-21401-6_36
http://dx.doi.org/10.1145/2970276.2970303
http://dx.doi.org/10.1145/2970276
http://dx.doi.org/10.1007/978-3-642-39799-8_1
http://dx.doi.org/10.1109/ICSE.2013.6606754
http://dx.doi.org/10.4204/EPTCS.149.2
http://dx.doi.org/10.1145/2970276
http://coq.inria.fr
http://dx.doi.org/10.1007/3-540-39185-1_15
http://dx.doi.org/10.1007/s10817-008-9103-8
http://dx.doi.org/10.1109/LICS.2012.13

S. Mitsch, A. Platzer 15

[26] André Platzer (2015): A Uniform Substitution Calculus for Differential Dynamic Logic. In Amy P. Felty &
Aart Middeldorp, editors: CADE, LNCS 9195, Springer, pp. 467–481, doi:10.1007/978-3-319-21401-6 32.

[27] André Platzer (2016): A Complete Uniform Substitution Calculus for Differential Dynamic Logic. J. Autom.
Reas., doi:10.1007/s10817-016-9385-1.

[28] André Platzer & Jan-David Quesel (2008): KeYmaera: A Hybrid Theorem Prover for Hybrid Systems (System
Description). In Alessandro Armando, Peter Baumgartner & Gilles Dowek, editors: Automated Reasoning,
4th International Joint Conference, IJCAR 2008, Sydney, Australia, August 12-15, 2008, Proc., LNCS 5195,
Springer, pp. 171–178, doi:10.1007/978-3-540-71070-7 15.

[29] Jan-David Quesel, Stefan Mitsch, Sarah M. Loos, Nikos Arechiga & André Platzer (2016): How to model
and prove hybrid systems with KeYmaera: a tutorial on safety. STTT 18(1), pp. 67–91, doi:10.1007/s10009-
015-0367-0.

[30] Julian Tschannen, Carlo A. Furia, Martin Nordio & Nadia Polikarpova (2015): AutoProof: Auto-Active
Functional Verification of Object-Oriented Programs. In Christel Baier & Cesare Tinelli, editors: Tools and
Algorithms for the Construction and Analysis of Systems - 21st International Conference, TACAS 2015,
London, UK, April 11-18, 2015. Proceedings, LNCS 9035, Springer, pp. 566–580, doi:10.1007/978-3-662-
46681-0.

[31] Makarius Wenzel (2012): Isabelle/jEdit - A Prover IDE within the PIDE Framework. In Johan Jeuring,
John A. Campbell, Jacques Carette, Gabriel Dos Reis, Petr Sojka, Makarius Wenzel & Volker Sorge, ed-
itors: Intelligent Computer Mathematics - 11th International Conference, AISC 2012, 19th Symp., Cal-
culemus 2012, 5th Int. Workshop, DML 2012, 11th Int. Conf., MKM 2012, Systems and Projects, Held
as Part of CICM 2012, Bremen, Germany, July 8-13, 2012. Proc., LNCS 7362, Springer, pp. 468–471,
doi:10.1007/978-3-642-31374-5.

[32] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson & Björn Regnell (2012): Experimentation in
Software Engineering. Springer, doi:10.1007/978-3-642-29044-2.

http://dx.doi.org/10.1007/978-3-319-21401-6_32
http://dx.doi.org/10.1007/s10817-016-9385-1
http://dx.doi.org/10.1007/978-3-540-71070-7_15
http://dx.doi.org/10.1007/s10009-015-0367-0
http://dx.doi.org/10.1007/s10009-015-0367-0
http://dx.doi.org/10.1007/978-3-662-46681-0
http://dx.doi.org/10.1007/978-3-662-46681-0
http://dx.doi.org/10.1007/978-3-642-31374-5
http://dx.doi.org/10.1007/978-3-642-29044-2

EPTCS ??, 20??, pp. 1–7, doi:10.4204/EPTCS.??.??

Interfacing Automatic Proof Agents in Atelier B: Introducing

“iapa”∗

Lilian Burdy

ClearSy System Engineering, Aix-en-Provence, France

lilian.burdy@clearsy.com

David Déharbe†

david.deharbe@clearsy.com

ClearSy System Engineering, Aix-en-Provence, France

Étienne Prun

ClearSy System Engineering, Aix-en-Provence, France

etienne.prun@clearsy.com

The application of automatic theorem provers to discharge proof obligations is necessary to apply

formal methods in an efficient manner. Tools supporting formal methods, such as Atelier B, generate

proof obligations fully automatically. Consequently, such proof obligations are often cluttered with

information that is irrelevant to establish their validity.

We present iapa, an “Interface to Automatic Proof Agents”, a new tool that is being integrated

to Atelier B, through which the user will access proof obligations, apply operations to simplify these

proof obligations, and then dispatch the resulting, simplified, proof obligations to a portfolio of

automatic theorem provers.

1 Introduction

Historically, the B Method[1] was introduced in the late 80’s to design provably safe software. Promoted

and supported by RATP, the B method and Atelier B, the tool implementing it, have been successfully

applied to the industry of transportation leading to a worldwide implementation of the B technology for

safety critical software, mainly as automatic train controllers for subways.

The development of such controllers corresponds to ”big” industrial project. To give an idea of the

size of such development, a train controller is composed of different software components communicat-

ing together. Taking from a real example, the size of the critical parts of the controller is around 500.000

lines of B which give after translation 300.000 lines of Ada and 160.000 generated proof obligations.

The proof, already mainly automated, of those proof obligations is a substantial part of the development

cost for such project. Limiting these costs by using more efficient provers, or by using more efficiently

provers is a real concern in industry.

Atelier B comes with two provers developed with the tool in the 90’s. Recently the ProB model

checker [9] has been added as a prover than can be called during interactive proof session. The Bware

project[4] [8] aims to provide a mechanized framework to apply automated theorem provers, such as first

order provers and SMT (Satisfiability Modulo Theories) solvers on proof obligations coming from the

development of industrial applications using the B method. This approach is produces proof obligations

in the format of Why3 [3], which is used then responsible for calling different automatic theorem provers

with the adequate input, and for interpreting their output and for synthesizing a verification result.

∗This work is partly supported by the Bware (ANR-12-INSE-0010, http://bware.lri.fr/) project of the French na-

tional research organization (ANR).
†On leave from Universidade Federal do Rio Grande do Norte.

2 Interfacing Automatic Proof Agents in Atelier B

SMT provers are routinely used by any tool that have to deal with a logic-based verification task.

Notably, they have already been added as a plugin in Rodin[7], another IDE for Event-B, a formal

method closely related to the B method. Concerning Bware, promising first results[10] [5] have already

been published.

We present here the integration of such automated provers in Atelier B considering the specificities

of proof obligations produced by industrial software developments, described in section 2. The basic

elements of this integration are the Why3-based bridge to automated theorem provers developed in the

Bware project and a new approach for efficiently selecting the relevant parts of a proof obligation. The

principles of this latter aspect are presented in section 3. The implementation of this functionality in a

graphical user interface is then presented in section 4.

2 Proof obligations

Verifying program by proving verification condition (called proof obligations here) leads to deal with

huge lemmas. This problem is not specific to the B Method, indeed the same observation is done, for

example, in [6] for verification conditions issued from C program verification.

Concerning the B Method, the figure 1 shows a proof obligation template. One can see that hypothe-

ses are collected in many clauses of many components. As an example, let us consider the declaration of

constants: as the B Method is a modular software development method, constants are usually declared in

some specific components. In those components, constants are declared with properties. When a func-

tion needs to use a constant, the component is seen and with the needed constant come all the properties

of all the constants of the component. So all the proof obligations will have as hypothesis the properties

of all the constants of the seen component even if only few of them are relevant for the proof.

The incremental approach to refinement is another source of growth in the size of the proof obliga-

tions. Indeed, in each new refinement, all the proof obligations will include the contexts from all the

components that come before in the refinement chain.

In the real project described previously, the average number of hypotheses for a lemma is around

2000 formulas. Some proof obligations can contain more that 4000 hypotheses. Of course, not all

hypotheses are necessary in the proof of the goal. To use efficiently automated provers on such lemma,

we argue that it is necessary to filter relevant hypotheses. This is the motivation for the development

of an “Interface to Automatic Proof Agents”, giving the users of Atelier B the means to build scripts

constructing a mini-lemma from a generated proof obligation, and to submit such mini-lemmas to the

provers.

3 Core functionality in iapa

Atelier B already contains an interface to discharge proof obligations: the interactive prover. Indeed, this

is the part of the interface where users spend most of their time. Some functionalities in iapa are similar

to those found in the interactive prover and will be familiar to the users.

The iapa tool is invoked within Atelier B on a given component, once the proof obligations of that

component have been generated (as is the case with the interactive prover). In Atelier B, all the proof

obligations of a component are available in a single file, and can be either in a legacy format called the

“theory language” or in a XML-based format. Only the latter contains typing annotations and it is this

format that has been chosen in the Bware initiative as the basis for interfacing with the Why3 platform.

Thus, iapa reads the proof obligations of a given component from the XML-based file.

L. Burdy, D. Déharbe & É. Prun 3

A1 ∧ “Machine parameter constraints”

B1 ∧ . . . ∧ Bn−1 ∧ “Properties of constants of previous refinements”

Bn ∧ “Properties of refinement constants”

Bs ∧ “Properties of constants of components seen”

Bi1 ∧ Bi2 ∧ “Properties of constants of components included”

[Xi1 ,xi1 : Ni1 ,ni1](Ii1 ∧ Li1 ∧ Ji1) ∧ “Invariants and assertions”

[Xi2 ,xi2 : Ni2 ,ni2](Ii2 ∧ Ji2) ∧ “of included components”

Is ∧ Js ∧ “Invariants and assertions of components seen”

(I1 ∧ J1) ∧ . . . ∧ (In ∧ Jn) ∧ “Invariants and assertions of the vertical development”

Q1 “Precondition of the abstract operation”

⇒

Qn ∧ “Precondition of the refinement operation”

“Refinement operation applied to the negation of the specified operation”

“applied to the negation of the invariant”

[[u1 : u′1]Vn]¬ [Vn−1]¬ (In ∧ u1u′1)

Figure 1: Theoretical operation refinement proof obligation

In the iapa interface, proof obligations are grouped according to their origin in the corresponding B

component (assertions, initialization, operations). Navigating through these proof obligations is a first

core functionality available in iapa, and its principles mimick those of the interactive prover. Regarding

this aspect, one important difference with respect to the interactive prover is that well-definedness proof

obligations are presented together with those proof obligations instead of in a separate project.

Formally, a proof obligation is a pair (Γ,ϕ), where Γ is a set of hypotheses and ϕ is the goal. The

main goal of iapa is to assist the user in selecting the relevant information in the current proof obligation.

Formally, this consists in building a new proof obligation (Γ′
,ϕ) such that Γ

′ ⊆ Γ. In iapa, the new,

simplified, proof obligation is termed the lemma. The interface also contains means to submit lemmas to

a portfolio of automatic theorem provers.

One notable requirement of iapa is that the steps leading to the construction of a lemma for a given

proof obligation can be applied automatically to other proof obligations. This is achieved by means of

two kinds of entities: contexts and lexicons, that the user has to manipulate and combine in order to build

a lemma.

A context γ ⊆ Γ is a set of hypotheses that originate from the proof obligation. When a proof

obligation is loaded in iapa, a number of contexts are pre-defined:

• all contains all the hypotheses;

4 Interfacing Automatic Proof Agents in Atelier B

• local contains all the hypotheses that are local in the proof obligation;

• global contains all but the local hypotheses;

• a number of contexts that correspond to the different sections in a B component (properties, in-

variants, etc.);

• B definitions contains hypotheses on pre-defined sets such as the range of implementable integers.

A lexicon λ is a set of free identifiers of the original proof obligations. Assuming fv returns the set

of free identifiers in a formula, then λ ⊆
⋃
{fv(ψ) | ψ ∈ Γ∪{ϕ}}. Initially, there is a single pre-defined

lexicon, named goal, and containing fv(ϕ) (the free identifiers in the goal).

At any time, the state of iapa contains the following elements:

• (Γ,ϕ) the current proof obligation;

• C : a set of contexts (∀x ∈ C ,x ⊆ Γ);

• L : a set of lexicons (∀x ∈ L ,x ⊆
⋃
{fv(ψ) | ψ ∈ Γ∪{ϕ}});

• c: a current context (c ∈ C);

• l: a current lexicon (l ∈ L);

• S: a set of selected hypotheses (S ⊆ Γ).

The pre-defined values for C and L are as described previously, those of c, l and S are local, goal,
and /0, respectively. Then the commands on contexts and lexicons currently implemented in iapa are the

following:

• ah add the hypotheses in the current context to the set of selected hypotheses;

• dh removes the hypotheses in the current context from the set of selected hypotheses;

• chctx(c) sets the current context to c;

• chctx(l) sets the current lexicon to l;

• mklex creates a new lexicon with the free identifiers of the current context;

• mklex(i1,..., in) creates a new lexicon with the given identifiers;

• mkctx(Some) creates a new context containing the hypotheses in the current context that have at

least one free identifier in the current lexicon;

• mkctx(All) creates a new context containing the hypotheses in the current context such that their

free identifiers includes the current lexicon;

• mkctx(h1,...,hn) creates a new context containing the given hypotheses.

The condition and effect of the execution of these commands are summarized in table 1, and some

illustrative scripts are presented in table 2. The following section presents the iapa interface, including

how the user can play such commands.

L. Burdy, D. Déharbe & É. Prun 5

command effect condition

ah S := S∪ c

dh S := S\ c

chctx(c) c := c c ∈ C

chctx(l) l := l l ∈ L

mklex L := L ∪{fv(c)} fv(c)
= /0

mklex(i1,...,in) L := L ∪{{i1, · · · , in}} i1 ∈ l · · · in ∈ l

mkctx(Some) C := C ∪{{h|h ∈ c ∧ fv(h)∩ l
= /0}} {h|h ∈ c ∧ fv(h)∩ l
= /0}
= /0

mkctx(All) C := C ∪{{h|h ∈ c ∧ l ⊆ fv(h)}} {h|h ∈ c ∧ l ⊆ fv(h)}
= /0

mkctx(h1,...,hn) C := C ∪{{h1, · · · ,hn}} h1 ∈ c · · ·hn ∈ c

Table 1: Formalization of iapa commands.

script description

ah builds lemma containing only local hypotheses

chctx(all) & ah builds lemma identical to proof obligation

mklex & chctx(all) & mkctx(Some) & ah builds lemma with hypotheses containing an identi-

fier in the local hypotheses

Table 2: Example iapa scripts (& being used as command separator).

4 The iapa tool

The core functionality is presented in a graphical user interface that has to be launched from Atelier B’s

main window on a given component. The functionalities are offered both by textual and point-and-click

means. Figure 2 contains a screenshot of the initial contents of the window. At that point, two views are

populated: Provers and Proof obligations. The latter is in Atelier B’s database. The former is obtained

by querying the automatic provers currently installed. Since, at the moment, the access to these provers

is realized through Why3, this information is found automatically using Why3 and its auto-configuration

facilities. Besides the menu and the tool bar found at the top of the window, the Command section

contains a widget containing a command-line interface to iapa. Here, the user has already typed the

command ne, which, when executed, will open the next proof obligation.

Opening a proof obligation results in filling the Goal, Context manager and Lexicon manager sec-

tions, and enables actions corresponding to the core iapa functionalities. Figure 3 shows the contents of

the iapa window after the user has managed to complete a proof after having selected some hypotheses

in the context (using here one of the scripts presented in table 2 and started the provers on the resulting

lemma with the pr command. The steps realized by the user are saved and displayed in the Script section.

Also the Messages section is dedicated to the display of feed-back information.

5 Conclusions and future work

This paper presents an on-going work to reduce the cost of discharging proof obligations when applying

formal methods in an industrial environment. This work is embodied in iapa, a prototype for an extension

of Atelier B aiming at both integrating additional proof engines and offer hypotheses selection facilities

L. Burdy, D. Déharbe & É. Prun 7

to the user.

The effectiveness of the approach will be assessed through a systematic evaluation on a representative

set of industrial projects. The results of this evaluation will decide whether iapa is eventually deployed

together with the distributions of Atelier B. We also plan to improve the usability of iapa, by adding

hypotheses selection criteria based on formula patterns, and also taking user feed-back into account.

Certification is another important aspect of tooling in an industrial setting for safety-critical systems.

The historical provers in Atelier B have been certified; but certifying new tools is costly. We forecast

some solutions to address this issue in iapa. First, since some automated theorem provers are proof-

producing, we envision using the proofs thus produced to build proofs that can be played by the certified

provers. Second, since redundancy is also a mean to achieve desired safety levels, a second tool chain

could be developed. It would bypass Why3 and generate proof obligations directly in the input language

of the automatic provers. An approach similar to [7], targetting the SMT-LIB format [2] is a good

candidate.

References

[1] Jean-Raymond Abrial (2005): The B-book - assigning programs to meanings. Cambridge University Press.

[2] Clark Barrett, Pascal Fontaine & Cesare Tinelli (2015): The SMT-LIB Standard: Version 2.5. Technical

Report, Department of Computer Science, The University of Iowa. Available at www.SMT-LIB.org.

[3] François Bobot, Jean-Christophe Filliâtre, Claude Marché & Andrei Paskevich (2011): Why3: Shepherd your

herd of provers. In: Boogie 2011: First International Workshop on Intermediate Verification Languages, pp.

53–64.

[4] (2012): The BWare Project. Available at http://bware.lri.fr/.

[5] Sylvain Conchon & Mohamed Iguernelala (2014): Tuning the Alt-Ergo SMT Solver for B Proof Obligations.

In Yamine Ait Ameur & Klaus-Dieter Schewe, editors: Abstract State Machines, Alloy, B, TLA, VDM, and

Z: 4th International Conference, ABZ 2014, Toulouse, France, June 2-6, 2014. Proceedings, Springer Berlin

Heidelberg, Berlin, Heidelberg, pp. 294–297, doi:10.1007/978-3-662-43652-3 27.

[6] Jean-François Couchot & T. Hubert (2007): A Graph-based Strategy for the Selection of Hypotheses. In:

FTP’07, Int. Workshop on First-Order Theorem Proving, Liverpool, UK.

[7] David Déharbe, Pascal Fontaine, Yoann Guyot & Laurent Voisin (2012): SMT Solvers for Rodin. In: Pro-

ceedings of the Third International Conference on Abstract State Machines, Alloy, B, VDM, and Z, ABZ’12,

Springer-Verlag, Berlin, Heidelberg, pp. 194–207, doi:10.1007/978-3-642-30885-7 14.

[8] D. Delahaye, C. Dubois, C. Marché & D. Mentré (2014): The BWare Project: Building a Proof Platform

for the Automated Verification of B Proof Obligations. In: Abstract State Machines, Alloy, B, VDM, and Z

(ABZ), pp. –, doi:10.1007/978-3-662-43652-3 26.

[9] Michael Leuschel & Michael Butler (2003): ProB: A Model Checker for B. In Keijiro Araki, Stefania Gnesi

& Dino Mandrioli, editors: FME 2003: Formal Methods: International Symposium of Formal Methods

Europe, Pisa, Italy, September 8-14, 2003. Proceedings, Springer Berlin Heidelberg, Berlin, Heidelberg, pp.

855–874, doi:10.1007/978-3-540-45236-2 46.

[10] David Mentré, Claude Marché, Jean-Christophe Filliâtre & Masashi Asuka (2012): Discharging Proof Obli-

gations from Atelier B using Multiple Automated Provers. In Steve Reeves & Elvinia Riccobene, editors:

ABZ - 3rd International Conference on Abstract State Machines, Alloy, B and Z, Lecture Notes in Com-

puter Science 7316, Springer, Pisa, Italy, pp. 238–251, doi:10.1007/978-3-642-30885-7 17. Available at

https://hal.inria.fr/hal-00681781.

EPTCS ??, 20??, pp. 1–19, doi:10.4204/EPTCS.??.??

c© C. Fayollas et al.

This work is licensed under the

Creative Commons Attribution License.

Evaluation of formal IDEs for human-machine interface

design and analysis: the case of CIRCUS and PVSio-web

Camille Fayollas1 Célia Martinie1 Philippe Palanque1 Paolo Masci2

Michael D. Harrison2,3 José C. Campos2 Saulo Rodrigues e Silva2

1ICS-IRIT, University of Toulouse, Toulouse, France

{fayollas,martinie,palanque}@irit.fr

2HASLab/INESC TEC and Universidade do Minho, Braga, Portugal

{paolo.masci,jose.c.campos,saulo.r.silva}@inesctec.pt

3Newcastle University, Newcastle upon Tyne, United Kingdom

michael.harrison@newcastle.ac.uk

Critical human-machine interfaces are present in many systems including avionics systems and med-

ical devices. Use error is a concern in these systems both in terms of hardware panels and input

devices, and the software that drives the interfaces. Guaranteeing safe usability, in terms of but-

tons, knobs and displays is now a key element in the overall safety of the system. New integrated

development environments (IDEs) based on formal methods technologies have been developed by

the research community to support the design and analysis of high-confidence human-machine inter-

faces. To date, little work has focused on the comparison of these particular types of formal IDEs.

This paper compares and evaluates two state-of-the-art toolkits: CIRCUS, a model-based develop-

ment and analysis tool based on Petri net extensions, and PVSio-web, a prototyping toolkit based on

the PVS theorem proving system.

1 Introduction

Use error is a major concern in critical interactive systems. Consider, for example, a pilot calibrating

flight instruments before take-off. When calibrating the barometer used to measure the aircraft’s altitude,

a consistency check should be performed automatically by the cockpit software to help guard against use

errors, such as mistyping a value or selecting the wrong units.

New IDEs based on formal methods have been developed by the research community to support the

design and analysis of high-confidence human-machine interfaces. Each IDE supports different types

of analysis, ranging from functional correctness (e.g., absence of deadlocks and coding errors such as

division by zero) to compliance with usability and safety requirements (e.g., assessing the response to

user tasks, or the visibility of critical device modes). Choosing the right tool is important to ensure

efficiency of the analysis and that the analysis addresses the appropriate safety concerns relating to use.

To date, little work has been done to compare and evaluate different formal IDEs for human-machine

interface design and analysis, and little or no guidance is available for developers to understand which

IDE can be used most effectively for which kind of analysis. This paper describes a first step towards

addressing this gap.

Contribution. We compare and evaluate two state-of-the-art formal verification technologies for the

analysis of human-machine interfaces: CIRCUS [9], a model-based development and analysis tool that

uses Petri net extensions; and PVSio-web [19], a prototyping toolkit based on the PVS theorem prover.

2 Evaluation of formal IDEs for human-machine interface design and analysis

The aim of this work is to provide guidance to developers to understand which tool can be used most

effectively for which kind of analysis of interactive systems. Both tools have their foundations in existing

formal technologies, but are focused towards particular issues relating to the user interface. The capa-

bilities of the two tools are demonstrated in the paper through a common case study based on a critical

subsystem in the cockpit of a large civil aircraft. A taxonomy is developed as a result of the comparison

that can be used to describe the characteristics of other similar tools.

Organisation. The remainder of the paper is organised as follows. Section 2 illustrates typical features of

formal IDEs for the design and analysis of human-machine interfaces, and presents a detailed description

of CIRCUS and PVSio-web. Section 3 introduces the common example for comparison of the selected

tools, as well as the developed models. Section 4 presents the metrics for comparing the IDEs, and

then uses the metrics as a basis for the comparison. Section 5 concludes the paper and presents future

directions in which the tools may evolve.

2 The formal modelling and analysis of user interfaces

Formal tools for the modelling and analysis of human-machine interfaces are designed to support multi-

disciplinary teams of designers from different engineering disciplines, including human factors engi-

neering (to establish usability requirements, run user studies and interpret compliance), formal methods

(to verify compliance of a system design with design requirements), and software engineering (to de-

velop prototypes and software code, e.g., using model-based development methods). Although several

tools provide graphical model editors and automated functions for modelling and analysis of interac-

tive elements of a system, different tools are usually complementary, as they support different levels of

description, and different types of analysis, ranging from micro-level aspects of human-machine inter-

action, e.g., aspect and behaviour of user interface widgets, to the analysis of the wider socio-technical

system within which the interactive system is used.

In the present work, we compare two state-of-the-art formal tools developed by two different research

teams: CIRCUS [9], a toolkit for model-based development of interactive systems; and PVSio-web [19],

a toolkit for model-based development of user interface software. Both build on tools that have been de-

veloped more generally for model based design and software engineering, extending them with features

that are particularly useful when considering the human-machine interface or the wider socio-technical

system.

Other formal tools that could be used (and in some cases have been used) for the analysis of human-

machine interfaces exist. They offer functionalities that complement those of CIRCUS and PVSio-web.

The evaluation of these other tools is not within the scope of this paper, although a brief overview can be

found in Section 2.3.

2.1 CIRCUS

CIRCUS, which stands for Computer-aided-design of Interactive, Resilient, Critical and Usable Systems,

is an IDE for the formal verification of the system’s behaviour as well as the analysis of compatibility

between the user’s task and the system’s behaviour. CIRCUS includes three tools:

• HAMSTERS (Human-centred Assessment and Modelling to Support Task Engineering for Resilient

Systems) is a tool for editing and simulating task models. The tool can be used to ensure consistency,

coherence, and conformity between assumed or prescribed user tasks and the sequence of actions

necessary to operate interactive systems [3]. The notation used in the tool makes it possible to structure

C. Fayollas et al. 3

users’ goals and sub-goals into hierarchical task trees. Qualitative temporal relationships among tasks

are described by operators. Various notational elements support modelling of specialised task types,

explicit representations of data and knowledge, device descriptions, genotypes and phenotypes of

errors, and collaborative tasks.

• PetShop (Petri Net workshop) is a tool for creating, editing, simulating and analysing system models

using the ICO (Interactive Cooperative Objects) notation [23, 17]. The ICO notation allows devel-

opers to specify the behaviour of interactive systems. The notation uses Petri Nets for describing

dynamic behaviours, and uses object-oriented concepts (including dynamic instantiation, classifica-

tion, encapsulation, inheritance and client/server relationships) to describe structural or static aspects

of the system.

• SWAN (Synergistic Workshop for Articulating Notations) is a tool for the co-execution of PetShop

models and HAMSTERS models [3]. The tool allows developers to establish correspondences be-

tween system behaviours and tasks, and perform automated system testing by means of co-execution [5].

2.2 PVSio-web

PVSio-web is a toolkit for model-based development of user interface software. The toolkit is based

on and extends an established theorem prover, PVS [24], providing a graphical environment for con-

structing, visualising and analysing formal models of user interface software. PVSio-web has three main

components:

• Prototype Builder and Simulator. This tool allows developers to create device prototypes based

on formal models, and run them within a Web browser. The visual aspect of the prototype uses an

interactive picture of the device. Developers create programmable areas over the picture to identify

input widgets (e.g., buttons) and output widgets (e.g., displays, LEDs). The tool automatically trans-

lates user actions over input widgets (e.g., button presses) into PVS expressions that can be evaluated

within PVSio [22], the native PVS component for animating executable PVS models. The Simulator

tool executes PVSio in the background, and the effects of the execution are automatically rendered

using the output widgets of the prototype to closely resemble the visual appearance of the real system

in the corresponding states.

• Emucharts Editor. This tool facilitates the creation of formal models using visual diagrams known

as Emucharts. These diagrams are based on Statecharts [14]. The tool allows developers to define

the following design elements: states, representing the different modes of the system; state variables,

representing the characteristics of the system state; and transitions, representing events that change

the system state. The tool incorporates a model generator that translates the Emucharts diagram into

executable PVS models automatically. The model generator also supports the generation of other

different formal modelling languages for interactive systems, including VDM [18], MAL [6], and

PIM [4], as well as executable code (MISRA-C).

• The PVS back-end. This includes the PVS theorem prover and the PVSio environment for model

animation. The back-end is used for formal analysis of usability-related properties of the human-

machine interface model, such as consistency of response to user actions and reversibility of user

actions.

4 Evaluation of formal IDEs for human-machine interface design and analysis

2.3 Other tools

MathWorks Simulink [20] is a commercial tool for model-based design and analysis of dynamic systems.

It provides a graphical model editor based on Statecharts, and functions for rapid generation of realistic

prototypes. SCR [13] is a toolset for formal analysis of system requirements and specifications. Using

SCR, it is possible to specify the behaviour of a system formally, use visual front-ends to demonstrate the

system behaviour based on the specifications, and use a set of formal methods tools for the analysis of

system properties. SCADE and IBM’s Rational Statemate are two commercial tool sets for model-based

development of interactive systems. The tool sets provide, among other features, rapid prototyping, co-

simulation, and automated testing. Formal verification is supported by these tools, but is limited to the

analysis of coding errors such as division-by-zero. Use-related requirements and tasks can be analysed

only using simulation and testing. IVY [7] is a workbench for formal modelling and verification of

interactive systems. The tool provides developers with standard property templates that capture usability

concerns in human-machine interfaces. The core of the IVY verification engine is the NuSMV model

checker. A graphical environment isolates developers from the details of the underlying verification tool,

thereby lowering the knowledge barriers for using the tool. The particular tools that are of interest in

the design and analysis of interactive systems enable the analysis of user activities, with a focus on what

users do in terms of what they perceive about the systems and the actions they perform. Furthermore an

important requirement for such tools is that the means of analysis and their results should be accessible

to team members without a background in formal techniques, or even software development techniques.

3 Case study and IDE showcase

The case study for comparing the selected tools is based on a subsystem of the Flight Control Unit (FCU)

of the Airbus A380. It is an interactive hardware panel with several different buttons, knobs, and displays.

The FCU has two main components: the Electronic Flight Information System Control Panel (EFIS CP),

for configuring the piloting and navigation displays; and the Auto Flight System Control Panel (AFS

CP), for setting the autopilot state and parameters.

In future cockpits, the interactive hardware elements of the FCU panel might be replaced by an

interactive graphical application rendered on displays. This graphical software (hereafter, referred to

as FCU Software) will provide the same functionalities as the corresponding hardware elements. This

graphical software will be displayed on one of the screens in the cockpit. Pilots will interact with the

FCU Software via the Keyboard and Cursor Control Unit (KCCU) that integrates keyboard and track-ball

(see Figure 1).

The present paper illustrates how CIRCUS and PVSio-web can be used to create models and proto-

types of the FCU Software. Developers can explore design options and analyse requirements for these

future generation FCUs using these formal IDEs for model-based development of human-machine inter-

faces. To keep the example simple, we focus further and analyse the EFIS CP. This component includes

most of the fundamental interactive elements of the FCU.

3.1 Description of the system and its use

A close up view of the EFIS CP is shown in the rightmost picture of Figure 1. The left panel of the

EFIS CP window is dedicated to the configuration of the barometer settings (upper part) and of the

Primary Flight Display (lower part). The right panel is dedicated to the configuration of the Navigation

Display. The top part provides buttons for displaying navigation information on the cockpit displays.

6 Evaluation of formal IDEs for human-machine interface design and analysis

Figure 2: Extract of the task model for the task “Perform descent preparation”.

A simplified version of the task model is described as the abstract task “Perform descent prepara-

tion” in the first row of Figure 2. The second row refines this task into several abstract sub-tasks (e.g.,

“Obtain weather and landing information”). Each one of these abstract tasks corresponds to a step of

the operational procedure that is intended to be performed by the flight crew when preparing the descent

phase [1].

In the present paper, we focus on the “Set barometric reference” abstract task, refined in the third

row. The task is decomposed as follows: the pilot receives the new barometric target (“Receive baromet-

ric target” abstract task) and remembers the corresponding information (“Barometric pressure target”).

The pilot then needs to gather information about the current barometer settings (“Gather information

about current barometric settings”), thus remembering a new piece of information (“Current barometric

pressure”). The pilot then needs to compare the two values that have been received in the previous two

steps (“Interpret and analyse barometric pressure” cognitive analysis task) creating the “Current pressure

== Targeted pressure” information. If the targeted pressure is different from its current value the pilot

decides to change the pressure (“Decide to change barometric pressure” cognitive decision task) and

change it (“Change barometric pressure” abstract task).

The fourth row of Figure 2 refines the “Change barometric pressure” abstract task as follows: the

pilot must first check the pressure mode (“Check pressure mode” abstract task), switch to QNH mode if

the current mode is STD (“Change pressure mode to QNH” abstract task), check the unit and change it if

needed (“Check barometric pressure unit” and “Change pressure unit” abstract tasks) and finally set the

new pressure value (“Set target pressure value” abstract task).

Finally, the fifth row refines the “Change pressure mode to QNH” abstract task. This task is per-

formed by the pilot if the current mode is STD. In this task, the pilot first reaches the QNH checkButton

(“Reach QNH CheckButton” abstract task). Then s/he clicks on it (“Click on QNH CheckButton” inter-

active input task). The system then changes the mode and displays the new state (“Change mode” system

task and “Display QNH mode” interactive output task). The pilot can then check that the new pressure

C. Fayollas et al. 7

Figure 3: ICO model of the barometer settings behaviour.

mode is the good one (“Check pressure mode” abstract task and “Decide that barometric pressure mode

is OK” cognitive decision task). It is important to note that this task model is detailed both in terms of

user task refinement (e.g., cognitive task analysis) to allow the analysis of workload and performance

(see Step 3 below); and in terms of interactive task refinement (see, for instance, the refinement of the

“Change pressure mode to QNH” abstract task which includes the “Click on QNH Checkbutton” interac-

tive input task) to allow the compatibility assessment between the task model and the behavioural model

of the system (see Step 6 below).

Step 2: Workload and performance analysis. As presented in Figure 2, the HAMSTERS notation and

tool enable human task refinement. It makes it possible to differentiate between cognitive, motor, and

perception tasks as well as representing the knowledge and information needed by the user to perform

a task. The refinement allows the qualitative analysis of user tasks, workload and performance. For

example, the number of cognitive tasks and information that pilots need to remember may be effective

indicators for assessing user workload [9]. This kind of analysis can be used to reason about automation

design [16].

Step 3: User interface look and feel prototyping. This step aims at developing the user interface

look and feel. A result of this step is described in the screen-shot of the EFIS CP presented in Figure 1.

The widgets are organised in a style that is compatible with the library defined by the ARINC 661

standard [2].

Step 4: User interface formal modelling. The behaviour of the user interface is specified using ICO

models. The behaviour of the barometer settings part of the EFIS CP user interface is represented by

the ICO model presented in Figure 3. The left part of this model (that has been enlarged) is dedicated

to the pressure mode. As described in Section 3.1, the pressure mode can be in two different mutually

exclusive states: STD and QNH. The user can switch from one mode to the other one by clicking either

STD or QNH CheckButton (clicking on a CheckButton while already in the corresponding mode is

also possible but will have no impact on the pressure mode). This behaviour is defined by the enlarged

part of the ICO model presented in Figure 3. The state of the pressure mode is represented by the

presence of a token within “QNH” or “STD” places (in Figure 3, place “STD” holds a token meaning that

the current pressure mode is STD). Transitions “changePressureMode 1” and “changePressureMode 2”

(resp. “changePressureMode 3” and “changePressureMode 4”) correspond to the availability of the

“qnhClick” (resp. “stdClick”) event: when one of these two transitions is enabled, the “qnhClick” event

is available (thus enabling the QNH CheckButton). The “changePressureMode 1” transition therefore

makes it possible to switch from STD pressure mode to QNH pressure mode as a result of clicking on

8 Evaluation of formal IDEs for human-machine interface design and analysis

the QNH CheckButton. The “changePressureMode 2” transition allows the user to click on the QNH

CheckButton while in QNH pressure mode without any impact on the pressure mode. The right part

of the ICO model presented in Figure 3 (behind the enlarged part of the model) allows pressure to be

changed. While we only present here a part of the ICO model describing the behaviour of the EFIS user

interface, it is important to note that the ICO notation has also been used to describe the behaviour of the

widgets and the window manager. The ICO models can be validated using the simulation feature.

Step 5: Formal analysis. The PetShop tool provides the means to analyse ICO models by the underlying

Petri net model [26] using static analysis techniques as supported by the Petri net theory [25]. The ICO

approach is based on high level Petri nets. As a result the analysis approach builds on and extends

these static analysis techniques. Analysis results must be carefully taken into account by the analyst

as the underlying Petri net model can be quite different from the ICO model. Such analysis has been

included in CIRCUS and can be interleaved with the editing and simulation of the model, thus helping

to correct it in a style that is similar to that provided by spell checkers in modern text editors [8]). It is

thus possible to check well-formedness properties of the ICO model, such as absence of deadlocks, as

well as user interface properties, either internal properties (e.g., reinitiability) or external properties (e.g.,

availability of widgets). Note that it is not possible to express these user interface properties explicitly

— the analyst needs to express these properties as structural and behavioural Petri net properties that can

be then analysed automatically in PetShop.

The analysis of the enlarged part of the ICO model presented in Figure 3 allows developers to check

that, whatever action is taken, the pair of places “STD” and “QNH” will always hold one (and only

one) token, exhibiting the mutual exclusion of the two states. Transitions connected to these places

correspond to the availability of two events “qnhClick” and “stdClick”, and therefore it can be demon-

strated that these events will remain available whatever action is triggered. Lastly, there are two tran-

sitions in the model that correspond to the event “qnhClick” (transitions “changePressureMode 1” and

“changePressureMode 2”). This could potentially lead to non-determinism in the model. However, as

“changePressureMode 1” has place “STD” as input place and “changePressureMode 2” has “QNH”

place as input place, non-determinism is avoided due to the mutual exclusive marking of these places.

Step 6: Compatibility assessment between task models and user interface models. This step aims at

guaranteeing that the task model and the formal model of the user interface behaviour are complete and

consistent together (thus helping to guarantee that procedures followed by the operators are correctly

supported by the system). A correspondence editing panel is used to establish the matching between

interactive input tasks (from the task model) with system inputs (from the system model) and between

system outputs (from the system model) with interactive output tasks (from the task model). The co-

execution part of the SWAN tool provides support for validation as it makes it possible to find incon-

sistencies between the two models, e.g., sequences of user actions allowed by the system model and

forbidden by the task model, or sequences of user actions that should be available but are not because of

inadequate system design. The SWAN tool also provides support for automated scenario-based testing

of an interactive application [5]

3.3 Modelling and analysis using PVSio-web

The focus of the PVSio-web analysis is the interaction logic of the EFIS data entry software. Here, we

describe the modelling and analysis workflow supported by the tool, and highlight the main characteris-

tics of the developed models (the full description is included as an example application in the PVSio-web

tool distribution [19]).

C. Fayollas et al. 9

Figure 4: FCU Software prototype developed in the PVSio-web Prototype Builder. Shaded areas over

the picture identify interactive system elements.

Step 1: Define the visual appearance of the prototype. The visual aspect of the prototype is based on

a picture of the EFIS panel. The PVSio-web Prototype Builder is used to create the visual appearance

of the prototype and is defined using the Prototype Builder. A picture of the EFIS panel and KCCU

are loaded in the tool, and interactive areas are created over relevant buttons and display elements (see

Figure 4). Fifteen input areas were created over the picture of the Keyboard and Cursor Control Unit,

to capture user actions over the number pad keys, as well as over other data entry keys (ENT, CLR,

ESC, and the units conversion button). Four display elements were created for rendering relevant status

variables of the PVS model: a touchscreen display element handles user input on the EditBoxNumeric

for entering the barometer pressure value; two display elements render the STD and QNH CheckButtons;

an additional display element renders the pressure units.

Step 2: Define the behaviour of the prototype. The prototype is driven by a PVS model that includes

an accurate description of the following features of the system: the modal behaviour of the data entry

system; the numeric algorithm for units conversion; the logic for interactive data entry; and the data types

used for computation (double, integer, Boolean). Modelling patterns were used to guide the development

of the models (some of these patterns are described in [11]). The model was developed using, in com-

bination, the PVSio-web Emucharts Editor and the Emacs-based model editor of PVS. The Emucharts

editor allowed us to create a statechart-based diagram that can be automatically translated into PVS mod-

els. The Emacs-based model editor was used to build a library function linked to the Emucharts diagram

to improve modelling efficiency. The developed Emucharts (shown in Figure 5) includes the following

elements: 3 states (STD, QNH, and EDIT PRESSURE) representing three different modes of operation;

25 transitions, representing the effect of user actions on the Keyboard and Cursor Control Unit when ad-

justing the barometer settings, and internal timers handling timeouts due to inactivity during interactive

10 Evaluation of formal IDEs for human-machine interface design and analysis

Figure 5: Emucharts model of the FCU Software created in the Emucharts Editor.

data entry; and 9 status variables, representing the state of the system (units, display value, programmed

value, etc.). The library function, ProcessKey, is used within the Emucharts diagrams to define the effect

on state variables of transitions associated with key presses.

Step 3: Model validation. This analysis ensures internal consistency of the model, as well as checking

accuracy with respect to the real system. Internal consistency is assessed by discharging proof obliga-

tions (called type-check-conditions) automatically generated by the PVS theorem prover. These proof

obligations check coverage of conditions, disjointness of conditions, and correct use of data types. For

the developed Emucharts model, PVS generated 22 proof obligations, all of which were discharged au-

tomatically by the PVS theorem prover. Accuracy of the model is assessed by using the prototype to

engage with Airbus cockpit experts. Experts can press buttons of the prototype, and watch the effect of

interactions on the prototype displays. By this means it is possible to check that the prototype behaviour

resembles that of the real system.

Step 4: Formal analysis. The prototype and the PVS theorem prover are used in combination to analyse

the model. The prototype is used to perform a lightweight formal analysis suitable to establish a common

understanding within a multidisciplinary team of the correct interpretation of safety requirements and

usability properties. This analysis consists in the execution of sample input key sequences demonstrating

scenarios where a given requirement is either satisfied or fails. This initial lightweight analysis based on

test cases is extended to a full formal analysis using the PVS theorem prover, to check that requirements

and properties of the model are satisfied for all input key sequences in all reachable model states. To

perform this full analysis, PVS theorems need to be defined that capture the requirements and properties.

They are expressed using structural induction and a set of templates described in [12]. An example

C. Fayollas et al. 11

property that can be analysed is consistency of device response to user actions. The consistency property

is motivated by the fact that users quickly develop a mental model that embodies their expectations of

how to interact with a user interface. Because of this, the overall structure of a user interface should

be consistent in its layout, screen structure, navigation, terminology, and control elements. Example

consistency properties are: a designated set of function buttons always change the mode; a further set

of keys, for example concerned with number entry, will always change the barometric variable relevant

to the mode but do not change the mode; an enter key always changes the relevant parameter when in

the relevant mode; an escape key ensures that the value set in the mode is discarded and the barometric

value reverts to the value it had when it entered the mode.

In PVS, the consistency template is formulated as a property of a group of actions Ac ⊆℘(S → S),
or it may be the same action under different modes, requiring that all actions in the group have similar

effects on specific state variables selected using a filter. The relation consistent : C×C → T connects a

filtered state, before an action occurs (captured by f ilter pre : S×MS → C), with a filtered state after the

action (captured by f ilter post : S×MS → C). The description of the filters and the consistent relation

specify the consistency across states and across actions. Here MS is defined to be a set of modes. Two

modes are relevant here. A set of modes not defined includes the mode that allows the entry of the

barometer value. Within the barometer entry mode are two modes that relate to the different units that

can be used to enter the barometric values, defined as: inHg and hPa. A general notion of consistency

assumes that the property is restricted to a set of states focused by a guard: guard : S×MS → T . This

guard may itself be limited by a mode. The general consistency template can therefore be expressed as:

Consistency

∀a ∈ Ac ⊆℘(S → S),s ∈ S,m ∈ MS :

guard(s,m) ∧ consistent(f ilter pre(s,m), f ilter post(a(s),m)

Two examples are now used to illustrate the use of the consistency template. The first is that a set

of actions never change the barometric entry mode. The pre f ilter and post f ilter both extract the

barometric entry mode, and are of the form filter baro(st: state): UnitsType = Units(st).

This property relates directly to modes and therefore the mode parameter can be omitted in the filter

definition. The set of actions determined by state transitions actions which encompasses the set

of transitions as determined by the enabled actions in the barometric mode. In summary, the consistent

relation in this case is equality and the theorem that instantiates the consistency template is:

modeinvariant: THEOREM FORALL (pre, post: state):

state_transitions_actions(pre, post) => (filter_baro(pre) = filter_baro(post))

On the other hand the action clickhPa always changes the entry mode. So here consistent is inequality.

alwayschgmode: THEOREM FORALL (pre, post: state):

(post = click_hPa(pre) AND guard_baro(pre))

=> filter_baro(pre) /= filter_baro(post)

4 Tool comparison

In this section, we first present the criteria that were identified to compare the characteristics and func-

tionalities of the two tools. These criteria form a basis for the comparison of these two tools.

12 Evaluation of formal IDEs for human-machine interface design and analysis

4.1 Comparison criteria

We identified 22 criteria suitable to compare the characteristics and functionalities of the two tools. These

criteria are general, and can be used as a reference to define a taxonomy suitable to classify and compare

other similar formal IDEs for user interface modelling and analysis. These criteria are divided in four

categories:

• General aspects of the tools

1. Scope/purpose of the tool within the development process, e.g., requirements analysis, prototyping,

verification.

2. Tool features, e.g., modelling of user tasks and goals, analysis of usability properties, simulation of

user tasks.

3. Tool extensibility, e.g., to model systems from different application domains, or to perform a differ-

ent type of analysis

4. Prerequisites and background knowledge, e.g., distributed systems, object oriented languages, Petri

Nets, task modelling, PVS.

5. IDE instance and principle, e.g., Eclipse plugin, Web, Netbeans API

6. IDE availability, e.g., snapshot, demo, downloadable, open source.

• Modelling features

7. Notation names, e.g., ICO, HAMSTERS, Emucharts, PVS.

8. Notation instance, e.g., Petri Net, state machines, higher-order logic.

9. Notation paradigm, e.g., event-based, state-based, declarative.

10. Structuring models, e.g., object-oriented, functional, component-based.

11. Model editing features, e.g., textual, visual, autocompletion support.

12. Suggestions for model improvements, e.g., strengthening of pre-conditions.

• Prototyping features

13. Support for prototype building, e.g., visual editor, library of widgets.

14. Execution environment of the prototype, e.g., Java virtual machine, Javascript execution environ-

ment.

15. User interface testing, e.g., automatic generation of input test cases.

16. Human-machine interaction techniques, e.g., Pre-WIMP (input dissociated from output), WIMP,

post-WIMP, tangible, multimodal.

17. Code generation, e.g., C, C++, Java.

• Analysis of human-machine interaction

18. Verification type, e.g., functional verification, performance analysis, hierarchical task analysis;

19. Verification technology, e.g., theorem proving, static analysis.

20. Scalability of the analysis, e.g., illustrative examples, industrial size.

21. Support for the analysis of the wider socio-technical system.

22. Related development process, e.g., user centered design, waterfall development process, agile de-

velopment.

C. Fayollas et al. 13

4.2 CIRCUS and PVSio-web comparison

In this section, we discuss, following the four categories of criteria identified above, the comparison of

CIRCUS and PVSio-web. A detailed assessment of all the criteria presented above is presented in tabular

form in the Appendix.

General aspects of the tools. From a high-level perspective, the scope of CIRCUS and PVSio-web

is the formal development of user interfaces. Both tools support modelling and analysis of the interac-

tion logic of the user interface software. However, the two tools offer different modelling and analysis

technologies that are tailored to support two different (and complementary) styles of assessment of user

interfaces. CIRCUS supports explicit modelling of user tasks and goals, allowing developers to simulate

user tasks and check their compatibility with the interactive behaviour of the system. PVSio-web, on

the other hand, supports explicit modelling of general usability and safety properties, facilitating the as-

sessment of compliance of a user interface design with design guidelines and best design practices (e.g.,

according to standards or regulatory frameworks). Whilst a certain level of background knowledge is

needed to use the tools effectively, basic knowledge about Petri nets and task models (for CIRCUS) and

state machines and state charts (for PVSio-web) is already sufficient to get started with illustrative exam-

ples. This is extremely useful to reduce the typical knowledge barriers faced by novice users. The two

IDEs are developed using standard technologies supported by multiple platforms (Netbeans Visual API

for CIRCUS, Web technologies for PVSio-web), and can be executed on any standard desktop/laptop

computer.

Modelling features. Both tools provide powerful graphical IDEs designed to assist developers in the

creation of formal models. CIRCUS uses specialised graphical notations and diagrams: the ICO no-

tation is used for building system models; the HAMSTERS notation is used for describing user tasks.

ICOs are based on object-oriented extensions to Petri nets, and support both event-based and state-based

modelling. HAMSTERS is a procedural notation. The complexity of models is handled using infor-

mation hiding (as in object-oriented programming languages), and component-based model structures.

This facilitates the creation of complex models, as well as the implementation of editing features that are

important for developers, such as auto-completion of models and support for parametric models. The

use of specific notations, however, limits the ability of developers to import external models created with

other tools, or export CIRCUS models to other tools. PVSio-web, on the other hand, uses modelling

patterns to support the modelling process. Developers can use either a graphical notation (Emucharts

diagrams, or a textual notation (PVS higher-order logic), or a combination of both, to specify the system

model. This has many benefits: software developers that are familiar with Statecharts can build models

using a language that is familiar for them, and gradually learn PVS modelling by examples, checking

how the Emucharts model translates into PVS; Emucharts models can be translated into popular formal

modelling languages different than PVS (e.g., VDM); expert PVS users can still develop entire models

using PVS higher-order logic only, and software developers can import these PVS models as libraries,

thus facilitating model re-use. The main drawback is that the current implementation of Emucharts lacks

mechanisms for model optimisation (e.g., a battery of similar PVS functions is generated instead of a

single function with a parameter), and technical skills are necessary to understand model improvements

suggested by the tool (through the PVS type-checker).

Prototyping features. Both IDEs provide a visual editor for rapid generation of prototypes supporting a

range of interaction styles, including: graphical user interfaces with windows, icons, menus, and pointer

(WIMP); user interfaces with physical buttons (pre-WIMP); touchscreen-based user interfaces (post-

WIMP); and multi-modal user interfaces (e.g., providing both visual and auditory feedback). Both tools

promote the use of the Model-View-Controller (MVC [15]) paradigm, with a clear separation between

14 Evaluation of formal IDEs for human-machine interface design and analysis

the visual appearance of the prototype and the logic behaviour. Whilst prototypes developed with the

two IDEs share these similarities, prototype building and implementation is substantially different in the

two IDEs. CIRCUS prototypes are developed in Java (for their visual appearance) and in ICO models

(for their behaviour). Developers can define their own widgets library. For example, for the case study

presented in Section 3, we created a library of widgets whose visual aspect and behaviour is compatible

with that described in the ARINC 661 standard. PVSio-web prototypes are developed in JavaScript, and

their behaviour is defined by a PVS executable model. Rapid prototyping is enabled by a lightweight

building process where the visual aspect of the prototype is defined by a picture of the real device,

virtually reducing to zero the time and effort necessary to define the visual appearance of the prototype.

Initial support for code generation is also available for MISRA-C, for behavioural models developed

using Emucharts [21]. A specialised tool (Prototype Builder) is provided with the IDE, to facilitate the

identification of interactive areas over the picture, and to link these areas to the PVS model. The current

implementation of the Prototype Builder supports only the definition of push buttons and digital display

elements, and developers need to edit a JavaScript template manually to introduce more sophisticated

widgets (e.g., knobs, graphical displays, etc.). Integration of these more sophisticated widgets in the

Prototype Builder is currently under development.

Analysis of human-machine interaction. Multiple verification technologies are used in the two IDEs

to enable the efficient analysis of human-machine interaction. Both tools build on established formal

methods technologies, and enable lightweight formal analysis based on simulation and testing. CIR-

CUS implements static analysis techniques from Petri nets theory to perform automatic analysis of well-

formedness properties of the model (absence of deadlocks, token conservation), and of basic aspects of

the interactive system design (e.g., reinitiability of the user interface and availability of widgets). Simu-

lation is used for functional analysis and quantitative assessment of the system. Either direct interaction

with the prototype and automated execution of task models can be used during simulations. Properties

verified by this means include: compliance with task models; statistics about the total number of user

tasks, and estimation of the cognitive workload of the user based on the types of human-machine inter-

actions necessary to operate the system. PVSio-web uses the standard PVS theorem proving system to

analyse well-formedness properties of the model (coverage of conditions, disjointness of conditions, and

correct use of data types). Usability and safety requirements can be verified using both lightweight for-

mal verification and full formal verification. Lightweight verification is based on interactive simulations

with the prototypes. User interactions can be recorded and used later as a basis for automated testing

in a way similar to the way task models are used in CIRCUS. Full formal verification is carried out in

the PVS theorem prover, and is partially supported by property templates capturing common usability

and safety requirements described in the ANSI/AAMI/IEC HF75 usability standard. Although the full

formal analysis is in general not fully automatic, the combined use of property templates and modelling

patterns usually leads to proof attempts where minimal human intervention is necessary to guide the

theorem prover (typically, for case-splitting and instantiation of symbolic identifiers). Proof tactics for

full automatic verification of a standard battery of property templates are currently under development.

Dedicated front-ends presenting verification results in a form accessible to human factors specialists are

also being investigated.

5 Conclusion and perspectives

In this paper, we presented a first step towards providing guidance to developers to understand which

formal tool can be used most effectively for which kind of analysis of interactive systems. This is

C. Fayollas et al. 15

achieved through the identification of 22 criteria enabling the characterisation of IDEs for interactive

systems formal prototyping and development. These criteria have been used to compare two state-of-

the-art formal tools developed by two different research teams: CIRCUS, a toolkit for model-based

development of interactive systems; and PVSio-web, a toolkit for model-based development of user

interface software based on the PVS theorem proving system. In order to assess all the criteria, we

modelled and analysed a case study from the avionics domain using these two tools. The result of this

comparison led to the conclusion that the two studied tools are complementary rather than competitive

tools. Whilst they have roughly the same scope (formal development of user interfaces), these two tools

enable different kinds of modelling and analysis. For instance, CIRCUS supports explicit modelling of

user tasks and goals, allowing developers to simulate user tasks and check their compatibility with the

interactive behaviour of the system while PVSio-web supports explicit modelling of general usability

and safety properties, facilitating the assessment of compliance of a user interface design with design

guidelines and best design practices. These two analysis styles are complementary, and both provide

important insights about how to develop high-confidence user interfaces. Based on this understanding,

we are now developing means to integrate the two IDEs, to enable new powerful analysis features, such

as automated scenario-based testing of user interfaces [5]. The envisioned integration is introduced at two

levels: at the modelling level, developing PVSio-web extensions for importing/translating HAMSTERS

task models into PVS models and properties; and at the simulation level, building CIRCUS extensions

for co-execution of task models and PVSio-web prototypes. Additional extensions under development

for the two toolkits include: modelling patterns for describing human-machine function allocation; proof

tactics and complementary use of different verification technologies for improved automation of usability

and safety properties; innovative front-ends for inspecting formal proofs supporting safety and usability

claims of user interfaces; and widgets libraries for different application domains.

Acknowledgment. This work is partially supported by: Project NORTE-01-0145-FEDER-000016, financed by the North

Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, and through

the European Regional Development Fund (ERDF); Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

PhD scholarship.

References

[1] SAS Airbus (2016): Airbus A380 Flight Crew Operating Manual. http://www.airbus.com/.

[2] Airlines Electronic Engineering Committee (2002): ARINC 661 specification: Cockpit Display System Inter-

faces To User Systems. Aeronautical Radio Inc.

[3] Eric Barboni, Jean-François Ladry, David Navarre, Philippe Palanque & Marco Winckler (2010): Beyond

Modelling: An Integrated Environment Supporting Co-execution of Tasks and Systems Models. In: Proceed-

ings of the 2Nd ACM SIGCHI Symposium on Engineering Interactive Computing Systems, EICS ’10, ACM,

pp. 165–174, doi:10.1145/1822018.1822043.

[4] Judy Bowen & Steve Reeves (2013): Modelling Safety Properties of Interactive Medical Systems. In: Pro-

ceedings of the 5th ACM SIGCHI Symposium on Engineering Interactive Computing Systems, EICS ’13,

ACM, pp. 91–100, doi:10.1145/2494603.2480314.

[5] José C. Campos, Camille Fayollas, Célia Martinie, David Navarre, Philippe Palanque & Miguel Pinto (2016):

Systematic Automation of Scenario-based Testing of User Interfaces. In: Proceedings of the 8th ACM

SIGCHI Symposium on Engineering Interactive Computing Systems, EICS ’16, ACM, New York, NY, USA,

pp. 138–148, doi:10.1145/2933242.2948735.

16 Evaluation of formal IDEs for human-machine interface design and analysis

[6] José C. Campos & Michael D. Harrison (2001): Model Checking Interactor Specifications. Automated

Software Engineering. 8(3-4), pp. 275–310, doi:10.1023/A:1011265604021.

[7] José C. Campos & Michael D. Harrison (2009): Interaction Engineering Using the IVY Tool. In: Proceedings

of the 1st ACM SIGCHI Symposium on Engineering Interactive Computing Systems, EICS ’09, ACM, pp.

35–44, doi:10.1145/1570433.1570442.

[8] Camille Fayollas, Célia Martinie, Philippe Palanque, Eric Barboni, Racim Fahssi & Arnaud Hamon (In Press,

2016): Exploiting Action Theory as a Framework for Analysis and Design of Formal Methods Approaches:

Application to the CIRCUS Integrated Development Environment. In: Formal Methods in Human Computer

Interaction, Springer.

[9] Camille Fayollas, Célia Martinie, Philippe Palanque, Yannick Deleris, Jean-Charles Fabre & David Navarre

(2014): An Approach for Assessing the Impact of Dependability on Usability: Application to Interactive

Cockpits. In: Proceedings of the 2014 Tenth European Dependable Computing Conference, EDCC ’14,

IEEE Computer Society, pp. 198–209, doi:10.1109/EDCC.2014.17.

[10] Peter Forbrig, Célia Martinie, Philippe Palanque, Marco Winckler & Racim Fahssi (2014): Rapid Task-

Models Development Using Sub-models, Sub-routines and Generic Components. In: Human-Centered Soft-

ware Engineering: 5th IFIP WG 13.2 International Conference, HCSE 2014, Paderborn, Germany, September

16-18, 2014. Proceedings, Springer Berlin Heidelberg, pp. 144–163, doi:10.1007/978-3-662-44811-3_9.

[11] Michael D. Harrison, José C. Campos & Paolo Masci (2016): Patterns and templates for automated ver-

ification of user interface software design in PVS. Technical Report, Newcastle University. Available at

http://www.ncl.ac.uk/computing/research/publication/225438.

[12] Michael D. Harrison, Paolo Masci, José C. Campos & Paul Curzon (In Press, 2016): The specification and

analysis of use properties of a nuclear control system. In: Formal Methods in Human Computer Interaction,

Springer.

[13] Constance Heitmeyer, James Kirby, Bruce Labaw & Ramesh Bharadwaj (1998): SCR: A toolset for spec-

ifying and analyzing software requirements. In Alan J. Hu & Moshe Y. Vardi, editors: Computer Aided

Verification: 10th International Conference, CAV’98, 1427, Springer Berlin Heidelberg, pp. 526–531,

doi:10.1007/BFb0028775.

[14] Ian Horrocks (1999): Constructing the User Interface with Statecharts. Addison-Wesley Longman Publish-

ing Co., Inc., Boston, MA, USA.

[15] Glenn E. Krasner & Stephen T. Pope (1988): A Cookbook for Using the Model-view Controller User Interface

Paradigm in Smalltalk-80. J. Object Oriented Program. 1(3), pp. 26–49. Available at http://dl.acm.org/

citation.cfm?id=50757.50759.

[16] Célia Martinie, Philippe Palanque, Eric Barboni & Martina Ragosta (2011): Task-model based assessment of

automation levels: application to space ground segments. In: Systems, Man, and Cybernetics (SMC), 2011

IEEE International Conference on, IEEE, pp. 3267–3273, doi:10.1109/ICSMC.2011.6084173.

[17] Célia Martinie, Philippe Palanque & Marco Winckler (2011): Structuring and Composition Mechanisms

to Address Scalability Issues in Task Models. In: Human-Computer Interaction – INTERACT 2011: 13th

IFIP TC 13 International Conference, 2011, Proceedings, Part III, Springer Berlin Heidelberg, pp. 589–609,

doi:10.1007/978-3-642-23765-2_40.

[18] Paolo Masci, Peter G. Larsen & Paul Curzon (2015): Integrating the PVSio-web modelling and prototyping

environment with Overture. In: 13th Overture Workshop, satellite event of FM2015, Grace Technical Reports,

Grace-TR 2015-06, pp. 33–47. Available at http://grace-center.jp/wp-content/uploads/2012/

05/13thOverture-Proceedings.pdf.

[19] Paolo Masci, Patrick Oladimeji, Yi Zhang, Paul Jones, Paul Curzon & Harold Thimbleby (2015): PVSio-web

2.0: Joining PVS to HCI. In Daniel Kroening & S. Corina Păsăreanu, editors: Computer Aided Verification:

27th International Conference, CAV 2015, Proceedings, Part I, Springer International Publishing, pp. 470–

478, doi:10.1007/978-3-319-21690-4_30. Tool available at http://www.pvsioweb.org.

[20] MathWorks: Mathworks Simulink. http://www.mathworks.com/products/simulink.

C. Fayollas et al. 17

[21] Gioacchino Mauro, Harold Thimbleby, Andrea Domenici & Cinzia Bernardeschi (2016): Extending a user

interface prototyping tool with automatic MISRA C code generation. In: 3rd Workshop on Formal Integrated

Development Environment (F-IDE), satellite workshop of Formal Methods 2016, Electronic Proceedings in

Theoretical Computer Science (EPTCS).

[22] César A Muñoz & Ricky Butler (2003): Rapid prototyping in PVS. Available at http://ntrs.nasa.gov/

search.jsp?R=20040046914. NASA/CR-2003-212418, NIA Report No.2003-03.

[23] David Navarre, Philippe Palanque, Jean-Francois Ladry & Eric Barboni (2009): ICOs: A Model-based

User Interface Description Technique Dedicated to Interactive Systems Addressing Usability, Reliability

and Scalability. ACM Transactions on Computer-Human Interaction (TOCHI) 16(4), pp. 18:1–18:56,

doi:10.1145/1614390.1614393.

[24] Sam Owre, John M. Rushby & Natarajan Shankar (1992): PVS: A Prototype Verification System. In: Pro-

ceedings of the 11th International Conference on Automated Deduction: Automated Deduction, CADE-11,

Springer Berlin Heidelberg, pp. 748–752, doi:10.1007/3-540-55602-8_217.

[25] James Lyle Peterson (1981): Petri Net Theory and the Modeling of Systems. Prentice Hall.

[26] José-Luis Silva, Camille Fayollas, Arnaud Hamon, Célia Martinie, Eric Barboni et al. (2014): Analysis of

WIMP and Post WIMP Interactive Systems based on Formal Specification. Electronic Communications of

the EASST 69, doi:10.14279/tuj.eceasst.69.967.

1
8

E
v
alu

atio
n

o
f

fo
rm

al
ID

E
s

fo
r

h
u
m

an
-m

ach
in

e
in

terface
d
esig

n
an

d
an

aly
sis

Appendix

Formal IDE CIRCUS PVSio-web

1. Scope/purpose Interactive system prototyping, development, and analysis. User interface software prototyping and analysis.

2. Tool features User task and goals description, interaction logic (dialog) and interac-

tion techniques modelling, interactive system prototyping, support for

verification of properties, assessment of compatibility between user

tasks and interactive system prototype.

Interaction logic modelling, rapid prototyping of user interface soft-

ware, verification of safety requirements and usability properties, code

generation and documentation.

3. Tool extensibility Each tool within CIRCUS offers an API supporting connection to other

computing systems. For instance, connecting PetShop execution en-

gine to cockpit software simulators or connecting Petri net analysis

tools to PetShop analysis module.

PVSio-web has a plug-in based architecture that enables the rapid in-

troduction of new modelling, prototyping, and analysis tools; support

for new widgets types and widgets libraries can be introduced in Pro-

totype Builder; Emucharts Editor can be extended with new model

generators and code generators.

4. Background knowledge Object-Oriented Petri Nets (for Petshop), Java programming, dis-

tributed systems, hierarchical task modelling.

State machines, PVS higher order logic and PVS theorem proving

(only required for full formal verification).

5. IDE principles Netbeans Visual API Web

6. IDE availability Available upon request for collaborations only. Open source, downloadable at http://www.pvsioweb.org

7. Notation names ICO, HAMSTERS. Emucharts, PVS.

8. Notation instance Petri Net, task models. Statecharts, higher-order logic.

9. Notation paradigm Event-based, state-based, procedural. Event-based, state-based, functional.

10. Structuring models Object-oriented, component-based. Module-based.

11. Model editing features Graphical editing of task models, ICO models and their correspon-

dences, auto-completion features of models, visual representation of

properties on models, simulation of models at editing time.

Graphical and textual editing of models, automatic generation of PVS

models.

12. Suggestions for model

improvement

Suggestions for model correction by real time analysis of models and

continuous visualization of analysis results.

Strengthening of pre- and post- conditions of transition functions

(based on proof obligations generated by PVS).

continues on next page...

C
.
F

ay
o
llas

et
al.

1
9

Formal IDE CIRCUS PVSio-web

13. Prototype building Use of graphical user interface editor of NetBeans for standard inter-

actions (e.g. WIMP), possible to create interactive components and

assemble them for non standard intereactions (e.g. multitouch).

Visual editing, based on a picture of the real system.

14. Prototype execution Java Virtual Machine. Javascript execution environment, Lisp.

15. User interface testing Automatic execution of test sequences based on a task model Automated execution of input test sequences recorded during interac-

tions with the prototype.

16. Human-machine

interaction techniques

Pre-WIMP, WIMP, post-WIMP, multimodal, multi-touch. Run-time

re-configuration of interaction techniques.

Pre-WIMP, WIMP, post-WIMP, multimodal.

17. Code generation Run-time execution of ICO models (to support prototyping and co-

execution of task and system models).

Run-time execution of PVS executable models through the PVS

ground evaluator (to support rapid prototyping), and automatic gen-

eration of production code compliant to MISRA-C (only for formal

models developed using Emucharts diagrams).

18. Verification types Well-formedness of the model: absence of deadlocks, token conserva-

tion. Functional analysis: reinitiability; availability of widgets; com-

pliance with task models. Quantitative analysis: statistics about the

total number of user tasks; estimation of the cognitive workload of the

user based on the types of human-machine interactions necessary to

operate the system. Simulation-based analysis through model anima-

tion.

Functional analysis, including: coverage of conditions, disjointness of

conditions, correct use of data types, compliance with design require-

ments. Simulation-based analysis through model animation.

19. Technology Static analysis of Petri Nets; interactive simulation of task and system

models. Proofs and properties verification left to the analyst.

Theorem proving; interactive simulations.

20. Scalability Applied to very large scale (industrial) applications (more than 200

models).

User interface prototype of stand-alone devices.

21. Analysis of the wider

socio-technical system

Modelling of integrated views of the three elements of socio-technical

systems (organization, human and interactive systems); however,

FRAM-based description of organization and variability of perfor-

mance has only be addressed at model level and not a tool level.

Modelling patterns based on distributed cognition theory have been

explored in PVS but are not currently integrated in the IDE.

22. Related development

process

User centered design (task-based design), iterative development,

model-based engineering.

User centered design, agile development, model-based engineering.

4 The Tinker GUI for graphical proof strategies

features of Tinker are novel. Several features of the tool have been motivated by working with D-RisQ

(www.drisq.com) in encoding their highly complex Supertac proof strategy in ProofPower [6].

In the future, we would like to improve static checking of PSGraph; for example that all atomic

tactics used in the graph exist. We are also interested in investigating (semi-)automatic translations from

traditional tactic language into PSGraph. This will also include more modern tactic languages, such as

Ltac and Eisbach. We also plan to improve the layout algorithm, and develop and implement a better

framework for combining evaluation and user edits of PSGraphs.

References

[1] D. Delahaye (2002): A Proof Dedicated Meta-Language. Electronic Notes in Theoretical Computer Science

70(2), pp. 96–109.

[2] G. Grov, A. Kissinger & Y. Lin (2013): A Graphical Language for Proof Strategies. In: LPAR, Springer, pp.

324–339.

[3] G. Grov, A. Kissinger & Y. Lin (2014): Tinker, tailor, solver, proof. In: UITP 2014, ENTCS 167, Open

Publishing Association, pp. 23–34.

[4] Yibo Liang, Yuhui Lin & Gudmund Grov (2016): ‘The Tinker’ for Rodin. In: ABZ 2016, Springer, pp.

262–268, doi:10.1007/978-3-319-33600-8 19.

[5] T Libal, M Riener & M Rukhaia (2014): Advanced Proof Viewing in ProofTool. In: UITP 2014, EPTCS 167,

Open Publishing Association, pp. 35–47.

[6] Y. Lin, O’Halloran C. Grov, G. and & P. G (2016): A Super Industrial Application of PSGraph. In: ABZ 2016,

Springer, pp. 319–325.

[7] Yuhui Lin, Pierre Le Bras & Gudmund Grov (2016): Developing and Debugging Proof Strategies by Tin-

kering. In Marsha Chechik & Jean-François Raskin, editors: Tools and Algorithms for the Construction and

Analysis of Systems (TACAS), Springer, Berlin, Heidelberg, pp. 573–579, doi:10.1007/978-3-662-49674-9 -

37. Available at http://dx.doi.org/10.1007/978-3-662-49674-9_37.

[8] Daniel Matichuk, Makarius Wenzel & Toby Murray (2014): An Isabelle Proof Method Language, pp. 390–

405. Springer International Publishing, Cham, doi:10.1007/978-3-319-08970-6 25. Available at http://dx.

doi.org/10.1007/978-3-319-08970-6_25.

EPTCS ??, 20??, pp. 1–4, doi:10.4204/EPTCS.??.??

c© Grov, Lin, McGregor, Tumas and Cameron

This work is licensed under the

Creative Commons Attribution License.

Extending the Dafny IDE with tactics and

dead annotation analysis (tool demo)∗

Gudmund Grov

Heriot-Watt University, Edinburgh, UK
G.Grov@hw.ac.uk

Yuhui Lin

Heriot-Watt University, Edinburgh, UK
Y.Lin@hw.ac.uk

Léon McGregor

Heriot-Watt University, Edinburgh, UK
lm356@hw.ac.uk

Vytautas Tumas

Heriot-Watt University, Edinburgh, UK
vt50@hw.ac.uk

Duncan Cameron

Heriot-Watt University, Edinburgh, UK
dac31@hw.ac.uk

1 Introduction

Dafny [4] is a verification-aware programming language where the specification of desired properties is

intertwined with their implementation in the program text. It uses an automated theorem prover to prove

that the specification is satisfied by the program. A specification serves two purposes: (1) it specifies the

properties to be proven and acts as a documentation of the program, which is desirable to include in the

program text; (2) it is used to guide the prover if a property cannot be verified without help. This is a

necessary evil, which is not desirable and may obfuscate the readability of the program text. We will call

these specfication element that are only there to guide the prover for proofs.

Dafny has a Visual Studio IDE plug-in [6], which seamlessly applies the verification in the back-

ground. In this demo we will show two extensions to this IDE:

• In [3] we developed an extension to Dafny that enables users to encode verification patterns of

proofs as tactics, while [2] extends the language and illustrates several patterns as tactics. We will

illustrate ongoing work on integrating tactics into the IDE – this is described further in §2.

• We are working on developing a feature to automatically remove unnecessary proof elements and

integrating this into the IDE – this is described in §3.

2 Working with Dafny tactics in the IDE

Tacny is a conservative extension of Dafny with features to implement verification patterns as tactics

[3, 2]. This tactic language is a meta-language for Dafny, where evaluation of a tactic works at the

Dafny level: it takes a Dafny program with tactics and tactic applications, evaluates the applications and

produces a new valid Dafny program, where tactic calls are replaced by Dafny constructs that tactics

have generated.

∗This work has been supported by EPSRC grants EP/M018407/1 and EP/N014758/1. Special thanks to Rustan Leino and

his colleagues at MSR. The work is an adaptation of features presented in [3, 2, 1] or submitted in parallel to a different

conference.

Grov, Lin, McGregor, Tumas and Cameron 3

The last option is to remove all “dead annotaions”, which we discuss next.

3 Dead annotation removal1

A fully verified Dafny program may contain unnecessary proof annotations, which may obfuscate the

program text. There are at least two reasons for why such “dead annotations” may be present:

1. Proof constructs are normally added incrementally to the program text until a proof is found.

Previous increments may not have helped to progress the proof, but are left by the user.

2. The underlying verifier is improved such that guidance that used to be required is no longer needed.

Inspired by the dead code optimisation found in most compilers, we have developed a tool called DARe

(Dead Annotation Removal) that works by traversing the Dafny abstract syntax tree and remove as many

annotations as possible. Each time an annotation is removed, Dafny is applied to check if the program

still verifies, and the constructs will only be removed if Dafny does not complain. Here an annotation

can be:

• An assertion.

• A call to lemma.

• A loop invariant.

• A loop variant (decreases clause).

• A step in a calculation2.

We are integrating the DARe tool into the Dafny Visual Studio IDE. It will initially apply DARe to

all methods (that does not have any verification errors) after the IDE has remained idle (i.e. no user-

interaction) for at least 10 seconds. As DARe will be relatively slow to run, it will terminate (with

failure) once a user starts interacting with the system. When it successfully terminates, all unnecessary

(or dead) annotations will be highlighted (underlined and greyed out). This is illustrated on line 31 of

the following screen-shot:

1This section is an adaptation [1].
2Dafny supports Dijkstra style calculational proofs [5].

4 Extending the Dafny IDE with tactics and dead annotation analysis (tool demo)

The user can then press the light-bulb to get the options of removing the given dead annotation or all

dead annotations of the method or file, as illustrated below:

The different options will behave as follows:

• The first option will only remove the selected dead annoation.

• The second option will remove all dead annotations in the current block (e.g. the method).

• The final option will remove all dead annotations in the entire file.

The tool will keep track of any methods that are changed since last time DARe was applied and will

reapply DARe when a method have changed. Again, this will only happen if the method does not have

any verification errors and the system remains idle for 10 seconds.

4 Summary

This tool demo shows two extensions to the Dafny Visual Studio IDE. Both of the extensions have the

ability to improve the program text and to support users when developing Dafny programs: re-usable

tactics can replace proofs by high-level proof patterns, while proof elements that are not required can be

removed in a semi-automatic manner.

References

[1] Duncan Cameron, Gudmund Grov, and Léon McGregor. What is your actual annotation overhead? In informal

proceedings of the 28th Nordic Workshop on Programming Theory (NWPT 2016). To appear.

[2] Gudmund Grov, Yuhui Lin, and Vytautas Tumas. Mechanised Verification Patterns for Dafny. In 21st Inter-

national Conference on Formal Methods. Springer, 2016. to appear.

[3] Gudmund Grov and Vytautas Tumas. Tactics for the Dafny Program Verifier. In Marsha Chechik and Jean-

François Raskin, editors, 22nd International Conference on Tools and Algorithms for the Construction and

Analysis of Systems, pages 36–53. Springer, 2016.

[4] K. R. M. Leino. Dafny: An automatic program verifier for functional correctness. In LPAR, volume 6355 of

LNCS, pages 348–370. Springer-Verlag, 2010.

[5] K. R. M. Leino and N. Polikarpova. Verified Calculations. In VSTTE, 2013.

[6] K Rustan M Leino and Valentin Wüstholz. The Dafny integrated development environment. arXiv preprint

arXiv:1404.6602, 2014.

EPTCS ??, 20??, pp. 1–18, doi:10.4204/EPTCS.??.??

c© A. Healy, R. Monahan & J. F. Power

This work is licensed under the

Creative Commons Attribution License.

Predicting SMT Solver Performance for Software Verification

Andrew Healy Rosemary Monahan James F. Power

Dept. of Computer Science, Maynooth University, Maynooth, Ireland

ahealy@cs.nuim.ie rosemary@cs.nuim.ie jpower@cs.nuim.ie

The Why3 IDE and verification system facilitates the use of a wide range of Satisfiability Modulo

Theories (SMT) solvers through a driver-based architecture. We present Where4: a portfolio-based

approach to discharge Why3 proof obligations. We use data analysis and machine learning techniques

on static metrics derived from program source code. Our approach benefits software engineers by

providing a single utility to delegate proof obligations to the solvers most likely to return a useful

result. It does this in a time-efficient way using existing Why3 and solver installations — without

requiring low-level knowledge about SMT solver operation from the user.

1 Introduction

The formal verification of software generally requires a software engineer to use a system of tightly

integrated components. Such systems typically consist of an IDE that can accommodate both the imple-

mentation of a program and the specification of its formal properties. These two aspects of the program

are then typically translated into the logical constructs of an intermediate language, forming a series of

goals which must be proved in order for the program to be fully verified. These goals (or “proof obliga-

tions”) must be formatted for the system’s general-purpose back-end solver. Examples of systems which

follow this model are Spec# [3] and Dafny [28] which use the Boogie [2] intermediate language and the

Z3 [19] SMT solver.

Why3 [22] was developed as an attempt to make use of the wide spectrum of interactive and auto-

mated theorem proving tools and overcome the limitations of systems which rely on a single SMT solver.

It provides a driver-based, extensible architecture to perform the necessary translations into the input for-

mats of two dozen provers. With a wide choice of theorem-proving tools now available to the software

engineer, the question of choosing the most appropriate tool for the task at hand becomes important. It

is this question that Where4 answers.

As motivation for our approach, Table 1 presents the results from running the Why3 tool over the

example programs included in the Why3 distribution (version 0.87.1), using eight SMT solvers at the

back-end. Each Why3 file contains a number of theories requiring proof, and these in turn are broken

down into a number of goals for the SMT solver; for the data in Table 1 we had 128 example programs,

generating 289 theories, in turn generating 1048 goals. In Table 1 each row presents the data for a single

SMT solver, and the three main data columns give data totalled on a per-file, per-theory and per-goal

basis. Each of these three columns is further broken down to show the number of programs/theories/goals

that were successfully solved, their percentage of the total, and the average time taken in seconds for each

solver to return such a result. Program verification by modularisation construct is particularly relevant to

the use of Why3 on the command line as opposed to through the IDE.

Table 1 also has a row for an imaginary “theoretical” solver, Choose Single, which corresponds to

choosing the best (fastest) solver for each individual program, theory or goal. This solver performs

significantly better than any individual solver, and gives an indication of the maximum improvement that

could be achieved if it was possible to predict in advance which solver was the best for a given program,

2 Predicting SMT Solver Performance for Software Verification

Table 1: Results of running 8 solvers on the example Why3 programs with a timeout value of 10 seconds.

In total our dataset contained 128 files, which generated 289 theories, which in turn generated 1048 goals.

Also included is a theoretical solver Choose Single, which always returns the best answer in the fastest

time.

File Theory Goal

#

proved

%

proved

Avg

time

#

proved

%

proved

Avg

time

#

proved

%

proved

Avg

time

Choose Single 48 37.5% 1.90 190 63.8% 1.03 837 79.9% 0.42

Alt-Ergo-0.95.2 25 19.5% 1.45 118 39.6% 0.77 568 54.2% 0.54

Alt-Ergo-1.01 34 26.6% 1.70 142 47.7% 0.79 632 60.3% 0.48

CVC3 19 14.8% 1.06 128 43.0% 0.65 597 57.0% 0.49

CVC4 19 14.8% 1.09 117 39.3% 0.51 612 58.4% 0.37

veriT 5 4.0% 0.12 79 26.5% 0.20 333 31.8% 0.26

Yices 14 10.9% 0.53 102 34.2% 0.22 368 35.1% 0.22

Z3-4.3.2 25 19.5% 0.56 128 43.0% 0.36 488 46.6% 0.38

Z3-4.4.1 26 20.3% 0.58 130 43.6% 0.40 581 55.4% 0.35

theory or goal. In general, the method of choosing from a range of solvers on an individual goal basis is

called portfolio-solving. This technique has been successfully implemented in the SAT solver domain by

SATzilla [38] and for model-checkers [20][36]. Why3 presents a unique opportunity to use a common

input language to develop a portfolio SMT solver specifically designed for software verification.

The main contributions of this paper are:

1. The design and implementation of our portfolio solver, Where4, which uses supervised machine

learning to predict the best solver to use based on metrics collected from goals.

2. The integration of Where4 into the user’s existing Why3 work-flow by imitating the behaviour of

an orthodox SMT solver.

3. A set of metrics to characterise Why3 goal formulae.

4. Statistics on the performance of eight SMT solvers using a dataset of 1048 Why3 goals.

Section 2 describes how the data was gathered and discusses issues around the accurate measurement

of results and timings. A comparison of prediction models forms the basis of Section 3 where a number

of evaluation metrics are introduced. The Where4 tool is compared to a range of SMT tools and strategies

in Section 5. The remaining sections present a review of additional related work and a summary of our

conclusions.

2 System Overview and Data Preparation

Due to the diverse range of input languages used by software verification systems, a standardised bench-

mark repository of verification programs does not yet exist [8]. For our study we chose the 128 example

programs included in the Why3 distribution (version 0.87.1) as our corpus for training and testing pur-

poses. The programs in this repository are written in WhyML, a dialect of ML with added specification

syntax and verified libraries. Many of the programs are solutions to problems posed at software verifica-

tion competitions such as VerifyThis [12], VSTTE [26] and COST [14]. Other programs are implemen-

tations of benchmarks proposed by the VACID-0 [29] initiative. It is our assumption that these programs

A. Healy, R. Monahan & J. F. Power 3

����
���

���
	
�

	�

����
���

��

	�
 ���

�
���

�
���

��

���
�	�

	�
���

�	�
	

���
��

�

���

���

���

���

���

���

���

���

	��

����

�
�
�
�
�
��
�
��
	
��
�
��
�
�

�
�

��
�
�
�

�	�
���

��� ���

��	

���

�	�

���

���

���
���

��

���

�	

��

���

���
���

���

���

���

���

���

���

�� �
��

�� �	

���

���

��

����� �����	�
����
� ����
��

Figure 1: The relative amount of Valid/Unknown/Timeout/Failure answers from the eight SMT solvers

(with a timeout of 60 seconds). Note that no tool returned an answer of Invalid for any of the 1048 proof

obligations.

are a representative software verification workload. Alternatives to this dataset are discussed in Section

6.

We used six current, general-purpose SMT solvers supported by Why3: Alt-Ergo [18] versions 0.95.2

and 1.01, CVC3 [6] ver. 2.4.1, CVC4 [4] ver. 1.4, veriT [15], ver. 2015061, Yices [21] ver. 1.0.382, and

Z3 [19] ver. 4.3.2 and 4.4.1. We expanded the range of solvers to eight by recording the results for two

of the most recent major versions of two popular solvers - Alt-Ergo and Z3.

When a solver is sent a goal by Why3 it returns one of the five possible answers Valid, Invalid,

Unknown, Timeout or Failure. As can be seen from Table 1 and Fig. 1, not all goals can be proved Valid

or Invalid. Such goals usually require the use of an interactive theorem prover to discharge goals that

require reasoning by induction. Sometimes a splitting transformation needs to be applied to simplify the

goals before they are sent to the solver. Our tool does not perform any transformations to goals other than

those defined by the solver’s Why3 driver file. In other cases, more time or memory resources need to

be allocated in order to return a conclusive result. We address the issue of resource allocation in Section

2.1.1.

2.1 Problem Quantification: predictor and response variables

Two sets of data need to be gathered in supervised machine learning [31]: the independent/predictor vari-

ables which are used as input for both training and testing phases, and the dependent/response variables

1The most recent version - 201506 - is not officially supported by Why3 but is the only version available
2We did not use Yices2 as its lack of support for quantifiers makes it unsuitable for software verification

A. Healy, R. Monahan & J. F. Power 5

measurement introduced at each execution, we used the methodology described by Lilja [30] to obtain

an approximation of the true mean time. A 90% confidence interval was used with an allowed error of

±3.5%.

By inspecting our data, we saw that most Valid and Invalid answers returned very quickly, with

Unknown answers taking slightly longer, and Failure/Timeout responses taking longest. We took the

relative utility of responses to be {Valid, Invalid}>Unknown > {Timeout,Failure} which can be read

as “it is better for a solver to return a Valid response than Timeout”, etc. A simple function allocates a

cost to each solver S’s response to each goal G:

cost(S,G) =







timeS,G, if answerS,G ∈ {Valid, Invalid}

timeS,G + timeout, if answerS,G =Unknown

timeS,G +(timeout×2), if answerS,G ∈ {Timeout,Failure}

Thus, to penalise the solvers that return an Unknown result, the timeout limit is added to the time

taken, while solvers returning Timeout or Failure are further penalised by adding double the timeout limit

to the time taken. A response of Failure refers to an error with the backend solver and usually means a

required logical theory is not supported. This function ensures the best-performing solvers always have

the lowest costs. A ranking of solvers for each goal in order of decreasing relevance is obtained by

sorting the solvers by ascending cost.

Since our cost model depends on the time limit value chosen, we need to choose a value that does

not favour any one solver. To establish a realistic time limit value, we find each solver’s “Peter Principle

Point” [35]. In resource allocation for theorem proving terms, this point can be defined as the time limit

at which more resources will not lead to a significant increase in the number of goals the solver can

prove.

Fig. 3 shows the number of Valid/Invalid/Unknown results for each prover when given a time limit

of 60 seconds. This value was chosen as an upper limit, since a time limit value of 60 seconds is not

realistic for most software verification scenarios. Why3, for example, has a default time limit value of 5

seconds. From Fig. 3 we can see that the vast majority of useful responses are returned very quickly.

By satisfying ourselves with being able to record 99% of the useful responses which would be re-

turned after 60 seconds, a more reasonable threshold is obtained for each solver. This threshold ranges

from 7.35 secs (veriT) to 9.69 secs (Z3-4.3.2). Thus we chose a value of 10 seconds as a representative,

realistic time limit that gives each solver a fair opportunity to return decent results.

3 Choosing a prediction model

Given a Why3 goal, a ranking of solvers can be obtained by sorting the cost for each solver. For unseen

instances, two approaches to prediction can be used: (1) classification — predicting the final ranking

directly — and (2) regression — predicting each solver’s score individually and deriving a ranking from

these predictions. With eight solvers, there are 8! possible rankings. Many of these rankings were

observed very rarely or did not appear at all in the training data. Such an unbalanced dataset is not

appropriate for accurate classification, leading us to pursue the regression approach.

Seven regression models were evaluated3: Linear Regression, Ridge Regression, K-Nearest Neigh-

bours, Decision Trees, Random Forests (with and without discretisation) and the regression variant of

Support Vector Machines. Table 2 shows the results for some of the best-performing models. Most

3We used the Python Sci-kit Learn [33] implementations of these models

6 Predicting SMT Solver Performance for Software Verification

��� ��� ��� ��� ��� �� �� �� �� �� �� ��

��������	���
��
�

�

�

�

�

�

�

�

�

�
�
�
�
�
��
�
��
	

��

��
�
�

��

��
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�

��������

��������

����

����

	
��

���
�

�������������

���������������

Figure 3: The cumulative number of Valid/Invalid/Unknown responses for each solver. The plot uses a

logarithmic scale on the time axis for increased clarity at the low end of the scale. The chosen timeout

limit of 10 secs (dotted vertical line) includes 99% of each solver’s useful responses

models were evaluated with and without a weighting function applied to the training samples. Weighting

is standard practice in supervised machine learning: each sample’s weight was defined as the standard

deviation of solver costs. This function was designed to give more importance to instances where there

was a large difference in performance among the solvers.

Table 2 also shows three theoretical strategies in order to provide bounds for the prediction models.

Best always chooses the best ranking of solvers and Worst always chooses the worst ranking (which is the

reverse ordering to Best). Random is the average result of choosing every permutation of the eight solvers

for each instance in the training set. We use this strategy to represent the user selecting SMT solvers at

random without any consideration for goal characterisation or solver capabilities. A comparison to a

fixed ordering of solvers for each goal is not made as any such ordering would be arbitrarily determined.

We note that the Best theoretical strategy of Table 2 is not directly comparable with the theoretical

solver Choose Single from Table 1. The two tables’ average time columns are measuring different results:

in contrast to Choose Single, Best will call each solver in turn, as will all the other models in Table 2,

until a Valid/Invalid result is recorded (which it may never be). Thus Table 2’s Time column shows the

average cumulative time of each such sequence of calls, rather than the average time taken by the single

best solver called by Choose Single.

3.1 Evaluating the prediction models

Table 2’s Time column provides an overall estimate of the effectiveness of each prediction model. We can

see that the discretised Random Forest method provides the best overall results for the solvers, yielding

an average time of 14.92 seconds.

The second numeric column of Table 2 shows the Normalised Discounted Cumulative Gain (nDCG),

which is commonly used to evaluate the accuracy of rankings in the search engine and e-commerce

recommender system domains [24]. Here, emphasis is placed on correctly predicting items higher in the

A. Healy, R. Monahan & J. F. Power 7

Table 2: Comparing the seven prediction models and three theoretical strategies

Time (secs) nDCG R2 MAE Reg. error

Best 12.63 1.00 - 0.00 0.00

Random 19.06 0.36 - 2.63 50.77

Worst 30.26 0.00 - 4.00 94.65

Random Forest 15.02 0.48 0.28 2.08 38.91

Random Forest (discretised) 14.92 0.48 -0.18 2.13 39.19

Decision Tree 15.80 0.50 0.11 2.06 43.12

K-Nearest Neighbours 15.93 0.53 0.16 2.00 43.41

Support Vector Regressor 15.57 0.47 0.14 2.26 47.45

Linear Regression 15.17 0.42 -0.16 2.45 49.25

Ridge 15.11 0.42 -0.15 2.45 49.09

ranking. For a general ranking of length p, it is formulated as:

nDCGp =
DCGp

IDCGp

where DCGp =
p

∑
i=1

2reli −1

log2(i+1)

Here reli refers to the relevance of element i with regard to a ground truth ranking, and we take each

solver’s relevance to be inversely proportional to its rank index. In our case, p = 8 (the number of SMT

solvers). The DCGp is normalised by dividing it by the maximum (or idealised) value for ranks of length

p, denoted IDCGp. As our solver rankings are permutations of the ground truth (making nDCG values

of 0 impossible), the values in Table 2 are further normalised to the range [0..1] using the lower nDCG

bound for ranks of length 8 — found empirically to be 0.4394.

The third numeric column of Table 2 shows the R2 score (or coefficient of determination), which

is an established metric for evaluating how well regression models can predict the variance of depen-

dent/response variables. The maximum R2 score is 1 but the minimum can be negative. Note that the

theoretical strategies return rankings rather than individual solver costs. For this reason, R2 scores are

not applicable. Table 2’s fourth numeric column shows the MAE (Mean Average Error) — a ranking

metric which can also be used to measure string similarity. It measures the average distance from each

predicted rank position to the solver’s index in the ground truth. Finally, the fifth numeric column of

Table 2 shows the mean regression error (Reg. error) which measures the mean absolute difference in

predicted solver costs to actual values.

3.2 Discussion: choosing a prediction model

An interesting feature of all the best-performing models in Table 2 is their ability to predict multi-output

variables [13]. In contrast to the Support Vector model, for example, which must predict the cost for

each solver individually, a multi-output model predicts each solver’s cost simultaneously. Not only is

this method more efficient (by reducing the number of estimators required), but it has the ability to

account for the correlation of the response variables. This is a useful property in the software verification

domain where certain goals are not provable and others are trivial for SMT solvers. Multiple versions of

the same solver can also be expected to have highly correlated costs.

After inspecting the results for all learning algorithms (summarised in Table 2), we can see that

random forests [16] perform well, relative to other methods. They score highest for three of the five

8 Predicting SMT Solver Performance for Software Verification

metrics (shown in bold) and have generally good scores in the others. Random forests are an ensemble

extension of decision trees: random subsets of the training data are used to train each tree. For regression

tasks, the set of predictions for each tree is averaged to obtain the forest’s prediction. This method is

designed to prevent over-fitting.

Based on the data in Table 2 we selected random forests as the choice of predictor to use in Where4.

4 Implementing Where4 in OCaml

Where4’s interaction with Why3 is inspired by the use of machine learning in the Sledgehammer tool

[10] which allows the use of SMT solvers in the interactive theorem prover Isabelle/HOL. We aspired to

Sledgehammer’s ‘zero click, zero maintenance, zero overhead’ philosophy in this regard: it should not

interfere with a Why3 user’s normal work-flow nor should it penalise those who do not use it.

We implement a “pre-solving” heuristic commonly used by portfolio solvers [1][38]: a single solver

is called with a short time limit before feature extraction and solver rank prediction takes place. By

using a good “pre-solver” at this initial stage, easily-proved instances are filtered with a minimum time

overhead. We used a ranking of solvers based on the number of goals each could prove, using the data

from Table 1. The highest-ranking solver installed locally is chosen as a pre-solver. For the purposes of

this paper which assumes all 8 solvers are installed, the pre-solver corresponds to Alt-Ergo version 1.01.

The effect pre-solving has on the method Where4 uses to return responses is illustrated in Alg. 1.

The random forest is fitted on the entire training set and encoded as a JSON file for legibility and

modularity. This approach allows new trees and forests devised by the user (possibly using new SMT

solvers or data) to replace our model. When the user installs Where4 locally, this JSON file is read and

printed as an OCaml array. For efficiency, other important configuration information is compiled into

OCaml data structures at this stage: e.g. the user’s why3.conf file is read to determine the supported

SMT solvers. All files are compiled and a native binary is produced. This only needs to be done once

(unless the locally installed provers have changed).

The Where4 command-line tool has the following functionality:

1. Read in the WhyML/Why file and extract feature vectors from its goals.

2. Find the predicted costs for each of the 8 provers by traversing the random forest, using each goal’s

feature vector.

3. Sort the costs to produce a ranking of the SMT solvers.

4. Return a predicted ranking for each goal in the file, without calling any solver .

5. Alternatively, use the Why3 API to call each solver (if it is installed) in rank order until a Valid/Invalid

answer is returned (using Alg. 1).

If the user has selected that Where4 be available for use through Why3, the file which lets Why3

know about supported provers installed locally is modified to contain a new entry for the Where4 binary.

A simple driver file (which just tells Why3 to use the Why logical language for encoding) is added to the

drivers’ directory. At this point, Where4 can be detected by Why3, and then used at the command line,

through the IDE or by the OCaml API just like any other supported solver.

5 Evaluating Where4’s performance on test data

The evaluation of Where4 was carried out on a test set of 32 WhyML files, 77 theories, 263 goals

(representing 25% of the entire dataset). This section is guided by the following three Evaluation Criteria:

A. Healy, R. Monahan & J. F. Power 9

Input: P, a Why3 program;

R, a static ranking of solvers for pre-proving;

φ , a timeout value

Output: 〈A,T 〉 where

A = the best answer from the solvers;

T = the cumulative time taken to return A

begin

/* Highest ranking solver installed locally */

S ← BestInstalled(R)
/* Call solver S on Why3 program P with a timeout of 1 second */

〈A,T 〉 ←Call(P,S,1)
if A ∈ {Valid, Invalid} then

return 〈A,T 〉
end

/* extract feature vector F from program P */

F ← ExtractFeatures(P)
/* R is now based on program features */

R ← PredictRanking(F)
while A /∈ {Valid, Invalid}∧R �= /0 do

S ← BestInstalled(R)
/* Call solver S on Why3 program P with a timeout of φ seconds */

〈AS,TS〉 ←Call(P,S,φ)
/* add time TS to the cumulative runtime */

T ← T +TS

if AS > A then

/* answer AS is better than the current best answer */

A ← AS

end

/* remove S from the set of solvers R */

R ← R\{S}
end

return 〈A,T 〉
end

Algorithm 1: Returning an answer and runtime from a Why3 input program

10 Predicting SMT Solver Performance for Software Verification

Table 3: Number of files, theories and goals proved by each strategy and individual solver. The percent-

age this represents of the total 32 files, 77 theories and 263 goals and the average time (in seconds) are

also shown.

File Theory Goal

#

proved

%

proved

Avg

time

#

proved

%

proved

Avg

time

#

proved

%

proved

Avg

time

Where4 11 34.4% 1.39 44 57.1% 0.99 203 77.2% 1.98

Best 0.25 0.28 0.37

Random 4.19 4.02 5.70

Worst 14.71 13.58 18.35

Alt-Ergo-0.95.2 8 25.0% 0.78 37 48.1% 0.26 164 62.4% 0.34

Alt-Ergo-1.01 10 31.3% 1.07 39 50.6% 0.26 177 67.3% 0.33

CVC3 5 15.6% 0.39 36 46.8% 0.21 167 63.5% 0.38

CVC4 4 12.5% 0.56 32 41.6% 0.21 147 55.9% 0.35

veriT 2 6.3% 0.12 24 31.2% 0.12 100 38.0% 0.27

Yices 4 12.5% 0.32 32 41.6% 0.15 113 43.0% 0.18

Z3-4.3.2 6 18.8% 0.46 31 40.3% 0.20 145 55.1% 0.37

Z3-4.4.1 6 18.8% 0.56 31 40.3% 0.23 145 55.1% 0.38

5.1 EC1: How does Where4 perform in comparison to the 8 SMT solvers under consid-

eration?

When each solver in Where4’s ranking sequence is run on each goal, the maximum amount of files, the-

ories and goals are provable. As Table 3 shows, the difference between Where4 and our set of reference

theoretical strategies (Best, Random, and Worst) is the amount of time taken to return the Valid/Invalid

result. Compared to the 8 SMT provers, the biggest increase is on individual goals: Where4 can prove

203 goals, which is 26 (9.9%) more goals than the next best single SMT solver, Alt-Ergo-1.01.

Unfortunately, the average time taken to solve each of these goals is high when compared to the 8

SMT provers. This tells us that Where4 can perform badly with goals which are not provable by many

SMT solvers: expensive Timeout results are chosen before the Valid result is eventually returned. In the

worst case, Where4 may try and time-out for all 8 solvers in sequence, whereas each individual solver

does this just once. Thus, while having access to more solvers allows more goals to be proved, there is

also a time penalty to portfolio-based solvers in these circumstances.

At the other extreme, we could limit the portfolio solver to just using the best predicted individual

solver (after “pre-solving”), eliminating the multiple time-out overhead. Fig. 4 shows that the effect

of this is to reduce the number of goals provable by Where4, though this is still more than the best-

performing individual SMT solver, Alt-Ergo-1.01.

To calibrate this cost of Where4 against the individual SMT solvers, we introduce the notion of a

cost threshold: using this strategy, after pre-solving, solvers with a predicted cost above this threshold

are not called. If no solver’s cost is predicted below the threshold, the pre-solver’s result is returned.

Fig. 5 shows the effect of varying this threshold, expressed in terms of the average execution time

(top graph) and the number of goals solved (bottom graph). As we can see from both graphs in Fig. 5,

for the goals in the test set a threshold of 7 for the cost function allows Where4 to prove more goals

than any single solver, in a time approximately equal to the four slower solvers (CVC4, veriT and both

A. Healy, R. Monahan & J. F. Power 11

����
���
���
	
�
	�

����
���
��

	�
���

�
���
�
���
��
����
�
���
�	�
	�
���
�	�
	
 ���

�
���
��� �

���
 !
���
�

�

��

���

���

���

���
�
�
�
�
�
��
�
��
	
��
�
��
�
�

�
�

��
�
�
�

���
���

���
���

���
���

��� ���

���

���

��

���

��
��

��

��

��

�� � �

��

�	

��

��

�� ��

��

���

���

��
��� ���

��

�	

���

��

� � � �
�� �� � 	 �

�

��
�

����� �����	�
����
� ����
��

Figure 4: The relative amount of Valid/Unknown/Timeout/Failure answers from the eight SMT solvers.

Shown on the right are results obtainable by using the top solver (only) with the 3 ranking strategies and

the Where4 predicted ranking (with an Alt-Ergo-1.01 pre-solver).

versions of Z3).

5.2 EC2: How does Where4 perform in comparison to the 3 theoretical ranking strate-

gies?

Fig. 6 compares the cumulative time taken for Where4 and the 3 ranking strategies to return the 203

valid answers in the test set. Although both Where4 and Random finish at approximately the same time,

Where4 is significantly faster for returning Valid/Invalid answers. Where4’s solid line is more closely

correlated to Best’s rate of success than the erratic rate of the Random strategy. Best’s time result shows

the capability of a perfect-scoring learning strategy. It is motivation to further improve Where4 in the

future.

5.3 EC3: What is the time overhead of using Where4 to prove Why3 goals?

The timings for Where4 in all plots and tables are based solely on the performance of the constituent

solvers (the measurement of which is discussed in Sec. 2.1.2). They do not measure the time it takes for

the OCaml binary to extract the static metrics, traverse the decision trees and predict the ranking. We

have found that this adds (on average) 0.46 seconds to the time Where4 takes to return a result for each

file. On a per goal basis, this is equivalent to an increase in 0.056 seconds.

The imitation of an orthodox solver to interact with Why3 is more costly: this is due to Why3 printing

each goal as a temporary file to be read in by the solver individually. Future work will look at bypassing

this step for WhyML files while still allowing files to be proved on an individual theory and goal basis.

A. Healy, R. Monahan & J. F. Power 13

��� ��� ��� ��� ��� �� �� �� �� �� �� �� ��

��������	���
��
�

�

�

��

�

��

�
�
�
�
�
��
�
��
	

��

��
�
�

��

��
�
�
�
�
�
�
�
�

���������	���
�

���
��������	���
�

��
������������
�

������������	���
�

Figure 6: The cumulative time each theoretical strategy, and Where4 to return all Valid/Invalid answers

in the test dataset of 263 goals

5.4 Threats to Validity

We categorise threats as either internal or external. Internal threats refer to influences that can affect

the response variable without the researcher’s knowledge and threaten the conclusions reached about

the cause of the experimental results [37]. Threats to external validity are conditions that limit the

generalisability and reproducibility of an experiment.

5.4.1 Internal

The main threat to our work’s internal validity is selection bias. All of our training and test samples are

taken from the same source. We took care to split the data for training and testing purposes on a per file

basis. This ensured that Where4 was not trained on a goal belonging to the same theory or file as any

goal used for testing. The results of running the solvers on our dataset are imbalanced. There were far

more Valid responses than any other response. No goal in our dataset returned an answer of Invalid on

any of the 8 solvers. This is a serious problem as Where4 would not be able to recognize such a goal

in real-world use. In future work we hope to use the TPTP benchmark library to remedy these issues.

The benchmarks in this library come from a diverse range of contributors working in numerous problem

domains [35] and are not as specific to software verification as the Why3 suite of examples.

Use of an independent dataset is likely to influence the performance of the solvers. Alt-Ergo was

designed for use with the Why3 platform — its input language is a previous version of the Why logic

language. It is natural that the developers of the Why3 examples would write programs which Alt-

Ergo in particular would be able to prove. Due to the syntactic similarities in input format and logical

similarities such as support for type polymorphism, it is likely that Alt-Ergo would perform well with

any Why3 dataset. We would hope, however, that the gulf between it and other solvers would narrow.

There may be confounding effects in a solver’s results that are not related to the independent variables

we used (Sec. 2.1.1). We were limited in the tools available to extract features from the domain-specific

14 Predicting SMT Solver Performance for Software Verification

Why logic language (in contrast to related work on model checkers which use the general-purpose C

language [20][36]). We made the decision to keep the choice of independent variables simple in order to

increase generalisability to other formalisms such as Microsoft’s Boogie [2] intermediate language.

5.4.2 External

The generalisability of our results is limited by the fact that all dependent variables were measured

on a single machine.4 We believe that the number of each response for each solver would not vary

dramatically on a different machine of similar specifications. By inspecting the results when each solver

was given a timeout of 60 seconds (Fig. 3), the rate of increase for Valid/Invalid results was much lower

than that of Unknown/Failure results. The former set of results are more important when computing the

cost value for each solver-goal pair.

Timings of individual goals are likely to vary widely (even across independent executions on the

same machine). It is our assumption that although the actual timed values would be quite different on

any other machine, the ranking of their timings would stay relatively stable.

A “typical” software development scenario might involve a user verifying a single file with a small

number of resultant goals: certainly much smaller than the size of our test set (263 goals). In such a

setting, the productivity gains associated with using Where4 would be minor. Where4 is more suited

therefore to large-scale software verification.

5.5 Discussion

By considering the answers to our three Evaluation Criteria, we can make assertions about the success

of Where4. The answer to EC1, Where4’s performance in comparison to individual SMT solvers, is

positive. A small improvement in Valid/Invalid responses results from using only the top-ranked solver,

while a much bigger increase can be seen by making the full ranking of solvers available for use. The

time penalty associated with calling a number of solvers on an un-provable proof obligation is mitigated

by the use of a cost threshold. Judicious use of this threshold value can balance the time-taken-versus-

goals-proved trade-off: in our test set of 263 POs, using a threshold value of 7 results in 192 Valid

responses – an increase of 15 over the single best solver – in a reasonable average time per PO (both

Valid and otherwise) of 4.59 seconds.

There is also cause for optimism in Where4’s performance as compared to the three theoretical

ranking strategies — the subject of Evaluation Criterion 2. All but the most stubborn of Valid answers

are returned in a time far better than Random theoretical strategy. We take this random strategy as

representing the behaviour of the non-expert Why3 user who does not have a preference amongst the

variety of supported SMT solvers. For this user, Where4 could be a valuable tool in the efficient initial

verification of proof obligations through the Why3 system.

In terms of time overhead — the concern of EC3 — our results are less favourable, particularly

when Where4 is used as an integrated part of the Why3 toolchain. The costly printing and parsing of

goals slows Where4 beyond the time overhead associated with feature extraction and prediction. At

present, due to the diversity of languages and input formats used by software verification tools, this is

an unavoidable pre-processing step enforced by Why3 (and is indeed one of the Why3 system’s major

advantages).

4All data collection was conducted on a 64-bit machine running Ubuntu 14.04 with a dual-core Intel i5-4250U CPU and

16GB of RAM.

A. Healy, R. Monahan & J. F. Power 15

Overall, we believe that the results for two out of three Evaluation Criteria are encouraging and

suggest a number of directions for future work to improve Where4.

6 Comparison with Related Work

Comparing verification systems: The need for a standard set of benchmarks for the diverse range of

software systems is a recurring issue in the literature [8]. The benefits of such a benchmark suite are

identified by the SMTLIB [5] project. The performance of SMT solvers has significantly improved in

recent years due in part to the standardisation of an input language and the use of standard benchmark

programs in competitions [17][7]. The TPTP (Thousands of Problems for Theorem Provers) project [34]

has similar aims but a wider scope: targeting theorem provers which specialise in numerical problems as

well as general-purpose SAT and SMT solvers. The TPTP library is specifically designed for the rigorous

experimental comparison of solvers [35].

Portfolio solvers: Portfolio-solving approaches have been implemented successfully in the SAT do-

main by SATzilla [38] and the constraint satisfaction / optimisation community by tools such as CPHydra

[32] and sunny-cp [1]. Numerous studies have used the SVCOMP [7] benchmark suite of C programs

for model checkers to train portfolio solvers [36][20]. These particular studies have been predicated on

the use of Support Vector Machines (SVM) with only a cursory use of linear regression [36]. In this

respect, our project represents a more wide-ranging treatment of the various prediction models available

for portfolio solving. The need for a strategy to delegate Why3 goals to appropriate SMT solvers is stated

in recent work looking at verification systems on cloud infrastructures [23].

Machine Learning in Formal Methods: The FlySpec [25] corpus of proofs has been the basis for

a growing number of tools integrating interactive theorem provers with machine-learning based fact-

selection. The MaSh engine in Sledgehammer [10] is a related example. It uses a Naive Bayes algorithm

and clustering to select facts based on syntactic similarity. Unlike Where4, MaSh uses a number of

metrics to measure the shape of goal formulæas features. The weighting of features uses an inverse

document frequency (IDF) algorithm. ML4PG (Machine Learning for Proof General) [27] also uses

clustering techniques to guide the user for interactive theorem proving.

Our work adds to the literature by applying a portfolio-solving approach to SMT solvers. We conduct

a wider comparison of learning algorithms than other studies which mostly use either SVMs or clustering.

Unlike the interactive theorem proving tools mentioned above, Where4 is specifically suited to software

verification through its integration with the Why3 system.

7 Conclusion and Future Work

We have presented a strategy to choose appropriate SMT solvers based on Why3 syntactic features.

Users without any knowledge of SMT solvers can prove a greater number of goals in a shorter amount

of time by delegating to Where4 than by choosing solvers at random. Although some of Where4’s

results are disappointing, we believe that the Why3 platform has great potential for machine-learning

based portfolio-solving. We are encouraged by the performance of a theoretical Best strategy and the

convenience that such a tool would give Why3 users.

The number of potential directions for this work is large: parallel solving, minimal datasets for

practical local training, larger and more generic datasets for increased generalisability, etc. The TPTP

repository represents a large source of proof obligations which can be translated into the Why logic lan-

guage. The number of goals provable by Where4 could be increased by identifying which goals need

16 Predicting SMT Solver Performance for Software Verification

to be simplified in order to be tractable for an SMT solver. Splitting transforms would also increase the

number of goals for training data: from 1048 to 7489 through the use of the split_goal_wp transform,

for example. An interesting direction for this work could be the identification of the appropriate transfor-

mations. Also, we will continue to improve the efficiency of Where4 when used as a Why3 solver and

investigate the use of a minimal benchmark suite which can be used to train the model using new SMT

solvers and theorem provers installed locally.

Data related to this paper is hosted at github.com/ahealy19/F-IDE-2016. Where4 is hosted at

github.com/ahealy19/where4.

Acknowledgments.

This project is being carried out with funding provided by Science Foundation Ireland under grant num-

ber 11/RFP.1/CMS/3068

References

[1] Roberto Amadini, Maurizio Gabbrielli & Jacopo Mauro (2015): SUNNY-CP: A Sequential CP Port-

folio Solver. In: ACM Symposium on Applied Computing, Salamanca, Spain, pp. 1861–1867,

doi:10.1145/2695664.2695741.

[2] Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs & K. Rustan M. Leino (2005): Boogie: A

Modular Reusable Verifier for Object-Oriented Programs. In: Formal Methods for Components and Objects:

4th International Symposium, Amsterdam, The Netherlands, pp. 364–387, doi:10.1007/11804192 17.

[3] Mike Barnett, K. Rustan M. Leino & Wolfram Schulte (2004): The Spec# Programming System: An

Overview. In: Construction and Analysis of Safe, Secure and Interoperable Smart devices, Marseille, France,

pp. 49–69, doi:10.1007/978-3-540-30569-9 3.

[4] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jovanović, Tim King, Andrew

Reynolds & Cesare Tinelli (2011): CVC4. In: Computer Aided Verification, Snowbird, UT, USA, pp. 171–

177, doi:10.1007/978-3-642-22110-1 14.

[5] Clark Barrett, Aaron Stump & Cesare Tinelli (2010): The Satisfiability Modulo Theories Library (SMT-LIB).

Available at http://www.smt-lib.org.

[6] Clark Barrett & Cesare Tinelli (2007): CVC3. In: Computer Aided Verification, Berlin, Germany, pp. 298–

302, doi:10.1007/978-3-540-73368-3 34.

[7] Dirk Beyer (2014): Status Report on Software Verification. In: Tools and Algorithms for the Construction

and Analysis of Systems, Grenoble, France, pp. 373–388, doi:10.1007/978-3-642-54862-8 25.

[8] Dirk Beyer, Marieke Huisman, Vladimir Klebanov & Rosemary Monahan (2014): Evaluating Software

Verification Systems: Benchmarks and Competitions (Dagstuhl Reports 14171). Dagstuhl Reports 4(4),

doi:10.4230/DagRep.4.4.1.

[9] Dirk Beyer, Stefan Löwe & Philipp Wendler (2015): Benchmarking and Resource Measurement. In: Model

Checking Software - 22nd International Symposium, SPIN 2015, Stellenbosch, South Africa, pp. 160–178,

doi:10.1007/978-3-319-23404-5 12.

[10] Jasmin Christian Blanchette, David Greenaway, Cezary Kaliszyk, Daniel Kühlwein & Josef Urban

(2016): A Learning-Based Fact Selector for Isabelle/HOL. Journal of Automated Reasoning, pp. 1–26,

doi:10.1007/s10817-016-9362-8.

[11] François Bobot, Jean-Christophe Filliâtre, Claude Marché, Guillaume Melquiond & Andrei Paskevich

(2013): Preserving User Proofs across Specification Changes. In: Verified Software: Theories, Tools,

Experiments: 5th International Conference, Menlo Park, CA, USA, pp. 191–201, doi:10.1007/978-3-642-

54108-7 10.

A. Healy, R. Monahan & J. F. Power 17

[12] François Bobot, Jean-Christophe Filliâtre, Claude Marché & Andrei Paskevich (2015): Let’s verify

this with Why3. International Journal on Software Tools for Technology Transfer 17(6), pp. 709–727,

doi:10.1007/s10009-014-0314-5.

[13] H. Borchani, G. Varando, C. Bielza & P. Larranaga (2015): A survey on multi-output regression. Data Mining

And Knowledge Discovery 5(5), pp. 216–233, doi:10.1002/widm.1157.

[14] Thorsten Bormer, Marc Brockschmidt, Dino Distefano, Gidon Ernst, Jean-Christophe Filliâtre, Radu Grig-

ore, Marieke Huisman, Vladimir Klebanov, Claude Marché, Rosemary Monahan, Wojciech Mostowski, Na-

dia Polikarpova, Christoph Scheben, Gerhard Schellhorn, Bogdan Tofan, Julian Tschannen & Mattias Ul-

brich (2011): The COST IC0701 Verification Competition 2011. In: Formal Verification of Object-Oriented

Software, Torino, Italy, pp. 3–21, doi:10.1007/978-3-642-31762-0 2.

[15] Thomas Bouton, Diego Caminha B. de Oliveira, David Déharbe & Pascal Fontaine (2009): veriT: An Open,

Trustable and Efficient SMT-Solver. In: 22nd International Conference on Automated Deduction, Montreal,

Canada, pp. 151–156, doi:10.1007/978-3-642-02959-2 12.

[16] Leo Breiman (2001): Random Forests. Machine Learning 45(1), pp. 5–32, doi:10.1023/A:1010933404324.

[17] David R. Cok, Aaron Stump & Tjark Weber (2015): The 2013 Evaluation of SMT-COMP and SMT-LIB.

Journal of Automated Reasoning 55(1), pp. 61–90, doi:10.1007/s10817-015-9328-2.

[18] Sylvain Conchon & Évan Contejean (2008): The Alt-Ergo automatic theorem prover. Available at http:

//alt-ergo.lri.fr/.

[19] Leonardo De Moura & Nikolaj Bjørner (2008): Z3: An Efficient SMT Solver. In: Tools and Algorithms for

the Construction and Analysis of Systems, Budapest, Hungary, pp. 337–340, doi:10.1007/978-3-540-78800-

3 24.

[20] Yulia Demyanova, Thomas Pani, Helmut Veith & Florian Zuleger (2015): Empirical Software Metrics for

Benchmarking of Verification Tools. In: Computer Aided Verification, San Francisco, CA, USA, pp. 561–579,

doi:10.1007/978-3-319-21690-4 39.

[21] Bruno Dutertre & Leonardo de Moura (2006): The Yices SMT Solver. Available at http://yices.csl.

sri.com/papers/tool-paper.pdf.

[22] Jean-Christophe Filliâtre & Andrei Paskevich (2013): Why3 - Where Programs Meet Provers. In: Program-

ming Languages and Systems - 22nd European Symposium on Programming,, Rome, Italy, pp. 125–128,

doi:10.1007/978-3-642-37036-6 8.

[23] Alexei Iliasov, Paulius Stankaitis, David Adjepon-Yamoah & Alexander Romanovsky (2016): Rodin Plat-

form Why3 Plug-In. In: ABZ 2016: Abstract State Machines, Alloy, B, TLA, VDM, and Z: 5th International

Conference, Linz, Austria, pp. 275–281, doi:10.1007/978-3-319-33600-8 21.

[24] Kalervo Järvelin (2012): IR Research: Systems, Interaction, Evaluation and Theories. SIGIR Forum 45(2),

pp. 17–31, doi:10.1145/2093346.2093348.

[25] Cezary Kaliszyk & Josef Urban (2014): Learning-Assisted Automated Reasoning with Flyspeck. Journal of

Automated Reasoning 53(2), pp. 173–213, doi:10.1007/s10817-014-9303-3.

[26] Vladimir Klebanov, Peter Müller, Natarajan Shankar, Gary T. Leavens, Valentin Wüstholz, Eyad Alkassar,

Rob Arthan, Derek Bronish, Rod Chapman, Ernie Cohen, Mark Hillebrand, Bart Jacobs, K. Rustan M.

Leino, Rosemary Monahan, Frank Piessens, Nadia Polikarpova, Tom Ridge, Jan Smans, Stephan Tobies,

Thomas Tuerk, Mattias Ulbrich & Benjamin Weiß (2011): The 1st Verified Software Competition: Experience

Report. In: FM 2011: 17th International Symposium on Formal Methods, Limerick, Ireland, pp. 154–168,

doi:10.1007/978-3-642-21437-0 14.

[27] Ekaterina Komendantskaya, Jónathan Heras & Gudmund Grov (2012): Machine Learning in Proof General:

Interfacing Interfaces. In: 10th International Workshop On User Interfaces for Theorem Provers, Bremen,

Germany, pp. 15–41, doi:10.4204/EPTCS.118.2.

[28] K. Rustan M. Leino (2010): Dafny: An Automatic Program Verifier for Functional Correctness. In: Logic

for Programming, Artificial Intelligence, and Reasoning: 16th International Conference, Dakar, Senegal, pp.

348–370, doi:10.1007/978-3-642-17511-4 20.

18 Predicting SMT Solver Performance for Software Verification

[29] K. Rustan M. Leino & Michał Moskal (2010): VACID-0: Verification of Ample Correctness of Invariants of

Data-structures, Edition 0. In: Tools and Experiments Workshop at VSTTE. Available at https://www.

microsoft.com/en-us/research/wp-content/uploads/2008/12/krml209.pdf.

[30] David J Lilja (2000): Measuring computer performance: a practitioner’s guide. Cambridge Univ. Press,

Cambridge, UK, doi:10.1017/CBO9780511612398.

[31] Tom M. Mitchell (1997): Machine Learning. McGraw-Hill, New York, USA.

[32] Eoin O’Mahony, Emmanuel Hebrard, Alan Holland, Conor Nugent & Barry O’Sullivan (2008): Using case-

based reasoning in an algorithm portfolio for constraint solving. In: Irish Conference on Artificial Intel-

ligence and Cognitive Science, Cork, Ireland, pp. 210–216. Available at http://homepages.laas.fr/

ehebrard/papers/aics2008.pdf.

[33] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,

R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot & E. Duchesnay

(2011): Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research 12, pp. 2825–

2830. Available at http://dl.acm.org/citation.cfm?id=1953048.2078195.

[34] Geoff Sutcliffe & Christian Suttner (1998): The TPTP Problem Library. Journal Automated Reasoning 21(2),

pp. 177–203, doi:10.1023/A:1005806324129.

[35] Geoff Sutcliffe & Christian Suttner (2001): Evaluating general purpose automated theorem proving systems.

Artificial Intelligence 131(1-2), pp. 39–54, doi:10.1016/S0004-3702(01)00113-8.

[36] Varun Tulsian, Aditya Kanade, Rahul Kumar, Akash Lal & Aditya V. Nori (2014): MUX: algorithm selection

for software model checkers. In: 11th Working Conference on Mining Software Repositories, Hydrabad,

India, pp. 132–141, doi:10.1145/2597073.2597080.

[37] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Björn Regnell & Anders Wesslén (2012):

Experimentation in Software Engineering. Springer, New York, USA, doi:10.1007/978-3-642-29044-2.

[38] Lin Xu, Frank Hutter, Holger H. Hoos & Kevin Leyton-Brown (2008): SATzilla: Portfolio-based Algorithm

Selection for SAT. Journal of Artificial Intelligence Research 32(1), pp. 565–606. Available at http://dl.

acm.org/citation.cfm?id=1622673.1622687.

EPTCS ??, 20??, pp. 1–7, doi:10.4204/EPTCS.??.??
c© F. Hilken & M. Gogolla

User Assistance Characteristics

of the USE Model Checking Tool

Frank Hilken Martin Gogolla

University of Bremen, Computer Science Department
28359 Bremen, Germany

{fhilken,gogolla}@informatik.uni-bremen.de

The Unified Modeling Language (UML) is a widely used general purpose modeling language.
Together with the Object Constraint Language (OCL), formal models can be described by
defining the structure and behavior with UML and additional OCL constraints. In the de-
velopment process for formal models, it is important to make sure that these models are
(a) correct, i.e. consistent and complete, and (b) testable in the sense that the developer is
able to interactively check model properties. The USE tool (UML-based Specification Envi-
ronment) allows both characteristics to be studied. We demonstrate how the tool supports
modelers to analyze, validate and verify UML and OCL models via the use of several graph-
ical means that assist the modeler in interpreting and visualizing formal model descriptions.
In particular, we discuss how the so-called USE model validator plugin is integrated into
the USE environment in order to allow non domain experts to use it and construct object
models that help to verify properties like model consistency.

1 Introduction

Model-Driven Engineering (MDE) is an approach to software development concentrating on
models in contrast to traditional code-centric development approaches. Within MDE, models
are frequently formulated in the Unified Modeling Language (UML) with accompanying formal
restrictions expressed in the Object Constraint Language (OCL). UML models are visually spec-
ified with several diagram kinds emphasizing structural and behavioral system aspects. Visual
model descriptions offer a great potential for a user-friendly development process. Naturally,
tools must take up the challenge and provide interfaces that support the developer in an easy-
going way.

The present paper studies formal system descriptions employing UML class diagrams that
are restricted by OCL invariants. The feature set of UML class diagrams that is handled here and
the employed OCL elements pose a formal semantics. We regard this combination of UML and
OCL as a formal method. The aim of this contribution is to demonstrate how the development
of formal UML and OCL models can be supported by a user-friendly interface. Employing this
interface it is possible to verify properties like model consistency.

2 Preliminaries

2.1 Running Example in UML and OCL

In UML, class diagrams describe the structure of models with classes and class attributes, which
are templates for ’things’ and their properties, e.g. persons and their personal information.

2 User Assistance Characteristics of the USE Model Checking Tool

Figure 1: Car rental running example class diagram (left) and invariants (right).

Additionally, associations put the classes in relation with each other. Figure 1 (left) shows the
running example model description. It shows a Car Rental model with cars that are assigned to
branches and their maintenance history. Additionally, there is a categorization for the cars into
car groups. Finally, customers can rent cars from the branches that are run by their employees.
The model uses a wide variety of UML features.

The class diagram is instantiated to create actual scenarios to describe car rentals. These
system states are represented by UML object diagrams. They are restricted by the semantics of
the class diagram and must satisfy all model inherent constraints given by, e.g. generalizations,
multiplicities or compositions (not present in this model).

In addition to the UML descriptions, OCL invariants are used to employ further restrictions
on the model that are not expressible by UML alone. These constraints are pictured in Fig. 1 on
the right. They handle further relations between classes and ensure that the model does not allow
system states that are not intended. For example, in the car rental model, the categorization
of the car groups shall be cycle free and all employees must be connected to a branch, which
cannot be handled by multiplicities, because there are multiple ways to represent this relation
(Employment and Management).

The goal is to create a model description that can represent all intended situations but
not more. Using model checking tools, the models can then be checked for certain properties.
Usually, these properties regard safety, but other concerns can be checked as well. A valid system
state must satisfy all model inherent constraints as well as all concrete constraints given by the
OCL invariants.

F. Hilken & M. Gogolla 3

2.2 Model Verification with the USE Tool

In this paper, the UML-based Specification Environment tool (USE, [2]) is used together with
the so-called model validator plugin that allows to generate system states for UML/OCL models
based on a relational logic encoding [6]. There is earlier work showing features of the USE tool
that help to analyze and debug OCL expressions, namely the evaluation browser [1], but we
concentrate on the model validator and its model checking aspects in this work.

In order for the model validator to search for a valid system state, it needs several inputs:

• A description of the model in the form of a class diagram optionally enhanced with invari-
ants given as OCL expressions, see Fig. 1.

• A configuration, which defines the search space by providing the domain of basic data
types (Integer, String and Real) and lower and upper bounds for classes and associations,
i.e. specifies how many objects of each class – or links of each association respectively – are
required and how many are allowed at most. Furthermore, the configuration contains rules
for the assignments of class attributes, e.g. restricting domain values for certain attributes
specifically. Finally, it allows to disable or negate invariants.

• Optionally a partial system state can be instantiated before the validation process that is
used as a base for the task. The model validator adds elements to the system state until
it: (a) conforms the bounds given in the configuration; and (b) is a valid system state as
defined by the model. This can be seen as a lower bound on the model level.

• Smaller, model independent parameters include the choice of the SAT solver and bitwidth

for the encoding of the model.

The second bullet point, the configuration, previously required the modeler to edit a text
file containing key-value pairs to setup values for certain keys. The keys are determined by the
model. For example for each class and association a lower and an upper bound is expected.
The required values are mostly numbers, but more complex constructs were required to specify,
e.g. preexisting links. This process requires a deep understanding of the existing syntax to enter
the values. Moreover, special values exist for some keys with different meanings, e.g. unlimited
upper bounds. Even experienced users regularly required the manual of the configuration.

In the following sections, we explain how a new graphical user interface helps to simplify the
configuration process and reduce the necessity for a separate manual to the tool. Furthermore,
additional analysis features of the tool are presented to help identify potential problems with
the verification process caused by the inputs.

3 Iterative Instantiation of the Running Example

We now study for our running example four use cases corresponding to four model validator
configurations that result in UML object diagrams. The basic structure of the GUI contains
three tabs for (1) the datatypes, (2) the classes and associations, and (3) the invariants. We
iteratively build up the configuration to generate multiple object diagrams.

Datatypes First, only basic OCL types (e.g. Integer and String) are configured by giving
bounds for their domain. For example, it is determined that integers may range from −10
to 10 and we want to use at most 10 string values, which are automatically generated.

4 User Assistance Characteristics of the USE Model Checking Tool

Parts of the Model In the next step, the bounds for some of the classes of the model are
configured and their relevant invariants are enabled. Figure 2 shows the configuration tabs
and the resulting object diagram for this step. Here, the bounds for the classes Customer,
Employee and Branch are set to 1..1 and all others are set to 0. The class Person

is abstract and, therefore, cannot be setup. All invariants based on these classes are
enabled as well and none are negated. These settings are useful to setup certain model
verification tasks, e.g. invariant independence [3]. In addition, the associations Management

and Employment are enabled with a bound configuration of 1..1. The object diagram
shows the default string values for attributes, since these have not been specified further.

Full Model Once parts of the model have successfully been instantiated, a configuration en-
abling all elements is built and run through the model validator. With these smaller steps
per configuration, there is less margin for errors and if there is one, it is easier detectable.

Application Specific Values Finally, application specific datatype values are employed for
class attributes and basic types. They lead in the constructed object diagram to a state
that seems more realistic, more domain specific than the previous object diagram. This
also allows to specify that , e.g. address strings are not used for names.

4 Configuration GUI

First off, with the release of the configuration GUI the interface of configuration files was ex-
tended to allow storing multiple configurations in one file. These configurations can be named
individually and the configuration GUI offers operations to manage them, e.g. cloning config-
urations, renaming or deleting them etc. This allows for an easy iterative construction of the
configurations as shown in Sect. 3. The GUI also offers common file system operations to deal
with the generated configuration files. For convenience, a configuration file with the same base
name as the loaded model is automatically opened if one exists.

The GUI is split into three tabs that each cover a part of the configuration.1 The first tab is
the basic types tab in which the domains for the basic types of OCL are defined. The domains
can be defined as ranges or specific values that will be used by the model validator.

The second tab defines the model dependent bounds and domains. These include bounds for
classes, attributes and associations as seen in the top of Fig. 2. The GUI only requires the values
for the specific settings which eliminates the need to know the syntax for each model element,
which makes the creation of configurations simpler and faster. Further, abstract classes cannot
be setup, which is represented with non-editable fields in the GUI. If a value cannot be parsed,
it is highlighted red and the modeler immedietly sees problems in the configuration. Features
that require expert knowledge are hidden behind a checkbox.

The final, third tab, configures the invariants. Invariants can be individually deactivated
and negated, which is required for certain verification tasks [3].

5 Analysis of Potential Modeling Problems

So far, we have shown how the user is assisted by the graphical user interface to setup the
configuration of a verification task. However, besides a bad configuration, other problems can
interfere with the checking process, in particular problems that the user is not aware of.

1A detailed explanation of all three tabs in detail including screenshots can be found in [4].

F. Hilken & M. Gogolla 5

Figure 2: Configuration of parts of the model considering only a few classes and associations.

6 User Assistance Characteristics of the USE Model Checking Tool

UML and OCL are rich languages filled with features for all kinds of purposes. Trying to
support all of them is not only a lot of work, but also reduces the efficiency of the tools, the
more features they support [5]. Therefore, it is common practice to restrict UML and OCL
verification engines to a subset of the languages. This results in some features being completely
unsupported and others only having limited support. Both categories pose problems to the users
of the tools. If there are no means in place to detect the limitations, the outcome might differ
from the user’s expectations and it is not feasible to keep track of all limitations from long tool
manuals.

The verification engine of the USE tool, the model validator, has good support for UML
and OCL, but also has limits. The underlying solving engine of the model validator is based on
relational logic, which has great support for set operations and, thus, the integration of the OCL
Set collection type is extensive. Adding support for the other collection types Bag, Sequence and
OrderedSet would pose a significant overhead though, i.e. will be less efficient. This restriction
to the Set collection type is particularly problematic for OCL navigation expressions. This
expression allows to navigate the classes of the model using associations, more precisely the
roles visible in Fig. 1. Usually a 1-n navigation results in a set of elements, because at most one
link is allowed between two objects, but under certain circumstances – namely starting with a
set of objects rather than a single one – the navigation results in the duplicate preserving Bag

type, because the result might contain the same value multiple times after the navigation. Due
to the implicit nature of this effect and the strict interpretation of bags as sets in the model
validator, simple expressions might already suffer unintended side effects. To help identify those
potential problems, the occurrences are made visible to the modeler via a warning.

WARNING: Collect operation ‘[...].employee.age’ results in unsupported type ‘Bag’. It

will be interpreted as ‘Set’.

The implicit type change from Set to Bag in OCL, which is consequently interpreted as Set

by the model validator, brings more potential problems with it. Most OCL collection operations
are defined on all collection types, but the results are different. Consider the operation sum(),
which sums all integer elements of a collection. Here, the implicit conversion from Set to Bag

is usually helpful when collecting, for example, the ages of persons to calculate an average.
However, the interpretation as a Set does not work in this situation. To assist the user, the
model validator checks for these situations and warns the modeler about this potential problem,
which only the modeler can decide whether it needs to be addressed or not.

WARNING: The evaluation of sum expression ‘[...].employee.age->sum()’ might be wrong

if source contains duplicates (Collection is interpreted as Set).

Other problems might arise from contradictions in the model itself. Navigation expressions
through the model can become quite long and obscure the resulting type. In these situations,
typecasts like oclAsSet() need to be used to be able to compare differing types, but the textual
representation of OCL alone is often insufficient to recognize such disparities. USE is able to
structurally analyze the expressions in the model for type contradictions and gives hints about
(sub)expressions that were determined to be contradicting, resulting in constant values.

WARNING: Expression ‘Set{ 1 } = Bag{ 1 }’ can never evaluate to true because

‘Set(Integer)’ and ‘Bag(Integer)’ are unrelated.

Finally, the underlying solving engine is bound to a bitwidth that has to be specified with
the verification task. Setting the bitwidth as small as necessary increases the efficiency of the

F. Hilken & M. Gogolla 7

tool, thus we leave the task to the user to choose an appropriate bitwidth. But if the bitwidth is
chosen too small, undefined behavior occurs when dealing with arithmetic operations exceeding
the bitwidth. Finally, if the user is not aware of – or forgets – that the bitwidth is specified
in two’s-complement, off-by-one errors can occur. In order to alleviate the problem, the model
validator analyzes the configuration and model description for integer literals and checks them
against the given bitwidth. If it is determined that the chosen bitwidth is too small, a warning
is displayed including the appropriate bitwidth for the current model and configuration.

WARNING: The configured bitwidth is too small for the property Integer max value

(237). Required bitwidth: 9 or greater.

6 Conclusion and Future Work

We have presented the USE tool together with its model validator plugin and have shown
the steps necessary to apply model checking to given UML/OCL models. Furthermore, the
simplifications of the process by integrating the graphical user interface have been discussed and
the possibilities of the configuration GUI and the coverage mode are demonstrated. Finally, the
possibilities of the model validator plugin to detect potential problems have been demonstrated
to guide users in finding incompatibilities in their models.

Besides the configuration of the model domains and bounds, we have presented more aspects
that have to be setup before a system state can be generated including the verification task itself,
e.g. by manipulating the invariants. Future work should concentrate on the simplification of all
steps of the setup and provide easy interfaces for each of them. Additionally, the evaluation of
the configuration GUI and other presented interfaces is an ongoing process and new assistance
features are constantly added and improved.

Acknowledgement. We thank Subi Aili for his contributions to the configuration GUI – ideas
and implementation – in his diploma thesis.

References

[1] Jens Brüning, Martin Gogolla, Lars Hamann & Mirco Kuhlmann (2012): Evaluating and Debugging

OCL Expressions in UML Models. In Achim D. Brucker & Jacques Julliand, editors: Proc. 6th Int.
Conf. Tests and Proofs (TAP 2012), Springer, Berlin, LNCS 7305, pp. 156–162.

[2] Martin Gogolla, Fabian Büttner & Mark Richters (2007): USE: A UML-Based Specification Environ-

ment for Validating UML and OCL. Science of Computer Programming 69, pp. 27–34.

[3] Martin Gogolla, Mirco Kuhlmann & Lars Hamann (2009): Consistency, Independence and Conse-

quences in UML and OCL Models. In Catherine Dubois, editor: Tests and Proofs, TAP, Lecture
Notes in Computer Science 5668, Springer, pp. 90–104.

[4] Frank Hilken & Martin Gogolla (2016): User Assistance Characteristics of the USE Model Check-

ing Tool. Technical Report, University of Bremen. Available at http://www.db.informatik.

uni-bremen.de/publications/intern/HG2016.pdf.

[5] Frank Hilken, Philipp Niemann, Martin Gogolla & Robert Wille (2014): Filmstripping and Unrolling:

A Comparison of Verification Approaches for UML and OCL Behavioral Models. In Martina Seidl &
Nikolai Tillmann, editors: Tests and Proofs, TAP, LNCS 8570, Springer, pp. 99–116.

[6] Mirco Kuhlmann & Martin Gogolla (2012): From UML and OCL to Relational Logic and Back.
In Robert France, Juergen Kazmeier, Ruth Breu & Colin Atkinson, editors: Proc. 15th Int. Conf.
Model Driven Engineering Languages and Systems (MoDELS’2012), Springer, Berlin, LNCS 7590,
pp. 415–431.

EPTCS ??, 20??, pp. 1–15, doi:10.4204/EPTCS.??.??

© G. Le Guernic, B. Combemale & J.A. Galindo

This work is licensed under the

Creative Commons Attribution License.

Industrial Experience Report on the Formal Specification of a

Packet Filtering Language Using the K Framework

Gurvan LE GUERNIC

DGA Maîtrise de l’Information
35998 Rennes Cedex 9, France

Benoit COMBEMALE José A. GALINDO

INRIA RENNES – BRETAGNE ATLANTIQUE
Campus universitaire de Beaulieu

35042 Rennes Cedex, France

Many project-specific languages, including in particular filtering languages, are defined using non-

formal specifications written in natural languages. This leads to ambiguities and errors in the speci-

fication of those languages. This paper reports on an industrial experiment on using a tool-supported

language specification framework (K) for the formal specification of the syntax and semantics of a

filtering language having a complexity similar to those of real-life projects. This experimentation

aims at estimating, in a specific industrial setting, the difficulty and benefits of formally specifying a

packet filtering language using a tool-supported formal approach.

1 Introduction

Packet filtering (accepting, rejecting, modifying or generating packets, i.e. strings of bits, belonging

to a sequence) is a recurring problematic in the domain of information systems security. Such filters

can serve, among other uses, to reduce the attack surface by limiting the capacities of a communication

link to the legitimate needs of the system it belongs to. This type of filtering can be applied to network

links (which is the most common use), product interfaces, or even on the communication buses of a

product. If the filtering policy needs to be adapted during the deployment or operational phases of the

system or product, it is often required to design a specific language L (syntax and semantics) to express

new filtering policies during the lifetime of the system or product. This language is the basis of the

filters that are applied to the system or product. Hence, it plays an important role in the security of

this system or product. It is therefore important to have strong guarantees regarding the expressivity,

precision, and correctness of the language L (meaning that everything that need to be expressed can,

and that everything that can be expressed has the most obvious semantics). Those guarantees can be

partly provided by a formal design (and development) process.

Among diverse duties, the DGA (Direction Générale de l’Armement, a french procurement agency)

is involved in the supervision of the design and development of filtering components or products. Those

filters come in varying shapes and roles. Some of them are network apparatuses filtering standard In-

ternet protocol packets (such as firewalls); while others are small parts of integrated circuits filtering

specific proprietary packets transiting on computer buses. Their common definition is: “a tool sitting

on a communication channel, analyzing the sequence of packets (strings of bits with a beginning and an

end) transiting on that channel, and potentially dropping, modifying or adding packets in that sequence”.

Whenever the filtering algorithm applied is fixed for the lifetime of the component or product, this algo-

rithm is often “hard coded” into the component or product with the potential addition of a configuration

file allowing to slightly alter the behavior of the filter. However, sometimes the filtering algorithm to

apply may depend on the deployment context, and may have to evolve during the lifetime of the compo-

nent or product to adapt to new uses or attackers. In this case, it is often necessary to be able to easily

2 Formal Specification of a Packet Filtering Language Using the K Framework

write new filtering algorithms for the specific product and context. Those algorithms are then often de-

scribed using a Domain Specific Language (DSL) that is designed for the expression of a specific type of

filters for a specific product. The definition of the syntax and semantics of this DSL is an important task.

This DSL is the link between the filtering objectives and the process that is really applied on the packet

sequences. Often, language specifications (when there is one) are provided using natural language. In

the majority of cases, this leads to ambiguities or errors in the specification which propagate to imple-

mentations and final user code. This is for example the case for common languages such as C/C++ or

Java™ [12].

“Unfortunately, the current specification has been found to be hard to understand and has

subtle, often unintended, implications. Certain synchronization idioms sometimes recom-

mended in books and articles are invalid according to the existing specification. Subtle,

unintended implications of the existing specification prohibit common compiler optimiza-

tions done by many existing Java virtual machine implementations. [...] Several important

issues, [...] simply aren’t discussed in the existing specification.”

JSR-133 expert group [12]

Some of those ambiguities, as the memory model of multi-threaded Java™ programs [12], required a

formal specification in order to be solved.

This paper is an industrial experience report on the use of a tool-supported language specification

framework (the K framework) for the formal specification of the syntax and semantics of a filtering

language having a complexity similar to those of real-life projects. The tool used to formally specify

the DSL is introduced in Sect. 2. For confidentiality reasons, in order to be allowed by the DGA to

communicate on this experimentation, the language specified for this experiment is not linked to any

particular product or component. It is a generic packet filtering language that tries to cover the majority

of features required by packet filtering languages. This language is introduced in Sect. 3 while its formal

specification is described in Sect. 4. This language is tested in Sect. 5 by implementing and simulating

a filtering policy enforcing a sequential interaction for a made-up protocol similar to DHCP. Before

concluding in Sect. 7, this paper discusses the results of the experimentation in Sect. 6.

2 Introduction to the K Framework

Surprisingly, even if it is a niche for tools, there exists quite a number of tools specifically dedicated to

the formal specification of languages (our focus in this work is on specifying rather than implementing

DSLs). Those tools include among others: PLT Redex [6, 13], Ott [23], Lem [19], Maude MSOS

Tool [3], and the K framework [20, 26]. All those tools focus on the (clear formal) specification of

languages rather than their (efficient) implementation, which is more the focus of tools and languages

such as Rascal [16, 2, 15] or its ancestor The Meta-Environment [14, 25], Kermeta [9, 10], and others.

PLT Redex is based on reduction relations. PLT Redex is an extension (internal DSL) of the Racket

programming language [7]. Ott and Lem are more oriented towards theorem provers. Ott and Lem allow

to generate formal definitions of the language specified for Coq, HOL, and Isabelle. In addition, Lem

can generate executable OCaml code. Ott is more programming language syntax oriented, while Lem is

a more general purpose semantics specification tool. Ott and Lem can be used together in some contexts.

The Maude MSOS Tool, whose development has stopped in 2011, is based on an encoding of modular

structural operational semantics (MSOS) rules into Maude. Similarly to the Maude MSOS Tool, the K

framework is based on rewriting and was also originally implemented on top of Maude.

G. Le Guernic, B. Combemale & J.A. Galindo 3

The goal set for the experiment reported in this paper is to estimate the difficulty and benefits for

an average engineer (i.e. an engineer with education and experience in computer science but no specific

knowledge in formal language semantics) to use an “appropriate” tool for the formal specification of a

packet filtering language. The “appropriate” tool needs to: be easy to use; be able to produce (or take

as input) “human readable” language specifications; provide some level of correctness guarantees for

the language specified; and be executable (simulatable) in order to test (evaluate) the language specified.

The K framework seems to meet those requirements and has been chosen to be the “appropriate” tool

after a short review of available tools. As there has been no in depth comparison of the different tools

available, there is no claim in this paper that the K framework is better than the other tools, even in our

specific setting.

This section introduces the K framework [21] by relying on the example of a language allowing

to compute additions over numbers using Peano’s encoding [8]. The K source code of this language

specification is provided below.

1 module PEANO -SYNTAX

syntax Nb ::= "Zero" | "Succ" Nb

3 syntax Exp ::= Nb | Id | Exp "+" Exp [strict ,left]

syntax Stmt ::= Id ":=" Exp ";" [strict (2)]

5 syntax Prg ::= Stmt | Stmt Prg

endmodule

7

module PEANO imports PEANO -SYNTAX

9 syntax KResult ::= Nb

11 configuration

<env color="green"> .Map </env >

13 <k color="cyan"> $PGM:K </k>

15 rule N:Nb + Zero => N

rule N1:Nb + Succ N2:Nb => (Succ N1) + N2

17

rule

19 <env > ... Var:Id |-> Val:Nb ... </env >

<k> (Var:Id => Val:Nb) ... </k>

21

rule

23 <env > Rho:Map (.Map => Var |-> Val) </env >

<k> Var:Id := Val:Nb ; => </k>

25 when notBool (Var in keys(Rho))

27 rule

<env > ... Var |-> (_ => Val) ... </env >

29 <k> Var:Id := Val:Nb ; => </k>

31 rule S:Stmt P:Prg => S ~> P [structural]

endmodule

4 Formal Specification of a Packet Filtering Language Using the K Framework

A K definition is divided into three parts: the syntax definition, the configuration definition, and the

semantics (rewriting rules) definition. The definition of the language syntax is given in a module whose

name is suffixed with “-SYNTAX”. It uses a BNF-like notation [1, 17]. Every non-terminal is introduced

by a syntax rule. For example, the definition of the notation for numbers (Nb) in this language, provided

on line 2, is equivalent to the definition given by the regular expression “(Succ)* Zero”.

•
Map

env

$PGM:K

k

Figure 1: Peano’s K configuration

The configuration definition part is introduced by the keyword

configuration and defines a set of (potentially nested) cells de-

scribed in an XML-like syntax. This configuration describes the

“abstract machine” used for defining the semantics of the language.

The initial state (or configuration) of the abstract machine is the one

described in this configuration part. The parsed program (using the

syntax definition of the previous part) is put in the cell containing the $PGM variable (of type K). For the

Peano language, the env cell is used to store variable values in a map initially empty (.Map is the empty

map). From this definition, the K framework can produce a graphical representation of the configuration,

provided in Fig. 1

The semantics definition part is composed of a set of rewriting rules, each one of them introduced

by the keyword rule. In the K source file, rules are roughly denoted as “CCF => NCF” where CCF

and NCF are configuration fragments. The meaning of “CCF => NCF” can be summarized as: if CCF

is a fragment of the current abstract machine state (or configuration) then the rule may apply and the

fragment matching CCF in the current configuration would then be replaced by the new configuration

fragment NCF . In order to increase the expressivity of rules, CCF may contain free variables that are

reused in expressions in NCF . If a specific valuation of the free variables V in CCF allows a fragment of

the current configuration to match CCF , then this fragment may be replaced by NCF where the variables

V are replaced by their matching valuation.

The rules for addition over numbers (Nb and not Exp), on lines 15 and 16, follows closely this

representation. For those rules, CCF is a program fragment that can be matched in any cell of the config-

uration. For those two rules, the K framework can then produce the following graphical representations:

RULE

N:Nb + Zero

N

RULE

N1:Nb + Succ N2:Nb

(Succ N1) + N2

For other rules, the configuration fragment matching is more complex and involves precise con-

figuration cells that are explicitly identified. In order to compress the representation, CCF and NCF

are not stated separately anymore. The common parts are stated only once, and the parts differing are

again denoted “CCFi => NCFi”, where CCFi is a sub-fragment in CCF and NCFi is the corresponding

sub-fragment in NCF . Cells that have no impact on a rule R and are not impacted by R do not appear

explicitly in the rule. Cells heads and tails (potentially empty) that are not modified by a rule can be

denoted “...”, instead of using a free variable that would not be reused.

For example, the rule which starts on line 18is the rule used to evaluate variables. The current

configuration needs to contain a mapping from a variable Var to a value Val (“X |-> V” denotes a

mapping from X to V) somewhere in the map contained in the env cell. It also needs to contain the variable

Var at the beginning of cell k. This rule has the effect of replacing the instance of Var at the beginning

of cell k by the value Val. For this rule, the K framework generates the graphical representation given in

Fig. 2.

The last rule on line 31 involves other internal aspects of the K framework. It roughly states that,

in order to evaluate a statement S followed by the rest P of the program, S must first be evaluated to a

6 Formal Specification of a Packet Filtering Language Using the K Framework

the GPFL program. If the packet can not be parsed, depending on the type of filter (white list or black

list), the packet is either dropped or passed to the other side without going through the GPFL program.

Any packet (record) output by the GPFL program (on either side) is encoded before being sent out. In

addition, the GPFL program can generate alarms due to packets not complying with the encoded filtering

policy.

GPFL

Filter

Alarm

Decoder Encoder

DecoderEncoder

bin

bin

P

o

r

t

P

o

r

t

white
list

black list

white
list

black list

Figure 4: Architecture of GPFL-based filters

The GPFL language must allow to: drop, modify or accept the current packet being filtered; generate

new packets; and generate alarms. GPFL must allow to base the decision to take any of those actions on

information pieces concerning the current packet being filtered and previously filtered packets. Those in-

formation pieces must include: some timing information, current or previous packets directions through

the filter (“in” or “out”), and characteristics of current or previous packets including field values and

computed properties such as, for example, a packet “type” or total length. The computation of those

properties and decoding of packet fields is outside of the scope of GPFL; it is left to the decoders.

In order to gradually build a decision, GPFL must allow to interact with variables (reading, writ-

ing, and computing expressions) and automata (triggering a transition in an automaton and querying its

current state). The intent for automata is to be used to track the current step of sessions of complex pro-

tocols. GPFL must allow to combine filtering statements using: sequential control statements (executing

two statements in sequence); conditional control statements (executing a statement only if a condition is

true); iterating control statements (repeatedly executing a statement for a fixed number of repetitions).

There is no requirement for a loop (or while) statement whose exit condition is controlled by an expres-

sion recomputed after every iteration. For the experiment reported in this paper (on formal specification

of a filtering language), the iterating statement is considered sufficient for the intended use of GPFL and

close enough to a loop statement from a semantics point of view, while exhibiting interesting properties

for future analyses (for example, any GPFL program terminates).

4 GPFL’s Specification

Due to lack of space, GPFL’s specification and testing is only summarized in this paper. However, a full

specification of GPFL and a testing section can be found in the companion technical report [18].

G. Le Guernic, B. Combemale & J.A. Galindo 7

Syntax. To the exception of expressions and expression fragments, GPFL’s syntax is formally defined

by the K source fragment provided below.

18 syntax Cmd ::= "nop" | "accept" | "drop" | "send(" Port "," Fields ")"

| "alarm(" Exp ")" [strict (1)]

20 | "set(" Id "," Exp ")" [strict (2)]

| "newAutomaton(" String "," AutomatonId ")"

22 | "step(" AutomatonId "," Exp "," Stmt ")" [strict (2)]

syntax Stmt ::= Cmd

24 | "cond(" Exp "," Stmt ")" [strict (1)]

| "iter(" Exp "," Stmt ")" [strict (1)]

26 | "newInterrupt(" Int "," Bool "," Stmt ")"

| Stmt Stmt [right]

28 | "{" Stmt "}" [bracket]

30 syntax AutomataDef ::= "AUTOMATA" String AutomataDefTail

syntax AutomataDefTail ::= "init" "=" AStateId ATransitions | ATransitions

32 syntax ATransitions ::= List{ATransition ,""}

syntax ATransition ::= AStateId "-" AEvtId "->" AStateId

34 syntax AStateId ::= String

syntax AEvtId ::= String

36 syntax InitSeq ::= "INIT" Stmt

syntax PrologElt ::= AutomataDef | InitSeq

38 syntax Prologues ::= PrologElt | PrologElt Prologues

40 syntax Program ::= "PROLOGUE" Prologues "FILTER" Stmt

A GPFL program is composed of a prologue, executed only once in order to initialize the execution

environment, and a filter statement, executed once for every incoming packet. A prologue is composed

of automaton kind definitions and initialization sequences. An automaton kind definition specifies an

identifier K, an initial state for automata of kind K and a set of transitions for automata of kind K. A

transition definition is composed of: two automaton states F and T , and an automaton event that triggers

the transition from F to T .

A GPFL statement is composed of GPFL commands or statements combined sequentially. Some

statements can be guarded by an expression and executed only if that expression evaluates to true (cond).

Some statements (iter), associated with an expression e, are exectued v times, where v is the value of

e before the first iteration. Finally, newInterrupt statements register a statement to be executed in the

future, potentially periodically.

GPFL commands are the basic units having an effect on the execution environment. The nop com-

mand has no effect and serves mainly as a place holder. The accept, resp. drop, command states to

accept, resp. drop, the current packet and stop the filtering process for this packet. The send command

sends a packet on one of the ports. The alarm command generates a message on the alarm channel. The

set command sets the value of a variable. The newAutomaton command initializes an automaton of the

provided kind, and assigns this newly created automaton to the provided identifier. The step command

tries to trigger an automaton transition by sending an event e to an automaton a. If there is no transition

from the current state of a triggered by the event e, then the associated statement is executed.

Semantics The full formal specification of GPFL’s semantics can be found in the companion technical

report [18]. GPFL’s semantics rules are defined on the configuration presented graphically in Fig. 5.

The prg cell contains the GPFL program. After initialization of the program, automaton kind definitions

are stored in the automatonKindDefs cell and the filter cell contains the filter (GPFL statement)

8 Formal Specification of a Packet Filtering Language Using the K Framework

$PGM:K

prg

•
K

automataKind
•
K

initialState
•
Map

transitions

automataKindDef*

automataKindDefs

•
K

filter

•
List

nextInterrupts

•
K

intTime
•
K

intCode
•
K

period

interrupt*

interrupts

•
K

k

0

clock

•
K

inHead
•
List

inTail

in
•
List

alarm
•
List

out

streams

•
K

time
•
K

port
•
Map

fields

input

•
Map

kinds
•
Map

states

automata
•
Map

vars

env

Figure 5: K configuration of GPFL

that is to be executed for every packet. The interrupts cell contains a set of interrupt definitions

(interrupt*). An interrupt is a triplet composed of: the time when the interrupt is to be triggered,

the code (statement) to be executed, and a “Time” value equal to the interruption period for a periodic

interruption (or nothing for a non-periodic interruption). In addition, the interrupts cell contains an

ordered list of the next “times” when an interrupt is to be executed. The clock cell registers the current

“time”. The configuration also contains a k cell that holds the GPFL statement under execution. Each

time a new packet is input, the content of the k cell is replaced by the content of the filter cell, and the

newly arrived packet is stored in the input cell with its arrival time and port.

Packets are input from the streams cell which contains: the packet input stream divided into the

next packet to arrive (inHead) and the rest of the stream (inTail); the packet output stream; and the

alarm output stream. In the input stream, resp. output stream, packets arriving, resp. leaving, on both

G. Le Guernic, B. Combemale & J.A. Galindo 9

ports are mixed together, but contains information on the port of entry, resp. exit. Some choices made to

represent those streams are not an intrinsic part of GPFL’s formal specification. The division of the input

stream into a head and a tail is such a choice. Those choices are made in order to be able to execute the

specification. It is then required to implement, in the K framework, a mechanism to retrieve and parse

strings describing packet sequences sent to the filter. In order to help distinguish between the formal

specification of GPFL and the mechanisms put in place to execute it, whenever possible, implementation

choices, such as the format of strings describing packets, are defined in another file which is loaded in

the main specification file with the require instruction.

Finally, the env cell is the main dynamic part of the execution environment. It corresponds to a

“record” of maps that associate: automaton kind and current state to automaton identifiers (automata

cell); and values to variables.

5 Testing GPFL’s Specification

GPFL’s specification, introduced above and contained in the companion technical report [18], is not

necessarily perfect. By a matter of fact, imperfections of GPFL’s specification are of interest to the

experimentation reported in this paper. Indeed, the goal of the experimentation is to see how a tool such

as the K framework can help to spot and correct imperfections in filtering language specifications. One

way to do so is by “testing” the new language specified, which is possible if the framework used to

specify the language supports the execution or simulation of language specifications, which is the case

for the K framework.

The test scenario used assumes a network of clients and servers. The clients request resources to

servers using a made-up protocol, called “DHCP cherry”, summarized in Fig. 6. The test scenario as-

Server

Server 1

Client

Client

Server

Server 2

Disc Disc

Off(R1) Off(R2)

Req(R1) Rej(R2)

locks R1
Ack

Ack

msc Nominal acquire sequence

Server

Server 1

Client

Client

Rel(R1)

unlocks R1

Ack

msc Nominal release sequence

Figure 6: Nominal packet sequences of DHCP cherry protocol

sumes that servers behave poorly when interacting concurrently with different clients. The objective of

the test scenario is then to filter communications in front of servers in order to prevent any concurrent

client-server interactions with any given server. This test scenario is obviously made-up for this exper-

imentation, which is a requirement due to confidentiality issues. However, it is still covering the most

frequently used features of filtering languages similar to GPFL, while remaining simple enough for a

first experimentation.

10 Formal Specification of a Packet Filtering Language Using the K Framework

From the point of view of servers, non-concurrent interactions are sequential instances of only three

generic atomic packet sequences. Those atomic packet sequences are the ones accepted by the automaton

in Fig. 7. In this automaton, “in:MP”, resp. “out:MP”, is a transition trigger matching any incoming

0

1 2

3 4

5 6

7 8

in:Disc(C)
out:Off(C,R) in:Req(C,R)

out:Ack(C)

in:Rej(C,R)
out:Ack(C)in:Rel(C,R)

out:Ack(C)

Figure 7: Automaton of server-side atomic packet sequences

packet (from the rest of the network to the server), resp. outgoing packet, matching packet pattern

MP. C, resp. R, is a client, resp. ressource, identifier variable. C, resp. R, has to be instantiated in

the same way (have the same value) for any packet of the same atomic packet sequence accepted by

the automaton. The automaton of Fig. 7 is refined into a filtering policy automaton described in Fig. 8.

Variables C and R have the same constraints as for the automaton of Fig. 7. The variable “∗” matches any

value, packet pattern “out:∗” matches any outgoing packet, and packet pattern “out:∗ - Ack(C)” matches

any outgoing packet except Ack(C). This filtering policy accepts every outgoing packet; thus having no

0 1 23

out:∗

in:Disc(C)

out:∗ in:Req(C,∗)

in:Rej(C,∗)

out:∗ -

Ack(C)

out:Ack(C)

in:Rel(C,∗)out:∗ -

Ack(C)

out:Ack(C)

Figure 8: Filtering policy automaton

effect on the packets generated by the server. For incoming packets, if the current state of the automaton

has no transition whose trigger matches the packet then the packet is discarded; otherwise, the packet

is accepted and the associated transition is triggered. This filtering policy assumes that clients comply

with the DHCP cherry protocol and ensures only that the filtered server only interacts sequentially with

clients. If there is no idle server ready to receive a packet from a client, this client gets no answer and is

expected to retry later.

This policy has been encoded in GPFL and executed using the following command (in Linux Bash):

“krun dhcp.gpfpl < dhcp_input-dataset.txt > dhcp_output.txt” where the file dhcp_in-

put-dataset.txt contains a sequence of packets already “parsed” (decoded packets, Fig. 4) input

to the filter. The output of the simulation of the code (dhcp.gpfpl) written in the specified language

(GPFL) is written in dhcp_output.txt.

G. Le Guernic, B. Combemale & J.A. Galindo 11

6 Discussion on the Experimentation

The primary goal of this paper is not to set out the filtering policy described in Sect. 5 or, even, GPFL’s

specification described in Sect. 4. This paper is an industrial experience report on a primary evaluation

of the cost and benefits of using formal specification tools in general, and the K framework in particular,

to formally specify the syntax and semantics of filtering languages. Overall, it seems to the authors that

using the K framework helped greatly to improve GPFL’s specification quality. It forced the specification

authors to be precise, and helped spot various errors and missing specification fragments.

With regard to the “cost”, this experimentation argues in favor of tool supported formal specifications

for high quality specifications of filtering languages. Of course, using natural language, it is possible to

produce a cheaper, but ambiguous and approximate, specification. However, from the authors’ natural

language based experiences with packet filtering language specifications, using natural language to pro-

duce a specification with a similar level of precision and correctness would be more costly for engineers

with operational semantics knowledge. With a decent knowledge of operational semantics concepts, the

cost for newcomers to the K framework is relatively low, thanks to the numerous tutorials (in text and

video), manuals and examples. In fact, having been exposed to operational semantics concepts (apart

from general computer science concepts) seems to be the only prerequisite to efficiently using the K

framework.

From the authors’ previous experiences at formal specification of packet filtering language specifica-

tions without tool support, the cost of the constraints imposed by the K framework seems to the authors

to be lower than the benefits provided by the tool support. Typically, the ability to simulate1 the formal

specification of the filtering language requires a particular handling of input/output related rules. How-

ever, this same ability to simulate the formal specification of the filtering language is highly beneficial

when validating the correctness of the specification and expressivity of the language by “executing” test

and documentation programs.

Other benefits of tool supported formal specifications of languages are numerous. In natural lan-

guage documents specifying new languages, it is too common for program examples to be inconsistent

with the language grammar. It is easily explained by the modifications brought to the language grammar

during the specification document development. Examples directly related to the modified statements

are usually modified accordingly. However, examples related to other aspects of the language are often

forgotten. Using a tool supported formal specification, it is easy to adopt a “continuous/frequent integra-

tion” approach where examples are: written in separate files, regularly parsed to verify that they comply

with the current grammar, and automatically imported in the specification document (the creation of this

paper used this approach).

Additionally, use of a tool-supported formal specification approach modifies the workflow often ap-

plied when using natural language specification documents. With natural language specifications, the

specification document writing process usually starts early after a short engineering phase (it may not

be true for a language development process, however it is often the case in pure language specification

processes), and the main part of the language specification is done during the specification document

writing process. With a tool-supported formal specification approach, the specification of the language

tend to be first developed inside the tool, and then the language specification is clarified during the spec-

ification document writing process. With a tool-supported formal specification approach, the language

specification becomes a two phases process with two different views on the language specification. The

1The authors prefer to talk of “simulation” rather than “execution”, as the loading time of the execution environment and

limited ability to interact with other components would most likely prevent to use such an execution in a real world setting.

12 Formal Specification of a Packet Filtering Language Using the K Framework

“two different views” aspect is particularly true with the K framework were semantics rules are entered

textually in the source file and can be rendered graphically for the specification document. This two

phases workflow (development then clarification and documentation) helps spot: differences of treat-

ments (in particular for configuration cells), generalization and reuse opportunities (for example, in this

experimentation, the use of only two internal commands, iSend and iHalt, to encode the three packet

commands accept, drop and send), different concepts that are candidates to modularization (for exam-

ple, in this experimentation, the externalization of packet data type definitions and string conversions),

errors that manifest themselves in rare occasions (for example, in an earlier version of GPFL, automaton

states and variable values where stored in the same map, which could trigger a key clash caused by vari-

able and automaton identifiers having the same “name” part), or general simplifications (for example,

during this report writing process, GPFL’s configuration has been heavily reformatted to simplify the

language specification and be closer to the concepts manipulated). From the authors experience, in gen-

eral and compared to a natural language approach, a tool-supported formal specification process helps

simplify and clarify a language specification.

Moreover, the ability to execute the formal specification allows to adopt an incremental approach for

the specification of the different statements semantics. In such an approach, the syntax of the language

is first specified. Then a program example making use of all the statements of the language in as much

context as reasonable is written. The semantics of the statements is then defined statements by statements.

The program is executed using K’s run time; and the execution stops when reaching a statement whose

semantics is not defined yet. All the semantics rules associated to this statement are then defined. When

stopping an execution, K’s run time displays the current state of the configuration which can help specify

the missing semantics rules. As the test program execution goes further and further during the language

semantics specification process, this incremental approach is more rewarding for people in charge of the

specification. The impact of using this incremental approach (which is not required by the K framework)

on the quality of the specifications produced remains to be investigated.

Finally, the ability to execute the formal specification allows to test and validate the language specifi-

cation. Two important points to validate are: the expressivity of the language and its expected semantics.

GPFL’s test code (Sect. 5) provided in the companion technical report [18] emphasizes the limitations

of the simple automata that can be defined using GPFL. It could be useful to have automaton state vari-

ables, and triggering conditions that test and check automaton state variable values. However, adding

automaton state variables would complexify automata definitions. Similarly, GPFL’s test code contains

a recurring code sequence to handle alarms which is triggered only when a threshold of a specific event

occurrences is reached. It could be useful to add a specific command to GPFL which would have the

same semantics as this recurring sequence. The ability to test programs does not solve expressivity ques-

tions (which have to be answered on a per language basis), however it helps explicit those questions.

With regard to expected semantics, writing test programs helps validate that programs have the seman-

tics that users would expect. The initial version of GPFL’s test code did not behave as expected. It ended

up being a misplaced statement in the filter code, but could also have been a problem with the semantics

specification. Discovering the cause of a misbehavior of a test program (error in the semantics or the

program) could be greatly simplified by K’s debugger which can “execute” formal specifications step by

step; especially as Domain Specific Languages (specifications and implementations) usually have limited

debugging facilities (which is in accordance with their philosophy of limited expressivity for the sake of

simplification). However, sadly, K’s debugger crashed on our program with the version of the K frame-

work used for this experimentation (version 3.6). This can be explained by the fact that K development

effort was focused on the next version to come (version 4.0 which exited the beta stage at the end of July

2016). Finally, the ability to execute the formal specification helps to validate a set of test programs that

G. Le Guernic, B. Combemale & J.A. Galindo 13

can be used as smoke test for language implementations.

7 Conclusion

This paper reports on an industrial experiment to formally specify the syntax and semantics of a filtering

language (GPFL) using the tool-supported framework K. For confidentiality reasons, the filtering lan-

guage specified in this report has been made up for this experimentation; however, it covers the majority

of concepts usually encountered in filtering languages. No comparison between different tools is made

in this experiment. The goal of the experiment is to study the feasibility of using a tool-supported for-

mal approach for the specification of domain-specific filtering languages having a complexity similar to

filtering languages encountered in real-life projects.

The K framework proved to be sufficiently expressive to naturally express the syntax and semantics

of GPFL in a formal way. The effort required by this formal specification is judged reasonable by

the authors, and within reach of average engineers which have been exposed previously to operational

semantics theories. Newcomers life is made easier by the numerous manuals, examples and tutorials

available for the K framework. The tool support is a welcome help during the specification process. In

particular, the ability to execute (or simulate) K formal specifications helps greatly when developing and

fine tuning the language specification, and when producing smoke tests for the implementation.

Following such a specification process may seem to be in complete contradiction to any agile de-

velopment principles [4]. However, using a tool-supported executable specification methodology allows

to comply with one of the pillars of agile development: early feedback. As the language specification

is executable, it is possible to ask final users (if some are available) to test the language and provide

feedbacks on different aspects of the language, including its expressivity. In fact, IBM’s Continuous

Engineering development methodology [24] advocates for the use of executable models at every steps of

the development.

To summarize, with regard to the benefits of putting the effort to produce a formal specification, the

authors opinion, on improved quality and usefulness of formal specifications compared to non formal

specifications written in natural language, is relatively well summarized in the following statement by

David Schmidt [22], which is supported by the numerous ambiguities (and their consequences) in natural

language specifications of common programming languages like C/C++ or Java [12].

“Since data structures like symbol tables and storage vectors are explicit, a language’s sub-

tleties are stated clearly and its flaws are exposed as awkward codings in the semantics. This

helps a designer tune the language’s definition and write a better language manual. With a

semantics definition in hand, a compiler writer can produce a correct implementation of the

language; similarly, a user can study the semantics definition instead of writing random test

programs.”

David Schmidt in ACM Computing Surveys [22]

In the experimentation reported in this paper, no formal analysis of the formal specification produced

has been attempted. In future work, the authors plan to try some of the experimental tools available with

the K framework on GPFL’s specification. If time allows, a similar experimentation could be repeated

with other tools oriented toward the formal specification of languages.

14 Formal Specification of a Packet Filtering Language Using the K Framework

References

[1] John W. Backus (1959): The Syntax and Semantics of the Proposed International Algebraic Language of the

Zurich ACM-GAMM Conference. In: Proc. Int. Conf. Information Processing, UNESCO, pp. 125–132.

[2] H. J. S. Basten, J. van den Bos, M. A. Hills, P. Klint, A. W. Lankamp, B. Lisser, A. J. van der Ploeg, T. van der

Storm & J. J. Vinju (2015): Modular Language Implementation in Rascal – Experience Report. Science of

Computer Programming 114, pp. 7–19, doi:10.1016/j.scico.2015.11.003.

[3] Fabricio Chalub & Christiano Braga (2007): Maude MSOS Tool. In: Proc. Int. Work. Rewriting Logic and

its Applications, Electronic Notes in Theoretical Computer Science 176, Elsevier Science Publishers B. V.,

pp. 133–146, doi:10.1016/j.entcs.2007.06.012.

[4] Alistair Cockburn (2007): Agile Software Development: The Cooperative Game, 2nd edition. Pearson Edu-

cation.

[5] Olivier Dubuisson (2000): ASN.1 – Communication between Heterogeneous Systems. OSS Nokalva. Avail-

able at http://www.oss.com/asn1/dubuisson.html. Translated from French by Philippe Fouquart.

[6] Matthias Felleisen, Robert Bruce Findler & Matthew Flatt (2009): Semantics Engineering with PLT Redex.

The MIT Press.

[7] Matthew Flatt & PLT (2010): Reference: Racket. PLT-TR 2010-1, PLT Design Inc. https://

racket-lang.org/tr1/.

[8] Jean van Heijenoort (2002): From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931, chapter

Peano (1889). The principles of arithmetic, presented by a new method. Source Books in the History of the

Sciences, Harvard University Press. A translation and excerpt of Peano’s 1889 paper "Arithmetices principia,

nova methodo exposita".

[9] Jean-Marc Jézéquel, Olivier Barais & Franck Fleurey (2011): Summer School on Generative and Transfor-

mational Techniques in Software Engineering, chapter Model Driven Language Engineering with Kermeta,

pp. 201–221. Lecture Notes in Computer Science 6491, Springer Berlin Heidelberg, doi:10.1007/978-3-642-

18023-1_5.

[10] Jean-Marc Jézéquel, Benoit Combemale, Olivier Barais, Martin Monperrus & François Fouquet (2013):

Mashup of metalanguages and its implementation in the Kermeta language workbench. Software & Systems

Modeling 14(2), pp. 905–920, doi:10.1007/s10270-013-0354-4.

[11] Joint Technical Committee ISO/IEC JTC 1, Information technology, Subcommittee SC 6, Telecommunica-

tions and information exchange between systems (2015): Information technology – Abstract Syntax Notation

One (ASN.1): Specification of basic notation. International Standard 8824-1, ISO/IEC. ISO/IEC version of

ITU-T X.680 (08/2015).

[12] JSR-133 expert group (2004): JSR-133 Java™ Memory Model and Thread Specification Revision. Java

Specification Request (JSR) 133, Sun Microsystems, Inc. https://jcp.org/en/jsr/detail?id=133.

[13] Casey Klein, John Clements, Christos Dimoulas, Carl Eastlund, Matthias Felleisen, Matthew Flatt, Jay A.

McCarthy, Jon Rafkind, Sam Tobin-Hochstadt & Robert Bruce Findler (2012): Run Your Research: On

the Effectiveness of Lightweight Mechanization. In: Proc. Symp. Principles of Programming Languages,

SIGPLAN Not. 47, ACM, New York, NY, USA, pp. 285–296, doi:10.1145/2103656.2103691.

[14] P. Klint (2009): Tribute to a great Meta-Technologist: from Centaur to The Meta-Environment. In Y. Bertot,

G. Huet, J.-J. Levy & G. Plotkin, editors: From Semantics to Computer Science, Essays in Honour of Gilles

Kahn, Cambridge University Press, pp. 235–264, doi:10.1017/CBO9780511770524.012.

[15] P. Klint, J. J. Vinju & M. A. Hills (2011): RLSRunner: Linking Rascal with K for Program Analysis. In:

Proc. Int. Conf. Software Language Engineering, Springer, doi:10.1007/978-3-642-28830-2_19.

[16] Paul Klint, Tijs van der Storm & Jurgen Vinju (2009): RASCAL: A Domain Specific Language for Source

Code Analysis and Manipulation. In: Proc. Int. Working Conf. Source Code Analysis and Manipulation,

IEEE Computer Society, pp. 168–177, doi:10.1109/SCAM.2009.28.

G. Le Guernic, B. Combemale & J.A. Galindo 15

[17] Donald E. Knuth (1964): Backus Normal Form vs. Backus Naur Form. Commun. ACM 7(12), pp. 735–736,

doi:10.1145/355588.365140.

[18] Gurvan Le Guernic & José A. Galindo (2016): Experience Report on the Formal Specification of a Packet

Filtering Language Using the K Framework. Research report 8967, Inria. https://hal.inria.fr/

hal-01385541v1.

[19] Dominic P. Mulligan, Scott Owens, Kathryn E. Gray, Tom Ridge & Peter Sewell (2014): Lem: Reusable

Engineering of Real-world Semantics. In: Proc. Int. Conf. Functional Programming, SIGPLAN Not. 49,

ACM, pp. 175–188, doi:10.1145/2692915.2628143.

[20] Grigore Roşu & Traian Florin Şerbănuţă (2010): An Overview of the K Semantic Framework. The Journal

of Logic and Algebraic Programming 79(6), pp. 397–434, doi:10.1016/j.jlap.2010.03.012.

[21] Grigore Roşu & Traian Florin Şerbănuţă (2014): K Overview and SIMPLE Case Study. In: Proc. Int. Work.

K Framework and its Applications (K 2011), Electronic Notes in Theoretical Computer Science 304, pp.

3–56, doi:10.1016/j.entcs.2014.05.002.

[22] David A. Schmidt (1996): Programming Language Semantics. ACM Computing Surveys 28(1),

doi:10.1145/234313.234419.

[23] Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Gilles Peskine, Thomas Ridge, Susmit Sarkar & Rok

Strniša (2010): Ott: Effective Tool Support for the Working Semanticist. J. Functional Programming 20(1),

pp. 71–122, doi:10.1017/S0956796809990293.

[24] Cathleen Shamieh (2014): Continuous Engineering For Dummies®. IBM Limited Edition, John Wiley &

Sons, Inc.

[25] T. van der Storm & J. J. Vinju (2008): Using the Meta-Environment for Domain Specific Language Engineer-

ing. Technical Report SEN-R0805, CWI Software Engineering.

[26] Traian Florin Şerbănuţă, Andrei Arusoaie, David Lazar, Chucky Ellison, Dorel Lucanu & Grigore Roşu

(2014): The K Primer (version 3.3). Electronic Notes in Theoretical Computer Science 304, pp. 57–80,

doi:10.1016/j.entcs.2014.05.003. Proc. Int. Work. K Framework and its Applications (K 2011).

❊�t✁✂❞✐✂❣ ❛ ✉s✁❡ ✐✂t✁❡✄❛❝✁ ♣❡♦t♦t②♣✐✂❣ t♦♦☎ ✇✐t✆

❛✉t♦✝❛t✐❝ ▼✞❙❘❆ ❈ ❝♦❞✁ ❣✁✂✁❡❛t✐♦✂

●✟✠✡☛☛☞✟✌✠ ✍✡✎r✠✶✱ ❍✡r✠❧✏ ❚☞✟✑❜❧✒❜✓✷✱ ✔✌✏r✒✡ ❉✠✑✒✌✟☛✟✶✱ ✡✌✏
✕✟✌③✟✡ ❇✒r✌✡r✏✒✖☛☞✟✶

✗ ✘✙✚✛✜✢♠✙♥✢ ✣❢ ■♥❢✣✜♠✛✢✤✣♥ ✥♥✦✤♥✙✙✜✤♥✦✧ ❯♥✤✈✙✜★✤✢✩ ✣❢ P✤★✛✧ P✤★✛✧ ■✢✛✪✩
④✫✳✬✭✮✯✰✲✴✳✵✸✯✹✭✯✺✸✻✴❤✼✲✭✳✺✰✬✸✹✼✴✼⑥❅✮✹✼✽✼✳✼✾

✿ ❀❁✛♥★✙✛ ❯♥✤✈✙✜★✤✢✩ ➋ P✜✤❢✩★✦✣✪ ❂❃✙✜✢✛❁✙✧ ❀❁✛♥★✙✛❄❂❃✙✜✢✛❁✙✧ ❯❋
❤✭✯✰❏✺❅✾❤✼✬✵❏✸✵❑✳✹✸✾

▲◆❖◗❱❲❳◗❨ ❩✙ ✛✜✙ ❬✣♥❬✙✜♥✙❭ ❁✤✢❪ ★✩★✢✙♠★✧ ✚✛✜✢✤❬❫✪✛✜✪✩ ★✛❢✙✢✩❴❬✜✤✢✤❬✛✪ ★✩★✢✙♠★✧
✢❪✛✢ ✤♥✈✣✪✈✙ ✤♥✢✙✜✛❬✢✤✣♥ ❃✙✢❁✙✙♥ ❫★✙✜★ ✛♥❭ ❭✙✈✤❬✙★✧ ★❫❬❪ ✛★ ✢❪✙ ❫★✙✜ ✤♥✢✙✜❢✛❬✙ ✣❢
♠✙❭✤❬✛✪ ❭✙✈✤❬✙★❵ ❩✙ ✢❪✙✜✙❢✣✜✙ ❭✙✈✙✪✣✚✙❭ ✛ ❥■❀❦❂ q ❬✣❭✙ ✦✙♥✙✜✛✢✣✜ ❢✣✜ ❢✣✜♠✛✪
♠✣❭✙✪★ ✙①✚✜✙★★✙❭ ✤♥ ✢❪✙ P⑤❀✤✣❴❁✙❃ ✚✜✣✢✣✢✩✚✤♥✦ ✢✣✣✪⑦✤✢❵ P⑤❀✤✣❴❁✙❃ ✛✪✪✣❁★ ❭✙❴
✈✙✪✣✚✙✜★ ✢✣ ✜✛✚✤❭✪✩ ✦✙♥✙✜✛✢✙ ✜✙✛✪✤★✢✤❬ ✤♥✢✙✜✛❬✢✤✈✙ ✚✜✣✢✣✢✩✚✙★ ❢✣✜ ✈✙✜✤❢✩✤♥✦ ❫★✛❃✤✪✤✢✩
✛♥❭ ★✛❢✙✢✩ ✜✙⑧❫✤✜✙♠✙♥✢★ ✤♥ ❪❫♠✛♥❴♠✛❬❪✤♥✙ ✤♥✢✙✜❢✛❬✙★❵ ⑨❪✙ ✈✤★❫✛✪ ✛✚✚✙✛✜✛♥❬✙ ✣❢
✢❪✙ ✚✜✣✢✣✢✩✚✙★ ✤★ ❃✛★✙❭ ✣♥ ✛ ✚✤❬✢❫✜✙ ✣❢ ✛ ✚❪✩★✤❬✛✪ ❭✙✈✤❬✙✧ ✛♥❭ ✢❪✙ ❃✙❪✛✈✤✣❫✜ ✣❢
✢❪✙ ✚✜✣✢✣✢✩✚✙ ✤★ ❭✙⑩♥✙❭ ❃✩ ✛♥ ✙①✙❬❫✢✛❃✪✙ ❢✣✜♠✛✪ ♠✣❭✙✪❵ ❶❫✜ ✛✚✚✜✣✛❬❪ ✢✜✛♥★❢✣✜♠★
✢❪✙ P⑤❀✤✣❴❁✙❃ ✚✜✣✢✣✢✩✚✤♥✦ ✢✣✣✪ ✤♥✢✣ ✛ ♠✣❭✙✪❴❃✛★✙❭ ✙♥✦✤♥✙✙✜✤♥✦ ✢✣✣✪⑦✤✢ ✢❪✛✢✧ ★✢✛✜✢❴
✤♥✦ ❢✜✣♠ ✛ ❢✣✜♠✛✪✪✩ ✈✙✜✤⑩✙❭ ❫★✙✜ ✤♥✢✙✜❢✛❬✙ ❭✙★✤✦♥ ♠✣❭✙✪✧ ❁✤✪✪ ✚✜✣❭❫❬✙ ❥■❀❦❂ q
❬✣❭✙ ✢❪✛✢ ❬✛♥ ❃✙ ❬✣♠✚✤✪✙❭ ✛♥❭ ✪✤♥⑦✙❭ ✤♥✢✣ ✛ ⑩♥✛✪ ✚✜✣❭❫❬✢❵ ❂♥ ✤♥✤✢✤✛✪ ✈✛✪✤❭✛✢✤✣♥ ✣❢
✣❫✜ ✢✣✣✪ ✤★ ✚✜✙★✙♥✢✙❭ ❢✣✜ ✢❪✙ ❭✛✢✛ ✙♥✢✜✩ ★✩★✢✙♠ ✣❢ ✛♥ ✛❬✢❫✛✪ ♠✙❭✤❬✛✪ ❭✙✈✤❬✙❵

❷❸❹❺❻❱❼❖❽ ❯★✙✜ ✤♥✢✙✜❢✛❬✙ ✚✜✣✢✣✢✩✚✙✧ ❢✣✜♠✛✪ ♠✙✢❪✣❭★✧ ❬✣❭✙ ✦✙♥✙✜✛✢✤✣♥✧ ❥■❀❦❂ q

❾ ❿➀➁➂➃➄➅➆➁➇➃➀

➈✠r✑✡❧ ✑✒➉☞✠✏✖ ✡r✒ ✟✑➊✠r➉✡✌➉ ➌✠r ✏✒➍✒❧✠➊✟✌➎ ✡✌✏ ✎✌✏✒r✖➉✡✌✏✟✌➎ ✖✡➌✒ ✡✌✏ ✖✒☛✎r✒ ✖✓✖➏
➉✒✑✖➐ ❚☞✒ ➑➒➓✟✠➏➔✒❜ ➌r✡✑✒➔✠r→ ➣↔↕✱↔➙✱↔↔✱↔➛➜ ✡❧❧✠➔✖ ✏✒➍✒❧✠➊✒r✖ ➉✠ ✎✖✒ ➌✠r✑✡❧ ✑✒➉☞➏
✠✏✖ ✟✌ ✡ ➌r✟✒✌✏❧✓ ✡✌✏ ✡➊➊✒✡❧✟✌➎ ➔✡✓ ✡✖ ✟➉ ➊r✠➍✟✏✒✖ r✒✡❧✟✖➉✟☛ ✡✌✟✑✡➉✟✠✌✖ ✡✌✏ ✟✖ ✟✌➉✒➎r✡➉✒✏
➔✟➉☞ ✡ ➎r✡➊☞✟☛✡❧ ✒✏✟➉✠r ➌✠r ➉☞✒ ➝✑✎☛☞✡r➉✖ ❧✡✌➎✎✡➎✒ ➣↔➞➜➐ ➟➝✑✎☛☞✡r➉✖ ✟✖ ✡ ✖➉✡➉✒ ✑✡☛☞✟✌✒
➌✠r✑✡❧✟✖✑ ➔✟➉☞ ➎✎✡r✏✖ ✡✌✏ ✡☛➉✟✠✌✖ ✡✖✖✠☛✟✡➉✒✏ ➔✟➉☞ ➉r✡✌✖✟➉✟✠✌✖➠ ✟➉ ✟✖ ✒➡➊❧✡✟✌✒✏ ➌✎r➉☞✒r ✟✌
➓✒☛➉➐ ➞➐➢ ❜✒❧✠➔➐➤

➑➒➓✟✠➏➔✒❜ ✎✖✒✖ ➉☞✒ ➌✠r✑✡❧ ✑✠✏✒❧❧✟✌➎ ❧✡✌➎✎✡➎✒ ✠➌ ➉☞✒ ➑r✠➉✠➉✓➊✒ ➒✒r✟➥☛✡➉✟✠✌ ➓✓✖➏
➉✒✑ ➟➑➒➓➤ ➣↔➦➜✱ ✟✌☛❧✎✏✟✌➎ ➉☞✒ ➑➒➓✟✠ ✒➡➉✒✌✖✟✠✌ ➣↔➢➜➐ ➑➒➓ ✟✖ ✡✌ ✟✌✏✎✖➉r✟✡❧➏✖➉r✒✌➎➉☞ ➉☞✒➏
✠r✒✑ ➊r✠➍✟✌➎ ✖✓✖➉✒✑ ➉☞✡➉ ✡❧❧✠➔✖ ➌✠r✑✡❧ ➍✒r✟➥☛✡➉✟✠✌ ✠➌ ✖✡➌✒➉✓ ✡✌✏ r✒❧✟✡❜✟❧✟➉✓ ➊r✠➊✒r➉✟✒✖
✠➌ ☞✡r✏➔✡r✒ ✡✌✏ ✖✠➌➉➔✡r✒ ✖✓✖➉✒✑✖ ➣➧✱➞➙➜➐ ✔❧➉☞✠✎➎☞ ➑➒➓ ✟➉✖✒❧➌ ✟✖ ➍✒r✓ ✒➌➌✒☛➉✟➍✒✱ ✟➉ ✟✖
✌✠➉ ➔✟✏✒❧✓ ✎✖✒✏ ➌✠r ✑✠✏✒❧➏❜✡✖✒✏ ✏✒➍✒❧✠➊✑✒✌➉ ✡✌✏ ✡✌✡❧✓✖✟✖ ✠➌ ✎✖✒r ✟✌➉✒r➌✡☛✒✖✱ ✡✖ ➉☞✒
➉✠✠❧ ☞✡✖ ✡ ✖➉✒✒➊ ❧✒✡r✌✟✌➎ ☛✎r➍✒➐ ➑➒➓✟✠➏➔✒❜ ✖✠➌➉✒✌✖ ➉☞✟✖ ❧✒✡r✌✟✌➎ ☛✎r➍✒✱ ✑✡→✟✌➎ ➉☞✒ ➉✠✠❧
✑✠r✒ ✎✖✒r➏➌r✟✒✌✏❧✓ ✡✌✏ ✡☛☛✒✖✖✟❜❧✒✱ ➊r✠➍✟✏✟✌➎ ✏✒➍✒❧✠➊✒r✖ ➔✟➉☞ ✡ ➎r✡➊☞✟☛✡❧ ✑✠✏✒❧❧✟✌➎ ✒✌➏
➍✟r✠✌✑✒✌➉✱ ✡✌✏ ✡ ➉✠✠❧❜✠➡ ➌✠r ✏✒➍✒❧✠➊✟✌➎ r✒✡❧✟✖➉✟☛ ➍✟✖✎✡❧ ➊r✠➉✠➉✓➊✒✖ ✠➌ ✎✖✒r ✟✌➉✒r➌✡☛✒✖➐

▼�✁✂✄ ☎✁✆✝�✞☎❊✟✠✡☛✞✝☞
☎✁✆✝�✞

P✌✍ ✎✏✑✒✓✔

✕✖✗✆�✘✇✂✙

❚✡✂�✞✂❊
✕✞�✚✂✞

P✓✒✒✛

●✞�✟✜✁
☎✚☛✄✟☛✝�✞

✍❙✢✣✤✥✎❙✒✦

✧✒★✑✤
✩✢✣✪✏✥✓✎✫

❍✬ ✭✑✢✮✤✥✎✑✫

❈ ❈�✁✂
●✂✜✂✞☛✝�✞

✯ ✯✒★✑

❉✰✱✰✲✳✴✰✵

❋✐❣✶ ✷✶ ✸ ❝✹❞❡ ✺❡✻❡✼✽t✾✹✻ ✾✻ t❤❡ ✿❱❀✾✹❁❂❡❜ ❞❡✈❡❃✹♣♠❡✻t ♣✼✹❝❡ss❄

❅❆❇ ❛■■❧❏❑❛▲❏◆♥❖ ◆❢ ❇◗❘❇❯❯❇❯ ❖◆❢▲❲❛❳❇ ❏♥ ❖❛❢❇▲❨❩❑❳❏▲❏❑❛❧ ❛■■❧❏❑❛▲❏◆♥❖ ❏♥❑❳❇❛❖❇ ❑◆♥❩

▲❏♥✉◆✉❖❧❨❬ ❅❛❭❏♥❪ ▲❆❏❖ ❏♥▲◆ ❛❑❑◆✉♥▲❫ ▲◆❪❇▲❆❇❳ ❲❏▲❆ ▲❆❇ ❳❇❴✉❏❳❇◗❇♥▲❖ ▲◆ ❳❇❯✉❑❇ ▲❏◗❇ ❛♥❯

◆❵❇❳❛❧❧ ■❳◆❯✉❑▲❏◆♥ ❑◆❖▲❖❫ ❛✉▲◆◗❛▲❏❑ ❑◆❯❇ ❪❇♥❇❳❛▲❏◆♥ ■❧❛❨❖ ❛♥ ❇❖❖❇♥▲❏❛❧ ❳◆❧❇❬ ❥✉▲◆◗❛▲❏❑

❑◆❯❇ ❪❇♥❇❳❛▲❏◆♥ ❪✉❛❳❛♥▲❇❇❖ ❛ ❖◗◆◆▲❆ ❑◆♥❵❇❳❖❏◆♥ ❢❳◆◗ ◗◆❯❇❧ ▲◆ ❑◆❯❇ ❛♥❯ ❳❇❯✉❑❇❖ ▲❆❇

❯❇❘✉❪❪❏♥❪ ❛♥❯ ▲❇❖▲❏♥❪ ❳❇❴✉❏❳❇❯ ❢◆❳ ❖◆✉❳❑❇ ❑◆❯❇❫ ■❳◆❵❏❯❇❯ ▲❆❛▲ ▲❆❇ ❑◆❳❳❇❑▲♥❇❖❖ ◆❢ ❑◆❯❇

❪❇♥❇❳❛▲❏◆♥ ❛♥❯ ◆❢ ▲❆❇ ❆❏❪❆❩❧❇❵❇❧ ◗◆❯❇❧ ❆❛❵❇ ❘❇❇♥ ❵❇❳❏❦❇❯❬

♦❇ ▲❆❇❳❇❢◆❳❇ ■❳❇❖❇♥▲ ❛♥ ❇①▲❇♥❖❏◆♥ ▲◆ qr②❏◆❩❲❇❘ ▲❆❛▲ ❪❇♥❇❳❛▲❇❖ ③ ❑◆❯❇❬ ②■❇❑❏❦❑❛❧❧❨❫

◆✉❳ ❇①▲❇♥❖❏◆♥ ❪❇♥❇❳❛▲❇❖ ④⑤②⑥❥ ③ ⑦⑧⑨❫ ❛ ❖❛❢❇▲❨❩◆❳❏❇♥▲❇❯ ❖✉❘❖❇▲ ◆❢ ③ ❯❇❵❇❧◆■❇❯ ❘❨ ▲❆❇

④◆▲◆❳ ⑤♥❯✉❖▲❳❨ ②◆❢▲❲❛❳❇ ⑥❇❧❏❛❘❏❧❏▲❨ ❥❖❖◆❑❏❛▲❏◆♥ ⑩④⑤②⑥❥❶❬ ④⑤②⑥❥ ③ ❏❖ ❑◆◗◗◆♥❧❨

✉❖❇❯ ❏♥ ❖❛❢❇▲❨❩❑❳❏▲❏❑❛❧ ❖✉❘❖❨❖▲❇◗❖❫ ❖✉❑❆ ❛❖ ❑❛❳ ❘❳❛❭❏♥❪ ❏♥ ❛✉▲◆◗◆▲❏❵❇ ❖❨❖▲❇◗❖❬

♦❏▲❆ ▲❆❏❖ ♥❇❲ ❇①▲❇♥❖❏◆♥❫ ❢◆❳◗❛❧ qr② ❖■❇❑❏❦❑❛▲❏◆♥❖ ❪❇♥❇❳❛▲❇❯ ❢❳◆◗ ❷◗✉❑❆❛❳▲❖ ❯❏❩

❛❪❳❛◗❖ ❛❳❇ ❛✉▲◆◗❛▲❏❑❛❧❧❨ ❑◆♥❵❇❳▲❇❯ ▲◆ ③❫ ❖❏❪♥❏❦❑❛♥▲❧❨ ❖❆◆❳▲❇♥❏♥❪ ■❳◆❸❇❑▲ ❯❇❵❇❧◆■◗❇♥▲

▲❏◗❇❬ ❹❇❑❛✉❖❇ ◆❢ ▲❆❇ ❛■■❳◆❛❑❆❫ ▲❆❇ ❖❇◗❛♥▲❏❑❖ ◆❢ ❪❇♥❇❳❛▲❇❯ ③ ❑◆❯❇ ❏❖ ❇❴✉❏❵❛❧❇♥▲ ▲◆ ▲❆❇

❢◆❳◗❛❧ ◗◆❯❇❧❖❫ ❛♥❯ ▲❆❇❳❇❢◆❳❇ ▲❆❇ ❑◆❯❇ ❳❇▲❛❏♥❖ ▲❆❇ ❳❇❧❏❛❘❏❧❏▲❨ ❛♥❯ ❖❛❢❇▲❨ ■❳◆■❇❳▲❏❇❖ ❢◆❳❩

◗❛❧❧❨ ❵❇❳❏❦❇❯ ❢◆❳ ▲❆❇ qr② ◗◆❯❇❧❬

⑤♥ ❖✉◗◗❛❳❨❫ ◆✉❳ ◗❛❏♥ ❑◆♥▲❳❏❘✉▲❏◆♥ ❏❖ ❛♥ ❛■■❳◆❛❑❆ ▲◆ ❖◆❢▲❲❛❳❇ ❯❇❵❇❧◆■◗❇♥▲ ▲❆❛▲

❏♥▲❇❪❳❛▲❇❖ ❧◆❪❏❑❩ ❛♥❯ ❖▲❛▲❇ ◗❛❑❆❏♥❇❩❘❛❖❇❯ ❢◆❳◗❛❧ ◗◆❯❇❧❧❏♥❪❫ ❵❛❧❏❯❛▲❏◆♥ ❘❨ ❖❏◗✉❧❛▲❏◆♥❫

❛♥❯ ❛✉▲◆◗❛▲❏❑ ❏◗■❧❇◗❇♥▲❛▲❏◆♥ ❘❨ ❪❇♥❇❳❛▲❏♥❪ ■❳◆❯✉❑▲❏◆♥ ❑◆❯❇ ▲◆ ❘❇ ❳✉♥ ◆♥ ▲❆❇ ❛❑▲✉❛❧

❖❨❖▲❇◗ ❆❛❳❯❲❛❳❇❫ ❛❧❧ ❘❛❖❇❯ ◆♥ ❛♥ ❏♥❯✉❖▲❳❏❛❧❩❖▲❳❇♥❪▲❆ ❢◆❳◗❛❧ ◗❇▲❆◆❯❖ ▲◆◆❧❭❏▲❬

❺ ❻❼❽❾❿❼➀ ➁➂➃➄

④◆❯❇❧❩❘❛❖❇❯ ❛■■❳◆❛❑❆❇❖ ❛❳❇ ❑◆◗◗◆♥❧❨ ✉❖❇❯ ❏♥ ▲❆❇ ❦❇❧❯ ◆❢ ❆✉◗❛♥ ❑◆◗■✉▲❇❳ ❏♥▲❇❳❛❑❩

▲❏◆♥❫ ❢◆❳ ❇①❛◗■❧❇ ⑦⑧➅⑨❬ ④◆❖▲ ❛■■❳◆❛❑❆❇❖ ❛❳❇ ❢◆❑✉❖❇❯ ◆♥ ❯❇❖❑❳❏❘❏♥❪ ✉❖❇❳ ❏♥▲❇❳❢❛❑❇❖ ❛♥❯

▲❆❇❏❳ ❏◗■❧❇◗❇♥▲❛▲❏◆♥❖ ❛▲ ❵❛❳❏◆✉❖ ❧❇❵❇❧❖ ◆❢ ❛❘❖▲❳❛❑▲❏◆♥❬ ➆❇❵❇❧◆■❇❳❖ ◆❢ ✉❖❇❳ ❏♥▲❇❳❢❛❑❇❖ ❢◆❳

❏♥▲❇❳❛❑▲❏❵❇ ❖❨❖▲❇◗❖ ❛❧❖◆ ❆❛❵❇ ▲◆ ❛❯❯❳❇❖❖ ❆❇▲❇❳◆❪❇♥❇❏▲❨ ❛♥❯ ❛❯❛■▲❛▲❏◆♥ ▲◆ ▲❆❇ ❑◆♥▲❇①▲ ◆❢

✉❖❇❬ ➇◆❳ ❇①❛◗■❧❇❫ ❏♥ ⑦➈➉⑨❫ ❛ ◗◆❯❇❧❩❘❛❖❇❯ ❯❇❑❧❛❳❛▲❏❵❇ ❧❛♥❪✉❛❪❇ ❢◆❳ ▲❆❇ ❯❇❖❏❪♥ ◆❢ ❏♥▲❇❳❛❑❩

▲❏❵❇ ❛■■❧❏❑❛▲❏◆♥❖ ❘❛❖❇❯ ◆♥ ♦❇❘ ❖❇❳❵❏❑❇❖ ❏♥ ✉❘❏❴✉❏▲◆✉❖ ❇♥❵❏❳◆♥◗❇♥▲❖ ❲❛❖ ■❳❇❖❇♥▲❇❯❬ ⑤♥

❝�♥t✁❛✂t t� t✄❡✂❡ ❢❛☎✐✆✐❛✁ ❛✝✝✁�❛❝✄❡✂✞ t✄❡ ✝✁❡✂❡♥t ✇�✁❦ ✝✁�✝�✂❡✂ ❛ ❢✁❛☎❡✇�✁❦ ❡♥❛✟✆✐♥❣

❛ ❢�✁☎❛✆ ✈❡✁✐✠❝❛t✐�♥ �❢ ✉✂❡✁ ✐♥t❡✁❛❝t✐�♥✳ ❚✄❡ ❢✁❛☎❡✇�✁❦ ✐✂ ☎❡❛♥t ❢�✁ ✂❛❢❡t✡ ❛♥❛✆✡✂✐✂ �❢

✂❛❢❡t✡✲❝✁✐t✐❝❛✆ ❞❡✈✐❝❡✂ ❛♥❞ ♥�t ✇✐t✄ ✉✂❡✁ ✐♥t❡✁❢❛❝❡ ❞❡✂✐❣♥ ✐✂✂✉❡✂ ❛✂ ❞✐✂❝✉✂✂❡❞ ✐♥ ❬✷✾❪✞

❙✐☎✐✆❛✁✆✡ t� �✉✁ ❛✝✝✁�❛❝✄✞ ❢�✁☎❛✆ ☎�❞❡✆✂ ✇❡✁❡ ✉✂❡❞ ✐♥ ❬✻❪ t� ❞❡✂❝✁✐✟❡ ❢✉♥❝t✐�♥❛✆✐t✡

❛♥❞ ❝�☎✝�♥❡♥t ✐♥t❡✁❛❝t✐�♥✂✞ ✇✄❡✁❡ t✄❡✡ ✇❡✁❡ ❝�☎✟✐♥❡❞ ✇✐t✄ ✉✂❡✁ ✐♥t❡✁❢❛❝❡ ☎�❞❡✆✂ ✐♥

�✁❞❡✁ t� ❣❡t t✄❡ ❡♥t✐✁❡ ☎�❞❡✆ �❢ t✄❡ ✂✡✂t❡☎✳ ▼�✁❡�✈❡✁✞ ❛♥ ❆♥❞✁�✐❞ ❡☎✉✆❛t�✁ ❛✝✝✆✐❝❛t✐�♥

✇❛✂ ❣❡♥❡✁❛t❡❞✞ ✉✂✐♥❣ ❏❛✈❛ ❛♥❞ ❳▼▲ t❡❝✄♥�✆�❣✐❡✂✳ P✁❡✂❡♥t❛t✐�♥ ☎�❞❡✆✂ ❛♥❞ ✝✁❡✂❡♥t❛t✐�♥

✐♥t❡✁❛❝t✐�♥ ☎�❞❡✆✂ ✇❡✁❡ ✉✂❡❞ ✐♥ ❬✾❪ t� ☎�❞❡✆ ✐♥t❡✁❛❝t✐✈❡ ✂�❢t✇❛✁❡ ✂✡✂t❡☎✂❀ t✄❡✂❡ ☎�❞❡✆✂

✇❡✁❡ ✂✄�✇♥ t� ✟❡ ✉✂❛✟✆❡ ✇✐t✄ ❛ ❢�✁☎❛✆ ✂✝❡❝✐✠❝❛t✐�♥ �❢ t✄❡ ✂✡✂t❡☎ ❢✉♥❝t✐�♥❛✆✐t✡✳ ■♥

❬✼❪ t✄❡ ✂❛☎❡ ❢�✁☎❛✆✐✂☎✂ ✇❡✁❡ ✉✂❡❞ t� ☎�❞❡✆ ✉✂❡✁ ☎❛♥✉❛✆✂ �❢ ☎�❞❛✆ ☎❡❞✐❝❛✆ ❞❡✈✐❝❡✂✞

✝✁�✈✐♥❣ t✄❛t t✄❡ ✉✂❡✁ ☎❛♥✉❛✆ ☎❛✡ ✟❡ ♥�t ❛✆✇❛✡✂ ❝�♥✂✐✂t❡♥t ✇✐t✄ ❛❝t✉❛✆ ❞❡✈✐❝❡ ✟❡✄❛✈✐�✉✁✳

■♥ ❬✶✼❪✞ ☎�❞❡✆ ❝✄❡❝❦✐♥❣ ✇❛✂ ✉✂❡❞ t� ☎�❞❡✆ ❛♥❞ ✝✁�✈❡ ✝✁�✝❡✁t✐❡✂ �❢ ✂✝❡❝✐✠❝❛t✐�♥✂

�❢ ✐♥t❡✁❛❝t✐✈❡ ✂✡✂t❡☎✂ ✂� t✄❛t ✝�✂✂✐✟✆✡ ✉♥❡①✝❡❝t❡❞ ❝�♥✂❡☛✉❡♥❝❡✂ �❢ ✐♥t❡✁❢❛❝❡ ☎�❞❡

❝✄❛♥❣❡✂ ❝❛♥ ✟❡ ❝✄❡❝❦❡❞ ❡❛✁✆✡ ✐♥ t✄❡ ❞❡✂✐❣♥ ✝✁�❝❡✂✂✳ ■♥ ❬✶✾❪✞ t✄❡ ❝�☎✝✆❡☎❡♥t❛✁✡ ✁�✆❡

�❢ ☎�❞❡✆ ❝✄❡❝❦✐♥❣ ❛♥❞ t✄❡�✁❡☎ ✝✁�✈✐♥❣ ✐♥ t✄❡ ❛♥❛✆✡✂✐✂ �❢ ✐♥t❡✁❛❝t✐✈❡ ❞❡✈✐❝❡✂ ✇❛✂ ❝�♥✲

✂✐❞❡✁❡❞✳ ❘❡❝❡♥t ✇�✁❦ ❬✶✻❪ ❡①✝✆�✁❡❞ t✄❡ ✝❛t✄✂ t✄❛t ❛ ✉✂❡✁ ✇✐✆✆ t❛❦❡ ✐♥ ✐♥t❡✁❛❝t✐♥❣ ✇✐t✄

☎❡❞✐❝❛✆ ❞❡✈✐❝❡✂ ❢�✁ t✄❡ ❛♥❛✆✡✂✐✂ �❢ ✝✁�✝❡✁t✐❡✂ �❢ t✄❡ ✟❡✄❛✈✐�✉✁ �❢ ✂❛❢❡t✡✲❝✁✐t✐❝❛✆ ❞❡✈✐❝❡✂✳

❆ ☎�❞❡✆✲❝✄❡❝❦✐♥❣ ❛✝✝✁�❛❝✄ ✄❛✂ ❛✆✂� ✟❡❡♥ ✉✂❡❞ t� ❛♥❛✆✡✂❡ ✄❛✁❞✇❛✁❡ ✟❡✄❛✈✐�✉✁ ❬✹❪✳

❆ ❞✐✂❝✉✂✂✐�♥ �❢ ✝✁�❞✉❝t✐�♥ ❝�❞❡ ❣❡♥❡✁❛t✐�♥ ✐♥ ☎�❞❡✆✲✟❛✂❡❞ ❞❡✈❡✆�✝☎❡♥t ❝❛♥ ✟❡

❢�✉♥❞ ✐♥ ❬✶✶❪✳ ▼❛♥✡ ✝❛✝❡✁✂ ❞❡❛✆ ✇✐t✄ ✂✝❡❝✐✠❝ ❝�❞❡ ❣❡♥❡✁❛t�✁✂✞ ❢�✁ ❡①❛☎✝✆❡ ❚❛✁✲

❣❡t▲✐♥❦ ❬✸❪✳ ❈�❞❡ ❣❡♥❡✁❛t�✁✂ ✂✝❡❝✐✠❝❛✆✆✡ ❞❡✂✐❣♥❡❞ ❢�✁ ☎❡❞✐❝❛✆ ✂✡✂t❡☎✂ ❛✁❡ ❞❡✂❝✁✐✟❡❞

✐♥ ❬✷❪ ❛♥❞ ❬✷✽❪✳

☞ ✌✍✎✏ ♠✑✒✓❧✔✒r✕✖✓✗ ✒✓✖✓❧✑♣♠✓✗✘ ✙✗✒ ❊♠✚✛✜✙r✘s

❚✄✐✂ ✂❡❝t✐�♥ ✝✁�✈✐❞❡✂ ✟❛❝❦❣✁�✉♥❞ ✐♥❢�✁☎❛t✐�♥ �♥ t✄❡ P✢❙✐�✲✇❡✟ ❢✁❛☎❡✇�✁❦ ❛♥❞ ✐t✂

✁❡✆❛t✐�♥✂✄✐✝ t� ☎�❞❡✆✲❞✁✐✈❡♥ ❞❡✈❡✆�✝☎❡♥t✳

✣✤✥ ✦❱✧★ ✩❤✪ ✦✫♦✩♦✩②✬✪ ❱✪✫✭✮✯✰✩✭♦✱ ✧②✴✩✪✵

❚✄❡ P✢❙ ✐✂ ❛♥ ✐♥t❡✁❛❝t✐✈❡ t✄❡�✁❡☎ ✝✁�✈❡✁ ❢�✁ ❛ t✡✝❡❞ ✄✐❣✄❡✁✲�✁❞❡✁ ✆�❣✐❝ ✆❛♥❣✉❛❣❡✞ ✝✁�✲

✈✐❞✐♥❣ ❛♥ ❡①t❡♥✂✐✈❡ ✂❡t �❢ ✐♥❢❡✁❡♥❝❡ ✁✉✆❡✂ ✟❛✂❡❞ �♥ t✄❡ ✂❡☛✉❡♥t ❝❛✆❝✉✆✉✂ ❬✸✺❪✳ ■t✂ P✢❙✐�

❡①t❡♥✂✐�♥ ✐✂ ❛ ❣✁�✉♥❞ ❡✈❛✆✉❛t�✁ t✄❛t ❝❛♥ ❝�☎✝✉t❡ t✄❡ ✁❡✂✉✆t✂ �❢ ❣✁�✉♥❞ ❢✉♥❝t✐�♥ ❛✝✝✆✐✲

❝❛t✐�♥✂✞ t✄❛t ✐✂ P✢❙ ❡①✝✁❡✂✂✐�♥✂ ❝�♥✂✐✂t✐♥❣ �❢ ❛ ❢✉♥❝t✐�♥ ♥❛☎❡ ❛✝✝✆✐❡❞ t� ✈❛✁✐❛✟✆❡✲❢✁❡❡

❛✁❣✉☎❡♥t✂✳ P✢❙ ❢✉♥❝t✐�♥✂ ❛✁❡ ✝✉✁❡✆✡ ❞❡❝✆❛✁❛t✐✈❡ ❞❡✠♥✐t✐�♥✂ �❢ ☎❛t✄❡☎❛t✐❝❛✆ ☎❛✝✝✐♥❣✂✞

✇✐t✄�✉t ❛♥✡ ✝✁�❝❡❞✉✁❛✆ ✐♥❢�✁☎❛t✐�♥ �♥ ✄�✇ t� ❝�☎✝✉t❡ t✄❡☎✞ ✟✉t t✄❡ P✢❙✐� ✝❛❝❦❛❣❡

❝❛♥ ❞❡✁✐✈❡ ❛♥❞ ❡①❡❝✉t❡ ❛♥ ❛✆❣�✁✐t✄☎ t� ❡✈❛✆✉❛t❡ ❛ ❣✁�✉♥❞ ❢✉♥❝t✐�♥ ❛✝✝✆✐❝❛t✐�♥✞ t✉✁♥✐♥❣

✐t ✐♥t� ❛ ✝✁�❝❡❞✉✁❡ ❝❛✆✆✳ ❚✄❡ P✢❙✐� ✝❛❝❦❛❣❡ ❛✆✂� ✝✁�✈✐❞❡✂ ❢✉♥❝t✐�♥✂ ✇✐t✄ ✂✐❞❡ ❡❢❢❡❝t✂✞

✂✉❝✄ ❛✂ ✐♥✝✉t ❛♥❞ �✉t✝✉t✞ ✇✄✐❝✄ ❞� ♥�t ✐♥t❡✁❢❡✁❡ ✇✐t✄ t✄❡ ✂❡☎❛♥t✐❝✂ �❢ ❛ t✄❡�✁✡✳

❆ ✂✡✂t❡☎ ✐✂ ☎�❞❡✆✆❡❞ ✐♥ P✢❙ ❛✂ ❛ ✿❁❂❃❄❅✞ ❛ ❝�✆✆❡❝t✐�♥ �❢ ✆�❣✐❝❛✆ ✂t❛t❡☎❡♥t✂ ❛♥❞

❞❡✠♥✐t✐�♥✂ ❛✟�✉t t✄❡ ✂t✁✉❝t✉✁❛✆ ❛♥❞ ✟❡✄❛✈✐�✉✁❛✆ ❛✂✝❡❝t✂ �❢ t✄❡ ✂✡✂t❡☎✳ ❚✄❡ ✂✡✂t❡☎➆✂ ✁❡✲

☛✉✐✁❡❞ ✝✁�✝❡✁t✐❡✂ ❛✁❡ ❡①✝✁❡✂✂❡❞ ❛✂ t✄❡�✁❡☎✂ t� ✟❡ ✈❡✁✐✠❡❞ ✇✐t✄ t✄❡ P✢❙ t✄❡�✁❡☎ ✝✁�✈❡✁✳

■❢ t✄❡ ✟❡✄❛✈✐�✉✁❛✆ ❛✂✝❡❝t✂ ❛✁❡ ❡①✝✁❡✂✂❡❞ ❛✂ ❢✉♥❝t✐�♥✂✞ t✄❡ ✂✡✂t❡☎ ❝❛♥ ❛✆✂� ✟❡ ✂✐☎✉✆❛t❡❞

✇✐t✄ t✄❡ P✢❙✐� ❡①t❡♥✂✐�♥✳ ❚✄❡ ✂❛☎❡ ✆�❣✐❝❛✆ ☎�❞❡✆ ❝❛♥ t✄❡♥ ✟❡ ✉✂❡❞ ✟�t✄ ❢�✁ ✈❡✁✐✠❝❛t✐�♥

❛♥❞ ✂✐☎✉✆❛t✐�♥✳

✸✳✷ ▼♦❞�✁✂❞✄☎✈�❡ ❞�✈�✁♦♣✆�❡✝

✞✟✠✡☛☞✠r✐✌✡✍ ✠✡✌✡☛✟✎♠✡✍t ✭✞❉❉✏ ✐✑ ❜❛✑✡✠ ✟✍ ❝r✡❛t✐✍❣ ❛✍ ✡①✡❝✉t❛❜☛✡ ✑②✑t✡♠ ♠✟✠✡☛ ❜②

❛✑✑✡♠❜☛✐✍❣ ❢✉✍❝t✐✟✍❛☛ ❜☛✟❝✒✑✓ ❆✍ ✡①✡❝✉t❛❜☛✡ ♠✟✠✡☛ ♠❛✒✡✑ ✐t ✎✟✑✑✐❜☛✡ ❜✟t✔ t✟ ✑✐♠✉☛❛t✡

t✔✡ ✑②✑t✡♠ ❛✍✠ t✟ ❣✡✍✡r❛t✡ ✎r✟✠✉❝t✐✟✍ ✑✟❢t✕❛r✡ t✟ ❝✟✍tr✟☛ ✐t✓ ❚✟❣✡t✔✡r ✕✐t✔ t✔✡ ✍❛t✉☞

r❛☛✍✡✑✑ ✟❢ t✔✡ ❣r❛✎✔✐❝ ☛❛✍❣✉❛❣✡ ✟❢ ❢✉✍❝t✐✟✍❛☛ ❜☛✟❝✒✑✱ t✔✡✑✡ ❢✡❛t✉r✡✑ ♠❛✒✡ ✞❉❉ ✌✡r②

❛ttr❛❝t✐✌✡ t✟ ✠✡✌✡☛✟✎✡r✑✓ ❍✟✕✡✌✡r✱ t✔✐✑ ❛✎✎r✟❛❝✔ ✔❛✑ t✕✟ ☛✐♠✐t✑✿ ✖r✑t✱ ❢✉✍❝t✐✟✍❛☛ ❜☛✟❝✒✑

☛✡✍✠ t✔✡♠✑✡☛✌✡✑ t✟ ❜✉✐☛✠✐✍❣ ✠✡✑✐❣✍ ♠✟✠✡☛✑✱ ❜✉t ✍✟t ✑✎✡❝✐✖❝❛t✐✟✍ ✟✍✡✑✗ ❛✍✠ ✑✡❝✟✍✠☛②✱

❢✟r♠❛☛ ✌✡r✐✖❝❛t✐✟✍ ✟❢ ❛ ❜☛✟❝✒☞❜❛✑✡✠ ♠✟✠✡☛ ✐✑ t✡✠✐✟✉✑✱ ❛✍✠ ✐✍ ❢❛❝t ✐t ✐✑ ✉✍❝✟♠♠✟✍ ✐✍

✐✍✠✉✑tr✐❛☛ ✎r❛❝t✐❝✡✓

❆ ❢✟r♠❛☛ ❛✎✎r✟❛❝✔ ❝❛✍ ❜✡ ✉✑✡✠ t✟ ❝r✡❛t✡ ❜✟t✔ ✑✎✡❝✐✖❝❛t✐✟✍ ❛✍✠ ✠✡✑✐❣✍ ♠✟✠✡☛✑ ❛✍✠

✐✍tr✐✍✑✐❝❛☛☛② ☛✡✍✠✑ ✐t✑✡☛❢ t✟ r✐❣✟r✟✉✑ ✌✡r✐✖❝❛t✐✟✍ ✟❢ ✑②✑t✡♠ ✎r✟✎✡rt✐✡✑✓ ■✍ ✎❛rt✐❝✉☛❛r✱ ☛✟❣✐❝

✑✎✡❝✐✖❝❛t✐✟✍ ☛❛✍❣✉❛❣✡✑✱ ✑✉❝✔ ❛✑ P✘✙✱ ❛r✡ ✑✉✎✎✟rt✡✠ ❜② ❛✉t✟♠❛t✐❝ ✟r ✐✍t✡r❛❝t✐✌✡ t✔✡✟r✡♠

✎r✟✌✡r✑ ✉✑✡✠ ❜② ✠✡✌✡☛✟✎✡r✑ t✟ ❝✔✡❝✒ ✐❢ ✑②✑t✡♠ r✡✚✉✐r✡♠✡✍t✑✱ ✡①✎r✡✑✑✡✠ ❛✑ ☛✟❣✐❝❛☛ ❢✟r♠✉☞

☛❛✑✱ ❛r✡ ✐♠✎☛✐✡✠ ❜② ❛ ✑②✑t✡♠➆✑ ✠✡✑❝r✐✎t✐✟✍ ✡①✎r✡✑✑✡✠ ✐✍ ❛ ☛✟❣✐❝ t✔✡✟r②✓ ❍✟✕✡✌✡r✱ ❢✟r♠❛☛

♠✡t✔✟✠✑ r✡✚✉✐r✡ ✡①✎✡rt✐✑✡ ✐✍ ☛❛✍❣✉❛❣✡✑ ❛✍✠ ♠✡t✔✟✠✑ t✔❛t ❛r✡ ✍✟t ✕✐✠✡☛② ✒✍✟✕✍ ✐✍ t✔✡

✕✐✠✡r ✠✡✌✡☛✟✎✡r ❝✟♠♠✉✍✐t②✓ ❋✉rt✔✡r✱ ♠✟✑t ❢✟r♠❛☛ ☛❛✍❣✉❛❣✡✑ ❛❜✑tr❛❝t ❢r✟♠ t✔✡ ❢❛♠✐☛✐❛r

✎r✟❝✡✠✉r✡☞✟r✐✡✍t✡✠ ❝✟♠✎✉t❛t✐✟✍ ♠✟✠✡☛ ✟❢ ✎✟✎✉☛❛r ✎r✟❣r❛♠♠✐✍❣ ☛❛✍❣✉❛❣✡✑✱ ♠❛✒✐✍❣ ✐t

✔❛r✠✡r t✟ ❣✡✍✡r❛t✡ ✡①✡❝✉t❛❜☛✡ ✑✟❢t✕❛r✡✓

■t ✐✑ t✔✡✍ ✠✡✑✐r❛❜☛✡ t✟ ✔❛✌✡ t✟✟☛✑ ❛✍✠ ♠✡t✔✟✠✑ ✎r✟✌✐✠✐✍❣ ✠✡✌✡☛✟✎✡r✑ ✕✐t✔ t✔✡ ❢✡❛t✉r✡✑

✟❢ ❜✟t✔ ❛✎✎r✟❛❝✔✡✑✓ ❚✔✡ ✎r✡✑✡✍t ✕✟r✒ ✐✑ ✎❛rt ✟❢ ❛ r✡✑✡❛r❝✔ ✡❢❢✟rt ❛✐♠✡✠ ❛t t✔✐✑ ❣✟❛☛✓❲✐t✔

t✔✡ P✘✙✐✟☞✕✡❜ ❢r❛♠✡✕✟r✒✱ ❛ ✠✡✌✡☛✟✎✡r ❝❛✍ ❜✉✐☛✠ ❛ ♠✟✠✡☛ ✐✍ ❛ ❣r❛✎✔✐❝❛☛ ✑t❛t✡☞♠❛❝✔✐✍✡

☛❛✍❣✉❛❣✡ ✟r ❛ ☛✟❣✐❝ ☛❛✍❣✉❛❣✡✱ ✟r ❜✟t✔ ✭✙✡❝t✓ ✛✏✓ ❚✔✡ ❣r❛✎✔✐❝❛☛ ♠✟✠✡☛ ✐✑ tr❛✍✑☛❛t✡✠ ✐✍t✟

t✔✡ ☛✟❣✐❝ ☛❛✍❣✉❛❣✡ ❛✉t✟♠❛t✐❝❛☛☛②✱ ❛✍✠ t✔✡ r✡✑✉☛t✐✍❣ tr❛✍✑☛❛t✐✟✍ ✐✑ ❜✟t✔ ✌✡r✐✖❛❜☛✡ ❛✍✠

✡①✡❝✉t❛❜☛✡ ✉✑✐✍❣ t✔✡ P✘✙✐✟ ❣r✟✉✍✠ ✡✌❛☛✉❛t✟r✱ ✕✔✐❝✔ ❛❝t✑ ❛✑ ❛✍ ✐✍t✡r✎r✡t✡r ❢✟r t✔✡ P✘✙

☛❛✍❣✉❛❣✡✓ ❚✔✡ P✘✙✐✟☞✕✡❜ ❢r❛♠✡✕✟r✒ t✔✉✑ ✎r✟✌✐✠✡✑ ❢✡❛t✉r✡✑ ✟❢ t✔✡ ❢✟r♠❛☛ ❛✎✎r✟❛❝✔✿

❆ ❢✟r♠❛☛ ✑✎✡❝✐✖❝❛t✐✟✍ ☛❛✍❣✉❛❣✡ ❛✍✠ ❛ ✌✡r✐✖❝❛t✐✟✍ t✟✟☛✱ ❛✍✠ ❢✡❛t✉r✡✑ ✟❢ ✞❉❉✱ t✔✉✑

✎r✟✌✐✠✐✍❣ ❛ ❢✉☛☛ ❣r❛✎✔✐❝❛☛ ♠✟✠✡☛☛✐✍❣ ☛❛✍❣✉❛❣✡ ❛✍✠ ❛ ✑✐♠✉☛❛t✐✟✍ ✡✍❣✐✍✡✓ ❆ tr❛✍✑☛❛t✟r

❢r✟♠ ❊♠✉❝✔❛rt✑ t✟ ❈ ♠❛✒✡✑ ✐t ✎✟✑✑✐❜☛✡ t✟ ❣✡✍✡r❛t✡ ❝✟✠✡ ❢r✟♠ ❛ ✑t❛t✡ ♠❛❝✔✐✍✡☞❜❛✑✡✠

♠✟✠✡☛ t✔❛t ❝❛✍ ❜✡ ✌❛☛✐✠❛t✡✠ ❜② ✑✐♠✉☛❛t✐✟✍ ❛✍✠ ✌✡r✐✖✡✠ ❜② t✔✡✟r✡♠ ✎r✟✌✐✍❣✓ ❚✔✡ ✟t✔✡r

✐♠✎✟rt❛✍t ❢✡❛t✉r✡ ✟❢ ✞❉❉ ➋ ❣✡✍✡r❛t✐✟✍ ✟❢ ✎r✟✠✉❝t✐✟✍ ❝✟✠✡ ❝❛✎❛❜☛✡ t✟ ❜✡ r✉✍ ✟✍ t✔✡

❛❝t✉❛☛ ✑②✑t✡♠ ✔❛r✠✕❛r✡ ➋ ✐✑ ❛ ✒✡② ❝✟✍tr✐❜✉t✐✟✍ ✟❢ t✔✐✑ ✎❛✎✡r✓

✸✳✸ ✜❱✢☎♦✂✇�✣

❚✔✡ P✘✙✐✟☞✕✡❜ ❢r❛♠✡✕✟r✒ ✐✑ ❛ ✑✡t ✟❢ t✟✟☛✑✱ ❝✟☞✟r✠✐✍❛t✡✠ ❜② ❛ ✕✡❜☞❜❛✑✡✠ ✐✍t✡r❢❛❝✡✱ ❢✟r

✎r✟t✟t②✎✐✍❣ ❛✍✠ ✑✐♠✉☛❛t✐✟✍ ✟❢ ✐✍t✡r❛❝t✐✌✡ ✠✡✌✐❝✡✑✓ ■t✑ ♠❛✐✍ ❝✟♠✎✟✍✡✍t✑ ❛r✡✱ ❜✡✑✐✠✡✑

P✘✙ ✕✐t✔ ✐t✑ P✘✙✐✟ ✡①t✡✍✑✐✟✍✿ ✭✤✏ t✔✡ ✜✄♦✝♦✝✥♣� ❇✦☎✁❞�✄✱ ❛ ❣r❛✎✔✐❝❛☛ t✟✟☛ ✉✑✡✠ t✟

❝✔✟✟✑✡ ❛ ✎✐❝t✉r✡ ✟❢ ❛✍ ✡①✐✑t✐✍❣ ✟r ❛✍t✐❝✐✎❛t✡✠ ✠✡✌✐❝✡➆✑ ❢r✟✍t ✎❛✍✡☛ ❛✍✠ t✟ ❛✑✑✟❝✐❛t✡ P✘✙

❢✉✍❝t✐✟✍✑ ✕✐t✔ ❛❝t✐✌✡ ❛r✡❛✑ ✟❢ t✔✡ ✎✐❝t✉r✡ r✡✎r✡✑✡✍t✐✍❣ ✠✡✌✐❝✡ ✐✍✎✉t✑ ✭✡✓❣✓✱ ❜✉tt✟✍✑ ✟r

✒✡②✑✏ ❛✍✠ ✟✉t✎✉t✑ ✭✡✓❣✓✱ ❛☛✎✔❛✍✉♠✡r✐❝ ✠✐✑✎☛❛②✑ ✟r ☛✐❣✔t✑✏✗ ✭✤✤✏ t✔✡ ▼♦❞�✁ ✧❞☎✝♦✄✱ ❛ t✡①☞

t✉❛☛ ✐✍t✡r❢❛❝✡ t✟ ✕r✐t✡ P✘✙ ❝✟✠✡✗ ✭✤✤✤✏ t✔✡ ✧✆✦★✩✪✄✝s ✧❞☎✝♦✄✱ ❛ ❣r❛✎✔✐❝❛☛ t✟✟☛ t✟ ✠r❛✕

❊♠✉❝✔❛rt✑ ✑t❛t✡ ♠❛❝✔✐✍✡ ✠✐❛❣r❛♠✑✗ ✭✤✫✏ ❛ ✢☎✆✦✁✪✝☎♦❡ ✧❡✈☎✄♦❡✆�❡✝✗ ❛✍✠ ✭✫✏ ✬♦❞�●�❡✂

�✄✪✝♦✄s ❢✟r P✘✙ ❛✍✠ ✟t✔✡r ❢✟r♠❛☛ ☛❛✍❣✉❛❣✡✑ ✭❝✉rr✡✍t☛② Pr✡✑✡✍t❛t✐✟✍ ■✍t✡r❛❝t✐✟✍ ✞✟✠☞

✡☛✑ ❬✽❪✱ ✞✟✠❛☛ ❆❝t✐✟✍ ▲✟❣✐❝ ❬✶✺❪✱ ❛✍✠ ✘✐✡✍✍❛ ❉✡✌✡☛✟✎♠✡✍t ✞✡t✔✟✠ ❬✶✮❪✏ ➋ ❛✍✠ ❢✟r

✞■✙❙❆ ❈✱ ❛✑ ✎r✡✑✡✍t✡✠ ✐✍ t✔✐✑ ✎❛✎✡r✓

P�✁✐✂✲✇✄❜ ❝☎♥ ❜✄ ✉s✄❡ t✂ ♣r✂t✂t✆♣✄ ☎ ♥✄✇ ❡✄✈✐❝✄ ✐♥t✄r❢☎❝✄✝ ✂r t✂ ❝r✄☎t✄ ☎ r✄✈✄rs✄✲

✄♥❣✐♥✄✄r✄❡ ♠✂❡✄✞ ✂❢ ☎♥ ✄①✐st✐♥❣ ✂♥✄✟ ■♥ ✄✐t✠✄r ❝☎s✄✝ ☎ ❡✄✈✄✞✂♣✄r ❝r✄☎t✄s ❢✂r♠☎✞ ❡✄s❝r✐♣✲

t✐✂♥s ✂❢ t✠✄ ❡✄✈✐❝✄✡s r✄s♣✂♥s✄s t✂ ✉s✄r ☎❝t✐✂♥s✝ ✉s✐♥❣ t✠✄ ♠✂❡✄✞ ☎♥❡ ❊♠✉❝✠☎rts ✄❡✐t✂rs✝

☎♥❡ ☎ss✂❝✐☎t✄s t✠✄s✄ ❡✄s❝r✐♣t✐✂♥s ✇✐t✠ t✠✄ ☎❝t✐✈✄ ☎r✄☎s ✂❢ t✠✄ s✐♠✉✞☎t✄❡ ✐♥t✄r❢☎❝✄✝ ✉s✐♥❣

t✠✄ ♣r✂t✂t✆♣✄ ❜✉✐✞❡✄r✟ ■♥ t✠✄ s✐♠✉✞☎t✐✂♥ ✄♥✈✐r✂♥♠✄♥t✝ t✠✄ ❡✄✈✄✞✂♣✄r✝ ✂r ☎ ❡✂♠☎✐♥ ✄①♣✄rt

✂r ☎ ♣✂t✄♥t✐☎✞ ✉s✄r✝ ✐♥t✄r☎❝ts ✇✐t✠ t✠✄ ♣r✂t✂t✆♣✄ ❝✞✐❝☛✐♥❣ ✂♥ t✠✄ ✐♥♣✉t ✇✐❡❣✄ts✟ ❚✠✄s✄

☎❝t✐✂♥s ☎r✄ tr☎♥s✞☎t✄❡ t✂ P�✁ ❢✉♥❝t✐✂♥ ❝☎✞✞s ✄①✄❝✉t✄❡ ❜✆ t✠✄ P�✁✐✂ ✐♥t✄r♣r✄t✄r✟

✸✳✹ ☞✌✍✎✏✑✒✓✔

❆♥ ❊♠✉❝✠☎rts ❡✐☎❣r☎♠ ✐s t✠✄ r✄♣r✄s✄♥t☎t✐✂♥ ✂❢ ☎♥ ✄①t✄♥❡✄❡ st☎t✄ ♠☎❝✠✐♥✄ ✐♥ t✠✄ ❢✂r♠

✂❢ ☎ ❡✐r✄❝t✄❡ ❣r☎♣✠ ❝✂♠♣✂s✄❡ ✂❢ ✞☎❜✄✞✞✄❡ ✕♦❞✖✗ ☎♥❡ ✘✙❛✕✗✚✘✚♦✕✗✟ ❚r☎♥s✐t✐✂♥s ☎r✄ ✞☎❜✄✞✞✄❡

✇✐t✠ tr✐♣✞✄s ✂❢ t✠✄ ❢✂r♠ ✘✙✚✛✛✖✙❬✛✜❛✙❞❪④❛✢✘✚♦✕⑥✝ ✇✠✄r✄ ✘✙✚✛✛✖✙ ✐s t✠✄ ♥☎♠✄ ✂❢ ☎♥ ✄✈✄♥t✝

✛✜❛✙❞ ✐s ☎♥ ✄♥☎❜✞✐♥❣ ❇✂✂✞✄☎♥ ✄①♣r✄ss✐✂♥✝ ☎♥❡ ❛✢✘✚♦✕ ✐s ☎ s✄t ✂❢ ☎ss✐❣♥♠✄♥ts t✂ t✆♣✄❡

✈☎r✐☎❜✞✄s ❡✄❝✞☎r✄❡ ✐♥ t✠✄ st☎t✄ ♠☎❝✠✐♥✄✡s ✢♦✕✘✖✣✘✟ ❚✠✄ ❡✄❢☎✉✞t ❣✉☎r❡ ✐s t✠✄ ✘✙✜✖ ✈☎✞✉✄ ☎♥❡

t✠✄ ❡✄❢☎✉✞t ☎❝t✐✂♥ ✐s ☎ ♥✂✲✂♣✄r☎t✐✂♥✟ ❚✠✄ ✗✘❛✘✖ ✂❢ t✠✄ ♠☎❝✠✐♥✄ ✐s ❡✄✤♥✄❡ ❜✆ t✠✄ ❝✉rr✄♥t

♥✂❡✄ ☎♥❡ t✠✄ ❝✉rr✄♥t ✈☎✞✉✄s ✂❢ t✠✄ ❝✂♥t✄①t ✈☎r✐☎❜✞✄s✟

❚✠✄ ❝✂❡✄ ❣✄♥✄r☎t✂r ❢✂r P�✁ ♣r✂❡✉❝✄s ☎ t✠✄✂r✆ ❝✂♥t☎✐♥✐♥❣ ❢✉♥❝t✐✂♥s t✠☎t ❡✄✤♥✄ t✠✄

st☎t✄ ♠☎❝✠✐♥✄ ❜✄✠☎✈✐✂✉r ✂♥ t✠✄ ✂❝❝✉rr✄♥❝✄ ✂❢ tr✐❣❣✄r ✄✈✄♥ts✟ ✁✐♥❝✄ ☎♥ ❊♠✉❝✠☎rts ❡✐☎✲

❣r☎♠ ✉s✉☎✞✞✆ r✄♣r✄s✄♥ts ☎ ❡✄✈✐❝✄ r✄s♣✂♥s✄ t✂ ✉s✄r ☎❝t✐✂♥s✝ s✉❝✠ ✄✈✄♥ts r✄♣r✄s✄♥t ✉s✄r

☎❝t✐✂♥s✝ s✉❝✠ ☎s ♣r✄ss✐♥❣ ☎ ❜✉tt✂♥ ✂♥ ☎ ❝✂♥tr✂✞ ♣☎♥✄✞✟ ❉✉r✐♥❣ s✐♠✉✞☎t✐✂♥ ✂♥ ☎ P✥✝ ☎ ✉s✄r

❝✞✐❝☛ ✂♥ ☎♥ ☎❝t✐✈✄ ☎r✄☎ ✂❢ t✠✄ ❡✄✈✐❝✄ ♣✐❝t✉r✄ ❝☎✉s✄s t✠✄ s✐♠✉✞☎t✂r t✂ ❣✄♥✄r☎t✄ ☎ ❢✉♥❝t✐✂♥

☎♣♣✞✐❝☎t✐✂♥ ✄①♣r✄ss✐✂♥ t✠☎t ✐s ♣☎ss✄❡ t✂ t✠✄ P�✁✐✂ ❣r✂✉♥❡ ✄✈☎✞✉☎t✂r✟

✦ ❋✧★✩ ✪✩✫✬✭✮✧✯✰ ✯★ ✰✮✱✴ ❈

❚✠✄ ☎✐♠ ✂❢ ♣r✂❣r☎♠♠✐♥❣ ❝✂❡✄ ❣✄♥✄r☎t✐✂♥ ✐♥ t✠✄ P�✁✐✂✲✇✄❜ ❢r☎♠✄✇✂r☛ ✐s ♣r✂❡✉❝✐♥❣ ☎

♠✂❡✉✞✄ t✠☎t ✐♠♣✞✄♠✄♥ts t✠✄ ✉s✄r ✐♥t✄r❢☎❝✄ ✂❢ ☎ ❡✄✈✐❝✄ ✇✠✐❝✠ ❝☎♥ ❜✄ ❝✂♠♣✐✞✄❡ ☎♥❡ ✞✐♥☛✄❡

✐♥t✂ t✠✄ ❡✄✈✐❝✄ s✂❢t✇☎r✄ ✇✐t✠✂✉t ☎♥✆ ♣☎rt✐❝✉✞☎r ☎ss✉♠♣t✐✂♥s ✂♥ ✐ts ☎r❝✠✐t✄❝t✉r✄✟ ■♥ t✠✐s

✇☎✆✝ t✠✄ ✉s✄r ✐♥t✄r❢☎❝✄ ♠✂❡✉✞✄ ❝☎♥ ❜✄ ✉s✄❡ ✇✐t✠✂✉t ❢✂r❝✐♥❣ ❡✄s✐❣♥ ❝✠✂✐❝✄s ✂♥ t✠✄ r✄st

✂❢ t✠✄ s✂❢t✇☎r✄✟ ■♥ ✂✉r ☎♣♣r✂☎❝✠✝ t✠✄ ❣✄♥✄r☎t✄❡ ♠✂❡✉✞✄ ❝✂♥t☎✐♥s ☎ s✄t ✂❢ ✥ ❢✉♥❝t✐✂♥s✟

❚✠✄ ♠☎✐♥ ✂♥✄s ☎r✄✝ ❢✂r ✄☎❝✠ ❊♠✉❝✠☎rts tr✐❣❣✄r✿ ✵✚✶ ☎ ✷✖✙✺✚✗✗✚♦✕ ❢✉♥❝t✐✂♥✝ t✂ ❝✠✄❝☛ ✐❢

t✠✄ tr✐❣❣✄r ✄✈✄♥t ✐s ✷✖✙✺✚✘✘✖❞✝ ✐✟✄✟✝ ✇✠✄t✠✄r ✐t ✐s ☎ss✂❝✐☎t✄❡ ✇✐t✠ ☎♥✆ tr☎♥s✐t✐✂♥ ❢r✂♠ t✠✄

❝✉rr✄♥t st☎t✄✝ ☎♥❡ ✵✚✚✶ ☎ ✘✙❛✕✗✚✘✚♦✕ ❢✉♥❝t✐✂♥ t✠☎t✝ ☎❝❝✂r❡✐♥❣ t✂ t✠✄ ❝✉rr✄♥t st☎t✄✝ ✉♣❡☎t✄s

✐t✝ ♣r✂✈✐❡✄❡ t✠☎t t✠✄ ❣✉☎r❡ ❝✂♥❡✐t✐✂♥ ✂❢ ☎♥ ✂✉t❣✂✐♥❣ tr☎♥s✐t✐✂♥ ✠✂✞❡s✟ ❚✠✄ ❝✂❡✄ ✐♥❝✞✉❡✄s

✞✂❣✐❝☎✞✞✆ r✄❡✉♥❡☎♥t t✄sts ✵❛✗✗✖✙✘ ♠☎❝r✂s✶ t✂ ✐♠♣r✂✈✄ r✂❜✉st♥✄ss✟

❚✂ ❣✄♥✄r☎t✄ ♣r✂❡✉❝t✐✂♥✲q✉☎✞✐t✆ ❝✂❡✄ ✤t ❢✂r s☎❢✄t✆✲❝r✐t✐❝☎✞ ☎♣♣✞✐❝☎t✐✂♥s ✇✄ ☎❡✂♣t

▼■✁❙❆ ❣✉✐❡✄✞✐♥✄s✟ ❚✠✄ ▼■✁❙❆ ❣✉✐❡✄✞✐♥✄s ❢✂r t✠✄ ✥ ✞☎♥❣✉☎❣✄✝ ✂r✐❣✐♥☎✞✞✆ ❝✂♥❝✄✐✈✄❡

❢✂r t✠✄ ☎✉t✂♠✂t✐✈✄ ✐♥❡✉str✆✝ ✄♥❢✂r❝✄ ♣r✂❣r☎♠♠✐♥❣ ♣r☎❝t✐❝✄s t✂ ✐♠♣r✂✈✄ ♠☎✐♥t☎✐♥☎❜✐✞✐t✆

☎♥❡ ♣✂rt☎❜✐✞✐t✆ ☎♥❡✝ ☎❜✂✈✄ ☎✞✞✝ t✂ r✄❡✉❝✄ t✠✄ r✐s☛ ✂❢ ♠☎✞❢✉♥❝t✐✂♥ ❡✉✄ t✂ ✐♠♣✞✄♠✄♥t☎t✐✂♥✲

✂r ♣✞☎t❢✂r♠✲❡✄♣✄♥❡✄♥t ☎s♣✄❝ts ✂❢ t✠✄ ✥ ✞☎♥❣✉☎❣✄✟ ✻✂r ✐♥st☎♥❝✄✝ t✠✄r✄ ☎r✄ r✉✞✄s t✠☎t ❜☎r

t✠✄ ✉s✄ ✂❢ ❝✂♥str✉❝ts s✉❝✠ ☎s ✼✽✾✽✝ ☎♥❡ r✉✞✄s r✄q✉✐r✐♥❣ t✠☎t ♥✉♠✄r✐❝ ✞✐t✄r☎✞s ❜✄ s✉❢✤①✄❡

t✂ ✐♥❡✐❝☎t✄ t✠✄✐r t✆♣✄ ✄①♣✞✐❝✐t✞✆✟ ❚✠✄ ❣✄♥✄r☎t✄❡ ❝✂❡✄ ❝✉rr✄♥t✞✆ ❝✂♠♣✞✐✄s ✇✐t✠ t✠✄ ✤rst

✈✄rs✐✂♥ ✂❢ t✠✄ ❀❁❁❂ ▼■✁❙❆ ✥ ❣✉✐❡✄✞✐♥✄s✟

❋✐❣✳ ✷✳ ❚❤❡ P❱�✁♦✲✂❡❜ ✉s❡r ✁♥t❡r✄❛☎❡ ✂✁t❤ t❤❡ Pr♦t♦t②♣❡ ❇✉✁❧❞❡r ❛♥❞ ❊♠✉☎❤❛rts ❊❞✁t♦r ✄r❛♠❡s✆

✹✝✶ ❈✞✟✠ ✡✠☛✠☞✌✍✎✞☛

❖✏✑ ▼✒❙✓❆ ✔ ❝✕✖✗ ✘✗✙✗✑✚✛✕✑ ✇✚✜ ✢✣✤✥✗✣✗✙✛✗✖ ✢✙ ❏✚✈✚❙❝✑✢✤✛ ✏✜✢✙✘ ❍✚✙✖✥✗✦✚✑✜ ❬✧★❪✱

✚ ✣✚❝✑✕✩✗①✤✚✙✜✢✕✙ ✛✕✕✥ ❢✕✑ ✇✗✦ ✚✤✤✥✢❝✚✛✢✕✙✜✪ ❆ ❍✚✙✖✥✗✦✚✑✜ ✛✗✣✤✥✚✛✗ ✢✜ ✚ ✤✢✗❝✗ ✕❢

✛✗①✛ ❝✕✙✛✚✢✙✢✙✘ ➇❍✚✙✖✥✗✦✚✑ ✗①✤✑✗✜✜✢✕✙✜✱➈ ✇✫✢❝✫ ✑✗❢✗✑ ✛✕ ✗✥✗✣✗✙✛✜ ✕❢ ✛✫✗ ✜✏✑✑✕✏✙✖✢✙✘

❝✕✙✛✗①✛✱ ✛✬✤✢❝✚✥✥✬ ✚✙ ❍✭▼▲ ✖✕❝✏✣✗✙✛✪ ❆ ❍✚✙✖✥✗✦✚✑✜ ✗①✤✑✗✜✜✢✕✙ ✜✤✗❝✢✮✗✜ ✚ ❝✫✚✑✚❝✛✗✑

✜✛✑✢✙✘ ✚✜ ✚ ❢✏✙❝✛✢✕✙ ✕❢ ❝✕✙✛✗①✛ ✗✥✗✣✗✙✛✜✱ ✇✫✢❝✫ ✢✜ ❝✕✣✤✢✥✗✖ ✢✙✛✕ ✚ ❏✚✈✚❙❝✑✢✤✛ ❢✏✙❝✛✢✕✙

✛✫✚✛ ✑✗✛✏✑✙✜ ✛✫✗ ✛✗✣✤✥✚✛✗ ✛✗①✛ ✇✢✛✫ ✛✫✗ ✜✏✦✜✛✢✛✏✛✢✕✙✜ ❝✕✣✤✏✛✗✖ ✦✬ ✛✫✗ ❍✚✙✖✥✗✦✚✑✜ ✗①✩

✤✑✗✜✜✢✕✙✜✪ ✯✕✑ ✗①✚✣✤✥✗✱ ✚ ✛✗✣✤✥✚✛✗ ❢✑✚✘✣✗✙✛ ❢✕✑ ✚ ✔ ✤✑✗✤✑✕❝✗✜✜✕✑ ✰✴✵✸✺✻✼✽ ✖✢✑✗❝✛✢✈✗

✢✜ ✰✴✵✸✺✻✼✽ ✾④④✿✴✺✽✵❀❁✽⑥⑥❂❃✾✱ ✇✫✗✑✗ ✛✫✗ ❍✚✙✖✥✗✦✚✑✜ ✗①✤✑✗✜✜✢✕✙ ④④✿✴✺✽✵❀❁✽⑥⑥

❝✕✙✛✚✢✙✜ ✛✫✗ ✿✴✺✽✵❀❁✽ ✤✚✑✚✣✗✛✗✑ ✛✫✚✛ ✇✢✥✥ ✦✗ ✑✗✤✥✚❝✗✖ ✦✬ ✛✫✗ ✚❝✛✏✚✥ ✙✚✣✗ ✕❢ ✛✫✗ ✮✥✗ ✛✕

✦✗ ✢✙❝✥✏✖✗✖✪

✭✫✗ ❝✕✖✗ ✘✗✙✗✑✚✛✕✑ ✤✑✕✖✏❝✗✜ ✚ ✫✗✚✖✗✑ ✮✥✗✱ ✚✙ ✢✣✤✥✗✣✗✙✛✚✛✢✕✙ ✮✥✗✱ ✚ ✣✚❄✗✮✥✗✱ ✚

✜✢✣✤✥✗ ✛✗✜✛ ✖✑✢✈✗✑ ✮✥✗✱ ✚✙✖ ✚ ✖✕❝✏✣✗✙✛✚✛✢✕✙ ✣✚✙✏✚✥✪

✭✫✗ ✜✛✑✏❝✛✏✑✗ ✕❢ ✛✫✗ ✫✗✚✖✗✑ ✮✥✗ ✢✜ ✖✗✮✙✗✖ ✦✬ ✛✫✗ ✘✑✚✣✣✚✑ ✢✙ ✭✚✦✥✗ ✧✪ ✭✫✗ ✫✗✚✖✗✑

✮✥✗ ❝✕✙✛✚✢✙✜✱ ✚✣✕✙✘ ✕✛✫✗✑ ✢✛✗✣✜✱ ✛✫✗ ✖✗❝✥✚✑✚✛✢✕✙✜ ❅❉●■❑◆❑◗❘◆❑❯❲❳❉❳❨❲❩ ✢✙ ✛✫✗ ✘✑✚✣✣✚✑❭

❢✕✑ ✛✬✤✗✜ ✇✢✛✫ ✗①✤✥✢❝✢✛ ✑✗✤✑✗✜✗✙✛✚✛✢✕✙ ✕❢ ✜✢❫✗ ✚✙✖ ✜✢✘✙✱ ✗✪✘✪✱ ❴❵❥❦✱ ❢✕✑ ❑❳q③❉⑤⑦❳❉ ⑧❲❩❳q❲❑◆

⑨③⑩❶✱ ✛✫✗ ✖✗❝✥✚✑✚✛✢✕✙ ❅❩❉⑩❉❑❘❷⑩⑦❑❷❩❘❑❲⑧❸❭ ❢✕✑ ✚✙ ✗✙✏✣✗✑✚✛✢✕✙ ✛✬✤✗ ✖✗✮✙✢✙✘ ✛✫✗ ✙✕✖✗

✥✚✦✗✥✜✱ ✚✙✖ ✛✫✗ ✖✗❝✥✚✑✚✛✢✕✙ ❅❩❉⑩❉❑❘❩❉❶⑧⑨❉⑧❶❑❭ ❢✕✑ ✛✫✗ ❩❉⑩❉❑ ✜✛✑✏❝✛✏✑✗ ✛✬✤✗ ✑✗✤✑✗✜✗✙✛✢✙✘ ✛✫✗

✜✛✚✛✗ ✕❢ ✛✫✗ ❹✣✏❝✫✚✑✛✜ ✣✕✖✗✥✪ ✭✫✢✜ ✜✛✑✏❝✛✏✑✗ ❝✕✙✛✚✢✙✜ ✕✙✗ ⑨❨❲❉❑❺❉ ✮✗✥✖ ❢✕✑ ✗✚❝✫ ✈✚✑✢✩

✚✦✥✗ ✖✗✮✙✗✖ ✢✙ ✛✫✗ ❹✣✏❝✫✚✑✛✜ ❝✕✙✛✗①✛✱ ✚✙✖ ✛✇✕ ✣✕✑✗ ✮✗✥✖✜ ❅⑨⑧❶❶❘❲❨◆❑ ✚✙✖ ■❶❑❻❘❲❨◆❑❭

❝✕✙✛✚✢✙ ✛✫✗ ✥✚✦✗✥✜ ✕❢ ✛✫✗ ❝✏✑✑✗✙✛ ✚✙✖ ✛✫✗ ✤✑✗✈✢✕✏✜ ✙✕✖✗✪

✭✫✗ ✖✗❝✥✚✑✚✛✢✕✙✜ ✚✑✗ ❢✕✥✥✕✇✗✖ ✦✬ ✛✫✗ ❢✏✙❝✛✢✕✙ ✤✑✕✛✕✛✬✤✗✜ ✕❢ ✛✫✗ ✛✇✕ ✏✛✢✥✢✛✬ ❢✏✙❝✩

✛✢✕✙✜ ❑❲❉❑❶ ✚✙✖ ❷❑⑩❻❑✱ ✛✫✗ ❳❲❳❉ ❢✏✙❝✛✢✕✙✱ ✚✙✖✱ ❢✕✑ ✗✚❝✫ ✛✑✢✘✘✗✑✱ ✕✙✗ ✤✗✑✣✢✜✜✢✕✙ ✚✙✖ ✕✙✗

✛✑✚✙✜✢✛✢✕✙ ❢✏✙❝✛✢✕✙✪ ✭✫✗ ❢✏✙❝✛✢✕✙✜ ✑✗❝✗✢✈✗ ✚ ✤✕✢✙✛✗✑ ✛✕ ✚ ✜✛✑✏❝✛✏✑✗ ✕❢ ✛✬✤✗ ❩❉⑩❉❑ ✤✚✜✜✗✖

✦✬ ✚ ❝✚✥✥✢✙✘ ✤✑✕✘✑✚✣✪ ✭✫✗ ❑❲❉❑❶ ✚✙✖ ❷❑⑩❻❑ ❢✏✙❝✛✢✕✙✜✱ ❝✚✥✥✗✖ ✦✬ ✛✫✗ ❳❲❳❉ ✚✙✖ ✛✑✚✙✜✢✛✢✕✙

❢✏✙❝✛✢✕✙✜✱ ✏✤✖✚✛✗ ✛✫✗ ⑨⑧❶❶❘❲❨◆❑ ✚✙✖ ■❶❑❻❘❲❨◆❑ ✮✗✥✖✜✱ ✑✗✜✤✗❝✛✢✈✗✥✬✱ ✇✢✛✫ ✛✫✗ ✛✚✑✘✗✛ ✚✙✖

❤ �❡✁❞❡✂✄❧❡ ✐ ✿✿❂ ❤ ♣✂❡♣✂♦❝❡ss♦✂r❞☎✂❡❝t☎✈❡s ✐

❬ ❤ ❝♦♥st✁♥tr❞❡✄♥☎t☎♦♥s ✐ ❪

❤ t②♣❡❞❡✆r❞❡✄♥☎t☎♦♥s ✐

❤ st✁t❡r❧✁❜❡❧sr❡♥✉♠ ✐

❤ st✁t❡rst✂✉❝t✉✂❡ ✐

❤ ✉t☎❧☎t②r✆✉♥❝t☎♦♥s ✐

❤ ☎♥☎tr✆✉♥❝t☎♦♥ ✐

❤ ♣❡✂♠☎ss☎♦♥r✆✉♥❝t☎♦♥s ✐

❤ t✂✁♥s☎t☎♦♥r✆✉♥❝t☎♦♥s ✐

❚❛✝✞✟ ✶✳ ❙✠✡☛☞✠☛✡✌ ✍❢ ✎ ✏✌✎✑✌✡ ✒✓✌✔ ◆✍✕✲✠✌✡✖✗✕✎✓ ✘✙✖✚✍✓✘ ✎✡✌ ✌✕☞✓✍✘✌✑ ✚✌✠✇✌✌✕ ✎✕❣✓✌ ✚✡✎☞❦✌✠✘

✎✕✑ ✘✛☛✎✡✌ ✚✡✎☞❦✌✠✘ ✌✕☞✓✍✘✌ ✍✜✠✗✍✕✎✓ ✘✙✖✚✍✓✘✔

❋✢✣✳ ✸✳ ❊✤✥✦✧❛★✩✪ ✫✢❛✣★❛✤ ✬✭★ ✩✧✟ ▼✟✫✩★✭✮✢✦ ▼✢✮✢▼✟✫ ✺✸✵● ✫❛✩❛ ✟✮✩★✯ ✪✯✪✩✟✤✳

✰✱✴✷✹✻ ✼✱✽✻ ✾❀❁✻✾ ✱❃ ❄❅✻ ✻①✻✹✴❄✻✽ ❄✷❀✼✰❆❄❆✱✼❇ ❈❅✻ ❉❍■❏❍ ❃✴✼✹❄❆✱✼ ❅❀✰ ❁✻✻✼ ❆✼❄✷✱✽✴✹✻✽

❄✱ ❀✾✾✱❑ ❃✴❄✴✷✻ ▲✻✷✰❆✱✼✰ ❄✱ ❆❖P✾✻❖✻✼❄ ✹❅✻✹◗P✱❆✼❄❆✼❘ ❀✾❘✱✷❆❄❅❖✰❇ ❈❅✻ ❯❱❯❲ ❃✴✼✹❄❆✱✼ ❆✼❆❳

❄❆❀✾❆✰✻✰ ❄❅✻ ✰❄❀❄✻❨✰ ✹✱✼❄✻①❄ ❩✻✾✽✰ ❑❆❄❅ ❄❅✻ ▲❀✾✴✻✰ ✱❃ ❄❅✻ ✹✱✼❄✻①❄ ▲❀✷❆❀❁✾✻✰ ✰P✻✹❆❩✻✽ ❆✼

❄❅✻ ❭❖✴✹❅❀✷❄✰ ✽❆❀❘✷❀❖❫ ❀✼✽ ❄❅✻ ❴❵❥❥q❱③④❍ ❩✻✾✽ ❑❆❄❅ ❄❅✻ ✾❀❁✻✾ ✱❃ ❄❅✻ ❆✼❆❄❆❀✾ ✼✱✽✻❇ ⑤✰

❖✻✼❄❆✱✼✻✽ ❀❁✱▲✻❫ ✻❀✹❅ P✻✷❖❆✰✰❆✱✼ ❃✴✼✹❄❆✱✼ ✹❅✻✹◗✰ ❆❃ ❄❅✻ ✹✴✷✷✻✼❄ ✼✱✽✻ ❅❀✰ ❀ ❄✷❀✼✰❆❄❆✱✼

✾❀❁✻✾✾✻✽ ❁⑥ ❄❅✻ ✷✻✰P✻✹❄❆▲✻ ✻▲✻✼❄❇ ❈❅✻✼❫ ❄❅✻ ❖❀❄✹❅❆✼❘ ❄✷❀✼✰❆❄❆✱✼ ❃✴✼✹❄❆✱✼ ✹❅✱✱✰✻✰ ❀❖✱✼❘

❄❅✻ ❄✷❀✼✰❆❄❆✱✼✰ ❄✷❆❘❘✻✷✻✽ ❁⑥ ❄❅❀❄ ✻▲✻✼❄❫ ❀✹✹✱✷✽❆✼❘ ❄✱ ❄❅✻ ✷✻✰P✻✹❄❆▲✻ ❘✴❀✷✽✰ ⑦❀✰✰✴❖✻✽ ❄✱

❁✻ ❖✴❄✴❀✾✾⑥ ✻①✹✾✴✰❆▲✻⑧❇

❈❅✻ ❆❖P✾✻❖✻✼❄❀❄❆✱✼ ❩✾✻ ✹✱✼❄❀❆✼✰ ❄❅✻ ❃✴✼✹❄❆✱✼ ✽✻❩✼❆❄❆✱✼✰❇ ⑨✱✷ ✻①❀❖P✾✻❫ ✹✱✼✰❆✽✻✷ ❄❅✻

❭❖✴✹❅❀✷❄✰ ✽❆❀❘✷❀❖ ✱❃ ❄❅✻ ✽❀❄❀ ✻✼❄✷⑥ ✰⑥✰❄✻❖ ✱❃ ❄❅✻ ⑩✻✽❄✷✱✼❆✹ ⑩❆✼❆⑩✻✽ ❶❷❸❹ ❺⑥✰❄✻❖

✰❅✱❑✼ ❆✼ ⑨❆❘✴✷✻ ❷❇ ❈❅✻ ✽❆❀❘✷❀❖ ❅❀✰ ❀ ✹✱✼❄✻①❄ ▲❀✷❆❀❁✾✻ ④❯❻❼❉■❽ ✱❃ ❄⑥P✻ ④③❵❾❉❍ ✷✻P✷✻❳

✰✻✼❄✻✽ ✱✼ ❿➀ ❁❆❄✰❫ ❑❅❆✹❅ ❅✱✾✽✰ ❄❅✻ ▲❀✾✴✻ ✰❅✱❑✼ ✱✼ ❄❅✻ ✽✻▲❆✹✻❨✰ ✽❆✰P✾❀⑥❇ ❈❅✻ ✼✱✽✻ ✾❀❁✻✾✰

❀✼✽ ❄❅✻ ❻❲■❲❍ ❄⑥P✻ ❀✷✻ ✽✻❩✼✻✽ ❀✰

➁➂➃➄➅➄➆ ➄➇➈➉ ➊ ➋➆➆➌ ➋➇ ➍ ➇➋➅➄➎➏➐➑➄➏➒

➁➂➃➄➅➄➆ ➓➁➔➈→➁ ➊

➣➎↔↕ ➅➙➓➃➏➐➂➒

➇➋➅➄➎➏➐➑➄➏ →➈➔➔➎➇➋➅➄➒

♥♦❞❡❴❧❛❜❡❧ ♣r❡✈❴♥♦❞❡❀ ⑥ st❛t❡❀

❚❤� ❝✁✂� ❢✁✄ ☎❤� ✆�✄♠✐✝✝✐✁✞ ❢✉✞❝☎✐✁✞ ✟✝✝✁❝✐✟☎�✂ ✇✐☎❤ ☎❤� ✠✡☛✠❦☞❯✌ ☎✄✐✍✍�✄ ✐✝

✎❈❴✽ ♣❡r❴✏❧✑✏✒❴✎P✭✏♦♥st st❛t❡✯ st✮ ④

✑✓ ✭st✲❃✏✔rr❡♥t❴st❛t❡ ❂❂ ♦♥✮ ④

r❡t✔r♥ tr✔❡❀

⑥

r❡t✔r♥ ✓❛❧s❡❀

⑥

✇❤�✄� ☎❤� ✄�☎✉✄✞ ☎✕✆� ✖✗✘✙ ✚�✐✍❤☎✛✜✐☎ ✉✞✝✐✍✞�✂ ❝❤✟✄✟❝☎�✄✢ ✐✝ ✉✝�✂ ☎✁ ✄�✆✄�✝�✞☎ ☎❤�

❇✁✁✣�✟✞ ☎✕✆�✤ ❚❤� ☎✄✟✞✝✐☎✐✁✞ ❢✉✞❝☎✐✁✞ ✐✝

st❛t❡ ✏❧✑✏✒❴✎P✭st❛t❡✯ st✮ ④

❛ss❡rt✭st✲❃✏✔rr❡♥t❴st❛t❡ ❂❂ ♦♥✮❀

❛ss❡rt✭st✲❃❞✑s♣❧❛② ❁ ✶✵ ⑤⑤ st✲❃❞✑s♣❧❛② ❂❂ ✶✵✮❀

✑✓ ✭st✲❃❞✑s♣❧❛② ❁ ✶✵ ✫✫ st✲❃✏✔rr❡♥t❴st❛t❡ ❂❂ ♦♥✮ ④

❧❡❛✈❡✭♦♥✱ st✮❀

st✲❃❞✑s♣❧❛② ❂ st✲❃❞✑s♣❧❛② ✰ ✵✳✶✓❀

❡♥t❡r✭♦♥✱ st✮❀

❛ss❡rt✭st✲❃✏✔rr❡♥t❴st❛t❡ ❂❂ ♦♥✮❀

r❡t✔r♥ ✯st❀

⑥

✑✓ ✭st✲❃❞✑s♣❧❛② ❂❂ ✶✵ ✫✫ st✲❃✏✔rr❡♥t❴st❛t❡ ❂❂ ♦♥✮ ④

❧❡❛✈❡✭♦♥✱ st✮❀

st✲❃❞✑s♣❧❛② ❂ ✶✵✳✵✓❀

❡♥t❡r✭♦♥✱ st✮❀

❛ss❡rt✭st✲❃✏✔rr❡♥t❴st❛t❡ ❂❂ ♦♥✮❀

r❡t✔r♥ ✯st❀

⑥

r❡t✔r♥ ✯st❀

⑥

❆ ✆✄✁✁❢ ✁❢ ☎❤� ❝✁✄✄�❝☎✞�✝✝ ✁❢ ☎❤✐✝ ☎✄✟✞✝✣✟☎✐✁✞ ✝❝❤�♠✟ ✐✝ ✝❤✁✇✞ ✐✞ ❆✆✆�✞✂✐✥ ❆✤

✺ ✦✧★✩ ★✪✬✴✷

❚❤� ❆✣✟✄✐✝ ●✸✹ ♠✟✂� ✜✕ ❇�❝☎✁✞ ❉✐❝✻✐✞✝✁✞ ✟✞✂ ✗✁♠✆✟✞✕✹ ✇✟✝ ✉✝�✂ ✟✝ ✟ ❝✟✝� ✝☎✉✂✕ ❢✁✄

☎❤� ▼✼❙✾❆ ✗ ❝✁✂� ✍�✞�✄✟☎✁✄✤

❚❤✐✝ ✿✁✣✉♠�☎✄✐❝ ✐✞❢✉✝✐✁✞ ✆✉♠✆ ✐✝ ✟ ♠�✂✐❝✟✣ ✂�✿✐❝� ✉✝�✂ ❢✁✄ ❝✁✞☎✄✁✣✣�✂ ✟✉☎✁♠✟☎✐❝

✂�✣✐✿�✄✕ ✁❢ ❄✉✐✂ ♠�✂✐❝✟☎✐✁✞ ✁✄ ✜✣✁✁✂ ☎✄✟✞✝❢✉✝✐✁✞ ☎✁ ✆✟☎✐�✞☎✝✹ ✇✐☎❤ ✟✞ ✐✞❢✉✝✐✁✞ ✄✟☎� ✄✟✞✍�

✜�☎✇��✞ ❅ ♠✣❊❤ ✟✞✂ ❅❋❍❍ ♠✣❊❤✤ ✼☎ ❤✟✝ ✟ ♠✁✞✁❝❤✄✁♠� ✂✁☎ ♠✟☎✄✐✥ ✂✐✝✆✣✟✕ ✇✐☎❤ ☎❤✄��

✝✐✍✞✐■❝✟✞☎ ✂✐✍✐☎✝✹ ✟✞✂ ❤✟✝ ❅❏ ✜✉☎☎✁✞✝ ❢✁✄ ✁✆�✄✟☎✐✞✍ ☎❤� ✂�✿✐❝� ✚✝�� ❑✐✍✉✄� ❏✢✤ ❚❤� ✆✉♠✆

❤✟✝ ✟ ✄✟☎❤�✄ ❝✁♠✆✣�✥ ✉✝�✄ ✐✞☎�✄❢✟❝�✹ ✇✐☎❤ ✂✐❢❢�✄�✞☎ ♠✁✂�✝ ✁❢ ✁✆�✄✟☎✐✁✞ ✟✞✂ ✇✟✕✝ ✁❢

�✞☎�✄✐✞✍ ✂✟☎✟✹ ✐✞❝✣✉✂✐✞✍ ☎❤� ✆✁✝✝✐✜✐✣✐☎✕ ✁❢ ❝❤✁✁✝✐✞✍ ❢✄✁♠ ✟ ✣✐✝☎ ✁❢ ✆✄�✣✁✟✂�✂ ☎✄�✟☎♠�✞☎✝✤

❑✁✄ ✝✐♠✆✣✐❝✐☎✕✹ ✐✞ ☎❤✐✝ ✆✟✆�✄ ✁✞✣✕ ☎❤� �✝✝�✞☎✐✟✣ ✆✟✄☎ ✁❢ ☎❤� ✂✟☎✟ �✞☎✄✕ ✐✞☎�✄❢✟❝�✹ ❝✁✞❝�✄✞✐✞✍

✞✉♠�✄✐❝✟✣ ✐✞✆✉☎ ✟✞✂ ✂✐✝✆✣✟✕✹ ✐✝ ❝✁✞✝✐✂�✄�✂✤

❋✐❣✳ ✹✳ �r✁♥t ♣❛♥❡❧ ✁❢ t❤❡ ❆❧❛r✂s ●✄ ✂♥❢☎s✂✁♥ ♣☎♠♣✆

◆✝✞✟✠✡☛☞✌ ✡✍✎✝✏ ✡✑ ❞♦✍✟ ✏✒✠♦✝✓✒ ✏✒✟ ☛✒✟✈✠♦✍✑ ❜✝✏✏♦✍✑✿ ✝✎✇☞✠❞ ☞✍❞ ❞♦✇✍✇☞✠❞

☛✒✟✈✠♦✍✑ ✡✍☛✠✟☞✑✟ ☞✍❞ ❞✟☛✠✟☞✑✟✔ ✠✟✑✎✟☛✏✡✈✟✌✕✔ ✏✒✟ ❞✡✑✎✌☞✕✟❞ ✈☞✌✝✟✖ ❚✒✟ ☞✞♦✝✍✏ ❜✕ ✇✒✡☛✒

✏✒✟ ✈☞✌✝✟ ✡✑ ✡✍☛✠✟☞✑✟❞ ♦✠ ❞✟☛✠✟☞✑✟❞ ❞✟✎✟✍❞✑ ♦✍ ✇✒✟✏✒✟✠ ☞ ✑✡✍✓✌✟ ♦✠ ❞♦✝❜✌✟ ☛✒✟✈✠♦✍

✡✑ ✎✠✟✑✑✟❞✔ ☞✍❞ ♦✍ ✏✒✟ ☛✝✠✠✟✍✏ ❞✡✑✎✌☞✕✟❞ ✈☞✌✝✟✖ ▼♦✠✟ ✎✠✟☛✡✑✟✌✕✔ ✏✒✟ ❞✡✑✎✌☞✕✟❞ ✈☞✌✝✟ ✡✑

☛✒☞✍✓✟❞ ☞✑ ✗♦✌✌♦✇✑✿ ✭✘✮ ■✗ ✏✒✟ ❞✡✑✎✌☞✕✟❞ ✈☞✌✝✟ ✡✑ ❜✟✌♦✇ ✶✵✵✔ ✏✒✟ ✈☞✌✝✟ ☛✒☞✍✓✟✑ ❜✕ ✵✙✶

✝✍✡✏✑ ✗♦✠ ☞ ✑✡✍✓✌✟ ☛✒✟✈✠♦✍✔ ☞✍❞ ✑✏✟✎✑ ✝✎ ♦✠ ❞♦✇✍ ✏♦ ✏✒✟ ✍✟①✏ ❞✟☛☞❞✟ ✗♦✠ ☞ ❞♦✝❜✌✟ ☛✒✟✈✠♦✍

✭✟✖✓✖✔ ✗✠♦✞ ✾✙✶ ✏♦ ✶✵✙✵✮❀ ✭✘✘✮ ✡✗ ✏✒✟ ❞✡✑✎✌☞✕✟❞ ✈☞✌✝✟ ✡✑ ❜✟✏✇✟✟✍ ✶✵✵ ☞✍❞ ✶✱✵✵✵✔ ✏✒✟ ✈☞✌✝✟

☛✒☞✍✓✟✑ ❜✕ ✶ ✝✍✡✏ ✗♦✠ ☞ ✑✡✍✓✌✟ ☛✒✟✈✠♦✍✔ ☞✍❞ ✑✏✟✎✑ ✝✎ ♦✠ ❞♦✇✍ ✏♦ ☞ ✈☞✌✝✟ ✟✚✝☞✌ ✏♦ ✏✒✟ ✍✟①✏

✒✝✍❞✠✟❞ ✎✌✝✑ ✏✒✟ ❞✟☛☞❞✟ ♦✗ ✏✒✟ ❞✡✑✎✌☞✕✟❞ ✈☞✌✝✟ ✗♦✠ ☞ ❞♦✝❜✌✟ ☛✒✟✈✠♦✍ ✭✟✖✓✖✔ ✗✠♦✞ ✸✶✵ ♦✠

✸✶✺ ✏♦ ✛✶✵✮❀ ✭✘✘✘✮ ✡✗ ✏✒✟ ❞✡✑✎✌☞✕✟❞ ✈☞✌✝✟ ✡✑ ✶✱✵✵✵ ♦✠ ☞❜♦✈✟✔ ✏✒✟ ✈☞✌✝✟ ☛✒☞✍✓✟✑ ❜✕ ✶✵ ✝✍✡✏✑

✗♦✠ ☞ ✑✡✍✓✌✟ ☛✒✟✈✠♦✍✔ ☞✍❞ ✑✏✟✎✑ ✝✎ ♦✠ ❞♦✇✍ ✏♦ ☞ ✈☞✌✝✟ ✟✚✝☞✌ ✏♦ ✏✒✟ ✍✟①✏ ✒✝✍❞✠✟❞ ✗♦✠ ☞

❞♦✝❜✌✟ ☛✒✟✈✠♦✍ ✭✟✖✓✖✔ ✗✠♦✞ ✶✱✵✶✵ ♦✠ ✶✱✵✽✵ ✏♦ ✶✱✶✵✵✮✖

❚✒✟ ❊✞✝☛✒☞✠✏✑ ❞✡☞✓✠☞✞ ✗♦✠ ✏✒✟ ✍✝✞✟✠✡☛ ❞☞✏☞ ✟✍✏✠✕ ✡✑ ✑✒♦✇✍ ✡✍ ✜✡✓✖ ✺✖ ❚✠✡✓✓✟✠✑

❝✢✘❝❦✣✤✢✤✥✘✦✣✉✧ ☞✍❞ ❝✢✘❝❦✣✤✢✤✥✘✦✣★✩ ✠✟✎✠✟✑✟✍✏ ☛✌✡☛✪✑ ♦✍ ✏✒✟ ✝✎✇☞✠❞ ☞✍❞ ❞♦✇✍✇☞✠❞ ✑✡✍✓✌✟✫

☛✒✟✈✠♦✍ ❜✝✏✏♦✍✑✔ ✠✟✑✎✟☛✏✡✈✟✌✕✔ ☞✍❞ ✏✠✡✓✓✟✠✑ ❝✢✘❝❦✣✤✢✤✥✘✦✣❯✬ ☞✍❞ ❝✢✘❝❦✣✤✢✤✥✘✦✣❉✯ ✠✟✎✠✟✫

✑✟✍✏ ☛✌✡☛✪✑ ♦✍ ✏✒✟ ❞♦✝❜✌✟✫☛✒✟✈✠♦✍ ♦✍✟✑✖ ✜♦✠ ✟☞☛✒ ✟✈✟✍✏✔ ☛♦✞❜✡✍☞✏✡♦✍✑ ♦✗ ✓✝☞✠❞✑ ☞✍❞

☞☛✏✡♦✍✑ ✑✎✟☛✡✗✕ ✏✒✟ ✠✝✌✟✑ ❞✟✑☛✠✡❜✟❞ ☞❜♦✈✟✖

❚✒✟ P✰✲ ☛♦❞✟ ✓✟✍✟✠☞✏♦✠ ✏✠☞✍✑✌☞✏✟✑ ✏✒✟ ❞✡☞✓✠☞✞ ✡✍✏♦ ☞✍ ✟①✟☛✝✏☞❜✌✟ ✌♦✓✡☛ ✏✒✟♦✠✕✔ ☞✍❞

✏✒✟ ❈ ☛♦❞✟ ✓✟✍✟✠☞✏♦✠ ✎✠♦❞✝☛✟✑ ✎✟✠✞✡✑✑✡♦✍ ☞✍❞ ✏✠☞✍✑✡✏✡♦✍ ✗✝✍☛✏✡♦✍✑ ✗♦✠ ✟☞☛✒ ✏✠✡✓✓✟✠✔ ☞✑

✟①✎✌☞✡✍✟❞ ✎✠✟✈✡♦✝✑✌✕✖

✴✷✻ ✼❁❂❃❄❅ ❇❍❍❄❃❏❇❑❃❁▲❖

❚✒✟ P✰✲✡♦✫✇✟❜ ✗✠☞✞✟✇♦✠✪ ✝✑✟✑ ☞ ✑✏☞✍❞☞✠❞ ✇✟❜ ✡✍✏✟✠✗☞☛✟ ✏♦ ✡✍✏✟✓✠☞✏✟ ✡✏✑ ✏♦♦✌✑✿ ✏✒✡✑

☞✎✎✠♦☞☛✒ ♦✗✗✟✠✑ ☞ ✝✍✡✗♦✠✞ ✡✍✏✟✠✗☞☛✟ ✏✒☞✏ ☞ ❞✟✈✟✌♦✎✟✠ ☛☞✍ ☞☛☛✟✑✑ ✇✡✏✒ ☞✍✕ ✇✟❜ ❜✠♦✇✑✟✠✖

◗✝✠ ✗✠☞✞✟✇♦✠✪ ✒☞✑ ❜✟✟✍ ✟①✏✟✍❞✟❞ ❜✕ ✎✠♦✈✡❞✡✍✓ ✏✒✟ ✎♦✑✑✡❜✡✌✡✏✕ ✏♦ ✠✝✍ ✑✡✞✝✌☞✏✡♦✍✑

♦✍ ☞ ✞♦❜✡✌✟ ❞✟✈✡☛✟✖ ✲✞☞✠✏✎✒♦✍✟✑ ☞✍❞ ✏☞❜✌✟✏✑ ✡✞✎✠♦✈✟ ✝✑☞❜✡✌✡✏✕ ☞✍❞ ✒✟✌✎ ✞☞✪✟ ✝✑✟✠

❋✐❣✳ ✺✳ ❊♠�❝✁❛✂✄☎ ❞✆❛✝✂❛♠ ❢✞✂ ♥�♠✟✂✆❝ ❞❛✄❛ ✟♥✄✂r✠

✡☛t☞✌✍✎t✡✏☛ s✡✑✡✒✍✌ t✏ ✍✎t✓✍✒ ✔☞✈✡✎☞ ✏♣☞✌✍t✡✏☛✕ ✖✏✌ ☞①✍✑♣✒☞❧ ✑✏❜✡✒☞ ✔☞✈✡✎☞s ✎✏✓✒✔ ❜☞

✓s☞✔ ✡☛ ✍ ❤✏s♣✡t✍✒ ☞☛✈✡✌✏☛✑☞☛t t✏ t✌✍✡☛ ✑☞✔✡✎✍✒ ♣☞✌s✏☛☛☞✒ ✍☛✔ ♣✍t✡☞☛ts✕

❆☛ ✡☛t☞✌✍✎t✡✈☞ ✔☞✈✡✎☞ ✎✍☛ ❜☞ s✡✑✓✒✍t☞✔ ✓s✡☛✗ t❤☞ ❈ s✏✓✌✎☞ ✎✏✔☞ ♣✌✏✔✓✎☞✔ ❜② t❤☞

P✘✙✡✏✲✇☞❜ ✗☞☛☞✌✍t✏✌❧ ✎✏✑♣✡✒☞✔ ✍☛✔ ✒✡☛❦☞✔ ✇✡t❤ ✍ ✑✏❜✡✒☞ ✔☞✈✡✎☞✲s♣☞✎✡✚✎ ✍♣♣✒✡✎✍t✡✏☛✕

✖✏✌ ☞①✍✑♣✒☞❧ t❤☞ ✎✏✔☞ ✛✏✌ t❤☞ ✓s☞✌ ✡☛t☞✌✛✍✎☞ ✏✛ t❤☞ ❆✒✍✌✡s ✡☛✛✓s✡✏☛ ♣✓✑♣ ❤✍s ❜☞☞☛ ♣✏✌t☞✔

t✏ t❤☞ ❆☛✔✌✏✡✔ ❬✶✵❪ ♣✒✍t✛✏✌✑ ✓s✡☛✗ t❤☞ ❆☛✔✌✏✡✔ ◆✜✢ ❬✷✣❪ t✏✏✒s☞t❧ ✇❤✡✎❤ ✎✍☛ ☞✑❜☞✔ ❈

✎✏✔☞ ✡☛ ✍ ❏✍✈✍ ♣✌✏❥☞✎t❧ ✌☞✒②✡☛✗ ✏☛ t❤☞ ❏✍✈✍ ◆✍t✡✈☞ ■☛t☞✌✛✍✎☞ ✭❏◆■✮ ❬✶✽❪✕

✻ ✤✥✦✧★✉✩✪✥✦✩

❲☞ ♣✌☞s☞☛t☞✔ t❤☞ ✡✑♣✒☞✑☞☛t✍t✡✏☛ ✏✛ ✏✓✌ ▼■✙❙❆ ❈ ✎✏✔☞ ✗☞☛☞✌✍t✏✌ ✛✏✌ t❤☞ P✘✙✡✏✲✇☞❜

♣✌✏t✏t②♣✡☛✗ t✏✏✒❦✡t✕ ❆✓t✏✑✍t✡✎ ✎✏✔☞ ✗☞☛☞✌✍t✡✏☛ s✡✗☛✡✚✎✍☛t✒② ✌☞✔✓✎☞s ♣✌✏❥☞✎t ✔☞✈☞✒✏♣✲

✑☞☛t t✡✑☞✕ ❖✓✌ ✍♣♣✌✏✍✎❤ ☞✒✡✑✡☛✍t☞s ✍ ❤✓✑✍☛✲♣☞✌✛✏✌✑☞✔ st☞♣ ✡☛ t❤☞ ✔☞✈☞✒✏♣✑☞☛t ♣✌✏✲

✎☞ss✿ ✓s☞✌ ✡☛t☞✌✛✍✎☞ s✏✛t✇✍✌☞ ☞☛✗✡☛☞☞✌s ☛✏ ✒✏☛✗☞✌ ☛☞☞✔ t✏ ✎✏☛✈☞✌t t❤☞ ✔☞s✡✗☛ s♣☞✎✡✚✎✍✲

t✡✏☛s ✡☛t✏ ☞①☞✎✓t✍❜✒☞ t✍✌✗☞t ✎✏✔☞✕

❖✓✌ t✏✏✒ ✡✑♣✌✏✈☞s t❤☞ ✔☞✈☞✒✏♣✑☞☛t ✏✛ s✍✛☞ ✍☛✔ ✔☞♣☞☛✔✍❜✒☞ ✓s☞✌ ✡☛t☞✌✛✍✎☞s❧ ✍s ✡t

✗✌☞✍t✒② ✛✍✎✡✒✡t✍t☞s ✓s✡☛✗ ✛✏✌✑✍✒ ✑☞t❤✏✔s ☞✍s✡✒② ✍☛✔ ✌☞✒✡✍❜✒② ✇✡t❤ ✌☞✍✒ ❯■s❧ ✇❤✡✎❤ ✇☞

✔☞✑✏☛st✌✍t☞✔ ✇✡t❤ t❤☞ ✑☞✔✡✎✍✒ ✔☞✈✡✎☞ ☞①✍✑♣✒☞s ✡☛ t❤✡s ♣✍♣☞✌✕

❈✓✌✌☞☛t ✍☛✔ ✛✓t✓✌☞ ✔✡✌☞✎t✡✏☛s ✡☛✎✒✓✔☞ ✡✑♣✌✏✈✡☛✗ t❤✡s ✡☛✡t✡✍✒ ✡☛t☞✗✌✍t✡✏☛ ✇✡t❤ ✏t❤☞✌

✛☞✍t✓✌☞s ✏✛ ❈❧ st✡✒✒ ✎✏☛✛✏✌✑✍☛t t✏ ▼■✙❙❆ ❈ ✓☛✔☞✌ t❤☞ ✑✏st ✌☞✎☞☛t ✷✵✶✷ ✌✓✒☞s✕ ❲☞ ♣✒✍☛

t✏ ✔☞✈☞✒✏♣ ✎✏✔☞ ✗☞☛☞✌✍t✏✌s ✛✏✌ ♣✌✏✗✌✍✑✑✡☛✗ ✒✍☛✗✓✍✗☞s s✓✎❤ ✍s ❈✰✰❧ ❏✍✈✍ ✍☛✔ ❆✜❆✕

❆�✁♥♦✇✂❡✄❣❡☎❡♥t✆

❚❤✐✝ ✞✟r❦ ✞❛✝ ♣❛r✠✐❛✡✡☛ ✝✉♣♣✟r✠☞✌ ❜☛ ✠❤☞ P✍✎ ✷✵✶✻ ♣r✟❥☞✏✠ ➇✎✑❛✡☛✝✐✝ ✟❢ ❙☞✑✝✟r☛ ❉❛✠❛✒

❢r✟♠ ❚r❛✌✐✠✐✟✑❛✡ ❙☞✑✝✟r✝ ✠✟ ❙✟✏✐❛✡ ❙☞✑✝✟r✝➈ ❢✉✑✌☞✌ ❜☛ ✠❤☞ ❯✑✐✈☞r✝✐✠☛ ✟❢ P✐✝❛✓

❘❡✔❡✕❡♥�❡✆

✖✳ ▼✗✘✗✙ ■✚❞✛s✘✙✜ ✢✗✣✘✤✥✙✦ ✧✦★✩✥✪✩★✩✘✜ ✫ss✗❝✩✥✘✩✗✚ ✭✖✾✾✽✮✬ ●✯✰✱✲✴✰✸✲✹ ✺✼✿ ❀❁✲ ❂✹✲ ✼✺ ❀❁✲ ❈

▲❃✸❄✯❃❄✲ ✰✸ ❱✲❁✰❅✴✲ ❇❃✹✲✱ ❊✼✺❀❋❃✿✲✳ ▼✗✘✗✙ ■✚❞✛s✘✙✜ ✧✦s✦✥✙❝❍ ✫ss✗❝✩✥✘✩✗✚✳
❏✳ ✫✜✥✚ ❑✥✚✦✙◆✦✦ ❖ ✢✥✚❞✦✦◗ ❲✳ ✢✳ ❳✛◗✘✥ ✭❏❨✖❩✮✬ ❬✼✱✲✴ ❇❃✹✲✱ ❈✼✱✲ ●✲✸✲✿❃❀✰✼✸ ✺✼✿ ❬✲✱✰❅❃✴

❈❭❪✲✿ ❫❁❭✹✰❅❃✴ ❊❭✹❀✲❴✹✳ ■✚✬ ❵❧q ①②③④❧⑤②⑥ ②⑦ ⑧②⑨⑩❶❷ ⑧❷❸⑩❹❺❶ ❻⑥⑥❶⑩❹❺q⑩②⑦❧ ❼⑧⑧❻ ➆❵❽❾❿ ◗◗✳

❏❏➊❏➀❿ ❞✗✩✬➁➂➃➁➁➄➅➉➋➌➍➌➄➎➁➃➋➌➍➌➌➄➌✳
➏✳ ▼✳ ❑✦✩✚✦❿ ✧✳ ➐✘✘✦✙✪✥❝❍ ❖ ▼✳ ➑✛✚➒➓✥✚✚ ✭❏❨❨❩✮✬ ➔✲→✲✴✼➣❴✲✸❀ ✼✺ ✹❃✺✲❀❭↔❅✿✰❀✰❅❃✴ ✹✼✺❀❋❃✿✲

✯✹✰✸❄ ❃✯❀✼❴❃❀✰❅ ❅✼✱✲ ❄✲✸✲✿❃❀✰✼✸✳ ↕✦❝❍✚✩❝✥★ ✧✦◗✗✙✘❿ ✢✫➙ ↕✦❝❍✚✩❝✥★ ➛✥◗✦✙s❿ ❞✗✩✬➁➂➃➄➋➍➁➉

➋➂➂➄➜➂➁➜➂➍➂➝✳
❩✳ ➞✳ ❑✦✙✚✥✙❞✦s❝❍✩❿ ➟✳ ➞✥ss✥✚✗❿ ✫✳ ➠✗➓✦✚✩❝✩ ❖ ➟✳ ✢✘✦✙◗✗✚✦ ✭❏❨✖➏✮✬ ❂✸✲➡❅✰❀❃❪✰✴✰❀❭ ➢✸❃✴❭✹✰✹

✼✺ ❊➤❂✹ ➢✺✺✲❅❀✰✸❄ ❀❁✲ ➥✼✯❀✰✸❄ ❊❀✿✯❅❀✯✿✲ ✼✺ ❊➥➢❬↔❪❃✹✲✱ ➦❫●➢✹✳ ■✚✬ ➧③②❹➨ ②➩ q⑤❷ ➫➭③❸

❻➯⑧ ➲③❷❺q ➳❺④❷❧ ➵➸➺⑥②❧⑩➻➺ ②⑦ ➼➳➵➽❿ ❳➟✢➾➟✢■ ➚✖➏❿ ◗◗✳ ➀➊✖❏❿ ❞✗✩✬➁➂➃➁➁➄➅➉➋➄➝➎➂➋➝➃

➋➄➝➎➂➅➂✳
➪✳ ➞✩✚➶✩✥ ❑✦✙✚✥✙❞✦s❝❍✩❿ ➛✥✗★✗ ▼✥s❝✩ ❖ ➹✗★➒✦✙ ➛✣✦✩✣✦✙ ✭❏❨❨✽✮✬ ➤❃✿✴❭ ❫✿✼❀✼❀❭➣✰✸❄ ✼✺ ➘✰✿✲✴✲✹✹

❊✲✸✹✼✿ ➴✲❀❋✼✿➷ ➢✴❄✼✿✰❀❁❴✹ ✰✸ ❫❱❊❿ ◗◗✳ ➏❩➬➊➏➪✾✳ ✢◗✙✩✚➒✦✙ ❑✦✙★✩✚ ➹✦✩❞✦★✪✦✙➒❿ ❑✦✙★✩✚❿ ➹✦✩➮

❞✦★✪✦✙➒❿ ❞✗✩✬➁➂➃➁➂➂➍➉➱➍➝➜➎➜➅➄➂➜➝➍➌➱➝➜➄✃➋➱✳
➬✳ ➑✳ ❑✗✤✦✚ ❖ ✫✳ ➹✩✚➶✦ ✭❏❨✖✖✮✬ ❊✯➣➣✼✿❀✰✸❄ ❬✼❪✰✴✲ ➢➣➣✴✰❅❃❀✰✼✸ ➔✲→✲✴✼➣❴✲✸❀ ❋✰❀❁ ❬✼✱✲✴↔

➔✿✰→✲✸ ➤❴✯✴❃❀✰✼✸✳ ■✚✬ ❐②③➺❺❶ ⑧❷q⑤②❸❧ ➩②③ ➽⑦q❷③❺❹q⑩❒❷ ➵➸❧q❷➺❧ ➫❮❵❵❿ ❰❶❷❹q③➨ ➯②➺➺➨

❰❻➵➵Ï ❩➪✳
➀✳ ➑✳ ❑✗✤✦✚ ❖ ✢✳ ✧✦✦Ð✦s ✭❏❨✖❏✮✬ ❬✼✱✲✴✴✰✸❄ ❂✹✲✿ ❬❃✸✯❃✴✹ ✼✺ ❬✼✱❃✴ ❬✲✱✰❅❃✴ ➔✲→✰❅✲✹ ❃✸✱

▲✲❃✿✸✰✸❄ ✺✿✼❴ ❀❁✲ ➤➡➣✲✿✰✲✸❅✲✳ ■✚✬ ❽q⑤ ❻➯⑧ ➵➽➲➯Ñ➽ ➵➸➺⑥②❧⑩➻➺ ②⑦ ❰⑦Ò⑩⑦❷❷③⑩⑦Ò ➽⑦q❷③❺❹q⑩❒❷

➯②➺⑥➻q⑩⑦Ò ➵➸❧q❷➺❧ ❼❰➽➯➵ ➆❵➫❾❿ ◗◗✳ ✖❏✖➊✖➏❨❿ ❞✗✩✬➁➂➃➁➁➄➅➉➋➎➂➅➄➝➄➃➋➎➂➅➅➂➅✳
✽✳ ➑✳ ❑✗✤✦✚ ❖ ✢✳ ✧✦✦Ð✦s ✭❏❨✖➪✮✬ ➔✲✹✰❄✸ ❫❃❀❀✲✿✸✹ ✺✼✿ ❬✼✱✲✴✹ ✼✺ Ó✸❀✲✿❃❅❀✰→✲ ❊❭✹❀✲❴✹✳ ■✚✬

➫❽q⑤ ❻➻❧q③❺❶❺❧⑩❺⑦ ➵②➩qÔ❺③❷ ❰⑦Ò⑩⑦❷❷③⑩⑦Ò ➯②⑦➩❷③❷⑦❹❷ ❼❻➵①❰➯❾❿ ■➙➙➙❿ ◗◗✳ ❏❏➏➊❏➏❏❿ ❞✗✩✬➁➂➃

➁➁➂➱➉ÕÖ×ØÙ➃➋➂➁➅➃➎➂✳
✾✳ ✫✳ ➞✦✙✗✚✦❿ ➛✳ ➞✛✙➶✗✚❿ ➑✳ ❑✗✤✦✚ ❖ ✢✳ ✧✦✦Ð✦s ✭❏❨❨➀✮✬ ➦✼✿❴❃✴ ❬✼✱✲✴✹ ✺✼✿ Ó✸✺✼✿❴❃✴ ●❂Ó ➔✲↔

✹✰❄✸✹✳ ❰❶❷❹q③②⑦⑩❹ Ú②q❷❧ ⑩⑦ Ï⑤❷②③❷q⑩❹❺❶ ➯②➺⑥➻q❷③ ➵❹⑩❷⑦❹❷ ✖✽➏❿ ◗◗✳ ➪➀➊➀❏❿ ❞✗✩✬➁➂➃➁➂➁➌➉Û➃

ÜÝÞßà➃➋➂➂➍➃➂➁➃➂➌➁✳
✖❨✳ ❳✛✩✙✥✚ ➞❍✥✚➒❿ ➞❍✛✚➒✛✥✚➒ ↕✥✚❿ ❳✛✥✚❍✛✥ ➟✩ ❖ ➞❍✛✥✚ á❍✛ ✭❏❨✖❨✮✬ ➔✲→✲✴✼➣✰✸❄ ❬✼❪✰✴✲ ➢➣↔

➣✴✰❅❃❀✰✼✸✹ ✼✸ ❀❁✲ ➢✸✱✿✼✰✱ ❫✴❃❀✺✼✿❴✳ ■✚✬ ⑧②⑨⑩❶❷ ⑧➻❶q⑩➺❷❸⑩❺ ➧③②❹❷❧❧⑩⑦Ò❿ ◗◗✳ ❏➬❩➊❏✽➬❿ ❞✗✩✬➁➂➃

➁➂➂➍➉➱➍➝➜➎➜➌➄➋➜➁➋➎➄➱➜➝✃➁➅✳

✖✖✳ ↕✳ ➙✙ââ✩✚✦✚ ❖ ▼✳ ➞✗✚✙✥❞ ✭❏❨❨➀✮✬ ❊❃✺✲❀❭↔❅✿✰❀✰❅❃✴ ✹✼✺❀❋❃✿✲ ✱✲→✲✴✼➣❴✲✸❀ ✯✹✰✸❄ ❃✯❀✼❴❃❀✰❅

➣✿✼✱✯❅❀✰✼✸ ❅✼✱✲ ❄✲✸✲✿❃❀✰✼✸✳ ↕✦❝❍✚✩❝✥★ ✧✦◗✗✙✘❿ ✢✫➙ ↕✦❝❍✚✩❝✥★ ➛✥◗✦✙s❿ ❞✗✩✬➁➂➃➄➋➍➁➉

➋➂➂➍➜➂➁➜➁➄➱➎✳
✖❏✳ ➑✳ ã✩✘➶➒✦✙✥★❞❿ ➛✳ ❳✳ ➟✥✙s✦✚❿ ➛✳ ▼✛â❍✦✙◆✦✦❿ ä✳ ➛★✥✘ ❖ ▼✳ ➾✦✙❍✗✦✣ ✭❏❨❨➪✮✬ ❱❃✴✰✱❃❀✲✱ ➔✲✹✰❄✸✹

➦✼✿ å❪æ✲❅❀↔✼✿✰✲✸❀✲✱ ❊❭✹❀✲❴✹✳ ✢◗✙✩✚➒✦✙➮➾✦✙★✥➒ ↕➙➟➐✢❿ ✢✥✚✘✥ ➞★✥✙✥❿ ➞✫❿ ç✢✫✳
✖➏✳ ➑✳ ➠✳ ã✗★✦✜ ❖ ➛✳ ä✗✩ ✢✛â✥Ð✩✙✩✜✥ ✭✖✾✾❩✮✬ è✰✹❀✼✿❭é ➥✲✹✯✴❀✹é ❃✸✱ ❇✰❪✴✰✼❄✿❃➣❁❭ ✼✺ ❀❁✲ ❂✹✲✿ Ó✸❀✲✿↔

✺❃❅✲ ➔✲✹✰❄✸ ➤✸→✰✿✼✸❴✲✸❀ ê❂Ó➔➤ëé ❃✸ ➤❃✿✴❭ ❬✼✱✲✴↔❪❃✹✲✱ ❊❭✹❀✲❴ ✺✼✿ ❂✹✲✿ Ó✸❀✲✿✺❃❅✲ ➔✲✹✰❄✸

❃✸✱ Ó❴➣✴✲❴✲✸❀❃❀✰✼✸✳ ■✚✬ ➧③②❹❷❷❸⑩⑦Ò❧ ②➩ ì❷❧⑩Ò⑦í ➼❷③⑩î❹❺q⑩②⑦ ❺⑦❸ ➵⑥❷❹⑩î❹❺q⑩②⑦ ②➩ ➽⑦q❷③❺❹q⑩❒❷

➵➸❧q❷➺❧ ❼ì➵➼➽➵➆ï❽❾❿ ◗◗✳ ➏➊✖❩✳
✖❩✳ ✭❏❨✖➬✮✬ è❃✸✱✴✲❪❃✿✹ ❊✲❴❃✸❀✰❅ ð✲❴➣✴❃❀✲✳ ✫Ð✥✩★✥✪★✦ ✥✘ ñÞÞòó➉➉ñôÝõöÜ÷ôøàÛà➃ßùú✳
✖➪✳ ▼✳ ➠✳ ➹✥✙✙✩s✗✚❿ ➑✳ ➞✳ ➞✥➓◗✗s ❖ ➛✳ ▼✥s❝✩ ✭❏❨✖➪✮✬ ➥✲✯✹✰✸❄ ❴✼✱✲✴✹ ❃✸✱ ➣✿✼➣✲✿❀✰✲✹ ✰✸ ❀❁✲

❃✸❃✴❭✹✰✹ ✼✺ ✹✰❴✰✴❃✿ ✰✸❀✲✿❃❅❀✰→✲ ✱✲→✰❅✲✹✳ ➽⑦⑦②❒❺q⑩②⑦❧ ⑩⑦ ➵➸❧q❷➺❧ ❺⑦❸ ➵②➩qÔ❺③❷ ❰⑦Ò⑩⑦❷❷③⑩⑦Ò

✖✖✭❏✮❿ ◗◗✳ ✾➪➊✖✖✖❿ ❞✗✩✬➁➂➃➁➂➂➍➉à➁➁➎➎➄➜➂➁➎➜➂➋➂➁➜➎✳

✶✻✳ ▼❉✳ ❍�✁✁✂s✄♥✱ ❏☎✳ ☎�♠✆✄s✱ ❘✳ ❘✂♠✝②❞�s ✫ P✳ ☎❈✁r✄♥ ✭✞✵✶✻✮✟ ✠♦✡❡☛☛✐☞❣ ✐☞❢♦✌✍✎t✐♦☞ ✌❡✏

✑♦✉✌❝❡✑ ✎☞✡ t❤❡✐✌ ✑✎☛✐❡☞❝❡ ✐☞ ✍❡✡✐❝✎☛ ✡❡✈✐❝❡ ✡❡✑✐❣☞✳ ■♥✟ ✽✒✓ ❆✔✕ ❙✖✗✔✘✖ ❙✙✚✛✜✢✣✤✚ ✜✥

❊✥✦✣✥✧✧★✣✥✦ ✖✥✒✧★✩✪✒✣✬✧ ✔✜✚✛✤✒✣✥✦ ❙✙✢✒✧✚✢ ✯❊✖✔❙ ➆✰✲✴✱ ❞✄✂✟✷✸✹✷✷✺✼✾✿❀❁❁✿✺✿✹✿❀❁❁✿✼✸✳

✶❂✳ ☎�♠✆✄s ❏☎ ✫ ❍�✁✁✂s✄♥ ▼❉ ✭✞✵✵✶✮✟ ✠♦✡❡☛ ❝❤❡❝❦✐☞❣ ✐☞t❡✌✎❝t♦✌ ✑❃❡❝✐❄❝✎t✐♦☞✑✳ ❆✤✒✜✚✩✒✧❅

❙✜❇✒✇✩★✧ ❊✥✦✣✥✧✧★✣✥✦ ❋✭●➊❑✮✱ ✆✆✳ ▲✞❂▲➊●✶✵✱ ❞✄✂✟✷✸✹✷✸✿❁✾◆❖✷✸✷✷✿◗✼◗✸✺✸✿✷✳

✶❋✳ ✭✞✵✶✻✮✟ ❚✎✈✎ ❯✎t✐✈❡ ❱☞t❡✌❢✎❝❡✳ ❲❳❳♣❖✾✾❨❩❬❭✹❩❪❛❬❧❫✹❬❩❴✾❥❛❵❛❭❫✾❜✾❨❩❬❭✾❳❫❬❲q❩❳❫❭✾

①③④❨❫❭✾❥q④✾✳

✶⑤✳ P✳ ▼�s⑥✂✱ ⑦✳ ⑦②✄❈❞✱ P✳ ☎❈✁r✄♥✱ ▼❉✳ ❍�✁✁✂s✄♥✱ ■✳ ⑧⑨⑨ ✫ ❍✳ ⑩❶✂♠❷❸⑨❷② ✭✞✵✶●✮✟ ❹❡✌✐❄❝✎t✐♦☞

♦❢ ✐☞t❡✌✎❝t✐✈❡ ✑♦❢t❺✎✌❡ ❢♦✌ ✍❡✡✐❝✎☛ ✡❡✈✐❝❡✑❻ ❼❽❾ ✐☞❢✉✑✐♦☞ ❃✉✍❃✑ ✎☞✡ ❿➀❾ ✌❡❣✉☛✎t✐♦☞ ✎✑ ✎☞

❡➁✎✍❃☛❡✳ ■♥✟ ➂✒✓ ❆✔✕ ❙✖✗✔✘✖ ❙✙✚✛✜✢✣✤✚ ✜✥ ❊✥✦✣✥✧✧★✣✥✦ ✖✥✒✧★✩✪✒✣✬✧ ✔✜✚✛✤✒✣✥✦ ❙✙✢✒✧✚✢➃

✯❊✖✔❙ ➆✰➄✴✱ ❞✄✂✟✷✸✹✷✷✺✼✾✿✺❀✺◗✸❁✹✿✺❜✸❁✸✿✳

✞✵✳ P✳ ▼�s⑥✂✱ P✳ ▼�❸❸✄rr✂✱ ➅✳ ⑧✳ ❉⑨ ⑦♥➇⑨❸✂s✱ ➈✳ ❉✂ ▼�✁r✄ ➉⑨✁❈➇⑨♥❞✄ ✫ P✳ ☎❈✁r✄♥ ✭✞✵✶▲✮✟ ➋✑✏

✐☞❣ ❼❹➌✐♦✏❺❡➍ ✎☞✡ ➌❾❼➎➏➎ ❢♦✌ ✌✎❃✐✡ ❃✌♦t♦t➐❃✐☞❣ ♦❢ ✉✑❡✌ ✐☞t❡✌❢✎❝❡✑ ✐☞ ❱☞t❡❣✌✎t❡✡ ❽☛✐☞✐❝✎☛

➎☞✈✐✌♦☞✍❡☞t✑✳ ■♥✟ ➑✧★✣✢✤★✧➒➓✰➂➃ ➔✜★→✢✓✜✛ ✜✥ ➑✧★✣➣✪✩✒✣✜✥ ✩✥❅ ❆✢✢✤★✩✥✪✧➃ ✪✜↔↕✜✪✩✒✧❅ ✇✣✒✓

✔❆➑➒➓✰➂✳

✞✶✳ P✳ ▼�s⑥✂✱ P✳ ➙❸�❞✂♠⑨➛✂✱ P✳ ☎❈✁r✄♥ ✫ ❍✳ ⑩❶✂♠❷❸⑨❷② ✭✞✵✶❑✮✟ ➜♦♦☛ ✡❡✍♦❻ ➋✑✐☞❣ ❼❹➌✐♦✏❺❡➍ t♦

✡❡✍♦☞✑t✌✎t❡ ✑♦❢t❺✎✌❡ ✐✑✑✉❡✑ ✐☞ ✍❡✡✐❝✎☛ ✉✑❡✌ ✐☞t❡✌❢✎❝❡✑✳ ■♥✟ ➝✒✓ ✖✥✒✧★✥✩✒✣✜✥✩↕ ❙✙✚✛✜✢✣✤✚ ✜✥

➞✜✤✥❅✩✒✣✜✥✢ ✜❇ ✘✧✩↕✒✓✪✩★✧ ✖✥❇✜★✚✩✒✣✜✥ ❊✥✦✣✥✧✧★✣✥✦ ✩✥❅ ❙✙✢✒✧✚✢ ✯➞✘✖❊❙➒➓✰➝✴✳

✞✞✳ P✳ ▼�s⑥✂✱ P✳ ➙❸�❞✂♠⑨➛✂✱ P✳ ☎❈✁r✄♥ ✫ ❍✳ ⑩❶✂♠❷❸⑨❷② ✭✞✵✶▲✮✟ ❼❹➌✐♦✏❺❡➍ ➟➠➡❻ ❚♦✐☞✐☞❣ ❼❹➌ t♦

➢✉✍✎☞✏❽♦✍❃✉t❡✌ ❱☞t❡✌✎❝t✐♦☞✳ ■♥✟ ➒➤✒✓ ✖✥✒✧★✥✩✒✣✜✥✩↕ ✔✜✥❇✧★✧✥✪✧ ✜✥ ✔✜✚✛✤✒✧★ ❆✣❅✧❅ ➑✧★✣➣↔

✪✩✒✣✜✥ ✯✔❆➑➒➓✰➂✴✱ ➉✆✁✂♥➇⑨✁✱ ❞✄✂✟✷✸✹✷✸✸➥✾❀➥❜➦❁➦❁✷❀➦✿✷◗❀✸➦✺➧❁✸✳ ⑩✄✄❸ �♥❞ �✆✆❸✂⑥�➨✂✄♥

⑨➩�♠✆❸⑨s �✝�✂❸�❷❸⑨ �➨ ❶➨➨✆✟➫➫➭➭➭✳✆✝s✂✄➭⑨❷✳✄✁➇✳

✞●✳ P✳ ▼�s⑥✂✱ ➯✂ ➲❶�♥➇✱ P✳ ❏✄♥⑨s✱ P✳ ➙❸�❞✂♠⑨➛✂✱ ➳✳ ❉➵➸✁s✄✱ ☎✳ ➺⑨✁♥�✁❞⑨s⑥❶✂✱ P✳ ☎❈✁r✄♥ ✫❍✳ ⑩❶✂♠➻

❷❸⑨❷② ✭✞✵✶❑✮✟ ❽♦✍➍✐☞✐☞❣ ❼❹➌✐♦ ❺✐t❤ ➌t✎t❡➼♦❺✳ ■♥✟ ✲✒✓ ➽❆❙❆ ➞✜★✚✩↕ ✕✧✒✓✜❅✢ ❙✙✚✛✜✢✣✤✚

✯➽➞✕➒➓✰➝✴✱ ❞✄✂✟✷✸✹✷✸✸➥✾❀➥❜➦❁➦❁✷❀➦✸◗✿✸✸➦◗➧✷◗✳

✞❑✳ ☎✳ ▼❈ñ✄r ✭✞✵✵●✮✟ ➏✎❃✐✡ ❃✌♦t♦t➐❃✐☞❣ ✐☞ ❼❹➌✳ ⑩⑨⑥❶♥✂⑥�❸ ❘⑨✆✄✁➨ ➾■⑦ ✞✵✵●➻✵●✱ ➾⑦➉⑦➫☎❘➻

✞✵✵●➻✞✶✞❑✶❋✱ ➾�➨✂✄♥�❸ ■♥s➨✂➨❈➨⑨ ✄➚ ⑦⑨✁✄s✆�⑥⑨✱ ❍�♠✆➨✄♥✱ ➪⑦✱ ➸➉⑦✳

✞▲✳ ✭✞✵✶✻✮✟ ❯➀➶✳ ⑦✝�✂❸�❷❸⑨ �➨ ❲❳❳♣❖✾✾❨❫❵❫❧❩♣❫❪✹❛q❨❪❩④❨✹❬❩❴✾q❨➹✳

✞✻✳ P✳ ➙❸�❞✂♠⑨➛✂✱ P✳ ▼�s⑥✂✱ P✳ ☎❈✁r✄♥ ✫ ❍✳ ⑩❶✂♠❷❸⑨❷② ✭✞✵✶●✮✟ ❼❹➌✐♦✏❺❡➍❻ ✎ t♦♦☛ ❢♦✌ ✌✎❃✐✡

❃✌♦t♦t➐❃✐☞❣ ✡❡✈✐❝❡ ✉✑❡✌ ✐☞t❡✌❢✎❝❡✑ ✐☞ ❼❹➌✳ ■♥✟ ➞✕✖❙➒➓✰➄➃ ➂✒✓ ✖✥✒✧★✥✩✒✣✜✥✩↕ ➔✜★→✢✓✜✛ ✜✥

➞✜★✚✩↕ ✕✧✒✓✜❅✢ ❇✜★ ✖✥✒✧★✩✪✒✣✬✧ ❙✙✢✒✧✚✢✳

✞❂✳ ➉✳ ➙➭✁⑨✱ ❏✳ ▼✳ ❘❈s❶❷② ✫ ➾✳ ➉❶�♥➘�✁ ✭✶⑤⑤✞✮✟ ❼❹➌❻ ❾ ❼✌♦t♦t➐❃❡ ❹❡✌✐❄❝✎t✐♦☞ ➌➐✑t❡✍✳ ■♥✟

❆✤✒✜✚✩✒✧❅ ➴✧❅✤✪✒✣✜✥➷✔❆➴❊↔✰✰➬ ✰✰✒✓ ✖✥✒✧★✥✩✒✣✜✥✩↕ ✔✜✥❇✧★✧✥✪✧ ✜✥ ❆✤✒✜✚✩✒✧❅ ➴✧❅✤✪✒✣✜✥✱

✆✆✳ ❂❑❋➊❂▲✞✱ ❞✄✂✟✷✸✹✷✸✸➥✾❁➦✼✺✸➦✼✼◗✸✿➦❜➧✿✷➥✳

✞❋✳ ▼✳ P�➛✂⑥✱ ➲❶✂❶�✄ ❏✂�♥➇✱ ■♥s❈✆ ⑧⑨⑨✱ ➙✳ ➉✄➘✄❸s➘② ✫ ❘✳ ▼�♥➇❶�✁�♠ ✭✞✵✶❑✮✟ ➌✎❢❡t➐✏❝✌✐t✐❝✎☛

✠❡✡✐❝✎☛ ➀❡✈✐❝❡ ➀❡✈❡☛♦❃✍❡☞t ➋✑✐☞❣ t❤❡ ➋❼❼➟➌❿ ✠♦✡❡☛ ➜✌✎☞✑☛✎t✐♦☞ ➜♦♦☛✳ ❆✔✕ ➮★✩✥✢➱ ❊✚↔

✃✧❅➱ ✔✜✚✛✤✒➱ ❙✙✢✒➱ ✶●✭❑s✮✱ ✆✆✳ ✶✞❂✟✶➊✶✞❂✟✞✻✱ ❞✄✂✟✷✸✹✷✷✺✼✾✿✼❜✺◗✼✷✳

✞⑤✳ ➅✳ P�➨⑨✁♥ò✱ ☎✳ ➉�♥➨✄✁✄ ✫ ⑧✳ ❉✳ ➉✆�♥✄ ✭✞✵✵⑤✮✟ ✠❾➏❱❾❻ ❾ ➋☞✐✈❡✌✑✎☛❐ ➀❡❝☛✎✌✎t✐✈❡❐ ✠✉☛t✐✏

❃☛❡ ❾➍✑t✌✎❝t✐♦☞✏☛❡✈❡☛ ❒✎☞❣✉✎❣❡ ❢♦✌ ➌❡✌✈✐❝❡✏♦✌✐❡☞t❡✡ ❾❃❃☛✐❝✎t✐♦☞✑ ✐☞ ➋➍✐❮✉✐t♦✉✑ ➎☞✈✐✌♦☞✏

✍❡☞t✑✳ ❆✔✕ ➮★✩✥✢➱ ✔✜✚✛✤✒➱↔✘✤✚➱ ✖✥✒✧★✩✪✒➱ ✶✻✭❑✮✱ ✆✆✳ ✶⑤✟✶➊✶⑤✟●✵✱ ❞✄✂✟✷✸✹✷✷✺✼✾✷◗✷✺❁❀✸✹

✷◗✷✺❁❀✺✳

●✵✳ ❘�②♠✄♥❞ ▼⑨✁✁✂❸❸ ➉♠❈❸❸②�♥ ✭✶⑤⑤▲✮✟ ❿✐✌✑t✏♦✌✡❡✌ ☛♦❣✐❝✳ ❉✄✝⑨✁ ✆❈❷❸✂⑥�➨✂✄♥s✱ ➾⑨➭ ➯✄✁➘✳

●✶✳ ▼�♥❞�②�♠ ➉✁✂✝�s✱ ❍�✁�❸❞ ❘❈⑨❰ ✫ ❉�✝✂❞ ☎②✁❸❈➘ ✭✶⑤⑤❂✮✟ ➢✎✌✡❺✎✌❡ ❹❡✌✐❄❝✎t✐♦☞ ➋✑✐☞❣ ❼❹➌✳

■♥ ⑩❶✄♠�s Ï✁✄✆➚✱ ⑨❞✂➨✄✁✟ ➞✜★✚✩↕ ✘✩★❅✇✩★✧ ➑✧★✣➣✪✩✒✣✜✥➬ ✕✧✒✓✜❅✢ ✩✥❅ ❙✙✢✒✧✚✢ ✣✥ ✔✜✚✛✩★✣↔

✢✜✥✱ Ð✧✪✒✤★✧ ➽✜✒✧✢ ✣✥ ✔✜✚✛✤✒✧★ ❙✪✣✧✥✪✧ ✶✞❋❂✱ ➉✆✁✂♥➇⑨✁➻➪⑨✁❸�➇✱ ✆✆✳ ✶▲✻➊✞✵▲✳

❛r❝
ε✱ ✭♣✱q✱❡✱❣✱ ✈�✮❀ ε ❂ ❡✁♥ ❂ ♣✁✈ ⑤❂ ❣

❤♥✱ ✈✐ ✂ ❤q✱✈�✐

✄❞❧☎
ε✱ ✭♣✱q✱❡✱❣✱ ✈�✮❀ ε ✆ ❡✝♥ ✆ ♣✝✈ ✻⑤❂ ❣

❤♥✱ ✈✐ ✂ ❤♥✱✈✐

❋✄✞✳ ✟✳ ❊♠✠✡☛☞✌✍s ♦✎✏✌☞✍✑♦✒☞✓ s✏♠☞✒✍✑✡s✔

❆✕✕✖✗✘✙① ❆ ❈✚✛✛✖✜t✗✖✢✢ ✚✣ ✜✚✘✖ ✤✖✗✖✛✥t✙✚✗

■✦ ✧★✩✪★ ✫✧ ✬✯✯✪✯✯ ✫✰✪ ✲✧★★✪✲✫✦✪✯✯ ✧❢ ✫✰✪ ✴✪✦✪★✬✫✪✩ ✲✧✩✪✵ ✫✰✪ ✶✷✉✲✰✬★✫✯ ✩✸✬✴★✬✷ ✸✯ ✫✬✹✪✦

✬✯ ✫✰✪ ★✪❢✪★✪✦✲✪ ✷✧✩✪✺✵ ✬✦✩ ✬ ✲✧★★✪✯✼✧✦✩✪✦✲✪ ✸✯ ✪✯✫✬✽✺✸✯✰✪✩ ✽✪✫✾✪✪✦ ✫✰✪ ✪✿✧✺✉✫✸✧✦ ✧❢

✫✰✪ ✷✧✩✪✺ ✬✦✩ ✫✰✬✫ ✧❢ ✫✰✪ ✪❁✪✲✉✫✪✩ ✲✧✩✪❃

❄❅❇ ❚❉●❍❏❑▲❑▼❍ ❏②❏▲◆❖ P▼❉ ●❍ ◗❖❘❙❯●❉▲❏ ❱❑●❲❉●❖

❳✯ ✩✸✯✲✉✯✯✪✩ ✬✽✧✿✪ ❨✯✪✲✫✸✧✦ ❩❬✵ ✬✦ ✶✷✉✲✰✬★✫✯ ✩✸✬✴★✬✷ ✸✯ ✬ ✴★✬✼✰ ✧❢ ✦✧✩✪✯ ✬✦✩ ✺✬✽✪✺✺✪✩

✫★✬✦✯✸✫✸✧✦✯✵ ✪❁✫✪✦✩✪✩ ✾✸✫✰ ✬ ✯✪✫ ✧❢ ✫❭✼✪✩ ✲✧✦✫✪❁✫ ✿✬★✸✬✽✺✪✯✵ ✪✬✲✰ ✧✦✪ ✾✸✫✰ ✬✦ ✸✦✸✫✸✬✺ ✿✬✺✉✪❃

■✫✯ ✯✪✷✬✦✫✸✲✯ ✸✯ ✴✸✿✪✦ ✽❭ ✬ ✫★✬✦✯✸✫✸✧✦ ✯❭✯✫✪✷❃ ❪✪✫ ✫✰✪ ❢✧✺✺✧✾✸✦✴ ✽✪ ✩✪❫✦✪✩❴

➊ ❳ ✯✪✫ ❵ ❜ ④❥❦✇ ③ ③ ③ ✇❥⑥⑦ ✧❢ ✦✧✩✪✯⑧

➊ ✬ ✯✪✫ ⑨ ❜ ④⑩❦✇ ③ ③ ③ ✇⑩ ❶⑦ ✧❢ ✲✧✦✫✪❁✫ ✿✬★✸✬✽✺✪✯ ❨❢✧★ ✯✸✷✼✺✸✲✸✫❭✵ ✬✯✯✉✷✪✩ ✫✧ ✽✪ ✫❭✼✪✺✪✯✯❬⑧

➊ ✬ ✯✪✫ ❷ ✧❢ ✿✬✺✉✪✯⑧

➊ ✬ ✯✪✫ ❸ ❜ ④ε❦✇ ③ ③ ③ ✇ε❹⑦ ✧❢ ✪✿✪✦✫✯⑧

➊ ✬ ✯✪✫ ❺ ❜ ④❻❦✇③ ③ ③ ✇❻❼⑦ ✧❢ ✴✉✬★✩✯✵ ✸❃✪❃✵ ❽✧✧✺✪✬✦ ✪❁✼★✪✯✯✸✧✦✯ ✸✦✿✧✺✿✸✦✴ ✿✬★✸✬✽✺✪✯✵

✲✧✦✯✫✬✦✫✯ ❢★✧✷ ❷✵ ✬★✸✫✰✷✪✫✸✲ ✬✦✩ ★✪✺✬✫✸✧✦✬✺ ✧✼✪★✬✫✧★✯⑧

➊ ✬ ✩✪✦✉✷✪★✬✽✺✪ ✯✪✫ ❾ ✧❢ ❿➀➁➂➀➃➄➅❥➆✵ ✸❃✪❃✵ ❢✉✦✲✫✸✧✦✯ ❢★✧✷ ⑨ ✫✧ ❷⑧

➊ ✬ ✯✪✫ ➇ ❜ ④➀❦✇ ③ ③ ③ ✇➀❼⑦ ✧❢ ✬★✲✯✵ ✸❃✪❃✵ ➈➉✫✉✼✺✪✯ ✧❢ ✫✰✪ ❢✧★✷ ➋➆✇➃✇➌✇❻✇❿➍✵ ✾✰✪★✪ ➆✇➃ ➎ ❵

✬★✪ ✫✰✪ ✬★✲➏✯ ✯✧✉★✲✪ ✬✦✩ ✫✬★✴✪✫ ✦✧✩✪✵ ➌ ➎ ❸✵ ❻ ➎ ❺✵ ✬✦✩ ❿ ➎ ❾ ✸✯ ✫✰✪ ✿✬✺✉✬✫✸✧✦

✩✪❫✦✪✩ ✽❭ ✫✰✪ ✬✲✫✸✧✦ ✺✬✽✪✺✺✸✦✴ ✫✰✪ ✲✧★★✪✯✼✧✦✩✸✦✴ ✫★✬✦✯✸✫✸✧✦ ✸✦ ✫✰✪ ✩✸✬✴★✬✷⑧ ✷✧★✪

✼★✪✲✸✯✪✺❭✵ ❿ ✸✯ ✫✰✪ ✿✬✺✉✬✫✸✧✦ ✧✽✫✬✸✦✪✩ ✽❭ ✧✿✪★★✸✩✸✦✴ ✫✰✪ ✼★✪✿✸✧✉✯ ✿✬✺✉✬✫✸✧✦ ✾✸✫✰ ✫✰✪

✬✯✯✸✴✦✷✪✦✫✯ ✸✦ ✫✰✪ ✬✲✫✸✧✦ ✬✯✯✧✲✸✬✫✪✩ ✾✸✫✰ ✫✰✪ ✬★✲⑧

➊ ✬ ✯✪✫ ➐ ✧❢ ✯✫✬✫✪✯ ✧❢ ✫✰✪ ❢✧★✷ ➑❥✇❿➒✵ ✾✸✫✰ ❥ ➎ ❵ ✬✦✩ ❿ ➎❾⑧

➊ ✬ ✫★✬✦✯✸✫✸✧✦ ★✪✺✬✫✸✧✦ ➓➔ →×→✵ ✩✪❫✦✪✩ ✽❭ ✫✰✪ ✯✪✷✬✦✫✸✲ ★✉✺✪✯ ✸✦ ➣✸✴✉★✪ ↔✵ ✾✰✪★✪

✫✰✪ ✼★✪✷✸✯✪✯ ✲✧✦✫✬✸✦ ✬✦ ✪✿✪✦✫ ε✵ ✬✦ ✬★✲ ✺✬✽✪✺✵ ✬✦✩ ✬ ✺✧✴✸✲✬✺ ✲✧✦✩✸✫✸✧✦✵ ✬✦✩ ✫✰✪

✲✧✦✯✪↕✉✪✦✲✪✯ ✲✧✦✫✬✸✦ ✬ ✷✪✷✽✪★ ✧❢ ✫✰✪ ✫★✬✦✯✸✫✸✧✦ ★✪✺✬✫✸✧✦ ✫✰✬✫ ✸✯ ✪✦✬✽✺✪✩ ✸❢ ✫✰✪

✲✧✦✩✸✫✸✧✦ ✰✧✺✩✯❃

➙✸✫✰ ✫✰✪ ✬✽✧✿✪ ✩✪❫✦✸✫✸✧✦✯✵ ✫✰✪ ✬✯✯✧✲✸✬✫✪✩ ✫★✬✦✯✸✫✸✧✦ ✯❭✯✫✪✷ ➛ ✸✯ ✫✰✪ ✫✉✼✺✪ ➋➐✇➓✇➜➝➍✵

✾✰✪★✪ ➜➝ ❜ ➑❥➝✇❿➝➒ ✸✯ ✫✰✪ ✸✦✸✫✸✬✺ ✯✫✬✫✪❃ ➞✸✦✲✪ ✫✰✪ ✩✸✬✴★✬✷ ✸✯ ✩✪✫✪★✷✸✦✸✯✫✸✲✵ ✴✸✿✪✦ ✬ ✯✪➉

↕✉✪✦✲✪ ✧❢ ✪✿✪✦✫ ✧✲✲✉★★✪✦✲✪✯ ➌❦✇ ③ ③ ③ ✇➌❹✇ ③ ③ ③✵ ✫✰✪ ✫★✬✦✯✸✫✸✧✦ ✯❭✯✫✪✷ ✰✬✯ ✧✦✺❭ ✧✦✪ ✯✪↕✉✪✦➉

✫✸✬✺ ✼✬✫✰❃ ■❢ ✬✦ ✪✿✪✦✫ ✲✬✦✦✧✫ ✬❢❢✪✲✫ ✬ ✯✫✬✫✪ ❨✪✸✫✰✪★ ✸✫ ✸✯ ✦✧✫ ✼✪★✷✸✫✫✪✩ ✧★ ✦✧ ✴✉✬★✩ ✼★✪❫❁✪✩

✽❭ ✫✰✪ ✪✿✪✦✫ ✸✯ ✯✬✫✸✯❫✪✩❬✵ ✫✰✪ ✯❭✯✫✪✷ ✩✧✪✯ ✦✧✫ ✲✰✬✦✴✪ ✯✫✬✫✪❃ ➟✰✪ ✧✼✪★✬✫✸✧✦✬✺ ✯✪✷✬✦✫✸✲✯

✬★✪ ✴✸✿✪✦ ✸✦ ➣✸✴✉★✪ ↔❃

❛r❝P
ε✱ ✭♣✱q✱❡✱❣✱ ✈�✁✮❀ ε ❂ ❡✂✈♥✭①✄✉☎☎✮ ❂ ♣✂✈✁ ⑤❂ ❣

❤✈♥✱ ✈✁✐
P

✆✝ ❤q✱✈�✐

✞❞❧✟P
ε✱ ✭♣✱q✱❡✱❣✱ ✈�✁✮❀ ε ✠ ❡✡✈♥✭①✄✉☎☎✮ ✠ ♣✡✈✁ ✻⑤❂ ❣

❤✈♥✱ ✈✁✐
P

✆✝ ❤☛✱✈✁✐

❋✞☞✳ ✼✳ ●✌✍✌✎✏t✌✑ ✒✓✑✌ ✓✔✌✎✏t✕✓✍✏✖ s✌♠✏✍t✕✒s✗

❆✘✷ ❚✙✚✛✜✢✣✢✤✛ ✜②✜✣✥✦ ❢✤✙ ✣✧✥ ★✥✛✥✙✚✣✥✩ ✪✤✩✥

✫✬✯ ✰✯✲✯✴✵✶✯✸ ✹✺✲✽✶✾✿✲❁ ✵✴✯ ✺❁✯✸ ✇✾✶✬✾✲ ✵ ❃✿✴✯ ✽✿❃❄❅✯❇ ❁❈❁✶✯❃❉ ✇✬✾✽✬ ✾❁ ✴✯❁❄✿✲❁✾❊❅✯

✹✿✴ ✽✵✶✽✬✾✲✰ ✯❍✯✲✶❁ ✵✶ ✶✬✯ ✴✯✵❅ ✿✴ ❁✾❃✺❅✵✶✯✸ ✺❁✯✴ ✾✲✶✯✴✹✵✽✯ ✵✲✸ ✹✿✴ ✽✵❅❅✾✲✰ ✶✬✯ ✴✯❁❄✯✽✶✾❍✯

✹✺✲✽✶✾✿✲❁ ✵✽✽✿✴✸✾✲✰ ✶✿ ✵✲ ✵❄❄✴✿❄✴✾✵✶✯ ❄✴✿✶✿✽✿❅■ ✶✬✯ ❏❑❏▲ ✹✺✲✽✶✾✿✲ ❃✺❁✶ ✬✵❍✯ ❊✯✯✲ ✽✵❅❅✯✸

❄✴✯❍✾✿✺❁❅❈❉ ✶✬✯✲❉ ✇✬✯✲ ✵✲ ✯❍✯✲✶ ✾❁ ✽✵✶✽✬✯✸❉ ✶✬✯ ❄✯✴❃✾❁❁✾✿✲ ✹✺✲✽✶✾✿✲ ✿✹ ✶✬✯ ✽✿✴✴✯❁❄✿✲✸✾✲✰

✶✴✾✰✰✯✴ ✾❁ ✽✵❅❅✯✸❉ ✵✲✸ ✿✲❅❈ ✾✹ ✾✶ ✴✯✶✺✴✲❁ ▲▼◆❖ ✽✵✲ ✶✬✯ ✴✯❁❄✯✽✶✾❍✯ ✶✴✵✲❁✾✶✾✿✲ ✹✺✲✽✶✾✿✲ ❊✯

✯❇✯✽✺✶✯✸◗

❘❁❁✺❃✯ ✶✬✵✶ ✶✬✯ ✸✵✶✵ ✯✲✶✴❈ ❁✺❊❁❈❁✶✯❃ ✿✹ ✶✬✯ ✸✯❍✾✽✯ ✾❁ ✽✿✲✶✴✿❅❅✯✸ ❊❈ ✵ ❄✴✿✰✴✵❃ ❙

✶✬✵✶ ✴✯❁❄✿✲✸❁ ✶✿ ✾✲❄✺✶ ✯❍✯✲✶❁ ❊❈ ✽✵❅❅✾✲✰ ✶✬✯ ✴✯❁❄✯✽✶✾❍✯ ✹✺✲✽✶✾✿✲❁◗ ✫✬✯ ✯❇✯✽✺✶✾✿✲ ✿✹ ✶✬✯❁✯

✹✺✲✽✶✾✿✲ ✇✾❅❅ ✶✵❯✯ ✶✬✯ ✸✯❍✾✽✯ ✶✿ ✶✬✯ ✲✯❇✶ ❁✶✵✶✯◗

❘❅❁✿ ✶✬✯ ❄✴✿✰✴✵❃ ❙ ✽✵✲ ❊✯ ❃✿✸✯❅❅✯✸ ✵❁ ✵ ✶✴✵✲❁✾✶✾✿✲ ❁❈❁✶✯❃ ❱❲ ❊✵❁✯✸ ✿✲ ✶✬✯ ✹✿❅❅✿✇❳

✾✲✰ ❁✯✶❁❉ ✯✵✽✬ ✿✲✯ ❊✯✾✲✰ ✾❁✿❃✿✴❄✬✾✽ ❨❩❬ ✶✿ ✶✬✯ ✽✿✴✴✯❁❄✿✲✸✾✲✰ ❁✯✶ ✾✲ ❱ ❉ ✿✴ ✵✲ ✯❇✶✯✲❁✾✿✲

✶✿ ✶✬✵✶ ❁✯✶■ ❨❏❬ ❘ ❁✯✶ ❭❲ ❩ ❭ ✿✹ ✲✿✸✯ ❅✵❊✯❅❁❉ ✯✵✽✬ ✴✯❄✴✯❁✯✲✶✯✸ ❊❈ ✵✲ ✯✲✺❃✯✴✵✶✿✴ ✿✹ ✶✬✯

❑♦❪❖❫❴❵❜❖❴ ✶❈❄✯ ✾✲ ❙❥ ❨❏❏❬ ✵ ❁✯✶ ❦❲ ③ ❦④ ⑥⑦⑧⑨⑩❶❶❷ ✿✹ ❍✵✴✾✵❊❅✯❁❉ ✇✬✯✴✯ ❦④ ❩ ❦❉ ✯✵✽✬ ❍✵✴✾❳

✵❊❅✯ ✾✲ ❦④ ✴✯❄✴✯❁✯✲✶❁ ✵ ✽✿✲✶✯❇✶ ❸✯❅✸ ✿✹ ✶✬✯ ❹▲❵▲❖ ❁✶✴✺✽✶✺✴✯ ✾✲ ❙❉ ✵✲✸ ⑧⑨⑩❶❶ ✴✯❄✴✯❁✯✲✶❁ ✶✬✯

❺◆▼▼❫❑♦❪❖ ✿✹ ✶✬✯ ❹▲❵▲❖ ❁✶✴✺✽✶✺✴✯❥ ❨❏❏❏❬ ✵ ❁✯✶ ❻❲ ③ ❻④ ⑥ ❭❲ ✿✹ ❍✵❅✺✯❁❉ ✇✬✯✴✯ ❻④ ③ ❻❥

❨❏❼❬ ✵ ❁✯✶ ❽❲ ❩ ❽ ✿✹ ✯❍✯✲✶❁❉ ✯✵✽✬ ✿✲✯ ✵❁❁✿✽✾✵✶✯✸ ✇✾✶✬ ✿✲✯ ❄✯✴❃✾❁❁✾✿✲ ✹✺✲✽✶✾✿✲ ✵✲✸ ✿✲✯

✶✴✵✲❁✾✶✾✿✲ ✹✺✲✽✶✾✿✲ ✾✲ ❙❥ ❨❼❬ ✵ ❁✯✶ ❾❲ ❩ ❾ ✿✹ ✰✺✵✴✸❁❉ ✯✵✽✬ ✾❃❄❅✯❃✯✲✶✯✸ ✵❁ ✶✬✯ ✽✿✲✸✾✶✾✿✲

✿✹ ✵✲ ❏❿ ❁✶✵✶✯❃✯✲✶ ✾✲ ❙❥ ❨❼❏❬ ✵ ✸✯✲✺❃✯✴✵❊❅✯ ❁✯✶ ➀❲ ③ ➀④ ⑥➀➁ ✿✹ ❍✵❅✺✵✶✾✿✲❁ ✹✴✿❃ ❦❲ ✶✿

❻❲❉ ✇✬✯✴✯ ➀④ ❩ ➀ ✵✲✸ ➀➁ ■ ⑦⑧⑨⑩❶❶❷ ➂ ❭❲❥ ❨❼❏❏❬ ✵ ❁✯✶ ➃❲ ❩ ➃ ✿✹ ✵✴✽❁❉ ✇✬✯✴✯ ✯✵✽✬ ✵✴✽

✬✵❁ ✶✬✯ ✹✿✴❃ ➄❼➁➄⑧⑨⑩❶❶➅➆ ❼
➇
➁➄⑧⑨⑩❶❶➅➆ ❖➆➈➆ ❼

➇
④➅❉ ✵✲✸ ✯✵✽✬ ✵✴✽ ✴✯❄✴✯❁✯✲✶❁ ✵✲ ❏❿ ❁✶✵✶✯❃✯✲✶ ✾✲ ✶✬✯

✶✴✵✲❁✾✶✾✿✲ ✹✺✲✽✶✾✿✲ ✹✿✴ ✯❍✯✲✶ ❖ ✬✵❍✾✲✰ ✰✺✵✴✸ ➈ ✵❁ ✾✶❁ ✽✿✲✸✾✶✾✿✲ ✵✲✸ ❍✵❅✺✵✶✾✿✲ ❼➇ ③ ❼➇➁ ⑥❼➇④
✵❁ ✾✶❁ ✽✿✲✶✴✿❅❅✯✸ ❁✶✵✶✯❃✯✲✶❉ ✇✾✶✬ ❼➇➁ ✾❃❄❅✯❃✯✲✶✯✸ ❊❈ ✶✬✯ ❖❑▲❖▼ ✹✺✲✽✶✾✿✲ ✵✲✸ ❼➇④ ❊❈ ✶✬✯

✵❁❁✾✰✲❃✯✲✶❁ ❁❄✯✽✾❸✯✸ ✾✲ ✶✬✯ ➉❃✺✽✬✵✴✶❁ ✸✾✵✰✴✵❃◗

➊✾✶✬ ✶✬✯ ✵❊✿❍✯ ✸✯❸✲✾✶✾✿✲❁❉ ❅✯✶ ➋❲ ❊✯ ✵ ❁✯✶ ✿✹ ❁✶✵✶✯❁ ✇✬✯✴✯ ✯✵✽✬ ❁✶✵✶✯ ✾❁ ✵ ❄✵✾✴ ➌❼➁➆ ❼④➍❉

✇✾✶✬ ❼➁ ➎➀➁❉ ❼④ ➎➀④◗ ✫✬✯ ✶✴✵✲❁✾✶✾✿✲ ✴✯❅✵✶✾✿✲
❲

➏➂➐➋❲×➋❲ ✾❁ ✸✯❸✲✯✸ ❊❈ ✶✬✯ ❁✯❃✵✲✶✾✽

✴✺❅✯❁ ✾✲ ❸✰✺✴✯ ➑ ✵❄❄❅✾✯✸ ✶✿ ✯❅✯❃✯✲✶❁ ✿✹ ✶✬✯ ✵❊✿❍✯ ❁✯✶❁❉ ✵✲✸ ✾❃❄❅✯❃✯✲✶✯✸ ❊❈ ✶✬✯ ❄✯✴❳

❃✾❁❁✾✿✲ ✹✺✲✽✶✾✿✲❁❉ ✇✬✾✽✬ ✽✬✯✽❯ ✹✿✴ ✯✵✽✬ ✯❍✯✲✶ ❖ ✾✹ ✶✬✯ ✽✿✲✸✾✶✾✿✲ ❼➁➄⑧⑨⑩❶❶➅ ③ ➒ ✬✿❅✸❁ ✿✴

✲✿✶❉ ✵✲✸ ❊❈ ✶✬✯ ✶✴✵✲❁✾✶✾✿✲ ✹✺✲✽✶✾✿✲❁❉ ✇✬✾✽✬ ✽✬✯✽❯ ✾✹ ✶✬✯ ✽✺✴✴✯✲✶ ❍✵❅✺✯❁ ✿✹ ✶✬✯ ❍✵✴✾✵❊❅✯❁

❁✵✶✾❁✹❈ ✶✬✯ ✰✺✵✴✸❁❉ ✵✲✸ ✺❄✸✵✶✯ ✲✿✸✯ ✵✲✸ ❍✵✴✾✵❊❅✯❁ ✵✽✽✿✴✸✾✲✰❅❈◗ ✫✬✯ ✵❁❁✿✽✾✵✶✯✸ ✶✴✵✲❁✾✶✾✿✲

❁❈❁✶✯❃ ❱❲ ✾❁ ✶✬✯ ✶✺❄❅✯ ➄➋❲➆
❲

➏➂➆➓❲➔➅❉ ✇✬✯✴✯ ➓❲➔ ✾❁ ✶✬✯ ❁✶✵✶✯ ✸✯❸✲✯✸ ❊❈ ✶✬✯ ✾✲✾✶✾✵❅ ❍✵❅✺✯❁

✿✹ ⑧⑨⑩❶❶ ✵✲✸ ✿✹ ✶✬✯ ✽✿✲✶✯❇✶ ❍✵✴✾✵❊❅✯❁❉ ❁✯✶ ❊❈ ✶✬✯ ❏❑❏▲ ✹✺✲✽✶✾✿✲◗ ✫✬✯ ✿❄✯✴✵✶✾✿✲✵❅ ❁✯❃✵✲✶✾✽❁

✵✴✯ ✰✾❍✯✲ ✾✲ →✾✰◗ ➑◗

❆✘➣ ↔↕➙✢➛✚➜✥✛✪✥ ✤❢ ✣✧✥ ✣✙✚✛✜✢✣✢✤✛ ✜②✜✣✥✦✜

✫✿ ❄✴✿❍✯ ✶✬✯ ✽✿✴✴✯✽✶✲✯❁❁ ✿✹ ✶✬✯ ✰✯✲✯✴✵✶✯✸ ✽✿✸✯❉ ✇✯ ✾✲✶✴✿✸✺✽✯ ✶✬✯ ✸✯❸✲✾✶✾✿✲ ✿✹ ✯➝✺✾❍✵❳

❅✯✲✽✯ ❊✯✶✇✯✯✲ ➉❃✺✽✬✵✴✶❁ ❁✶✵✶✯❁ ✵✲✸ ✶✬✯ ❄✴✿✰✴✵❃ ❁✶✵✶✯❁◗

❉�✁♥✂✄✂☎♥ ✶✳ ❆ ♠✆♠❜✆❡ ♠ ♦❢ ♦✝✆ ♦❢ t✞✆ s✆ts ◆✱ ❳✱ ❱✱ ❊✱ ❞✆✟✝✆❞ ✐✝ ❚ ✱ ✐s ✆✠✉✐✡☛❧✆✝t ✭☞✮

t♦ t✞✆ ♠✆♠❜✆❡ ♠P ♣☛✐❡✆❞ t♦ ♠ ❜② t✞✆ ✐s♦♠♦❡♣✞✐s♠ ❜✆t✌✆✆✝ t✞✆ s✆t ❝♦✝t☛✐✝✐✝❣ ♠ ☛✝❞

t✞✆ ❝♦❡❡✆s♣♦✝❞✐✝❣ s✆t ✐✝ ❚P✍

❉�✁♥✂✄✂☎♥ ✷✳ ❆ st☛t✆ ✠ ❂ ❤✝✎✡✏✱ ✠ ✑◗✱ ✐s ✆✠✉✐✡☛❧✆✝t ✭☞✮ t♦ ☛ st☛t✆ ✠P ❂ ❤✡✒✎ ✡✓✏✱ ✠P ✑◗P

✐❢❢ ✝ ☞ ✡✒✔①✕✖rr✗ ➋ s♦ t✞✆ ✡☛❧✉✆ ♦❢ ①✕✖rr ✐s ✆✠✉✐✡☛❧✆✝t t♦ ✝♦❞✆ ✝✱ ☛✝❞ ✘✙✚✛ ✡✔①✗ ❂ ✡✓✔①P✗

✭✐✍✆✍✱ ♠☛t❝✞✐✝❣ ✡☛❡✐☛❜❧✆s ✐✝ ✠ ☛✝❞ ✠P ✞☛✡✆ t✞✆ s☛♠✆ ✡☛❧✉✆s✮✍

✜✢✣ ✤✥✦✦✧ ✦✧ ★✦✥✥✣★✩✪✣✫✫ ✧✦✥ ✩✢✣ ✬✣✪✣✥❛✩✣✯ ★✦✯✣ ✰✫ ✲✴ ✰✪✯✵★✩✰✦✪ ✦✪ ✩✢✣ ✸✣✪✬✩✢ ✦✧

★✦✹✤✵✩❛✩✰✦✪✺ ❲✣ ❛✫✫✵✹✣ ✩✢❛✩ ❚ ❛✪✯ ❚P ❛✥✣ ✩✢✣ ✩✥❛✪✫✰✩✰✦✪ ✫✴✫✩✣✹✫ ✹✦✯✣✸✸✰✪✬✻ ✥✣✫✤✣★✼

✩✰✈✣✸✴✻ ❛✪ ✽✹✵★✢❛✥✩✫ ✯✰❛✬✥❛✹ ❛✪✯ ❛ ✤✥✦✬✥❛✹ ✩✢❛✩ ✵✫✣✫ ✩✢✣ ✬✣✪✣✥❛✩✣✯ ★✦✯✣✻ ✥✣✫✤✣★✩✰✪✬

✩✢✣ ✤✥✣✈✰✦✵✫✸✴ ✰✪✩✥✦✯✵★✣✯ ✤✥✦✩✦★✦✸✻ ❛✪✯ ❛★★✣✤✩✫ ❛ ✫✣✾✵✣✪★✣ ✦✧ ✰✪✤✵✩ ✣✈✣✪✩✫✺

✿❀�☎❁�❃ ✶✳ ▲✆t ❚ ☛✝❞ ❚P ❜✆ t✞✆ t❡☛✝s✐t✐♦✝ s②st✆♠s ✐✝t❡♦❞✉❝✆❞ ✐✝ t✞✆ ☛❜♦✡✆ ♣☛❡☛❣❡☛♣✞s✱

☛✝❞ ✆ ❂ ✆❄✎✆❅ ❇ ❇ ❇ ❜✆ ☛ s✆✠✉✆✝❝✆ ♦❢ ✐✝♣✉t ✆✡✆✝t s✆✠✉✆✝❝✆s✍ ▲✆t σ ❂ ✠❈✎✠❄✎ ❇ ❇ ❇ ☛✝❞ σP ❂

✠P❈✎✠P❄✎ ❇ ❇ ❇ ❜✆ s✆✠✉✆✝❝✆s ♦❢ st☛t✆s✱ ✌✐t✞ ✠❋ ● ✠❍❋■❄❏ ☛✝❞ ✠P❋
P

❑●✠P❍❋■❄❏✍

❲✣ ✤✥✦✈✣ ✩✢❛✩✻ ❛✩ ✣❛★✢ ✫✩✣✤ ✦✧ ✩✢✣ ★✦✹✤✵✩❛✩✰✦✪✻ ✠❋ ☞ ✠P❋▼

❖♥❘❙❯✄✂☎♥ ❨❩❬�✳ ✠❈ ☞ ✠P❈ ✲✴ ★✦✪✫✩✥✵★✩✰✦✪✺

❖♥❘❙❯✄✂☎♥ ❬✄�❭✳ ❪✣✩ ✠ ❥ ☞ ✠P ❥ ❛✩ ✫✩✣✤ ❫✺ ❴✪ ✩✢✣ ✦★★✵✥✥✣✪★✣ ✦✧ ❛✪ ✣✈✣✪✩ ✆✻ ✸✣✩ ✠ ❥ ●

✠❍ ❥■❄❏ ❛✪✯ ✠P ❥
P

❑●✠P❍ ❥■❄❏✺ ❲✣ ★❛✪ ✤✥✦✈✣ ✩✢❛✩ ✠❍ ❥■❄❏ ☞ ✠P❍ ❥■❄❏ ✲✴ ★❛✫✣ ❛✪❛✸✴✫✰✫▼ ❵❦q ✆

✪✦✩ ✤✣✥✹✰✩✩✣✯ ✰✪ ✠ ❥✇ ❵③q ✆ ✤✣✥✹✰✩✩✣✯ ❛✪✯ ✬✵❛✥✯ ✪✦✩ ✫❛✩✰✫④✣✯✇ ❛✪✯ ❵⑤q ✆ ✤✣✥✹✰✩✩✣✯ ❛✪✯

✬✵❛✥✯ ✫❛✩✰✫④✣✯✺

⑥❩❬� ✶⑦ ✆ ♥☎✄ ❭�❁❃✂✄✄�❘✺ ⑧✧ ✩✢✣ ✣✈✣✪✩ ✰✫ ✪✦✩ ✤✣✥✹✰✩✩✣✯ ✰✪ ✩✢✣ ★✵✥✥✣✪✩ ✫✩❛✩✣✻ ✥✵✸✣✫ ✂❘⑨� ❛✪✯

✂❘⑨�P ❛✤✤✸✴ ✩✦ ❚ ❛✪✯ ❚P✻ ✥✣✫✤✣★✩✰✈✣✸✴✻ ✫✦ ✩✢❛✩ ✠❍ ❥■❄❏ ❂ ✠ ❥ ❛✪✯ ✠P❍ ❥■❄❏ ❂ ✠P ❥✻ ✣✾✵✰✈❛✸✣✪✩

✲✴ ✰✪✯✵★✩✰✦✪ ✢✴✤✦✩✢✣✫✰✫✺ ⑩✣★❛✸✸ ✩✢❛✩ ✩✢✣ ✤✣✥✹✰✫✫✰✦✪ ✧✵✪★✩✰✦✪ ✧✦✥ ✆ ✥✣✩✵✥✪✫ ❢☛❧s✆ ✰✪ ✩✢✰✫

★❛✫✣✻ ❛✪✯ ✲✴ ✢✴✤✦✩✢✣✫✰✫ ✤✥✦✬✥❛✹ ❶ ✯✦✣✫ ✪✦✩ ★❛✸✸ ✩✢✣ ★✦✥✥✣✫✤✦✪✯✰✪✬ ✩✥❛✪✫✰✩✰✦✪ ✧✵✪★✩✰✦✪✺

⑥❩❬� ✷⑦ ✆ ❭�❁❃✂✄✄�❘ ❩♥❘ ❷❙❩❁❘ ♥☎✄ ❬❩✄✂❬✁�❘✺ ❸✸✫✦ ✰✪ ✩✢✰✫ ★❛✫✣✻ ✥✵✸✣✫ ✂❘⑨� ❛✪✯ ✂❘⑨�P

❛✤✤✸✴ ✩✦ ✩✢✣ ✩✥❛✪✫✰✩✰✦✪ ✫✴✫✩✣✹✫✺ ✜✢✣ ✐❢ ✫✩❛✩✣✹✣✪✩✫ ✰✪ ❶ ★✢✣★❹ ✩✢❛✩ ✩✢✣ ✬✵❛✥✯ ✯✦✣✫ ✪✦✩

✢✦✸✯✻ ❛✪✯ ✩✢✣ ✥✣✫✤✣★✩✰✈✣ ★✦✪✩✥✦✸✸✣✯ ✫✩❛✩✣✹✣✪✩✫ ❛✥✣ ✪✦✩ ✣❺✣★✵✩✣✯✺

⑥❩❬� ❻⑦ ✆ ❭�❁❃✂✄✄�❘ ❩♥❘ ❷❙❩❁❘ ❬❩✄✂❬✁�❘✺ ⑧✪ ✩✢✰✫ ★❛✫✣✻ ⑩✵✸✣✫ ❩❁❯ ❛✪✯ ❩❁❯P ❛✤✤✸✴ ✩✦ ✲✦✩✢

✩✥❛✪✫✰✩✰✦✪ ✫✴✫✩✣✹✫✻ ✩✢✣✥✣✧✦✥✣ ❵✐q ❚ ✹✦✈✣✫ ✧✥✦✹ ✫✩❛✩✣ ✠ ❥ ❂ ❤✝✎✡✏ ✩✦ ✫✩❛✩✣ ✠❍ ❥■❄❏ ❂ ❤✝❼✎ ✡❼✏✻

✦✥ ❵✐✐q ❚P ✹✦✈✣✫ ✧✥✦✹ ✫✩❛✩✣ ✠P ❥ ❂ ❤✡✒✎ ✡✓✏ ✩✦ ✫✩❛✩✣ ✠P❍ ❥■❄❏ ❂ ❤✡❼✒✎ ✡
❼
✓✏✺ ❽❛✸✵❛✩✰✦✪ ✡❼✒ ✹❛✤✫

①✕✖rr ✩✦ ❛ ✪✦✯✣ ✸❛✲✣✸ ✣✾✵✰✈❛✸✣✪✩ ✲✴ ✯✣④✪✰✩✰✦✪ ✩✦ ✝❼✻ ❛✪✯ ✡❼✓ ✹❛✤✫ ✩✢✣ ★✦✪✩✣❺✩ ✈❛✥✰❛✲✸✣✫ ✰✪

❚P ✩✦ ✈❛✸✵✣✫ ✣✾✵✰✈❛✸✣✪✩ ✲✴ ✯✣④✪✰✩✰✦✪ ✩✦ ✩✢✦✫✣ ❛✫✫✰✬✪✣✯ ✲✴ ✡❼ ✩✦ ✩✢✣ ★✦✪✩✣❺✩ ✈❛✥✰❛✲✸✣✫ ✰✪

❚ ❼✺

✜✢✣ ✪✣❾ ✫✩❛✩✣✫ ✰✪ ✩✢✣ ✩❾✦ ✩✥❛✪✫✰✩✰✦✪ ✫✴✫✩✣✹✫ ❛✥✣ ✩✢✣✥✣✧✦✥✣ ✣✾✵✰✈❛✸✣✪✩✺

