
Learning Frameworks in a Social-Intensive Knowledge

Environment ��� An Empirical Study

Nuno Flores* and Ademar Aguiar†

Department of Informatics Engineering & INESC TEC

University of Porto - Faculty of Engineering
Rua Roberto Frias s/n, Porto, Portugal

*nuno.flores@fe.up.pt
†ademar.aguiar@fe.up.pt

Received 1 April 2016

Revised 12 May 2016
Accepted 6 June 2016

Application frameworks are a powerful technique for large-scale reuse, but require a consider-

able e®ort to understand them. Good documentation is costly, as it needs to address di®erent

audiences with disparate learning needs. When code and documentation prove insu±cient,
developers turn to their network of experts. Nevertheless, this proves di±cult, mainly due to the

lack of expertise awareness (who to ask), wasteful interruptions of the wrong people and un-

availability (either due to intrusion or time constraints). The DRIVER platform is a collabo-

rative learning environment where framework users can, in a non-intrusive way, store and share
their learning knowledge while following the best practices of framework understanding (pat-

terns). Developed by the authors, it provides a framework documentation repository, mounted

on a wiki, where the learning paths of the community of learners can be captured, shared, rated,
and recommended. Combining these social activities, the DRIVER platform promotes collab-

orative learning, mitigating intrusiveness, unavailability of experts and loss of tacit knowledge.

This paper presents the assessment of DRIVER using a controlled academic experiment that

measured the performance, e®ectiveness and framework knowledge intake of MSc students. The
study concluded that, especially for novice learners, the platform allows for a faster and more

e®ective learning process.

Keywords: Collaborative learning; frameworks; tools.

1. Introduction

Frameworks are a powerful technique that enables large-scale reuse, helping

developers to improve software quality and reduce costs and time-to-market. In its

de¯nition, a framework is a reusable design together with an implementation.

It consists of a collection of cooperative classes, both abstract and concrete,

which embody an abstract design for solutions to problems in an application domain

International Journal of Software Engineering

and Knowledge Engineering

Vol. 27, No. 5 (2017) 699–725

#.c World Scienti¯c Publishing Company
DOI: 10.1142/S0218194017500267

699

http://dx.doi.org/10.1142/S0218194017500267

[9, 10, 26]. To be able to reuse a framework e®ectively, developers have to invest

considerable e®ort on understanding it. Especially for ¯rst time users, frameworks

can become di±cult to learn, mainly because its design is often very complex and

hard to communicate, due to its abstractness, incompleteness, super°uous °exibil-

ity, and obscurity [5].

Providing an accompanying good quality documentation is thus crucial for the

e®ective reuse of object-oriented frameworks. Producing such documentation is no

trivial task [2, 42], as it needs to be easy to use, to cover di®erent audiences, and to

present di®erent types of documents using di®erent notations. Assuming the docu-

mentation is produced with quality standards, the framework users still need to go

through the process of acquiring knowledge from its contents. This process is, usu-

ally, guided according to a set of interdependent aspects:

. Goal. What does the learner expects to do with the framework (select, instantiate,

evolve)?

. Cognitive pro¯le. How does the learner instinctively tackles with the information

(top–down versus bottom–up, verbal versus visual, sequential versus global [11])?

. Abstraction level. Depending on the goal, it might be required to navigate up and

down di®erent abstraction levels of the framework. Which?

. Knowledge availability. Will the documentation su±ce to learn how to use the

framework?

To better support this learning process and to help on a more e®ective and

e±cient building of the mental model of the learner, there are best practices (or

patterns) [13] that one can follow. But even with a process behind learning a

framework, the documentation and the framework itself may not be su±cient to

provide solutions in a time-e®ective way.

Software development is, besides knowledge-intensive, a highly social activity.

Like software developers in general, a framework learner looks at the code, reads the

documentation, visualizes information and asks her colleagues for help, as part of

the process of understanding how to use the framework (Fig. 1). However, asking

the team for help may prove hard, due to its inherent human nature [30, 37]:

. Availability. Knowledgeable team mates are, most often, busy and not available to

help due to task and time constraints.

. Intrusion. Interrupted developers lose track of parts of their mental model,

resulting in a laborious reconstruction or bugs and discouraging more frequent

interruptions.

. Tacit knowledge. Developers spend vast amounts of time gathering precious, de-

monstrable useful information, but thus rarely record it for future developers,

rendering it useless.

. Sel¯sh ownership. \Knowledge is power" is a commonly observed philosophy,

especially in expert developers, afraid of loosing their status-quo.

700 N. Flores & A. Aguiar

With these issues in mind, and to support the activities taken during the learning

process, the authors propose to help the learner in two ways: (1) providing a \guide"

or \map", in the form of patterns, of the best way to undertake those activities and

(2) allowing the learner to tap into the knowledge of the learning community through

the use of appropriate tools. Both strategies are integrated into a collaborative,

shared data-driven environment named DRIVER [15].

DRIVER includes a (sub-)set of tools that enable capture, storage, sharing, rat-

ing, and recommendation of learning knowledge, namely learning paths, i.e. the steps

the learner took (while going through the documentation) that enabled her to build a

solution to her problem. This toolset is built upon a wiki that provides documen-

tation artifacts about the framework, and is con¯gurable enough to allow knowledge

acquisition (KA) in several ways.

Software engineering research comprises computer science issues, human issues

and organizational issues. It is thus often convenient to use combinations of research

approaches both from computer science and social sciences. The taxonomy described

by Zelkowitz and Wallace [46] identi¯es 12 di®erent types of experimental approa-

ches for software engineering, grouped into three broad categories: observational,

historical and controlled.

For evaluating the DRIVER platform, the choice fell on conducting a controlled

replicated experiment. This experiment studies intermediate-experienced developers

in understanding a framework, collecting time and knowledge acquisition metrics

and comparing results from di®erently set-up learning environments. Its purpose was

to ¯nd evidence that the presented collaborative approach helps novices and experts

to improve their framework learning process.

The experiment took groups of similar MSc students and measured their per-

formance, e®ectiveness and framework knowledge intake, while developing a set of

tasks using a new framework. In parallel, a set of students already knew the

Fig. 1. Framework learning activities and actors.

Learning Frameworks in a Social-Intensive Knowledge Environment 701

framework, as to study the process of re-acquiring dormant framework knowledge.

The ¯nal results support the hypothesis that the collaborative approach helps im-

proving framework learning, especially for ¯rst-time learners and novices.

This paper is organized as follows: Section 2 elaborates on the motivation behind

the design of the proposed platform. Section 3 describes the DRIVER platform.

Section 4 describes the controlled experiment, its design, subjects and protocol.

Results are reported and analyzed in Sec. 5. Section 6 discusses threats to the validity

of the results. Section 7 reviews related work, and Sec. 8 summarizes our conclusions

and points to future work.

2. Collaboratively Improving Learning

Software development is carried out by a group of developers, forming a community

and engaging in collective creative knowledge work [36]. It is a social activity me-

diated through artifacts, which are, primarily, source code and documents. Although

sharing knowledge and information within a community of developers being indis-

pensable, the primary means for developers to obtain knowledge is not through

communicating with their peers, but through artifacts. Developers invest great e®ort

recovering implicit knowledge by exploring code and documents. If this fails, they

turn to their social network [30]. There have been examples of software problems and

issues, speci¯cally while using frameworks, being solved resorting to the community

of users [43].

In [40], Surowiecky presents an extensive analysis on how knowledge and rea-

soning in a group of people provide better results, on average, than an informed,

expert individual. He states that, despite unawareness of it, \we are collectively

smart" and intellectual superior to the isolated individual. He calls this notion wis-

dom of the crowd, built on four essential pillars a group of people usually contains:

diversity, independence, decentralization and aggregation.

2.1. Grasping the collective knowledge

E®ectively capturing expertise from several heterogeneous sources in a social envi-

ronment is the goal of the Collaborative Knowledge Acquisition ¯eld of study, a spin-

o® of the KA domain. KA deals with the process of extracting, structuring, and

organizing knowledge from human experts so that the problem-solving expertise can

be captured and transformed into a computer-readable form in order to fuel expert

systems [33, 44]. KA is a complex task with several identi¯ed issues that capturing

techniques should address [33, 34], such as: (1) Most (but not all) knowledge is in the

head of experts; (2) Experts have vast amounts of knowledge; (3) Each expert does

not know everything; (4) Experts have a lot of tacit knowledge; (5) Experts are very

valuable and busy people and (6) Knowledge has a \shelf-life".

KA in a social environment shares the same issues. Additionally, the developer

has to rely on distributed knowledge resources (artifacts and people) where not

everyone is an expert. This becomes even worse if the community scope goes beyond

702 N. Flores & A. Aguiar

the team of developers and extends to the web, where other developers may have the

answer for a speci¯c problem regarding a well-known shared software artifact, API or

framework.

The quality of the retrieved knowledge is evaluated by the behavior of the com-

munity towards that knowledge. If it is useful, it is used, if not, it is abandoned. One

way of capturing this behavior is to give the community ways of expressing their

intent, whether through rating or commenting. Otherwise, there are ways of im-

plicitly capturing the community behavior, like page hitsa or social bookmarking.

This is known as Collaborative KA [32], as it gathers information from several

heterogeneous sources, such is the morphology of the Internet. Systems that enable

this kind of KA are denominated Collective Knowledge Systems.

2.2. Collective knowledge systems

In [20], Tom Gruber states

\The web, as a community, is not yet a collective intelligence, rather a

collected intelligence. This comes from the fact that there is no new level

of understanding. User-generated content is being shared, gathered and

collected in domain-speci¯c sites. We can ¯nd what things are more

popular or what are the current fads. However, while popularity is one

measure of quality, it is not a measure of veracity. Mass authoring is not

the same thing as mass authority."

This classi¯cation of collected versus collective intelligence of the web renders a

de¯nition of what a Collective Knowledge System can be and its key properties are

summarized below:

. User-generated content. The bulk of the information is provided by humans

participating in a social process. A traditional database or expert system, in

contrast, gets the bulk of its information from a systematic data gathering or

knowledge modeling process.

. Human-machine synergy. The combination of human and machine enables a ca-

pacity to provide useful information that could not be obtained otherwise. These

systems provide more domain coverage, diversity of perspective, and sheer volume

of information, when compared to results obtained by searching o±cial literature

or talking to experts.

. Increasing returns with scale. As more people contribute, the system becomes

more useful. The system of rewards that attracts contributors and the computa-

tion over their contributions is stable as the volume increases. In contrast, a text

corpus and simple keyword search engine, do not get more useful when the volume

of content overwhelms the value of keywords to discriminate among documents.

aThe number of web users that visit that page.

Learning Frameworks in a Social-Intensive Knowledge Environment 703

Similarly, if the reward system encourages fraud or fails to bubble up the best

quality content, the system will get less useful as it grows.

. Emergent knowledge. The system enables computation and inference over the

collected information, leading to answers, discoveries, or other results that are not

found in the human contributions. This fourth property is what di®erentiates a

collective from a collected knowledge system.

Conveying these key properties, a Collective Knowledge System can be composed

of the following elements, depicted in Fig. 2:

. Community of motivated people with problems and solutions. These contributors

share their expertise and knowledge on the speci¯c domain.

. Larger population of intelligent people with similar problems. Who actively search

for personalized solutions to their problems.

. Computer mediated social communication. Whether through tagging, blogging or

commenting, the social process is augmented and nurtured.

. Semi-structured information repository. Acting like a storage facility for a more

long-term memory and where the solutions are collected and shared.

. Socially clustered data knowledge-base. Where the solutions are cataloged and

clustered according to the social interaction and multidimensional analysis.

. Faceted search engine. So that the solutions seekers can look for personalized

solutions, through contextual browsing.

. Recommendation engine. To keep the users in perspective and assisting in

obtaining more rapid and e®ective answers to their speci¯c issues.

It might be relevant to say that not all of these elements need to be present for a

system to be considered of Collective Knowledge. At least, the knowledge quality

evolution through social interaction and its access need to be enforced.

community of
motivated people
with problems and

solutions

larger population of
intelligent people

with similar problems

faceted search
engine

recommendation
engine

computer mediated
social communication
(sharing ,tagging, blogging,
commenting, discussing)

semi-structured
information
repository

Socially clustered
data

(text, tags, metadata...)

Fig. 2. Composing elements of a Collective Knowledge System (adapted from [20]).

704 N. Flores & A. Aguiar

3. The DRIVER Platform

DRIVER is a platform that enables users to e®ectively learn how to use a framework

in a collaborative, user-friendly, knowledge-intensive environment. It promotes social

learning within a community of framework users, with di®erent levels of experience,

motivated to ¯nd answers to their problems and at the same time to share them for

the bene¯t of all. Its architecture relies on the notion of a Collective Knowledge

System (Sec. 2.2), supporting knowledge quality evolution through social interac-

tion. Its features include:

. Collective knowledge management. The learning knowledge is captured and

maintained by the community in a least-intrusive way. Learners can search and

rate available knowledge and get recommendations on the best course of action.

. Best practices support. Previous work by the authors resulted in a set of pat-

terns [13] for assisting in framework understanding. These are available to the

platform user.

. Collaborative documentation. The framework documentation artifacts are avail-

able for editing and updating by the community of learners.

. Social Classi¯cation. Tagging and folksonomies are at the basis of the learning

knowledge classi¯cation.

. Extensibility. The platform is open for extension to accommodate new features

that might appear in the future.

These features also aim at covering a set of requirements that derived from pre-

vious research, by the authors, on collective intelligence and collaborative learn-

ing [14].

3.1. Learning cycle

The authors believe that providing a learner with the steps others (learners) took to

solve their problems (a.k.a. learning path), can improve the learning experience and

produce better and quicker outcomes. The motto is: Show me how you learnt it

yourself.

The goal is to non-intrusively capture the learning steps a framework user takes,

store them in a shareable knowledge-base, where other users can access it. This

knowledge relies on the community's potential to maintain its relevance and quality,

by rating it and allowing the system to recommend possible next steps that aid on the

learning task. This can be described as a 4-step cycle as follows (see Fig. 3):

. Capture. The learner begins her learning quest to ¯nd knowledge that might solve

her problem. The trail of steps is captured as she browses through the artifacts,

trying to ¯nd the relevant knowledge that might help her.

. Filter/Store. The learner improves the captured learning path by trimming o®

those steps that, despite taken, did not lead to the required knowledge. This

Learning Frameworks in a Social-Intensive Knowledge Environment 705

prevents other learners from running in circles or hitting dead-ends. Afterwards,

the pruned and grafted learning path is stored in a shared knowledge-base.

. Share/Rate. The learners access the knowledge-base, searching for learning paths

that might help them. They evaluate its usefulness (taking the steps, a.k.a.

walking through or just inspecting the visited artifacts) and rate them according to

its e®ectiveness.

. Recommend. This step enables the recommendation of possible next steps (on a

learning path that is being currently captured), based on previous learning paths

other learners have took. Actually, this step occurs, in parallel, during the Capture

step. The more learning paths, the better the recommendation becomes, moti-

vating the community to participate.

3.2. Components

The DRIVER platform is composed of the following components:

. Wiki. Being lightweight, semi-structured, extensible and quite popular, a wiki

served as a foundation for harboring the collaborative environment and its com-

ponents.

. Framework documentation artifacts repository. The wiki contents consist mainly

of a set of documentation artifactsb about the framework in question.

bThese were based on a set of patterns for e®ectively documenting a framework [4].

Learning
Knowledge-

Base

Capture

Filter/Store

Share/Rate

Recommend

Fig. 3. DRIVER's 4-step learning knowledge cycle.

706 N. Flores & A. Aguiar

. Patterns. The best practices for framework understanding in pattern form (de-

veloped by the authors [13], as previously stated).

. Learning cycle support plug-ins. A set of wiki plug-ins that support the imple-

mentation of the 4-step learning cycle.

Further details about the platform are available online at bit.ly/driverTool.

4. Experiment Design

The use of Empirical Studies With Students (ESWS) in software engineering helps

researchers gain insight into new or existing techniques and methods. Scienti¯c

grounds and discussion for the usage of such controlled [46] methods for software

engineering research validation can be found in [19, 28] and [39]. ESWSs can be

valuable to the industrial and research communities if they are conducted in an

adequate way, address appropriate goals, do not overstate the generalization of the

results and take into account threats to internal and external validity [6]. As ESWSs

are often used to obtain preliminary evidence in support of or against research

hypothesis, this experiment was designed as an experimental package (available at

[1]), to be performed in di®erent locations, and by di®erent researchers, in order to

enhance the ability to integrate the results obtained and allow further meta-analysis

on them.

4.1. Subjects

The experiment subjects were 23 MSc students from the Integrated Master in In-

formatics and Computing Engineering, lectured at the University of Porto, Faculty

of Engineering. They were part of a fourth year class, attending an optional course on

\Architecture of Software Systems". Its syllabus deals strongly with frameworks and

patterns, therefore it was more than suitable to integrate this experiment into their

course work.

4.1.1. Group formation

The subjects were divided into four groups, each with its own purpose.

. Baseline (BL). This group established the baseline for the experiment, serving as

the control group. Its subjects used the framework with no aids but the docu-

mentation.

. Experimental Group 1 (EG1). This group used the framework having, besides the

documentation, the patterns as an aid. The purpose was to compare results with

the baseline group and provide evidence for the usefulness of the patterns.

. Experimental Group 2 (EG2). This group used the framework having the

DRIVER platform (documentation, patterns and wiki plug-ins) as aid. The pur-

pose was to compare results with the baseline group and provide evidence that the

proposed collaborative environment improves framework understanding.

Learning Frameworks in a Social-Intensive Knowledge Environment 707

. Experts (EX). This group used the framework having the DRIVER platform

(documentation, patterns and wiki plug-ins) as aid. The purpose was to provide

evidence that the proposed collaborative environment also helps expertsc increase

their knowledge of the framework.

4.1.2. Pre-experiment evaluation

For an experiment of this kind, it is important to assure that the subjects are similar,

that is, their base skills do not pose a signi¯cant threat to the validity of the results.

Therefore, they were scrutinized based on their academic track, by analyzing their

grades on a selected subset of courses, deemed relevant to the outcome of the ex-

periment. An independent samples t-test was conducted to compare the average

students' grades (shown in Table 1) between the baseline and the other experimental

groups. Table 2 shows that there was no signi¯cant di®erence between the baseline

group and the remaining groups.

cExperts, in this context, means prior framework users, thus having retained knowledge about how to use

the framework.

Table 1. Student grades group statistics.

Group N Mean Std. deviation Std. error mean

BL 6 16.838 0.9261 0.3780

EG1 4 16.928 1.3527 0.6763

EG2 4 16.943 1.4869 0.7435
EX 9 16.730 1.0213 0.3404

Table 2. Independent Samples Tests. The ¯rst two columns are the
Levene's Test for Equality of Variances, showing a signi¯cances greater than

0.05 (Sig.) for all cases. The other three columns are the t-test for Equality of

Means. Since we can assume equal variances, the 2-tailed values (0.902,

0.802, 0.839), allow us to conclude that there is no statistically signi¯cant
di®erence between the two conditions.

F Sig. t df Sig. (2-tailed)

(a) Baseline versus Experimental Group 1.

Eq. Var. Assumed 0.269 0.618 �0.13 8.000 0.902

Eq. Var. Not Assumed �0.12 4.882 0.912

(b) Baseline versus Experimental Group 2.
Eq. Var. Assumed 0.607 0.458 0.259 8.000 0.802

Eq. Var. Not Assumed 0.234 4.569 0.825

(c) Baseline versus Experts.

Eq. Var. Assumed 0.050 0.827 0.208 13.00 0.839

Eq. Var. Not Assumed 0.212 11.62 0.836

708 N. Flores & A. Aguiar

4.2. Framework selection

Choosing a framework to use in the experiment was an issue. One of the main

concerns was ¯nding a framework that would suit all the experimental groups. The

experiment needed a framework that was unknown to most groups (BL, EG1, EG2)

but known to the Experts (EX) group. The choice fell on an in-house, proprietary,

white-box framework called OGHMA [12]. It is an object-oriented framework tar-

geted to the development of information systems, on an industrial level, which

structural requirements can be best described as \incomplete by design". It relies on

the Adaptive Object-Model meta-architectural pattern [45] to allow run-time do-

main evolution by the user. OGHMA had been used by some of the students during a

previous course, enabling both knowledgeable and non-knowledgeable pro¯les. In

future experiments, a previous, more extensive survey must be made to the subjects

in order to ¯nd a suitable framework that can cope with all the constraints and where

training of the Experts group might be required.

4.3. Environment

According to [6], regarding ESWSs,

\The study setting must be appropriate relative to its goals, the skills

required and the activities under study."

Considering this requirement, the experiment was conducted on a familiar setting to

the students, as to minimize the external environmental factors that might threaten

the validity of the results. It took place in laboratory classrooms, usually used by the

students to attend classes or develop their course work. To enforce the collaborative

work [6], the students were grouped into pairs with colleagues from their own ex-

perimental group and placed in two separate rooms for better monitoring. They had

limited internet access to minimize distractions (instant messaging, e-mail, etc.) and

to control experimental variables. Nevertheless, they had access to the necessary

resources to conduct the experiment successfully:

. Experiment tracker wiki. This wiki contained instructions on how to start the

experiment and a description of the consecutive tasks to be performed, its

requirements and goals. It registered task completion times and monitored the

experiment progression.

. Documentation wiki. To learn about the OGHMA framework, a documenta-

tion wiki was provided with enough contents to enable the e®ective coverage of the

requirements presented by each task. This wiki was, in every way, an instantiation

of the DRIVER platform, except for the availability of the patterns and the

learning cycle supporting plug-ins. During the Treatments phase (see Sec. 4.4.2)

each group would be given access to these resources according to their experiment

research goals.

Learning Frameworks in a Social-Intensive Knowledge Environment 709

. OGHMA Visual Studio Solution package. The OGHMA framework was

developed in C#, and optimized for use on Microsoft's Visual Studio IDE.

Therefore, a Solution package was provided to the students (and referenced by the

documentation), hopefully serving as a more quick and easy platform for devel-

opment.

4.4. Protocol

This section describes the experiment protocol and phases (see Fig. 4). After divided

into groups, the students were submitted to a pre-experiment questionnaire to es-

tablish their initial state. Then, each group undertook a treatment phase to condition

their experiment environment accordingly and, after going through a series of tasks,

a post-experiment questionnaire was conducted to collect results.

4.4.1. Pre-questionnaires

The ¯rst phase of the experiment started by handing out a questionnaire to the

students. The questionnaires were designed using a Likert scale [31]. This psycho-

metric bipolar scaling method contains a set of Likert items, or statements, which the

respondent is asked to evaluate according to any kind of subjective or objective

criteria, thus measuring either negative or positive response to the statement. For all

the questionnaires in this experiment (both pre- and post-), the Likert items had a

¯ve-point format: (1) strongly disagree, (2) somewhat disagree, (3) neither agree nor

disagree, (4) somewhat agree, and (5) strongly agree.

Pre-questionnaire A. The pre-experiment questionnaire A was used to ascer-

tain the students background and general pro¯le in order to screen out possible

di®erences amongst the students regarding their basic skills. It also served to con¯rm

their (non-)acquaintance with the OGHMA framework.

Pre-questionnaire B. The pre-experiment questionnaire B extended pre-ex-

periment questionnaire A to include items used to ascertain what knowledge the

subjects had about the OGHMA framework, at the start of the experiment.

Fig. 4. Experiment protocol and phases.

710 N. Flores & A. Aguiar

4.4.2. Treatments

After the pre-questionnaires phase, the students were subject to a treatment phase,

where each group was introduced to their own experiment environment. This is

where the groups actually diverge regarding their experiment research goals. Each

treatment is described next.

Treatment A. This treatment introduced the experiment environment as

described in Sec. 4.3, but without the patterns or learning cycle supporting

plug-ins.

Treatment B. This treatment extended treatment A by allowing the students to

have access to the patterns and to go through them before advancing to the next

phase.

Treatment C. This treatment extended treatment B by providing the experi-

ment environment with the whole DRIVER platform. The DRIVER knowledge base

already had a few learning paths captured in a previous trial run session where a

framework expert performed the same experiment protocol. This expert had previous

knowledge of the framework, but no acquaintance with the documentation wiki. The

students were shown a demonstration video with a quick tutorial on how to use the

plug-ins and their purpose, using a di®erent case scenario. This way the students

were not biased by any clues on what documentation to look for in order to perform

the experiment tasks.

4.4.3. Tasks

At this point, all the groups were ready to start executing the tasks that would

lead them to use the framework. It was not disclosed how many tasks were there,

merely the goal to be e®ective and as less time-consuming as possible. Tasks were

sequential, \unlocking" the next, only upon completion. The tasks were mainly

focused on assessing how e±ciently the students could incrementally build an

information system within four iterations. These can be seen in Fig. 5, although

the fourth iteration required no visual diagram aid (and thus not appearing in the

¯gure) but only its textual description. These tasks had already been used in

another experience [12] regarding the OGHMA framework, so they were adapted

to ¯t this experiment research goals. The description of each iteration is presented

next.

Iteration 1. The ¯rst iteration was designed to yield a very simple system. Only a

single screen would be needed to view and edit the information. There was no

polymorphism, shared aggregations or any type of conditional rules and the whole

system could be roughly stored in two database tables. The purpose was merely to

make ¯rst contact with the framework with no excessive task complexity.

Iteration 2. The second iteration was designed to make the students dig deeper

into the framework. There was the need for more screens (due to indexation) and the

number of database tables could grow from two to four, but with minimal modi¯-

cation to the existing artifacts.

Learning Frameworks in a Social-Intensive Knowledge Environment 711

Iteration 3. The third iteration merely increased the complexity of the system,

requiring more elaborate user-interaction and conditional rules, involving shared

many-to-many relationships and relationship properties. Again the students would

have to go deeper into the framework in order to cope with these requirements.

Iteration 4. This ¯nal iteration posed a new challenge: framework evolution. The

students had no customization points to solve the proposed requirements. Therefore,

they would have to go into the framework internal code and extend it to provide this

new con¯guration ability. The goal was to put the students in direct contact with the

framework code.

4.4.4. Post-questionnaire

At the end of the experiment, a questionnaire was handed out to the students in

order to ascertain their framework knowledge intake and to screen potential threats

to the validity of the results.

5. Analysis of the Results

This section reports the results of the experiment, regarding both qualitative

(questionnaires) and quantitative (time results) metrics. As mentioned in Sec. 4.4,

the subjects were given a pre-experiment questionnaire to screen out possible

background and basic skills deviations (Sec. 5.2). During the experiment, the task

completion time was recorded (Sec. 5.7) and afterwards, a post-experiment ques-

tionnaire collected further data (see Table 4), to evaluate possible threats to the

validity of the results (Secs. 5.3–5.5) and the amount of framework knowledge intake

(Sec. 5.6).

Fig. 5. Iteration-based incremental system development diagram presented to the subjects.

712 N. Flores & A. Aguiar

5.1. Statistical relevance

To provide statistical relevance in the analysis of the questionnaires items, the results

are interpreted as such: let the null hypothesis be denoted as H0, the alternative

hypothesis as H1, the baseline group as Gb, the experimental groupd as Ge, and � the

probability estimator of wrongly rejecting the null hypothesis. Then, the alternative

hypothesis are either: (i) H1 : Ge 6¼ Gb, the experimental group di®ers from the

baseline, (ii) H1 : Ge < Gb, the measure in the experimental group is lower than the

baseline, or (iii) H1 : Ge > Gb, the measure in the experimental group is greater than

the baseline. The outcomes of the two treatments were compared for every answer

using the non-parametric, two-sample, rank-sum Wilcoxon–Mann–Whitney

test [21], with n1 ¼ 6 and n2 ¼ 4.e The signi¯cance level for all tests was set to 5%, so

probability values of � � 0:05 are considered signi¯cant, and � � 0:01 considered

highly signi¯cant.

5.2. Background

The goal of pre-questionnaire A was to provide an objective comparison between the

technical background of each group. It was composed of the following questions:

I have considerable experience. . .

. BG1.1 … using frameworks.

. BG1.2 … analyzing and specifying information systems.

. BG1.3 … using object-oriented architecture design and implementation.

. BG1.4 … with agile development methodologies.

. BG1.5 … with classical development methodologies.

. BG1.6 … with formal development methodologies.

. BG1.7 … with UML class diagrams.

. BG1.8 … with Visual Studio IDE.

. BG1.9 … using wikis.

. BG1.10 … with XML-based languages.

. BG2. I have never used or had contact with the OGHMA framework.

As can be seen in Table 3, an analysis of the results showed there was no signi¯cant

di®erence (� > 0:05 in all cases) between the BL and EG1 and EG2. As such, any

subjective di®erence among the participants regarding their basic skills was rejected.

5.3. External factors

Attempting to rule out possible threats to validation, concerning the experiment

environment factors, the following questions were posed:

. EF1. I found the whole experience environment intimidating.

dThe experimental group can be either EG1 or EG2 depending on what group is being analyzed.
eBoth EG1 and EG2 have four subjects.

Learning Frameworks in a Social-Intensive Knowledge Environment 713

. EF2. I enjoyed programming and developing in the experiment.

. EF3. I would work with my partner again.

. EF4. I kept getting distracted by other colleagues outside my group.

As seen in Table 4, the impact of external factors was not di®erent among the

groups as to in°uence the experiment results.

5.4. Overall satisfaction

Questions regarding performance, comfort and feel for the collaborative environment

were presented, as subjective results for later comparison with the expected objective

results. Those questions were:

. OVS1. Overall, this particular setup was suitable for solving every task presented.

Table 3. Summary of the results between of pre-questionnaire A, including the values of the non-

parametric signi¯cance MWW test.

EG1 EG2 BL MWW (EG1 versus BL) MWW (EG2 versus BL)

�x � �x � �x � H1 W � H1 W �

BG1.1 3.25 1.26 3.75 0.96 4.00 0.63 6¼ 16.5 0.257 6¼ 19.5 0.610

BG1.2 4.00 0.82 4.00 0.82 3.50 0.55 6¼ 28.5 0.352 6¼ 28.5 0.352
BG1.3 4.50 0.58 4.50 0.58 4.83 0.41 6¼ 18.0 0.476 6¼ 18.0 0.476

BG1.4 3.50 0.58 3.50 0.58 3.33 0.82 6¼ 32.0 0.914 6¼ 32.0 0.914

BG1.5 3.75 0.50 3.25 0.96 3.83 0.75 6¼ 21.5 0.914 6¼ 18.0 0.476
BG1.6 3.00 0.82 3.50 1.00 3.00 0.00 6¼ 22.0 1.000 6¼ 27.0 0.257

BG1.7 4.25 0.50 4.25 0.96 4.50 0.55 6¼ 19.0 0.610 6¼ 20.5 0.762

BG1.8 3.00 1.41 4.00 0.82 3.83 1.60 6¼ 17.0 0.352 6¼ 21.0 0.914

BG1.9 4.00 0.00 4.25 0.96 4.33 0.52 6¼ 18.0 0.476 6¼ 22.0 1.000
BG1.10 3.25 0.96 3.50 0.58 4.17 0.98 6¼ 16.0 0.257 6¼ 17.0 0.352

BG2 4.75 0.50 5.00 0.00 4.83 0.41 6¼ 21.0 0.914 6¼ 31.0 0.762

Table 4. Summary of the results of the post-questionnaire (except for framework knowledge questions),

including the values of the non-parametric signi¯cance MWW test.

EG1 EG2 BL MWW (EG1 versus BL) MWW (EG2 versus BL)

�x � �x � �x � H1 W � H1 W �

EF1 3.00 1.15 4.50 0.58 3.33 1.37 6¼ 20.00 0.762 6¼ 26.00 0.171

EF2 3.00 0.82 3.75 0.50 3.00 0.89 6¼ 22.00 1.000 6¼ 27.00 0.257
EF3 4.50 0.58 3.50 0.58 4.50 0.84 6¼ 21.00 0.914 6¼ 14.00 0.114

EF4 1.50 0.58 1.00 0.00 1.00 0.00 6¼ 27.00 0.256 6¼ 22.00 1.000

OVS1 4.00 0.00 3.50 0.58 2.50 0.55 > 24.00 0.005 > 14.50 0.048
OVS2 2.75 0.96 3.00 0.82 1.50 0.84 > 29.50 0.043 > 27.00 0.033

OVS3 4.50 0.58 4.50 0.58 4.67 0.52 < 20.00 0.881 < 20.00 0.881

OVS4 1.75 0.50 2.25 0.50 2.50 1.05 < 16.50 0.953 < 20.00 0.738

DP1.1 2.50 1.00 4.25 0.50 1.67 1.21 < 26.00 0.971 < 22.50 1.000

DP1.2 1.75 0.50 1.75 0.50 1.50 0.84 < 29.50 0.833 < 29.50 0.833

DP1.3 3.75 0.96 3.75 1.26 4.17 1.17 < 18.50 0.795 < 19.00 0.853
DP1.4 5.00 0.00 4.00 1.15 5.00 0.00 < 22.00 1.000 < 16.00 1.000

714 N. Flores & A. Aguiar

. OVS2. I found the documentation available to be su±cient.

. OVS3. I felt the need to have access to more information on how to use the

framework.

. OVS4. Despite my experience, the tools available, excluding OGHMA, delayed my

work considerably.

As expected, the results showed that there was a signi¯cant di®erence (� < 0:01)

between BL and EG1 and EG2 in questions OVS1 and OVS2. It indicated that the

proposed collaborative environment provided a greater sense of accomplishment and

satisfaction when compared to just having the documentation.

5.5. Development process

Questions DP1.1 to DP1.4, intended to ascertain how hard it was to complete each of

the task presented, as to measure the impact of DRIVER in the development process.

The template question was: \It was hard to ¯nd out how to use the framework to

complete iteration X" (where X was replaced by the iteration number).

In none of the desired hypothesis did the scores produce any relevant statistical

results, having some items, even, produced unexpected scores.

In an overall analysis, it can be stated that in the case of BL versus EG1, iteration

1 revealed to be an easy task, getting easier in iteration 2, but increasingly more

di±cult when it came to iteration 3 and 4 (where the non-completion of this itera-

tion, led to the top score of 5). In the case of BL versus EG2, the results are similar to

the above stated, with an increased score for iteration 1.

The overall scores of this group of questions were unexpected. This led to a follow-

up informal interview with the students to try to understand their reasons for an-

swering such scores. The main conclusion from this interview is that their inter-

pretation of the items led them to answer not so much about the usage of the

collaborative environment, but more about the complexity of the OGHMA frame-

work and their subjective analysis of their own performance. As such, no evidence

can be assumed from this group of questions, as the answers do not express its

intended purpose. Nevertheless, when asked about iteration complexity, they noted

that Iteration 1 (because it was the ¯rst) and Iteration 4 (no one was able to com-

plete) were the most complex, ordering Iteration 3 as mildly complex and Iteration 2

as the less complex (especially after tackling with Iteration 1).

5.6. Framework knowledge

In order to measure the increase in framework knowledge, a set of 17 items was

devised and presented to the subjects at the end of the experiment. These questions

intended to ascertain how much correct information about the framework the par-

ticipants had acquired. It was assumed that all groups (except the Experts) had no

prior knowledge of the framework whatsoever, as corroborated by item BG2.

Learning Frameworks in a Social-Intensive Knowledge Environment 715

5.6.1. Categories

According to [3], framework knowledge can be divided into layers, ranging from more

abstract to more concrete information. Not only was it relevant to measure the

amount of framework knowledge acquired, but also at what depth the subjects went

in their learning of the framework. As such, framework knowledge can be divided

into the following seven categories, each representing an abstraction layer:

. Overview (OV). This category is intended to communicate the purpose of the

framework to potential users, in a clear and concise way.

. Domain (DM). This category de¯nes the application domain covered by the

framework, namely the products that can be developed with the framework, their

variability aspects (hotspots), and how the framework can and should be reused.

. Components (CP). This category formally de¯nes a black-box view, i.e. the

properties and behavior of the products that can be developed.

. Design (DN). This category presents the design principles of the framework, and

describe its micro-architectures and mechanisms of cooperation between compo-

nents.

. Public view of the implementation (PB). This category represents an external view

of the implementation of framework components, its collaborations, roles, inter-

faces, and classes.

. Protected view of the implementation (PT). This category represents the view

available for developers of components through extension of classes provided by

the framework and its contracts.

. Private view of the implementation (PV). This category presents a white-box view

over the implementation of the framework, usually in the form of source code.

The items presented in the questionnaire tried to cover all these categories and

had a true/false statement-like form. They were then shu®led, so its natural order

would not bias the subjects when answering.

5.6.2. Results

The relevance of an item-to-item analysis of the scores is not so much important as

the total amount of knowledge the subjects acquired. So, the results are shown

aggregated and processed in two ways: (i) total knowledge acquired and (ii) total

knowledge acquired by category.

When answering a true or false statement, using a ¯ve-point format Likert scale,

the scores not only show the answer (strongly disagree (1) as false and strongly agree

(5) as true) but also the con¯dence level of the respondent. The closer the answer gets

to the boundaries of the scale, the more certain the subject is of the answer (being

neither agree nor disagree (3) not knowing the answer). The scores were then pro-

cessed and converted into distances from the correct answer, e.g. a score of 2 for a

true statement (5) converts into a distance of 3 (j5� 2j ¼ 3), whereas for a false

716 N. Flores & A. Aguiar

statement it converts into a distance of 1 (j1� 2j ¼ 1) and so forth. Items the sub-

jects did not know the answer (3) would always contribute the same distance (2).

Finally, an average of the scores for each item was computed and, as done for the

initial students' average pre-experiment evaluation, an independent samples t-test

was conducted to compare the averages of the items between the Baseline and

Experimental Groups 1 and 2. These results can be seen in Tables 5 and 6. A

comparison for the framework knowledge distances for each category can be seen

in Fig. 6.

Table 6. Independent Samples Tests for Framework Knowledge. The ¯rst two columns
are the Levene's Test for Equality of Variances, showing a signi¯cance greater than 0.05

(Sig). The other three columns are the t-test for Equality of Means. Since we can assume

equal variances, the 2-tailed values of 0.024 and 0.047 allow us to conclude that there is a

statistically signi¯cant di®erence between the two conditions, in both tables.

F Sig. t df Sig. (2-tailed)

(a) Baseline versus Experimental Group 1

Eq. Var. Assumed 0.215 0.646 2.364 32.00 0.024

Eq. Var. Not Assumed 2.364 31.86 0.024

(b) Baseline versus Experimental Group 2

Eq. Var. Assumed 0.041 0.841 2.071 32.00 0.047
Eq. Var. Not Assumed 2.071 31.98 0.047

Table 5. Framework knowledge group statistics.

Group N Mean Std. deviation Std. error mean

BL 17 2.087 0.5598 0.1358

EG1 17 1.647 0.5234 0.1269

EG2 17 1.676 0.5431 0.1317

Fig. 6. Framework knowledge distances results.

Learning Frameworks in a Social-Intensive Knowledge Environment 717

The results provide evidence that the collaborative environment contributes to an

increase on framework KA, thus supporting the hypothesis that it helps novices on

learning about a framework.

5.7. Performance and e®ectiveness

During the experiment, the duration of each group took to complete each iteration

was recorded. At the end, these results were processed and corrected, considering the

e®ectiveness of the deliverables, so that certain quality-related time deviations (e.g.

failure to comply to requirements, code standards, implementation variations, etc.)

could be minimized and the reliability of the results increased.

All deliverables were inspected for quality and e®ectiveness and graded, rendering

a time penalty accordingly. The deliverables were graded with the following scale:

grade A (no time penalty), for deliverables that covered all the requirements and

presented the expected implementations; grade A- (5min time penalty) for deliver-

ables that slightly deviated from the expected implementation, nevertheless covered

all the requirements; grade B, (10min time penalty) for deliverables that somewhat

deviated from the intended implementation, although still covering the require-

ments; grade B-, (15min time penalty) for deliverables that failed to cover one or

more requirements, although the coding of a possible solution was present. The

grading of the deliverables can be seen in Table 7.

As an overall analysis, the results (see Fig. 7) indicate that there were better time

performances from Experimental Groups 1 and 2, in comparison to the Baseline

group. The longer time EG2 took when compared to EG1 can be explained by the

overhead taken using a new tool (the learning cycle plug-ins). Iterations 1 and 3

corroborate this.

Regarding Iteration 2, there is a more even set of results, where, oddly EG1 took a

slightly bit more than both BL and EG2. It is believed that the short ¯nishing time

they took in Iteration 1 may have rendered them overcon¯dent for tackling with this

iteration, thus a®ecting their time performance. On the other hand, despite slim,

EG2 performed better than BL. As for Iteration 4, only a couple of groups ¯nished

within the expected time frame for the experiment, rendering their results useless for

Table 7. Deliverables grades.

Iterations

1 2 3 4

Baseline Pair 1 B B A� –

Baseline Pair 2 B B B� –

Baseline Pair 3 B A� B –

Experimental Group 1 Pair 1 A� A A� –

Experimental Group 1 Pair 2 B B A –

Experimental Group 2 Pair 1 B B B –

Experimental Group 2 Pair 2 A� B A� –

718 N. Flores & A. Aguiar

analysis. This is explained by the increased complexity of the iteration, combined

with the already long experiment duration and tiredness of the groups.

It is interesting to observe that when complexity and extensiveness increase, the

results are better. This can be seen in Iteration 1, when there is a ¯rst contact with

the framework and then again in Iteration 3. The complexity gap between Iterations

1 and 2 is not so great, so the performance is somewhat similar. But when one turns

up the heat, (from Iteration 2 to Iteration 3) the tools step in to aid on performing

better.

5.8. Experts group analysis

The purpose of the Experts group was to study the impact the collaborative ap-

proach might have on subjects with prior knowledge of the framework, although not

actively using it. For this experiment, the subjects had been in contact with the

framework around six months prior to the experiment and during a period of three

months. During this time, they engaged in instantiation and evolution tasks. The

inactivity period allowed the framework knowledge acquired to decay, therefore,

regaining contact with the framework, after a while, would generate di®erent cog-

nitive needs than the novice users that had never used the framework.

The results proved inconclusive as to where the collaborative approach helps

experts on improving framework learning. Despite the expected better time perfor-

mance when compared with the other groups, the KA results did not indicate that

the approach helped the Experts group in their (re-)learning of the framework.

Despite these results, other indicators where captured, namely the usage of the

collaborative approach to capture their own knowledge of the framework. Although

Fig. 7. Iteration completion time results (average per group). Units in minutes.

Learning Frameworks in a Social-Intensive Knowledge Environment 719

not disclosed to them, they quickly discovered that some (if not all) the subjects of

the Experts group were sharing the same knowledge base of learning paths, so they

spent some time adding their own and rating others.

It is believed that without the burden of the overhead of learning a new frame-

work, the subjects spent some time using the DRIVER platform to capture their

learning paths and improve the knowledge-base with their own expertise. In a later

follow-up session, they provided lots of useful feedback on how to improve the col-

laborative environment.

6. Threats to Validation

The outcome of validation is to gather enough scienti¯c evidence to provide a sound

interpretation of the results. Validation threats are issues and scenarios that may

distort that evidence and thus incorrectly support (or discard) expected results. Each

validation threat should be expected and addressed a priori in order to yield unbi-

ased results or, at least, minimized a posteriori with e®ective counter-measures.

The following expected validation threats were discarded through both pre- and

post-experiment questionnaires:

. Misunderstanding of the given tasks. Because the tasks relied on textual speci¯-

cations and UML diagrams, is was necessary to ensure that the participants cor-

rectly interpret them (item BG1.7).

. Insu±cient skills to execute the tasks. The tasks required participants to have the

necessary skill to build and evolve information systems, namely knowing how to

work with the given programming language, IDE and database engine (items

BG1.2, BG1.3, BG1.8 and BG1.10).

. Overhead due to lack of experience with the new tools. When presented with new

tools, these will, unavoidably, introduce overhead into the development process.

This overhead was expected and compensated when interpreting the observed

results. Nevertheless, the evaluation of the participants subjective feel over this

overhead had to be discarded so that the tools would not pose as a relevant threat

beyond expectations (item OVS4).

. Experiment-related factors. Knowingly being part of an experiment, changes the

mood and may be an inhibitor of normal development. The performance may be

conditioned by the feel of being observed and judged (item EF1).

. Team factors. Despite the forming of pairs being handed to the participants as to

alleviate the possibility of having con°icting partners, it was necessary to make

sure that the ¯nal grouping was not a threat to validity (item EF3).

. Lack of motivation. Due to the length of the tasks (experiment went beyond 3 h),

and the fact that there was no compensation to individuals participating in the

experiment, the lack of motivation could hinder the outcome (item EF2).

. Inter-group competition. In an open-space setting and knowing all groups are

undertaking the same experiment, the ability to have feedback on how others are

720 N. Flores & A. Aguiar

performing may in°uence groups di®erently. Di®erent people react di®erently to

pressure. Therefore, there was the need to discard this threat by ascertaining if this

pressure was an issue (item EF4).

A threat not completely discarded was assertion of task completion. There was no

deterministic mechanism (e.g. automated tests) to verify if each iteration was

completed. It has to be done by manual inspection and testing. This forced a post-

investigation of the deliverables to compensate for the e®ectiveness deviations that

might had occurred. In future experiments, this deterministic mechanism should

exist to assure the e®ectiveness of the deliverables.

The power of this study could also be improved by (i) increasing the number of

participants, and (ii) switching the participants roles, where individuals in the ex-

perimental groups would undergo the baseline process and vice-versa.

7. Related Work

Regarding framework understanding, most solution proposals found in the literature

converge to produce and enhance existing documentation, such as design patterns

[17], pattern languages [25], cookbooks [29], hooks [16], exemplars [18] and mini-

malist documentation [2]. Nevertheless, the true impact of these techniques on

framework understanding is still fuzzy. Even so, there are a few studies that deal with

issues around e®ective framework reuse and understanding.

In [38], Schull et al. presented an evaluation of the role that examples play in

framework reuse. Their study compared two approaches to framework reading: ex-

ample-based approach and hierarchical-based approach. Their results suggested that

examples are an e®ective learning strategy, especially for those beginning to learn a

framework. Nevertheless, examples had issues: ¯nding the small pieces of required

functionality in larger examples; inconsistent structure and organization; lack of

design choice rationale and shallowness in understanding the framework internals.

DRIVER not only relies on examples, but it also allows for the learner to choose

which examples are more suited to his/hers learning needs. Not only community-

driven learning copes with divergent search for knowledge, but also the best practices

imbued into the platform drive the learner into a more personalized learning expe-

rience.

In [35], Morisio et al. conducted an empirical study in an industrial context on the

production of software using a framework, as to investigate quality and productivity

issues and the e®ect of learning in framework-based object-oriented development.

They observed higher quality and productivity levels in framework-based applica-

tions, due to a learning e®ect from repeating the same task over time. Yet, a more

pro¯cient developer has to engage on high level framework knowledge learning.

DRIVER relies on a community-mediated selection of the best learning paths, as a

way to mitigate the time needed to acquire knowledge. Thus, it replaces repetition by

the same person with consensus by a community of heterogeneous developers.

Learning Frameworks in a Social-Intensive Knowledge Environment 721

In [27], Kirk et al. conducted a research, through observation of both novice and

experienced users, where they identi¯ed four fundamental problems of framework

reuse: (1) Mapping the problem onto the framework, (2) Understanding function-

ality, (3) Understanding interactions and (4) Understanding the framework archi-

tecture. Applying both pattern languages and micro-architectures, their results

showed that the pattern language provided some support for mapping problems,

particularly for those with no experience of the framework, by introducing key

framework concepts and providing examples of framework use. Yet, experienced

users of the framework discarded the pattern language, ¯nd it constraining. Despite

believing in micro-architectures, these seemed relatively ine®ective. DRIVER uses a

pattern language for understanding a framework as a set of best practices for coping

with framework learning. This language, not only tackles mapping problems, but it

addresses all four fundamental problems of framework reuse, additionally regarding

cognitive aspects of the learner and knowledge keeping issues.

Several studies have been led by Hou et al. [22–24], regarding framework usage

and understanding. They unveiled issues regarding design (tight-coupling, deloca-

lized concerns, excessive special cases), documentation (doc-driven understanding

fares better than reverse engineering the code) and learner pro¯le (Novice learners

rely on the existing documentation ¯rst, make a shallow study using available

examples and, in distress, ask for help). They also showed that novice learners tend

to favor functional aspects over non-functional and that spending some time (up-

front) learning about the design of the framework is bene¯cial to a more e®ective

framework reuse, impacting on the application of examples, that should be func-

tionality-driven. They propose a set of tool requirements for reuse that rely on

better communication, better semantic search, improved tracking of intermediate

results and better IDE-integration. The authors took most of these requirements

into consideration when developing DRIVER, building upon the existing research,

and adding extra collaboration features into the learning knowledge management

layer.

8. Conclusions and Future Work

This paper presented DRIVER, a collaborative environment that supports the

framework learning process. Not only it relies on an easy, shared, lightweight, ed-

itable platform (wiki), that provides documentation artifacts about the framework,

but promotes KA by enabling capture, storage, sharing, rating and recommendation

of learning knowledge.

This learning knowledge takes the form of learning paths. These show how other

learners tackled with similar problems by presenting which documentation artifacts

they went through and by which order. The presented toolset supports this kind of

learning process through a series of plug-ins that seamlessly integrate the docu-

mentation infra-structure. These learning paths are stored and shared by the

community of learners, who rate the level of usefulness this learning data has,

722 N. Flores & A. Aguiar

allowing the information to mature and improve its quality and applicability

throughout the community.

An experiment was conducted within a controlled experimental environment to

validate the usefulness of the DRIVER environment.

MSc students were divided into two major groups: one of novices and another of

Experts. The novices were then divided into three groups (Baseline, Experimental

Group 1 and Experimental Group 2) to which their background and basic skills were

screened through a pre-experiment questionnaire, guaranteeing no statistical

deviation.

All three groups went through the development of the same technical tasks using

a previously unknown framework, all using di®erent development settings to enable a

comparison between having, or not having, the proposed collaborative approach.

The Experts group already knew the framework, but served to assess the usefulness

of the collaborative approach. A post-questionnaire and their time track were used to

assess the outcome of the experiment.

The ¯nal results support the hypothesis that the collaborative approach helps

novices to more e®ectively learn about a framework. Although more evident between

the Baseline and Experimental Group 1, than Experimental Group 2, both experi-

mental groups fared better at both time spent and knowledge intake, when compared

to the Baseline group. No evidence was collected when it comes to experts, but it is

believed that, it allows experts to easily capture and share their learning knowledge

about the framework.

Some threats to this validation were identi¯ed and further discarded by analyzing

the results in pre- and post-experiment questionnaires and due to the nature of the

experimental setting. Not all original hypothesis were supported though, and some

borderline threats which emerged after the experiment can help re¯ne further

studies.

As future work, enhancements to the DRIVER platform are currently under way,

focusing on improving recommendation heuristics, increase learner's pro¯le aware-

ness and convergence to the semantic web. These enhancements are a ¯rst step into

the integration of the DRIVER tool into a software knowledge management plat-

form, currently being devised and developed by the authors [8, 7], while incorpo-

rating other concerns on communicating software knowledge on a community

level [41].

Further studies in industrial settings with a di®erent time-scale and a broader

community of learners are being designed as to reinforce the current evidence and to

study the impact on framework understanding and software learning in general.

References

1. Esse wiki, http://softeng.fe.up.pt/esseWiki. Accessed 31 March 2016.
2. A. Aguiar, Framework Documentation ��� A Minimalist Approach, Ph.D. thesis, FEUP,

September 2003.

Learning Frameworks in a Social-Intensive Knowledge Environment 723

3. A. Aguiar and G. David, Patterns for documenting frameworks – Part I, in Vikin-
PLoP'2005, 2005.

4. A. Aguiar and G. David, Patterns for e®ectively documenting frameworks, in Transac-
tions on Pattern Languages of Programming II, eds. J. Noble and R. Johnson (Springer-
Verlag, Berlin, Heidelberg, 2011), pp. 79–124.

5. G. Butler, A reuse case perspective on documenting frameworks, in Proc. Fifth Asia
Paci¯c Software Engineering Conf., 1998.

6. J. C. Carver, L. Jaccheri, S. Morasca and F. Shull, A checklist for integrating student
empirical studies with research and teaching goals, Empir. Softw. Eng. 15(1) (2010) 35–59.

7. F. Correia, Documenting Software using Adaptive Software Artifacts, Ph.D. thesis,
FEUP, December 2014.

8. F. Correia, H. Ferreira, N. Flores and A. Aguiar, Incremental knowledge acquisition in
software development using a weakly-typed wiki, in 5th Int. Symp. Wikis, 2009.

9. L. P. Deutsch, Design reuse and frameworks in the smalltalk-80 system, Software
Reusability: Vol. 2, Applications and Experience, 1989, pp. 57–71.

10. M. Fayad and D. Schmidt, Object-oriented application frameworks, Commun. ACM 40
(10) (1997) 32–38.

11. R. Felder and J. Spurlin, Applications, reliability, and validity of the index of learning
styles, Int. J. Eng. Educ. 21(1) (2005) 103–112.

12. H. Ferreira, Adaptive Object-Modelling: Patterns, Tools and Applications, Ph.D. thesis,
University of Porto, Faculty of Engineering, 2011.

13. N. Flores and A. Aguiar, Patterns for framework understanding, in 15th Pattern Lan-
guages of Programming Conf. (PLoP'08), 2008.

14. N. Flores and A. Aguiar, Understanding frameworks collaboratively: Tool requirements,
Int. J. Adv. Softw. 3 (2010) 114–135.

15. N. Flores and A. Aguiar, Driver ��� A platform for collaborative framework under-
standing. in 30th IEEE/ACM Int. Conf. Automated Softw. Eng., 2015.

16. G. Froehlich, H. Hoover, L. Lui and P. Sorenson, Hooking into object-oriented applica-
tion frameworks, in Proc. 19th Int. Conf. Softw. Eng., 1997, pp. 491–501.

17. E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns ��� Elements of
Reusable Object-Oriented Software (Addison-Wesley, 1995).

18. D. Gangopadhyay and S. Mitra, Understanding frameworks by exploration of exemplars,
in Proc. CASE-95, 1995, pp. 90–99.

19. M. Goulao and F. Brito Abreu, Modeling the experimental software engineering process,
in Proc. 6th Int. Conf. Quality of Information and Communications Technology, 2007,
pp. 77–90.

20. T. Gruber, Collective knowledge systems: Where the social web meets the semantic web,
J. Web Semant. (2007).

21. M. Hollander and D. A. Wolfe, Nonparametric Statistical Methods (Wiley-Interscience,
1999).

22. D. Hou, Investigating the e®ects of framework design knowledge in example-based
framework learning, in IEEE Int. Conf. Software Maintenance, 2008, pp. 37–46.

23. D. Hou and L. Li, Obstacles in using frameworks and apis: An exploratory study of
programmers' newsgroups discussions, in IEEE 19th Int. Conf. Program Comprehension,
2011.

24. D. Hou, K. Wong and H. J. Hoover, What can programmer questions tell us about
frameworks? in Proc. 13th Int. Workshop on Program Comprehension, 2005, pp. 87–96.

25. R. Johnson, Documenting frameworks using patterns, in Proc. OOPSLA'92, 1992,
pp. 63–76.

724 N. Flores & A. Aguiar

26. R. E. Johnson and B. Foote, Designing reusable classes, J. Object-Oriented Program. 1(2)
(1988) 22–35.

27. D. Kirk, M. Roper and M. Wood, Identifying and addressing problems in framework
reuse, in Proc. 13th Int. Workshop on Program Comprehension, 2005, pp. 77–86.

28. B. Kitchenham, H. Al-Khilidar, M. Ali Babar, M. Berry, K. Cox, J. Keung, F. Kurnia-
wati, M. Staples, H. Zhang and L. Zhu, Evaluating guidelines for reporting empirical
software engineering studies, Empir. Softw. Eng. 13(1) (2008) 97–121.

29. G. E. Krasner and S. T. Pope, A cookbook for using the model-view-controller user
interface paradigm in smalltalk-80, J. Object-Oriented Program. 1(3) (1988) 26–49.

30. T. D. LaToza, G. Venolia and R. DeLine, Maintaining mental models: A study of de-
veloper working habits, in Proc. Int. Conf. Software Engineering, 2003.

31. R. Likert, A technique for the measurement of attitudes, Arch. Psychol. 22(140) (1932)
1–55.

32. Y. I. Liou, Collaborative knowledge acquisition, Expert Syst. Appl. 5(1–2) (1992) 1–13.
33. Y. I. Liou, Knowledge acquisition: Issues, techniques and methodology, in SIGMIS

Database 23, Vol. 1, 1992, pp. 59–64.
34. S. Mittal and C. L. Dym, Knowledge acquisition from multiple experts, Al Mag. 6(2)

(1985) 32–36.
35. M. Morisio, D. Romano and I. Stamelos, Quality, productivity, and learning in frame-

work-based development: An exploratory case study, IEEE Trans. Softw. Eng. 28(9)
(2002) 876–888.

36. K. Nakakoji, K. Ohira and Y. Yamamoto, Computational support for collective crea-
tivity, Knowl. Based Syst. J. Elsevier Sci. 13(7–8) (2000) 451–458.

37. K. Nakakoji, Y. Yamamoto and Y. Ye, Supporting software development as knowledge
community evolution, in Proc. CSCW Workshop on Suporting the Social Side of Large
Scale Software Development, 2006.

38. F. Schull, F. Lanubile and V. Basil, Investigating reading techniques for object-oriented
framework learning, IEEE Trans. Software Eng. 26(11) (2000) 1101–1118.

39. F. Shull, J. Singer and D. I. K. Sjøberg, Guide to Advanced Empirical Software Engi-
neering (Springer-Verlag, 2007).

40. J. Surowiecki, The Wisdom of Crowds: Why the Many Are Smarter Than the Few and
How Collective Wisdom Shapes Business, Economies, Societies and Nations (Anchor
Publishing, 2004).

41. C. Treude and M.-A. Storey, E®ective communication of software development knowl-
edge through community portals, in Proc. 8th Joint-Meeting of the ESEC/FSE, 2011,
pp. 91–101.

42. G. Uddin and M. P. Robillard, How api documentation fails, IEEE Softw. 32(4) (2015)
68–75.

43. W. Wang and M. W. Godfrey, Detecting api usage obstacles: A study of ios and android
developer questions, in 10th IEEE Working Conf. Mining Software Repositories, 2013,
pp. 61–64.

44. D. A. Waterman, A Guide to Expert Systems (Addison-Wesley, 1986).
45. J. Yoder, F. Balaguer and R. Johnson, Adaptive object models for implementing business

rules, Urbana (2001).
46. M. V. Zelkowitz and D. R. Wallace, Experimental models for validating technology, IEEE

Comput. 31(5) (1998) 23–31.

Learning Frameworks in a Social-Intensive Knowledge Environment 725

	Learning Frameworks in a Social-Intensive Knowledge Environment — An Empirical Study
	1. Introduction
	2. Collaboratively Improving Learning
	2.1. Grasping the collective knowledge
	2.2. Collective knowledge systems

	3. The DRIVER Platform
	3.1. Learning cycle
	3.2. Components

	4. Experiment Design
	4.1. Subjects
	4.1.1. Group formation
	4.1.2. Pre-experiment evaluation

	4.2. Framework selection
	4.3. Environment
	4.4. Protocol
	4.4.1. Pre-questionnaires
	4.4.2. Treatments
	4.4.3. Tasks
	4.4.4. Post-questionnaire

	5. Analysis of the Results
	5.1. Statistical relevance
	5.2. Background
	5.3. External factors
	5.4. Overall satisfaction
	5.5. Development process
	5.6. Framework knowledge
	5.6.1. Categories
	5.6.2. Results

	5.7. Performance and effectiveness
	5.8. Experts group analysis

	6. Threats to Validation
	7. Related Work
	8. Conclusions and Future Work
	References

