
An example based generator of
XSLT programs

José Paulo Leal1 and Ricardo Queirós2

1 CRACS & DCC-FCUP, University of Porto, Portugal
zp@dcc.fc.up.pt

2 CRACS & DI-ESEIG/IPP, Porto, Portugal
ricardo.queiros@eu.ipp.pt

ABSTRACT
XSLT is a powerful and widely used language for transforming XML documents.
However its power and complexity can be overwhelming for novice or infrequent users,
many of which simply give up on using this language. On the other hand, many XSLT
programs of practical use are simple enough to be automatically inferred from examples
of source and target documents. An inferred XSLT program is seldom adequate for
production usage but can be used as a skeleton of the final program, or at least as
scaffolding in the process of coding it. It should be noted that the authors do not claim
that XSLT programs, in general, can be inferred from examples. The aim of Vishnu -
the XSLT generator engine described in this paper – is to produce XSLT programs for
processing documents similar to the given examples and with enough readability to be
easily understood by a programmer not familiar with the language. The architecture of
Vishnu is composed by a graphical editor and a programming engine. In this paper we
focus on the editor as a GWT web application where the programmer loads and edits
document examples and pairs their content using graphical primitives. The
programming engine receives the data collected by the editor and produces an XSLT
program.

INTRODUCTION
Generating a XSLT program from a pair of source and target XML documents is straightforward.
A transformation with a single template containing the target document solves this requirement,
but is valid only for the actual example. Using the information from the source document we can
abstract this transformation. The simplest way is to assume that common strings in both
documents correspond to values that must be copied between them. If we explicitly identify these
correspondences we can have more control over which strings are copied and to which positions.
However, a transformation created in this fashion is still too specific to the examples and cannot
process a similar source document with a slightly different structure. For instance, if the source
document type accepts a repeated element 𝑒 and the example has 𝑛 repetitions of the element 𝑒
then the generated program would accept exactly 𝑛 repetitions of that element.

Although too specific, a simple XSLT program can be used as the starting point for generating a
sequence of programs that are more general and are better structured, ending in a program with a
quality similar to one coded by a human programmer. To refine an XSLT program we can use
second order XSLT transformations, i.e. XSLT transformations having XSLT transformations
both as source and target documents. In this approach the role of an XSLT generation engine is
to receive source and target examples, and an optional mapping between the strings of the two

documents, generate an initial program and control the refinement process towards the final XSLT
program.
The aim of this paper is the presentation of Vishnu – an XSLT engine for generating readable
XSLT programs from examples of source and target documents. Readability is an essential
feature of the generated programs so that they can be easily understood by a programmer not
familiar with the language. The architecture of Vishnu is composed by a graphical editor and a
programming engine. The former acts as a client where the programmer loads and edits
document examples and pair their content using graphical primitives. The latter receives the
data collected by the editor and produces an XSLT program.
There are several use cases for an XSLT generation engine with these features. The Vishnu
generator was designed to interact with a component that provides text editing functions for the
end-user or programmer. A client of Vishnu can be a plug-in of an Integrated Development
Environment (IDE) such as Eclipse or NetBeans. In this case the IDE provides several XML
tools (highlighting, validation, XSLT execution) and the plug-in is responsible for binding the
content of text buffers and editing positions with the engine and retrieving the generated XSLT
program. Vishnu can also be used as the back-end of a web environment for XSLT programming.
In this case the web front-end is responsible for editing operations and invokes engine functions
for setting the example documents and mappings, and retrieving the generated program. The
generator can also be used as a command line tool as part of a pipeline for generating and
consuming XSLT programs. In this last case the generator processes example documents in the
local file systems, making mostly use of default mappings.
This approach visual XSLT programming has obvious limitations. Only a subset of all possible
XSLT transformations is programmable by pairing texts on a source and target documents. For
instance, second order transformations or recursive templates are out of its scope. Use cases for
Vishnu are formatting XML documents in XHTML and conversion among similar formats. For
instance, creating an XHTML view of an RSS feed and converting metadata among several
XML formats are among the possible uses of Vishnu. Moreover, we do not expect the
automated features of Vishnu to produce the final version of an XSLT program. We view its
final result as a skeleton of a transformation that can be further refined using other tools already
available in Eclipse.
The rest of the paper is organized as follows. Section 2 presents work related to XSLT editing
and generation. In the following section we present the inner structure of the XSLT generator
that is composed of three main components: the context, the generator and the refiner. In the
refiner component we highlight the two types of refinements: simplifications and abstractions.
Then, we evaluate the Vishnu XSLT generation engine from three complementary and
interrelated approaches, focusing: the consistency of generation and refinement process; the
coverage of the existing rules; and the adequacy of the Vishnu API to XSLT editing
environments. Finally, we conclude with a summary of the main contributions of this work and
a perspective of future research.

RELATED WORK

The first step to start editing XSLT files is choosing the editor that most suits one’s
programming environment. There are several environments for programming in XSLT.
Usually these tools are integrated in XML IDE's or in general purpose IDE's such as
Eclipse. In the former we can highlight StyleVision and Stylus Studio. StyleVision [1]
is a commercial visual stylesheet designer for transforming XML. It allows drag and
dropping XML data elements within an WYSIWYG interface. An XSLT stylesheet is
automatically generated and can be previewed using the FOP built-in browser. Stylus
Studio's [2] is another commercial XML IDE that includes a WYSIWYG XSLT
designer. The edition process is guided by simple drag-and-drop operations without
requiring prior knowledge of XSLT.

 There are also several plugins for Eclipse for editing XSLT and the Tiger XSLT
Mapper [3] is the most prominent. It is a simple development environment that supports
automatic mappings between XML structures and can be edited using the drag-and-drop
visual interface. While the mappings and XML structures are modified, the XSLT
template is automatically generated and modified. Other examples of Eclipse plugins
address the XSLT edition [4, 5, 6] and the XSLT execution [7,8].
 There are other tools analogue to Vishnu that are not integrated into Eclipse, as the
dexter-xsl [9] which is intended to be used from the command line, the VXT [10] a
visual programming language for the specification of XML transformations in an
interactive environment and FOA [11] an XSL-FO graphical authoring tool to create
XSL-FO stylesheets. It includes a tree visualization scheme to represent the source
XML document and the target FO tree structure. FOA generates an XSLT stylesheet
that transforms XML content into an XSL-FO document.
 Despite the existence of several environments for programming in XSLT, usually
integrated into IDE's, they do not use visual editing for programming. Moreover, as far
as we know, none of the graphical XSLT programming environment generates
programs from examples.

Hori and Ono [12, 13] use an example-based annotation tool which relies on a target
document editor. The main concepts of their approach are depicted in Erro! A origem
da referência não foi encontrada.. An annotator can edit a target document (e.g., an
HTML page) by using the capabilities of a WYSIWYG authoring tool (1). The editing
actions are recorded into an operation history (2). When the editing is finished, the
annotation generator creates transformational annotation for the document
customization (3), which can be further used by XSLT processor to replicate the
transformation from the initial document to the customized document.

Figure 1. History based document transformation.

Spinks [14] presents an annotation-based page-clipping engine providing a way of
performing Web resources adaptation. At content delivery time, the page-clipping
engine modifies the original document based on: 1) the page-clipping annotations
previously generated in a WYSIWYG authoring tool and 2) the user-agent HTTP
header of the client device. The page-clipping annotation language uses the keep and
remove elements in the annotation descriptions to indicate whether the content being
processed should be preserved or removed.

Figure 2. Simple example of an HTML page clipping.

As a simple example, an HTML page and its clipped results are shown in Figure 2. In
this example, the header and the first paragraph are preserved. The table element is
modified by deleting the third column and the second row. In addition, the whole of the
second paragraph is removed. All the structural changes in HTML documents can be
easily done by using a WYSIWYG HTML editor. The XML excerpt in Erro! A origem
da referência não foi encontrada. shows an annotation document that realizes the page
clipping.
The description element defines a unit of an annotation statement in the annotation
language. The target attribute is an XPath expression identifying the node on which the
annotation will be applied, and the take-effect attribute indicates whether the
annotation is applied before or after the target node. The following code shows a simple
example of an HTML page clipping.

<?xml version='1.0' ?>
<annot version="2.0">

<!-- (a) Set the default clipping state to 'keep' -->
<description take-effect="before"

target="/HTML[1]/BODY[1]/*[1]">
<keep/>

</description>
<!-- (b) Remove a column and a row of the first -->
<!–- table, and change a cellpadding -->
<!–- attribute value -->
<description take-effect="before"

target="/HTML[1]/BODY[1]/TABLE[1]">
<keep/>
<table>

<column index="3" clipping="remove"/>
<column index="*" clipping="keep"/>
<row index="2" clipping="remove"/>
<row index="*" clipping="keep"/>

</table>
<insertattribute name="cellpadding" value="4"/>

</description>
<!-- (c) Set the clipping state to 'remove' -->
<description take-effect="before"

target="/HTML[1]/BODY[1]/P[2]">
<remove/>

</description>
<!-- (d) Set the clipping state back to 'keep' -->
<description take-effect="after"

target="/HTML[1]/BODY[1]/P[2]">
<keep/>

</description>
</annot>

THE VISHNU ENGINE

The Vishnu engine [15] concentrates all the tasks related with the automatic generation
of an XSLT program from examples using second order transformations. Nevertheless,
it was designed to interact with a client. A client of the Vishnu engine concentrates all
the tasks related with user interaction where the programmer loads and edits document
examples and pairs their content using graphical primitives.
The communication between these two components is regulated by the Vishnu API.
Hence, the architecture of the Vishnu application is composed by a Graphical Editor
and a Programming Engine as depicted in Erro! A origem da referência não foi
encontrada..

Figure 3. The architecture of Vishnu.

The former acts as a client where the programmer loads and edits document examples
and pair their content using graphical primitives. The design and implementation of a
client for the Vishnu engine is presented in the next section to validate the adequacy of
the Vishnu API to XSLT editing environments.
The latter receives the data collected by the editor and produces an XSLT program. The
engine relies on the Vishnu API that includes methods for setting the source and target
documents as streams of characters, setting a mapping between the strings of these
documents using editing locations (offsets), and retrieving the resulting XSLT program.
The Vishnu API includes also functions for supporting graphical interaction in the
editor and for configuring the generation process. The functions for selecting strings in
the XML documents (text and attribute nodes) from editing locations are example
functions for supporting graphical interaction. The Vishnu facade class implements this
API and hides the inner structure of the XSLT generator that is composed of three main
components: the context, the generator and the refiner.

Context

The central piece of the engine is the generation context. The context holds the source
and target documents and the mapping between the two. The mapping can be set manually
through a GUI client or inferred. When in automatic pairing mode Vishnu tries to identify
pairs based on:

 Text matches (text or attribute nodes);
 Text aggregation.

In the first mode strings occurring on text and attribute type nodes on the source
document are searched on the text and attribute nodes of the target document, and only
exact matches are considered. In this mode a single occurrence of a string in the source
document may be paired with several occurrences in the target document, as depicted in
Erro! A origem da referência não foi encontrada..

Figure 4. Automatic mapping - exact match between single texts.

In the second mode Vishnu tries to aggregate strings in the source document to create a
string in the target document. In Erro! A origem da referência não foi encontrada.
we illustrate with a simple case where 3 strings occurring in attributes and text nodes
can be concatenated into a part of the text node on the target document. In this mode
several strings on the source document can be paired with strings on the target
document.

Figure 5. Automatic mapping - subset of aggregation of texts.

After automatic pairing, the inferred correspondences are presented in the GUI with
lines connecting the two XML documents. The user can then manually reconstruct the
pairing of string between both documents.
The result of pairing the examples is a document including the actual documents and a
list of pairs of XPath expressions relating them. This document is formally defined by
an XML schema depicted diagrammatically in Erro! A origem da referência não foi
encontrada..

Figure 6. The mapping XML language.

The pairing XML language has an element vishnu as the root element with three top
elements:

 source - a copy of the source document;
 target - a copy of the target document;
 pairings - list of pairing relating the two documents.

Each correspondence is defined by a pairing element with two attributes for selecting
textual occurrences in both documents: source and target. The source attribute
includes a valid XPath expression selecting the text to map in the source document. The
target attribute includes a valid XPath expression selecting the text of the target
document.

As said before the context holds the source and target documents and the mapping
between the two and is responsible for converting between the external textual
representation provided by the client and the internal XML representation required by the
Vishnu. In particular this component is responsible for converting document position into
XPath expressions and vice-versa.

The conversion is managed by the PathLocator class. This class converts text
locations (offsets) into IdPaths expressions and vice-versa. An IdPath is an absolute
XPath expression which selects either single texts or attribute nodes in an XML
document. The general form of an IDPath is:

/n1[p1]/.../nn[pn]/text()[pn+1]
/n1[p1]/.../nn[pn]/@attr

It should be noted that locating nodes using their editing positions and the reverse

(locating an editing position of a node) are not operations supported by XML processing
APIs. The implementation of these operations by the PathLocator class is not trivial. The
current version is not yet supporting indexes on references to text nodes. With this
limitation we were not able yet to apply Vishnu no mixed content scenarios. However,
upgrading the PathLocator to supported sibling text nodes is a comparatively easy task
that we expect to complete in the next version of Vishnu.
The Context component is also responsible for the generation of the mapping between
the source and the target documents. It maintains an XML map file identifying the
correspondences between both. These identifications can be inferred automatically or
manually set through the Editor. The XML excerpt in Doc 2 (based on Erro! A origem
da referência não foi encontrada.) shows an example of a source, target and a list of
pairs of XPath expressions relating them merged in a file called vishnu.xml.
This file will serve as input for the Generator component to produce a XSLT program.
The following code shows the XML pairing file.

<vishnu xmlns="http://www.dcc.fc.up.pt/vishnu">
<!—Source document -->
<source>
<rss version="2.0" xmlns="http://backend.userland.com/rss2"/>
 <channel>
 <title>Notícias</title>
 <link>... </link>

 <description>…</description>
 <item>
 ...
 </item>
 </channel>
</rss>
</source>
<!—target document -->
<target>
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>Notícias</title>
 </head>
 <body>
 <h1>Notícias</h1>
 ...
 </body>
</html>
</target>
<!—pairing document-->
<pairings>
 <pairing

source = "/rss[1]/channel[1]/title[1]/text()"
target = "/html[1]/head[1]/title[1]/text()"/>

 <pairing
source = "/rss[1]/channel[1]/title[1]/text()"
target = "/html[1]/body[1]/h1[1]/text()"/>

</pairings>
</vishnu>

Generation

The purpose of the generator is to produce an initial XSLT program from the source and
target, using a string mapping. If no mapping is provided by the client then it uses a
default mapping inferred by the context component, linking text or attribute nodes in both
documents with equal character strings. The generator component receives as input the
paring file and, using a second order transformation, produces a specific XSLT program.
As an illustration we present in Erro! A origem da referência não foi encontrada. the
output of this second order stylesheet based on the example included in the previous
subsection. The following code shows an example of the output of the second order
stylesheet.

<xsl:template match="/">
 <html>
 <head>
 <title>
 <xsl:value-of
select="/vishnu/source/rss[1]/channel[1]/title[1]/text()"/>
 </title>
 </head>
 <body>
 <h1>
 <xsl:value-of
select="/vishnu/source/rss[1]/channel[1]/title[1]/text()"/>
 </h1>

 <a>
 <xsl:attribute name="href">
 <xsl:value-of
select="/rss[1]/channel[1]/item[1]/link[1]/text()"/>
 </xsl:attribute>

 <xsl:value-of
select="/rss[1]/ channel[1]/item[1]/title[1]/text()"/>
 -
 <i>
 <xsl:value-of
select="/rss[1]/channel[1]/item[1]/description[1]/text()"/>
 </i>

 ...

 </body>
 </html>
</xsl:template>

The initial XSLT program has a single template containing an abstraction of the target
document. To abstract the target document the target positions in the mapping are
replaced with xsl:value-of instructions referring corresponding source positions in the
mapping.
Doc 3 illustrates the verbosity of the initial template with XPath expressions are very long
and difficult to read, with indexes in every path branch. Actually, the expressions are even
more complex that those presented here since all elements must be prefixed when
namespaces are used. For the sake of clarity namespace prefixes in XPath expressions
where omitted in this example. The initial template has also plenty of redundancy. This
XSLT transformation generates an XHTML ordered list element () with the exact
number of item elements () need to reflect the given example. Thus, the part of the
document marked with ellipsis corresponds almost to a repetition of the of the first XHTM
item element, with changes only on the index of the RSS item element referred by XPath
expressions.
As explained previously, with this level of abstraction the initial transformation is only
able to process a document with the exact same structure of the source document provided
as input. To be of any practical use this program is submitted to a refinement process.

Refinement

The refinement process produces a sequence of XSLT programs 𝜌௡ starting with the
initial program 𝜌଴ by applying 𝑅 = {𝑟௜} set of second order XSLT transformations
called refinements. Refinements can be divided in two categories: simplifications and
generalizations.

Let 𝑆଴ and 𝑇଴ be respectively the example source and target documents. All
refinements 𝑟௜ have the following invariant: 𝜌௡(𝑆଴) = 𝑇଴ ⇒ 𝑟௜(𝜌௡) (𝑆଴) = 𝑇଴ that is, if
a program maps the example source document to the example target document then the
refined program has the same property. A simplification refinement is even more
restrictive and any document S that is converted by program 𝑆଴ is equally converted by
its refinement, 𝑖. 𝑒. ∀ 𝑆, 𝑇 𝜌௡(𝑆) = 𝑇 ⇒ ri(𝜌n)(S) = 𝑇. Simplifications are “safe”
refinements but fail to introduce the level of abstraction needed for a transformation to
be effective, hence this stronger requirement is relaxed for abstractions.

An example of a generalization is the refinement that unfolds a single template into a
collection of smaller templates. Candidates to top elements in the new template are
elements whose XPath expressions in xsl:value-of share a common and non-trivial
prefix that can be used match of the new template. As it introduces new templates with
relative expressions in the match attribute this refinement is not a simplification. The
new template may match with nodes with the same tag occurring

in different points in a different source document structure. To minimize the chance
of unwanted matches this refinement associates a mode to the new template that is used
also by the xsl:apply-template instruction that invokes it. An example of a
simplification is the refinement that removes redundant modes from xsl:template and
xsl:apply-template instructions. This refinement selects templates with non empty
modes that cannot be matched by other templates. That mode is removed both from the
selected template and all xsl:apply-template referring it. The current Vishnu
implementation includes over 10 refinements.

The Vishnu engine supports different refinement strategies to control the application
of the refinement setR. A refinement strategy indicates the next refinement to use is
informed if the suggested refinement has changed the XSLT program and decides when
the refinement process is complete. There are several refinement strategies that can be
set using the Vishnu API. The most effective strategies implemented so far apply the
refinements in a predefined order, repeating the application of refinement while it is
effective.

As an illustration we present the final output of the refinement process based on the
example included in the previous subsection in Erro! A origem da referência não foi
encontrada.. The following code shows the final output of the refinement process.

<xsl:stylesheet version="1.0" …>

<xsl:template match="rss2:channel">
 <xhtml:html>

<xsl:apply-templates mode="xhtml:head" select="rss2:title"/>
 <xhtml:body>
 <xsl:apply-templates mode="xhtml:h1" select="rss2:title"/>
 <xhtml:ol>
 <xsl:apply-templates select="rss2:item"/>
 </xhtml:ol>
</xhtml:body>

 </xhtml:html>
</xsl:template>

<xsl:template match="rss2:item">
<xhtml:li>

 <xhtml:a href="{rss2:link}">
 <xsl:value-of select="rss2:title"/>
 </xhtml:a> -
 <xsl:apply-templates select="rss2:description"/>

</xhtml:li>
</xsl:template>

<xsl:template match="rss2:description">

<xhtml:i><xsl:value-of select="."/></xhtml:i>
</xsl:template>

<xsl:template match="rss2:title" mode="xhtml:h1">

 <xhtml:h1><xsl:value-of select="."/></xhtml:h1>
</xsl:template>

<xsl:template match="rss2:title" mode="xhtml:head">
 <xhtml:head>

<xhtml:title><xsl:value-of select="."/></xhtml:title>
 </xhtml:head>
</xsl:template>

</xsl:stylesheet>

The control of the refinement process is implemented in Java, rather than in XSLT. This
separation encourages the modularity and reusability of the refinement transformations

which would be harder to achieve if the whole refinement process was encoded in a
single XSLT. With this approach is easy to introduce new refinements or to temporarily
switch them off. It is easier to change a single and simple XSLT file than to change the
code and recompile the application. There are two types of refinements [15] -
simplifications and abstractions – that are detailed on following sub-subsections, after
which are presented implementation details these second order transformations.

Simplifications are refinements that preserve the semantics of the program while
changing its syntax. Preserving the semantics means that, for all documents S and T, if a
program P transforms document S in document T then the program P', resulting from a
simplification refinement, will also transform S to T.
Simplifications can be used for different purposes. They can be used to improve the
readability of XPath expressions or to extract global variables. The following
paragraphs illustrate this concept with concrete simplifications and examples of the
refinements they introduce.

 Context: extracts the common prefix of all the XPath expressions from value-of
elements in the same template and append it as a suffix of the match attribute on
the template element

Table 1 Applying the Context refinement.

Source XSLT Result XSLT
<xsl:template match="a">
...
 ...<xsl:value-of
select="b/c"/>
 ...<xsl:value-of
select="b/d"/>
</xsl:template>

<xsl:template match="a/b"> ...
 ...<xsl:value-of
select="c"/>
 ...<xsl:value-of
select="d"/>
</xsl:template>

 Melt: two or more templates with the same containers are merged into one in which the match
attribute is an expression that combines the terms of th original attributes match using the operator
(|) that computes two or more node-sets.

Table 2 Applying the Melt refinement.

 Extract: strings inside the templates are assigned to global variables;

Table 3 Applying the Extract refinement.
Source XSLT Result XSLT
<xsl:template ...> xpto
</xsl:template>

<xsl:variable name="x"
select="'xpto'"/>
...
<xsl:template ...>
 <xsl:value-of select="$x">
 </xsl:template>

Source XSLT Result XSLT
<xsl:template match="a">
... </xsl:template>
<xsl:template match="b">
... </xsl:template>

<xsl:template match="a | b">
... </xsl:template>

 Join: different variables within the same scope and the same content are replaced
by a single variable;

Table 4 Applying the Join refinement.

Source XSLT Result XSLT
<xsl:variable name="x1"
select="'xpto'"/>
<xsl:variable name="x2"
select="'xpto'"/>

... <xsl:value-of
select=”$x1”/>
... <xsl:value-of
select=”$x2”/>

<xsl:variable name="x1"
select="'xpto'"/>

... <xsl:value-of
select=”$x1”/>

… <xsl:value-of select=”$x1”/>

 Braces: attribute values defined by XSL elements are replaced by braces with
XPath expressions

Table 5 Applying the Braces refinement.

Source XSLT Result XSLT
<a>
<xsl:attribute name=”href”
select=”item/url”/>…

…

 Mode: Removes modes that do not contribute to differentiate templates from
template definitions and related apply-templates;

Table 5 Applying the Mode refinement.
Source XSLT Result XSLT
<xsl:template mode=”m”>
…
</xsl:template>

<xsl:apply-templates
mode=”m”/>

<xsl:template>
…
</xsl:template>

… <xsl:apply-templates/>

 Orphan: remove template with just a single xsl:apply-templates (orphan) with
the same mode (must be applied after removing unneeded modes)

Table 6 Applying the Orphan refinement.
Source XSLT Result XSLT
<xsl:template mode=”m”>
 <xsl:apply-templates
mode=”m”>
 </xsl:template>

Abstractions are refinements that change both the syntax and the semantics of the
program, although retaining the intended semantics of the example documents. This
means that, for the documents S and T given as example, if a program P transforms
document S in document T then the program P', resulting from a abstraction refinement,
will also transform S to T.
Abstractions can be used for different purposes. For instance, they can be used to
generalize templates and to restructure large templates in several smaller ones. The

following paragraphs illustrate this concept with concrete abstractions and examples of
the refinements they introduce:

 Generalize: two or more templates with the same container and a match attribute
differing only in the "index" are merged into one and is removed the last predicate
of the attribute match. The original transformation accepts only document with a
precise number of elements of a certain kind and the abstracted transformation
accepts an undetermined number of elements of that kind.

 Structure: fragments templates that contain Xpath expressions with a common

prefix. The extracted template will match with elements outside the scope of the
original template.

Implementation details

The refinements implemented in Vishnu are XSL 1.0 transformations. Selecting the
version of XSL, both as a target language and for implementation of refinements was a
major design decision in Vishnu. After careful consideration it was decided to use
version 1.0 as a target language as this is more disseminated and easier for novice
XSLT programmers. Using version 1.0 as target would difficult the use of version 2.0
for refinements. We would have to use two XSLT processors in the generation process,
one for refining transformations and another for testing them. Since this would be an
extra burden we preferred to use consistently a single language version in Vishnu, and
selected version 1.0.
The main reason considering XSLT 2.0 was the use of features that otherwise would
have to rely on extensions. Fortunately most of the features needed are available in
standard extensions. Thus we used the Xalam XSLT processor with extensions for

Source XSLT Result XSLT
<xsl:template match="a">
 <X>
 <xsl:value-of
select="b/x">
 <xsl:value-of
select="b/y">
 </X>
 <xsl:value-of
select="c">
</xsl:template>

<xsl:template match="a">
 <xsl:apply-templates
select="b"/>
...
 <xsl:value-of select="c">
</xsl:template>

<xsl:template match="b">
 <X>
 <xsl:value-of select="x">
 <xsl:value-of select="y">
 </X>
</xsl:template>

Source XSLT Result XSLT
<xsl:template
match="a[1]"> ...
</xsl:template>
<xsl:template
match="a[2]"> ...
</xsl:template>
<xsl:template
match="a[3]"> ...
</xsl:template

<xsl:template match="a"> ...
</xsl:template>

Table 7 Applying the Generalize refinement.

Table 8 Applying the Structure refinement.

string handling, function definition and basic elements and functions. The following
code shows an example of a refinement: the Orphan simplification.

<!DOCTYPE xsl:stylesheet [
<!ENTITY xsl "http://www.w3.org/1999/XSL/Transform">
]>
<xsl:stylesheet version="1.0"
 xmlns:func=”http://exslt.org/functions”
 xmlns:vishnu="http://www.dcc.fc.up.pt/vishnu"
 xmlns:exslt="http://exslt.org/common"
 xmlns:str=”http://exslt.org/strings”
 xmlns:xsl="&xsl;">

 <xsl:import href="../common.xsl" />
 <xsl:output indent="yes" />

 <xsl:template match="xsl:template">
 <xsl:if test="not(
 count(xsl:apply-templates) = 1 and
 (
 (not(@mode) and not(xsl:apply-templates/@mode))

or
 @mode = xsl:apply-templates/@mode
) and count(*) = 1
 and
 normalize-space(text())=''
)">
 <xsl:copy-of select="."/>
 </xsl:if>
 </xsl:template>

</xsl:stylesheet>

A core feature in Vishnu is comparing two XML fragments. As result of the
transformation process two XML fragments may result in different serializations but
still be equivalent. To compare XML fragments Vishnu used the package XML Unit
version 1.3. This package was developed for implementing by Tim Bacon and Stefan
Bodewig to support unit testing in XML development. It provides a diff method to
compare XML fragments and can be configured to ignore white space and differences
between text and CDATA sections. This package was exposed as an extension function
to refinements.
The common features we assembled in a XSLT library that is imported by most
refinements. This library provides functions for XPath handling, such as finding
common prefixes, and for recursively copying XML fragments while performing certain
transformation, such as removing XPath prefixes. It also provides access to the
extension functions mentioned previously.
In Doc 5 is presented an example of a particular refinement, the Orphan simplification
introduced in sub-subsection 3.5.1 and with an example of its application in Table 5. .
The root element of this second order transformation reveals all the extensions to XSLT
1.0 used. Among the top elements there is the import declaration for the common
library described above. This single template in this second order transformation
removes templates that contain a single apply-template in the same mode of the
template, have no other elements besides the apply-templates, and have no content in
text nodes but white space.
As can be seen in the Doc 5 example, refinements return the original transformation
when they cannot be effectively used. Thus, the control of the refinement process is
straightforward. The refinement process stops when no change is introduced to the
transformation.

VALIDATION

The Vishnu engine was validated in three complementary and interrelated approaches,
focusing the

consistency of the generation and refinement process;
coverage of the existing rules;
adequacy of the Vishnu API to XSLT editing environments.

Consistency and Coverage

By default Vishnu validates the consistency of the generation and refinement process
by checking that each intermediate transformation converts the example source
document into the examples target document. After each refinement step the rewrite
engine applies the current version of the transformation to the source example and
compares the result with the target document. If this invariant is not satisfied then the
refinement process is aborted and an error is reported to the client. This behaviour is the
default in Vishnu. However, it can be switched off by the client to improve the
efficiency of generator.
To validate the coverage of the existing rules different scenarios were created. Each
scenario includes source and target document and a mapping, as well as the expected
program.

Figure 7. The RSS to HTML scenario.

The manipulation of a scenario in Vishnu is made by the Scenario class. This class
provides a set of methods for testing the Vishnu engine. Typical uses involve a set of
scenarios where for each scenario the generated output of the engine is matched with the
resources enclosed on the scenario itself. The current scenarios include the conversion
of: 1) RSS documents to HTML; 2) Mathematical expressions in MathML to
presentation MathML and 3) Meta-data in LOM (Learning Object Metadata) to RDF.

The Erro! A origem da referência não foi encontrada. shows the inner workflow
used for testing the RSS to HTML scenario. A mixed-content scenario has not been
added since the context component is not yet supporting indexes in text nodes.

Adequacy

Vishnu was conceived as an interactive tool integrated in Eclipse. Nevertheless, it was
designed as two autonomous components: the editor and the engine. The editor is an
Eclipse plug-in and concentrates all the tasks related with user interaction and
integration with other Eclipse tools. The engine concentrates all the tasks related with
the automatic creation of an XSLT program from examples using second order
transformations. The communication between these two components is regulated by the
Vishnu API.
 By separating concerns in these two components we enable the non-interactive use of
Vishnu. The engine has a command line interface to create XSLT programs from
example files. Using Vishnu in this mode is as simple as executing the following
command line.

$ java vishnu.jar source.xml target.xml > program.xsl

The Vishnu engine can also be invoked from other Java programs through the Vishnu
API. This API may be used to create new user interfaces for Vishnu. For instance, a
web interface based on the Google Web Toolkit (GWT) or a Swing based desktop
interface. In general Vishnu may used by any application needing to create XSL
transformations from examples. Java programs using the API must instantiate the
engine using the static method Engine.getEngine() and use the following methods
exposed by the Vishnu API:

void setSource(Document source)

 Set source document example for the intended transformation
Document getSource()

 Get given source document example for the intended transformation
void setTarget(Document target)

 Set target document example for the intended transformation
Document getTarget()

 Get given example of target document for the intended transformation
void resetPairings()

 Reset all previously defined pairings
void addPairing(String exprSource, String exprTarget)

 Add a pair of XPath location respectively on the source and target documents
List<Pair> getPairings()

 Returns the list of pairings
void inferPairings()

 Infer pairings from the given source and target documents
Document program()

 Produce a XSLT program from the examples and their pairings
Set<String> getFeatureNames()

 Return a list of names of features controlling the refinement process
public boolean getFeature(String name)

 Get the given feature status

public void setFeature(String name, boolean value)

 Set the given feature status

To validate the adequacy of the Vishnu API we developed a simple web environment
for XSLT programming based on the Google Web Toolkit (GWT), an open source
framework for the rapid development of AJAX applications in Java. When the
application is deployed, the GWT cross-compiler translates Java classes of the GUI to
JavaScript files and guarantees cross-browser portability. The specialized controls are
provided by SmartGWT, a GWT API's for SmartClient, a Rich Internet Application
(RIA) system.
The graphical interface of the front-end is composed by two panels: Mapping and
Program. In the Mapping panel the "programmer" uses graphical tools to map strings
in two XML documents corresponding to a source and a target documents for the
intended XSLT transformation. In the Program panel the user obtains the resulting
XSLT and can continue editing it.

Figure 8. Vishnu client front-end.

Erro! A origem da referência não foi encontrada. shows the RSS-to-HTML scenario
being used on the Vishnu client GUI with its main components labelled with numerals.
The Mapping panel includes two side-by-side windows for editing respectively (1) the
source and (2) the target documents. These documents may be created either from
scratch or based in scenarios predefined in the Engine. Regardless of the choice the
correspondences between both can be set (3) manually through the Editor or inferred
by the Engine.
When setting correspondences manually the programmer is able to pair contents on
these windows by selecting and highlighting with color texts where the origin is on the
source document and the destination is on the target window. Origin and destination
must be character data, either text nodes or attribute values.
When automatic correspondence is used Vishnu identifies pairs based on: text matches
(text or attribute nodes) or text aggregation. In the first mode strings occurring on text

and attribute type nodes on the source document are searched on the text and attribute
nodes of the target document, and only exact matches are considered. In the second
mode Vishnu aggregates strings in the source document to create a string in the target
document. After automatic pairing, the inferred correspondences are presented in the
GUI with colors mapping the two XML documents. The user can then manually
reconstruct the pairing of string between both documents.
In complement to creating the source and target documents from scratch, the user can
fill in automatically the two rich text editors by using scenarios (4). Each scenario
includes source and target document and a mapping, as well as the expected program.

CONCLUSIONS

In this paper we present Vishnu - an XSLT generator engine that aims to produce XSLT
programs for processing documents similar to the given examples and with enough
readability to be easily understood by a programmer not familiar with the language. At
this stage the generator has already been tested with different scenarios. It still lacks
support for transformations with mixed content elements due to current limitations in its
XPath locator module. Fixing this limitation is our immediate plans.

The project that lead to the development of Vishnu may follow different paths: the
engine can be used in other XSLT programming environments; the API of the engine
can extended with new functions; and the refinement process can be extended with new
refinements. First of all, the Vishnu API was validated with a web environment but the
appropriate place to apply it would be an IDE with support for XML. Eclipse is
particularly suited for this purpose because it is not a XML IDE but rather an IDE for
programming in general with tools for handling XML, including XSLT programming.
Secondly, the Vishnu engine was designed as a tool for generating simple XSLT
programs from examples and can be extended for other uses. The refinement process
was designed to improve the quality of a naïve XSLT program automatically generated
from examples but can be used to improve any XSLT program. In fact, an interesting
side effect of this research is the definition of sort of “canonical XSLT” in terms of
second order XSLT transformations. In practical terms we plan to expand the Vishnu
API to enable the use of the refinement process on a given XSLT program, rather than
only on those generated from examples. This feature may be used in the XSLT
programming environment to refractor any XSLT programs, including the generated
program after it was edited by the programmer. Finally, Vishnu is an expandable system
in the sense that refinements and refinement strategies can be easily integrated. We
expect to create new refinements both to improve the quality of automatically generated
XSLT programs and to introduce new forms of automatically refactoring existing XSLT
programs.

References

1. Stylus Studio - http://www.stylusstudio.com/
2. Altova StyleVision - http://www.altova.com/stylevision.html
3. Tiger XSLT Mapper - http://www.axizon.com/
4. XSL Tools - http://marketplace.eclipse.org/content/xsl-tools
5. oXygen - http://www.oxygenxml.com/eclipse_plugin.html
6. XMLSpy Eclipse editor - http://www.altova.com/xmlspy/eclipse-xml-editor.html
7. OrangevoltXSLT - http://eclipsexslt.sourceforge.net/
8. X-Assist - http://sourceforge.net/projects/x-assist/
9. Dexter-xsl - http://code.google.com/p/dexter-xsl/

10. VXT: A Visual Approach to XML Transformations. Emmanuel Pietriga, Jean-Yves Vion-
Dury and Vincent Quint. Proceedings of the 2001 ACM Symposium on Document
engineering, USA

11. FOA. Formatting Objects Authoring tool - http://foa.sourceforge.net
12. Hori, M., Ono, K., Abe, M. and Koyanagi, T.: Generating transformational annotation for Web document

adaptation: Tool support and empirical evaluation. Journal of Web Semantics, 2(1), pp. 1-18 (2004-12).
13. Ono, K. et al., “XSLT Stylesheet Generation by Example with WYSIWYG Editing,” Proceedings of the

Symposium on Applications on the Internet (SAINT 2002), 2002, pp. 150-159.
14. Spinks, R., Topol, B., Seekamp, C., and Ims, S.: Document clipping with annotation.

IBM developerWorks, http://www.ibm.com/developerworks/ibm/library/ibmclip/ (2001).
15. Leal, J.P. and Queirós, R.: Visual Programming of XSLT from Examples - 8ª Conferência - XML: Aplicações e

Tecnologias Associadas, Vila do Conde, Portugal, June, 2010.

