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This paper presents a new methodology to solve the reconfiguration problem of electrical distribution
systems (EDSs) with variable demand, using the artificial immune algorithm Copt-aiNet (Artificial
Immune Network for Combinatorial Optimization). This algorithm is an optimization technique inspired
by immune network theory (aiNet). The reconfiguration problem with variable demand is a complex
problem of a combinatorial nature. The goal is to identify the best radial topology for an EDS in order
to minimize the cost of energy losses in a given operation period. A specialized sweep load flow for radial
systems was used to evaluate the feasibility of the topology with respect to the operational constraints of
the EDS and to calculate the active power losses for each demand level. The algorithm was implemented
in C++ and was evaluated using test systems with 33, 84, and 136 nodes, as well as a real system with 417
nodes. The obtained results were compared with those in the literature in order to validate and prove the
efficiency of the proposed algorithm.

� 2016 Elsevier Ltd. All rights reserved.
Introduction

In recent years, many investments have been directed toward
electrical distribution systems (EDSs) in order to modernize and
automate their operations, and increase profitability. These mod-
ernization efforts have aimed at meeting several requirements,
such as improving the reliability, efficiency, and security of the sys-
tem, and satisfying strict regulatory rules. In light of these aims,
much research is currently being conducted to solve the distribu-
tion system reconfiguration (DSR) problem using new approaches
and techniques.

The DSR problem consists of identifying the best radial topology
for the EDS through the opening and closing of switches in order to
optimize an objective function, which is typically the minimization
of active power losses. This is subject to the technical operational
constraints of the EDS, such as the condition of radiality, nodal
voltage limits, branch current capacity limits, and the first and
second Kirchhoff’s laws (active and reactive power balance). Apart
from this typical formulation, the DSR can also be performed pri-
marily to improve the voltage levels, to maintain or enhance the
reliability of the network, to help network operators to isolate
faults more quickly, and to help prepare plans for preventive main-
tenance actions [1].

The DSR problem is a complex and combinatorial problem that
can be modeled as a mixed-integer nonlinear programming
(MINLP) problem [2]. Thus, as the size of the EDS increases, it
becomes more difficult to solve this problem using exact methods.
As a result, intelligent optimization techniques, such as heuristic
and meta-heuristic algorithms, artificial neural networks, and arti-
ficial immune systems, among others, are increasingly being
applied to solve this problem. These techniques include effective
strategies that reduce the search space, enabling the best solution
or at least good-quality solutions to be found.

The DSR problem has been widely addressed in the literature,
yet most of the approaches have only considered one demand level
at each consumption node, corresponding to the peak level. How-
ever, since demand varies over time, some authors have addressed
the problem considering the variation in demand, for example,
separating the demand into the 24 h of the day and following the
daily variation of the demand curve. Accordingly, the DSR problem
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with variable demand aims at identifying an unique radial topol-
ogy that operates at different demand levels, while minimizing
the cost of energy losses in a given operation period.

The literature includes references that have used several
approaches to address the DSR problem considering fixed demand,
such as heuristic algorithms [2,3] and meta-heuristics including
genetic algorithms [4], simulated annealing [5], tabu search [6],
ant colony [7], artificial neural networks [8], and artificial immuno-
logical algorithms [9]. On the other hand, few references have con-
sidered the DSR problem with variable demand, as in [10–13].

In this paper, the Copt-aiNet (Artificial Immune Network for
Optimization) [14] is proposed to solve the DSR problem with vari-
able demand. This technique is inspired by biological immune sys-
tems, providing a computational emulation of the main properties
and functionalities of the organism with respect to immune net-
work theory (aiNet). To evaluate the affinity of each antibody, a
specialized sweep load flow for radial EDSs is used [15] for each
demand level in order to estimate the cost of energy losses in each
operation period.

Notably, in this paper, the DSR problem is analyzed with vari-
able demand, representing a natural extension of paper [9] in
which the authors analyzed the DSR problem considering only
fixed demand.

This paper presents results using test systems with 33, 84, and
136 nodes, and a real system with 417 nodes. These results are
compared with the results available in the specialized literature
in order to assess the efficiency of the proposed approaches.
Mathematical model for the DSR problem with variable
demand

Considering a symmetrical and balanced system with a unique
radial topology, the DSR problem with variable demand can be
modeled as an MINLP problem, as described in (1)–(9) [16]:

Min v ¼
X
d2Xd

X
ij2Xl

cldDd½gijxijðV2
i;d þ V2

j;d � 2Vi;dVj;d cos hij;dÞ� ð1Þ

s:a:

Psi;d � Pdi;d �
X
j2Xbi

ðxijPij;dÞ ¼ 0 8i 2 Xb;8d 2 Xd ð2Þ

Qsi;d � Qdi;d �
X
j2Xbi

ðxijQ ij;dÞ ¼ 0 8i 2 Xb;8d 2 Xd ð3Þ

V 6 Vi;d 6 V 8i 2 Xb;8d 2 Xd ð4Þ
ðP2

ij;d þ Q2
ij;dÞ 6 S2ij;d � xij 8ij 2 Xl;8d 2 Xd ð5Þ

xij 2 f0;1g 8ij 2 Xl ð6ÞX
ðijÞ2Xl

xij ¼ nb � 1 ð7Þ

In this formulation:
Ωl is the set of circuits;
Ωb is the set of nodes;
Ωbi is the set of nodes connected at node i;
Ωd is the set of demands;
cld is the cost of energy losses at demand level d;
Ddis the duration of demand level d;
gij is the conductance of circuit ij;
Vi,d is the voltage magnitude at node i at demand level d;
hij,d is the phase angle difference between nodes i and j at
demand level d;
bij is the susceptance of circuit ij;
Pij,d is the active power flow that goes from node i to node j at
demand level d;
Qij,d is the reactive power flow that goes from node i to node j at
demand level d;
Psi,d is the active power supplied by the substation at node i at
demand level d;
Qsi,d is the reactive power supplied by the substation at node i at
demand level d;
Pdi,d is the active power demanded at node i at demand level d;
Qdi,d is the reactive power demanded at node i at demand level
d;
V is the minimum voltage magnitude;
V is the maximum voltage magnitude;
Sij;d is the maximum apparent power of circuit ij at demand
level d;
nb is the number of nodes in the system;
xij is the binary decision variable that represents the state (con-
nected or disconnected) of circuit ij.

In this formulation, (1) represents the objective function of the
DSR problem with variable demand. It corresponds to the cost of
energy losses to be minimized in the EDS. The mathematical model
also considers physical constraints, the specifications of system
components, and operational conditions.

Constraints (2) and (3) represent the active and reactive nodal
balance equations in which the active and reactive power flows
Pij,d and Qij,d are calculated using (8) and (9), respectively.

Pij;d ¼ V2
i;dgij � Vi;dVj;dðgij cos hij;d þ bijsenhij;dÞ ð8Þ

Qij;d ¼ �V2
i;dbij � Vi;dVj;dðgijsenhij;d � bij cos hij;dÞ ð9Þ

Constraint (4) represents the voltage magnitude limits for each
node of the EDS, as defined by regulatory standards. The power
flow in each circuit is limited by (5). Constraint (6) corresponds
to the binary nature of the decision variables, according to which
xij can take two values as follows: when it is 0 (zero), circuit ij is
open (or disconnected), and when it is 1 (one), circuit ij is closed
(or connected).

Constraint (7) presents one of the necessary conditions to guar-
antee the radial operation of the EDS, namely, that a solution to the
problem must have (nb � 1) active circuits. The other necessary
condition is that the system must be connected (i.e., all nodes con-
nected). This condition is guaranteed by (2) and (3). Thus, satisfy-
ing (2), (3), and (7) ensures that any feasible solution, as well as the
optimal solution, will be radial [17].
Artificial immune systems

Artificial immune systems (AISs) are compounds of a set of
intelligent algorithms inspired by the functioning of biological
immune systems. Similar to other bio-inspired methods and
meta-heuristics, the main objective of AISs is to solve complex
problems that cannot be addressed in a timely manner by classical
optimization methods [9,18].

In the literature, AISs have been widely used to solve optimiza-
tion problems. In this context, the immune algorithms most fre-
quently mentioned in the literature are the CLONALG algorithm
(Clonal Selection Algorithm) [19], the aiNet (Artificial Immune Net-
work) [20], the Opt-aiNet algorithm [18], the B-cell (BCA) algo-
rithm [21], and the Copt-aiNet algorithm [14].

In this paper, the Copt-aiNet is used to solve the DSR problem
with variable demand.
Copt-aiNet algorithm

The Copt-aiNet was originally proposed in [14]. This technique
is an extension of the aiNet to solve combinatorial optimization
problems, and can be described in the following steps:
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1
 Generate an initial population (P) with N antibodies;

2
 While (stopping criterion is not satisfied) do

3
 While (stabilizing criterion is not satisfied) do (clonal

expansion)

4
 Evaluate the affinity (objective function) for each

antibody in population P;

5
 Select the n best antibodies in population P, obtaining

the set P{n};

6
 Reproduce the n best antibodies selected P{n},

generating a population (C) with Nc clones;

7
 Submit the population of clones (C) to a

hypermutation process, obtaining a subpopulation (C⁄) of
mutated antibodies;
8
 Evaluate the affinity of each antibody that belongs to
the subpopulation (C⁄), re-select the n best antibodies
(C⁄{n}), and add them to population P;
9
 Replace d low-affinity antibodies with new
antibodies (P{d}) (metadynamic process);
End while

10
 Eliminate all memory antibodies that have a

resemblance larger than threshold S (similarity rate) in
the clonal suppression;
11
 If the size of population P is lower than N, generate
antibodies to complete the population (population
control);
12
 If there are no improvements during k iterations,
execute weak mutation for all antibodies in population P;
13
 Apply strong mutation to the n best antibodies in the
population (memory antibodies P{M});
End while
The number of clones Nc used in the cloning process (step 6) for
each antibody is given by (10) [18], in which b is a cloning factor
between 0 and 1, N is the total number of antibodies in population
P, and round(.) is the rounding operator to the nearest integer.

Ni
c ¼ round

bN
i

� �
ð10Þ

The mutation rate (a) of each clone is defined by (11) [18], in
which q is a damping control parameter for the exponential func-
tion and f⁄ is the normalized value of affinity f, which is calculated
according to (12) for minimization problems and according to (13)
for maximization problems [9]. In these expressions, fmax is the
greatest affinity and fmin is the lowest affinity.

a ¼ expð�qf �Þ ð11Þ

f � ¼ f
fmax

ð12Þ

f � ¼ fmin

f
ð13Þ

Each clone undergoes a mutation process, as proposed in [22],
in whichm is the number of mutations that each antibody will suf-
fer, a is the mutation rate, and N(0,1) is a Gaussian random vari-
able with a mean of 0 and standard deviation of 1.
Fig. 1. Codification vector fo
m ¼ roundða � Nð0;1ÞÞ ð14Þ
The stabilization criterion for population P depends on each

problem, but commonly, when the memory set P{M} does not
change over a specified number of iterations, the population is
then considered to be stable.
Codification of the DSR problem with variable demand

In this work, the coding of the DSR problem proposed in [23] is
used, wherein the EDS is represented as a tree (graph theory) com-
posed of an array of arcs (branches). The encoding vector has a
dimension of nl (number of branches) and represents the whole
electrical system storing the branches of the system. In this coding
scheme, the first (nb � 1) elements of the vector indicate the
branches of the radial topology (set N1), and the branches between
positions nb and nl (set N2) indicate the connection elements
(branches of the radial configuration), as illustrated in Fig. 1.

For example, a topology of a test systemwith 14 nodes is shown
in Fig. 2. This topology can be represented as (15), where all ele-
ments between 1 and (nb � 1) belong to the network topology
(continuous line), and all others, from nb to the end of the vector,
are connection elements that are disconnected in this configura-
tion (dotted line). This representation is not fixed, given that the
same topology can be represented as (16), which can help to diver-
sify the search depending on the kinds of operators being used.

C1 C5 C10 C2 C7 C11 C3 C6 C12 C4 C8 C13 C9 ðC14 C15 C16Þ½ �
ð15Þ
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 ðC14 C15 C16Þ½ �
ð16Þ

This codification ensures that the initial population only
includes radial topologies. Therefore, it is possible to develop
search operators that preserve the radial topology, avoiding this
type of infeasibility.
r the 14-node system.

Fig. 2. Example of codification of the 14-node system.
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Methodologies to solve the DSR problem with variable demand

In this section, the Copt-aiNet algorithm is applied to solve the
DSR problem with variable demand.

Application of the Copt-aiNet algorithm

The following sections describe the application of the Copt-
aiNet to solve the DSR problem with variable demand.

Strategy to generate the initial population
To generate the initial population (P) for the Copt-aiNet, the

Prim heuristic presented in [23] is used. This heuristic considers
the codification of the problem presented in the previous section
and is described in the following steps.
1
 D is the set of nodes present in the current configuration;

2
 D ¼ /, N1 ¼ /, N2 ¼ /;

3
 Add the node to substation (root node) to D;

4
 Find all branches with a vertex in D;

5
 Select a branch, identified in the previous step, to enter

into the topology (randomly);

6
 If the selected branch generates a loop in the topology,

include it in N2, otherwise include the opposite vertex in D
and the branch in N1;
7
 Return to step 3 until all branches are selected.
At the end of the process, the vector [N1, N2] represents a topol-
ogy of the EDS. This strategy always generates topologically feasi-
ble solutions (radial), contributing to the efficiency and diversity of
the algorithms proposed in this paper.

Affinity evaluation operator
In this step, the affinities of each antibody (candidate solution)

in population P are calculated. This value represents the cost of the
energy losses associated with a topology in the operation period
for all demand levels under analysis. In order to obtain the cost
of losses, a specialized sweep load flow for radial EDSs [15] is
run for each demand level. To analyze several demand levels, the
power flow is run for each demand, and then expression (17) is
used to obtain the affinity value of the associated antibody. In this
expression, Nd is the number of demand levels to be analyzed, Ki is
the cost of energy losses for demand level i, and Ti and Pi are the
duration and value, respectively, of the active power losses associ-
ated with demand level i.

f ¼
XNd
i¼1

½Ki � Ti � Pi� ð17Þ
Fig. 3. Hypermutation example for the 14-node system.
Selection operator
In the selection operator, the n best antibodies, named memory

antibodies, are selected generating a subpopulation of antibodies
called P{n}. To select the n best antibodies, the algorithm takes into
account the affinity values, ordering them from the lowest affinity
value (the one of highest quality) to the highest affinity value (the
one of poorest quality). The subpopulation P{n} is submitted to the
cloning and hypermutation processes, as well as to the re-selection
process aimed at inserting the n best matured antibodies into the
population (P).

Cloning operator
The cloning operator generates a subpopulation of clones (C).

The subpopulation C is composed of Nc clones obtained through
the antibodies in subpopulation P{n}. The number of clones that
each antibody can generate is calculated using (10).

Hypermutation operator
After obtaining a subpopulation of clones (C), the hypermuta-

tion operator is carried out to generate a new subpopulation of
matured clones (C⁄). Initially, it is necessary to calculate the num-
ber of mutations of an antibody i in the iterative process of the
Copt-aiNet using (14). Eq. (11) defines the mutation rate (a), and
(13) establishes the normalized affinity (f⁄). Following these calcu-
lations, a random mutation is performed as described in the fol-
lowing steps.
1
 Read C and obtain Nc (number of clones in population C);

2
 for i = 1 until Nc do

3
 Calculate the number of mutations (m) for antibody i;

4
 for j = 1 until m do

5
 Select randomly a circuit l 2 N2 of antibody i. This

position l represents a disconnected circuit;

6
 Connect/close the selected circuit and identify the

loop formed. Choose a circuit in the loop formed and
replace it with circuit l;
7
 end for

8
 Store the matured antibody i in C⁄;

9
 end for
10
 return C⁄;
Fig. 3 presents an illustrative example of the hypermutation
process. In this example, the antibody shown in (16) is used. In this
process, a circuit belonging to set N2, i.e., a disconnected circuit, is
chosen at random. Then, this circuit is connected and a loop is
formed in the system. This loop should be identified and stored.
In the sequence, another circuit belonging to the loop formed is
chosen at random to replace the initial circuit. Finally, the circuits
are exchanged (circuit 15 is replaced by circuit 11), generating a
matured antibody. This hypermutation strategy always generates
topologically feasible antibodies.

Metadynamic operator
In the metadynamic operator, the worst d antibodies of the pop-

ulation (P) are replaced by new d antibodies generated randomly
using the strategy presented in section ‘Strategy to generate the
initial population’.

Stopping criterion for the clonal expansion process
The clonal expansion process is executed until the population is

stabilized and no more memory antibodies are modified over k
generations.

Clonal suppression operator
In the clonal suppression operator, the memory set P{M} is eval-

uated by comparing the similarity between its antibodies. If the



Fig. 4. Typical active power demand load curves.

Table 1
Load factors of the consumers and cost of energy losses.

Demand level Consumer kind Cost (US$/kW h)

Residential Commercial Industrial

1 0.3600 0.2838 0.0625 0.0650
2 0.2600 0.2973 0.1000 0.0650
3 0.2400 0.2838 0.0750 0.0650
4 0.2200 0.3108 0.1188 0.0650
5 0.2400 0.2938 0.1000 0.0650
6 0.4200 0.3378 0.0875 0.0650
7 0.5400 0.4054 0.1375 0.1100
8 0.5600 0.5270 0.3875 0.1100
9 0.5400 0.7297 0.7438 0.1100

10 0.5800 0.8311 0.7625 0.1100
11 0.4300 1.0000 0.9000 0.1100
12 0.4800 0.9595 1.0000 0.1100
13 0.5800 0.9324 0.6188 0.1100
14 0.5200 0.9595 0.6875 0.1100
15 0.4100 0.9730 0.7875 0.1300
16 0.4600 0.9595 0.7625 0.1300
17 0.4200 0.9730 0.8125 0.1300
18 0.4900 0.9189 0.8750 0.1300
19 0.7900 0.7838 0.6188 0.1500
20 0.9840 0.7162 0.3563 0.1500
21 0.9700 0.6622 0.2375 0.1500
22 1.0000 0.5811 0.1250 0.0650
23 0.5400 0.5000 0.1188 0.0650
24 0.4200 0.3229 0.0832 0.0650
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similarity between a pair of antibodies is larger than a threshold S
(similarity rate), then one of the antibodies is discarded through
the clonal suppression process. This means that similar antibodies
are eliminated in order to provide greater population diversity.

Control of the population’s size
After the clonal suppression operator, the population size is

checked to see whether it is lower than N. If so, new antibodies
are generated randomly using the strategy presented in section
‘Strategy to generate the initial population’ in order to complete
the population.

Weak mutation operator
The weak mutation operator is executed if there are no

improvements in the affinity of the antibodies belonging to the
memory set (P{M}) over k iterations of the Copt-aiNet. In this case,
the weak mutation occurs in all elements of population P through
the hypermutation operator presented in Section ‘Hypermutation
operator’.

Strong mutation operator
The strong mutation operator is performed on each generation

of the Copt-aiNet in order to conduct an intensified search (local
improvement) of the antibodies in the memory set (P{M}). This
process uses the local search heuristic proposed in [23] and
detailed in [9].

Stopping criterion
The Copt-aiNet stops if the affinity value of the best antibody in

the population does not change for a specified number of itera-
tions, and the average affinity value of the antibodies in the popu-
lation does not change by more than a specified percentage over a
given number of iterations. If the above two conditions hold simul-
taneously, then the algorithm ends, indicating that a final solution
has been obtained. If not, the iteration counter is increased by 1. If
the maximum number of iterations is reached, then stop. If not,
return to Step 2 of the algorithm.

Results

This section presents the results obtained from applying the
Copt-aiNet to the test systems with 33 [3], 84 [24], and 136 [6]
nodes, and to a real system with 417 [25] nodes. The algorithm
was implemented in C++ 6.0� [26]. All tests were carried out using
a PC with an Intel Core i7 3.1 GHz processor.

Configuration of the used demand levels

The tests considered an operation period of 24 h, and for each
hourly period, a demand level was specified for each node in the
test system. The demand levels were organized into three sets:
(a) residential, (b) commercial, and (c) industrial. For each demand
level, a typical load diagram was specified, as illustrated in Fig. 4
(a–c).

In order to obtain a specific demand level, the load factor of the
final consumer at each node was multiplied by the active and reac-
tive power associated with the typical load curves. The selection of
the type of consumer at each node of the EDS was done at random,
assuming that 60% of the consumers were residential, 25% were
commercial, and 15% were industrial. The type of consumer
defined for each node of each EDS can be found in [13].

Table 1 presents the load factors associated with each type of
consumer over the 24 h of the operation period and the cost of
energy losses. Fig. 5 shows how the cost of energy losses varied
across the 24-h period. In each hourly period, these costs were
multiplied by the active losses calculated by the power flow rou-
tine in order to obtain the value of the objective function associ-
ated with each candidate topology.
Parameters of the Copt-aiNet

The results for all of the systems were obtained using the
parameters shown in Table 2. These parameters were established
after running the algorithm in a number of trial tests.



Fig. 5. Cost of energy losses (US$/kW h).

Table 3
Results for the 33-, 84-, 136-, and 417-node systems.

System Before reconfiguration After reconfiguration Reduction
(%)

Topology Cost of
Energy
Losses
(US$)

Topology Cost of
Energy
Losses
(US$)

33 33-34-35-36-
37

187.86 7-9-14-28-32 128.81 31.43

84 84-85-86-87-
88-89-90-91-
92-93-94-95-
96

456.41 7-34-39-63-
72-83-84-86-
88-89-90-92-
95

410.53 10.05

136 136-137-138-
139-140-141-
142-143-144-
145-146-147-
148-149-150-
151-152-153-
154-155-156

288.50 7-38-51-54-
84-90-96-
106-118-126-
135-137-138-
141-144-145-
147-148-150-
151-155

256.89 10.95

417 1-5-15-16-26-
31-53-54-55-
75-82-94-96-
97-106-107-
119-136-138-
154-155-156-
168-169-177-
179-194-195-
201-207-211-
214-219-241-
256-258-282-
297-302-314-
321-354-359-
362-364-385-
388-395-396-
404-407-423-
424-426-431-
436-445-446-
449

637.88 1-2-13-15-16-
26-31-40-41-
50-59-73-82-
94-96-97-
111-115-136-
146-150-155-
156-158-163-
168-169-178-
179-190-191-
194-195-209-
230-254-256-
267-270-294-
310-321-354-
362-385-389-
392-395-403-
404-423-424-
426-436-437-
439-446-449-
466

529.66 16.96

Table 4

Table 2
Parameters.

Parameters 33-, 84-, 136-node systems 417-node system

N 50 60
b 0.3 0.3
ger 30 70
n 10 30
d 1 1
q 4 5
S 80% 80%
est 2 ger 2 ger
k 2 ger 2 ger
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In Table 2, N is the number of antibodies in the population, b is
the cloning factor, ger is the number of generations, n is the num-
ber of memory antibodies, d is the number of antibodies to be
replaced in the metadynamic process, q is the damping control
parameter for the exponential function, S is the similarity rate,
est is the criterion for the stability of the population, and k is the
weak maturing criterion.

It is noteworthy that the parameters used in the Copt-aiNet to
solve the test systems differ only in the number of ger, the q value,
and the number of memory antibodies (n), which demonstrates the
robustness of the proposed methodology.
Number of iterations needed to find the solutions.

System iTmin iTmax iTmean dev

33 1 2 1.43 0.50
84 2 5 3.37 1.11

136 8 24 16.83 4.82
417 26 68 48.83 12.51

Table 5
Computational time needed to find the solutions.

System Tmin (s) Tmax (s) Tmean (s) dev

33 0.158 0.523 0.365 0.108
84 3.236 6.458 5.142 0.691

136 15.589 29.258 21.891 4.481
417 158.245 214.152 183.687 17.613
33-, 84-, 136-, and 417-node systems

The well-known 33-, 84-, and 136-node test systems and the
417-node real system had nominal voltages of 12.66 kV,
11.40 kV, 13.80 kV, and 11.00 kV, respectively.

Table 3 shows the initial and final topologies (i.e., before and
after reconfiguration) found using the Copt-aiNet, along with the
cost of energy losses for each tested EDS. For all of the tests, the
Copt-aiNet led to a reduction between 10% and 31% in the cost of
energy losses.

In order to evaluate the performance of the Copt-aiNet, it was
run 30 times. In all runs, the algorithm found the best solutions
for all systems, but with a different number of iterations and com-
putational time.

Tables 4 and 5 present the number of iterations and the compu-
tational time required for the 30 executions to find the solution for
each test system. Table 4 includes data regarding iTmax, iTmin,
iTmean, and dev, representing the larger, the lower, the mean,
and the standard deviation of the execution time for the number
of iterations needed to find the best solution.

Table 5 presents four types of data. Tmax and Tmin are the max-
imum and the minimum time, respectively, required to find the
solution, while Tmean is the mean time taken by the 30 executions,
and dev is the standard deviation of that number.

According to the information presented in Tables 4 and 5, the
Copt-aiNet found the solutions for all tested EDSs in all executions
of the cross-reference test with low computational time, proving
the efficiency and performance of the proposed algorithm.
Comparison with the literature

Table 6 presents the best solutions available in the literature for
each test system. Comparisons were performed with the results
considering fixed and variable demands. To obtain the value of
the cost of energy for the fixed demands, the topologies presented
in these papers were used along with the affinity function to obtain
the value of the cost.

The results for the variable demands were compared with the
results for the fixed demands in order to analyze the results from
an operational point of view.

As can be seen in Table 6, the results for the variable demands
had lower values for the cost of power losses than the results con-



Table 6
Comparison with the literature.

System Topology Cost of energy
losses (US$)

Ref. Kind of
analysis

33 7-9-14-28-32 128.81 [13] Variable
demand

7-9-14-32-37 134.30 [9] Fixed
demand

84 7-34-39-63-72-83-84-86-88-89-90-92-95 410.53 [13] Variable
demand

7-13-34-39-42-55-62-72-83-86-89-90-92 417.29 [9,17] Fixed
demand

136 7-38-51-54-84-90-96-106-118-126-135-137-138-141-144-145-147-148-150-151-155 256.89 [13] Variable
demand

7-35-51-90-96-106-118-126-135-137-138-141-142-144-145-146-147-148-150-151-155 272.96 [7,17] Fixed
demand

417 1-2-13-15-16-26-31-40-41-50-59-73-82-94-96-97-111-115-136-146-150-155-156-158-163-168-169-178-179-
190-191-194-195-209-230-254-256-267-270-294-310-321-354-362-385-389-392-395-403-404-423-424-426-
436-437-439-446-449-466

529.66 [13] Variable
demand

5-13-15-16-21-26-31-54-57-59-60-73-86-87-94-96-97-111-115-136-142-149-150-155-156-158-163-168-169-
178-179-191-195-199-214-221-254-256-266-282-317-322-325-358-362-369-392-395-403-404-416-423-426-
431-436-437-446-449-466

530.29 [9] Fixed
demand
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sidering fixed demands. This is because considering variable
demand offers a more realistic representation of the problem. As
a result, a unique topology is obtained that can operate in all 24
demands, making it unnecessary to perform various reconfigura-
tion operations. When considering fixed demand, the topology is
best suited to a specific demand and would not be suitable for vari-
able demand, because it would require many reconfiguration oper-
ations over an operating period. So, from an operational point of
view, considering variable demand is more viable, and in general
produces a lower cost of power losses than when considering fixed
demand.

To compare the results with the literature, references [7,9,17]
for fixed demands and the reference [13] for variable demands
were used. References [7,9,17] present the best results available
in the literature for the reconfiguration problem with fixed
demand; for this reason, these works were used in the comparison.
Ref. [13] was used because it presents results using the same elec-
tric power systems, and the same configurations and parameters of
variable demands as used in this paper; however, the methodology
used to solve the problem is different, as it uses four versions of the
VNS meta-heuristic.

For the 33-, 84-, 136-, and 417-node systems, the Copt-
aiNet algorithm found the best solutions reported in the literature,
as presented in Table 6. From these comparisons, it can be con-
cluded that the Copt-aiNet is an efficient method because its final
solutions are consistent with the best solutions found in the spe-
cialized literature for the configurations presented in this paper.
Conclusions

In this paper, a new methodology was presented to solve the
DSR problem with variable demand, using the artificial immune
algorithm Copt-aiNet with the objective of minimizing the cost
of the energy losses in the EDS.

According to the results, the Copt-aiNet algorithm was able to
find the best solutions available in the literature for all tested sys-
tems due to the weak and strong mutation strategies that enhance
the ability to search the solution space of the problem. These
strategies enabled the algorithm to find the best solution in a smal-
ler number of iterations and, consequently, with reduced computa-
tional time.

The Copt-aiNet algorithm showed very good stability and relia-
bility in solving the DSR problem with variable demand; in all runs
of the algorithm in the cross-reference tests, the best solutions
were found for all of the tested systems. The obtained results for
all test systems were compared with those reported in the litera-
ture in order to evaluate the efficiency of the proposed method.

Finally, we conclude that the Copt-aiNet algorithm proposed to
solve the DSR problem demonstrates good performance, efficiency,
low computational time, and robustness.
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