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Abstract
Purpose – This paper aims to present a mosaicking method for underwater robotic applications, whose result can be provided to other perceptual
systems for scene understanding such as real-time object recognition.
Design/methodology/approach – This method is called robust and large-scale mosaicking (ROLAMOS) and presents an efficient frame-to-frame
motion estimation with outlier removal and consistency checking that maps large visual areas in high resolution. The visual mosaic of the sea-floor
is created on-the-fly by a robust registration procedure that composes monocular observations and manages the computational resources.
Moreover, the registration process of ROLAMOS aligns the observation to the existing mosaic.
Findings – A comprehensive set of experiments compares the performance of ROLAMOS to other similar approaches, using both data sets (publicly
available) and live data obtained by a ROV operating in real scenes. The results demonstrate that ROLAMOS is adequate for mapping of sea-floor
scenarios as it provides accurate information from the seabed, which is of extreme importance for autonomous robots surveying the environment
that does not rely on specialized computers.
Originality/value – The ROLAMOS is suitable for robotic applications that require an online, robust and effective technique to reconstruct the
underwater environment from only visual information.
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1. Introduction

Underwater research is very important for several scientific
applications, such as in geology, biology, archaeology,
shipwreck recoveries, environmental assessments and
ecological studies. Most of the time, activities related to
survey usually require a large amount of operating time and
technical and human resources with a strong financial impact
on small- and medium-sized enterprises (SMEs) of the
marine industry. Nowadays, underwater robots are tools for
several scientific areas including, geology, biology,
archaeology, shipwreck recoveries, environmental
assessments and ecological studies. These studies usually
demand specific information from the seabed, which
requires a large amount of technical and human resources to
conduct the field missions. As a consequence, these missions
have a strong financial impact on SMEs of the marine
industry. In the past years, the use of autonomous
underwater vehicles (AUVs) is growing to support the
activities of these SMEs to accomplish tasks that include
mapping and visual observation of marine structures.
Remotely operated vehicles (ROVs) and AUVs can be
equipped with diverse sensors such as acoustic positioning
sensors (long or ultra-short baseline), Doppler velocity log,
gyroscopes and global positioning system, whose data have

the ability to improve the navigation of such vehicles. Some
of these sensors are not suitable when a vehicle navigates
near to sea-floor (or other underwater structures) as it does
not provide a reliable nor accurate information. In those
situations, visual systems formed by high-resolution cameras
represent obvious advantages; however, they are limited by
sub-sea conditions and phenomena related to the light
propagation in water: poor visibility, light absorption, the
presence of suspensoids in water and the backscattering
effect. Although being affected by such limitations, the visual
systems provide relevant information from the scene that can
be used for the navigation of the vehicle or even for scene
understanding.
This research presents an improvement of a method that

conducts the visual mapping of the sea-floor, and it is called
robust and large-scale mosaicking (ROLAMOS), whose
preliminary version was presented in ICARSC 2016. The
main contribution of this work is the online characterization
of the underwater environment based on monocular images
captured and processed in real-time from a ROV (or AUV)
without a specialized computer. This algorithm performs an
efficient registration of a sequence of monocular images by
following a frame-to-frame analysis divided into four
distinct phases: pre-processing, estimation of the
egomotion, creation of the mosaic and memory
management. The first stage (the pre-processing) intends to
increase the quality of the input image by removing spatial-
temporal noise. The egomotion estimation is obtained based
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on principles from the structure from motion (SfM) and,
therefore, the three-dimensional displacement of
consecutive frames is obtained by extracting features from
observations and computing their correspondences between
consecutive views (by assuming the epipolar constraint).
This work proposes a more efficient mechanism for outlier
removal because this mechanism is balanced in terms of
computational demands versus the quality of the stitching
procedure (considering requirements related to high-
resolution and a large panoramic image). Additionally, the
egomotion is verified during the entire stitching process
through a consistency checking procedure that infers about
the feasibility of motion that was estimated previously. This
approach for consistency checking is conducted just before
blending the current observation with the panoramic image.
The blending process of ROLAMOS creates a mosaic
without visible seams. Finally, a mosaic management phase
organizes the information of the entire of ROLAMOS and
makes it possible to continuously operate with high-
resolution images during the large-scale reconstructions.
This phase manages the process of mosaic building by taking
into account the hardware’s limitations which is relevant for
representing large-scale environment (with full resolution)
that exceed the memory of the conventional computers
available on board.
The proposed architecture makes this method suitable for

the interpretation of the scene as the visual mosaic is created
online and provides a more general overview of the sea-bed.
This is quite relevant for other methods (computer vision or
artificial intelligence) responsible for the scene
understanding such as, objects recognition. Moreover, the
visual map for the entire underwater scene can be
reconstructed in offline with higher quality from
the information kept by ROLAMOS.
Therefore, themain contributions of this article are:

� an enhanced version of technique (ROLAMOS) (Pinto
et al., 2016) that composes the sea-floor from sequential
and overlapping visual observations;

� promotion of more efficient and advanced perception
systems for underwater applications;

� robustification of the stitching process that creates an
accurate panoramic image through a mechanism that
detects and removes the influence of outliers (whose
motion profile does not fit in the egomotion);

� an efficient approach based on SfM principles, which is
suitable for applications that do not have specialized
devices;

� a management system that controls the growth of
panoramic image based on the highest resolution allowed
by the hardware configuration;

� the enhancement of an online perceptual system for
underwater autonomous vehicles that provides a
textured-scene which can be used for recognizing
objects; and

� an extensive set of qualitative and quantitative evaluations
of the results of this research in several scenarios: using
underwater robots operating in real scenes.

The article is organized as follows: Section 2 presents a
state-of-art of the mosaic-based approaches that are used in

robotic systems to perceive the environment. Section 3
shows the concept of the ROLAMOS method, where each
phase is presented in details. Afterwards, Section 4
demonstrates the results of ROLAMOS that include
experiments with sequences acquired from a ROV operating
in a real scenario. The results indicate that ROLAMOS is
suitable for online mapping of large-scale sea-floor because
the visual information is registered and managed by taking
into account the computational resources available
onboard. Finally, Section 5 presents the most important
conclusions of this research.

2. Related works

Dangerous and hazardous survey operations such as visual
inspections, monitoring of sea structures and coral reefs and
sea-floor mapping can be performed by underwater robotic
vehicles. In some cases, these vehicles can reach places that are
completely impossible for the human being (Gracias and
Santos, 2000;Martin andMartin, 2002).
Nowadays, intelligent and autonomous robotic vehicles are

developed with visual systems (Pinto et al., 2014a, 2014b,
2014c) to obtain visual evidence of the sea-floor, and as a
consequence, researchers have proposed some techniques to
map large areas. Pizarro and Singh studied the impact of the
reduced overlap between consecutive images (causing a radial
distortion), unstructured motion and the poor lighting
conditions. All these issues have a severe influence on the
accuracy of the mapping process (Pizarro and Singh, 2003).
Ferreira et al. (2013) proposed a real-time mosaicking based on
a SLAM framework and applied to underwater image
sequences. In addition to visual data, it uses other sensors such
as lasers and acoustics. The authors claimed that this method is
computationally efficient because it uses binary features
(BRIEF) and local maps to provide scalability and a rapid
construction of the mosaic. As noticed, the data from the
navigation system of the robots can also be included in the
mosaicking process to improve the quality of the final
panoramic image (as well as to provide georeferenced data)
(Ferrer et al., 2007; Escartín et al., 2008). A mechanism (Kim
and Kweon, 2011) based on RANSAC was proposed to
validate the consistency of the motion between consecutive
observations. A tool for underwater large-area photo-
mosaicking was presented by Marcon (2014). The work is
focused on the quality, robustness and precision of the final
map. It presents the possibility to intuitively create matches
between unlinked images, several robust techniques to reject
outliers and a global registration approach. Obviously, this tool
was developed for offline image processing and cannot be
embedded onboard of the vehicle. The Arnaubec et al. (2015)
developed other software processing tool for semi-automatic,
online or offline two-dimensional (2D) and three-dimensional
(3D) optical mapping. To obtain the 2D mapping, the tool is
optimized to process large-scale mosaics of many thousands of
images. This is important to obtain a global representation
of the seafloor without information about the vertical structures
of the scene. In the other configuration, the 3D mapping is
processed with diverse images taken from successive
perspectives to obtain a highly precise bathymetry at small
scale. The results of this technique indicate that both real-time
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and post-processing approaches are available. For the
egomotion estimation, the work of Li et al. (2011) calculates
the motion vector between consecutive frames from a
simplified Lucas-Kanade method that is combined with an
image registration technique (Lucas and Kanade, 1981). The
estimation of the egomotion (affine model) is quite relevant for
the warping and stitching stages. Bonny and Uddin (2016)
presented a comparative study of four stitching techniques
based on features (faster and more robust): SURF, FAST,
Harris Corner Detector and MSER. The work emphasizes the
importance of the amount of overlap between images and the
minimization of the occurrence of the seam. From the results,
the SURF achieved the best performance, and Harris Corners
obtained a similar performance. The biggest disadvantage of
this work is that it cannot be used online.
Currently, the limited visual perception capability in the

underwater environment presents one of the greatest
restrictions on the use of these type of vehicles. Therefore, it
becomes crucial to develop perception methods that make
underwater seafloor mapping possible whenever the vehicle
moves closer to the bottom of the sea. These methods will allow
a more efficient use of such systems in real environments and
applications (Pinto et al., 2014a, 2014b, 2014c). Maps
generated by mosaicking methods can be used to object
detection and identification, in particular, to discover sinked
structures and to interpret the biological and physical
characteristics of marine elements (Foresti and Gentili, 2002;
Srividya and Shobha, 2014). A preliminary ROLAMOS
version (Pinto et al., 2016) proposed and tested with data sets
publicly available. The preliminary algorithm is simple when
compared to the enhanced version proposed by this research as
it does not include alignment procedures and consistency
checking. The proposed technique intends to decrease the gap
between automatic processing of sensor data and missions that
do not require the human intervention.

3. Robust and large-scale mosaicking

ROLAMOS is a mosaicking method formed by four main
phases: a pre-processing stage, the egomotion estimation of the
observer, a stitching stage and, simultaneously to the previous
stages, a mosaic management mechanism ensures that the final
panoramic image does not reach the full memory of the
computer. The next sections present the concept and
approaches followed in the architecture depicted in Figure 1.

3.1 Pre-Processing
In the pre-processing phase (a blue block on Figure 1) intends
to remove spatial-temporal noise from the input image. This
technique is named robust bilateral and temporal (Pinto et al.,
2014a, 2014b, 2014c) and uses the spatial and temporal
evolution of the sequences to reduce the noise component and
to make the images more appealing. It is quite common for the
presence of suspensoids in the water column, which can be
considered as noise component. Therefore, the quality of the
texture information of moving observations is enhanced by
applying this filtering method to rectified images (considering
the calibration parameters of the camera) collected in
underwater scenarios.

3.2 Egomotion estimation
Creating a 2D map from a sequence of monocular images
collected in underwater scenarios is a challenging task because
the positions of the camera can only be determined up to one
parameter of ambiguity. As a consequence, the absolute
position (and orientation) is only estimated when additional
information from the navigation system is available, for
instance, the metric distance between two points of the scene
(or the distance from the camera to a point). This ambiguity
imposes that temporal correspondences are usually
characterized by a line that represents all the possible locations
for each point in other points-of-view: the epipolar constraint.
Thus, principles of SfMprovide clues about the 3D structure of
objects through the analysis of the 2D motion from distinct
perspectives over time.
This paper considers the egomotion as a rigid transformation

that characterizes the displacement (position and angles)
occurred between consecutive observations capturing different
points-of-view.
The estimation of egomotion of the observer encompasses a

couple of approaches:
� Direct methods: Calculate the transformation by maximizing

the photometric consistency over the whole overlapping
image regions (Gutiérrez, 2013). This type of approach is
suitable for image sequences having large overlapping
regions.

� Feature-based methods: Compute the transformation between
points-of-view using a set of points in images and a temporal
association.

Figure 1 Diagram of the feature-based image mosaicking approach
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ROLAMOS follows a feature-based approach, which means
that the extraction and the matching of features are performed
between consecutive frames. The SURF feature description
(Bay et al., 2008) is used as it is invariant to scale and rotation
(relevant characteristics for robotic applications operating in
underwater scenes). After that, the temporal inconsistency of
pairwise features is estimated by the epipolar geometry, which
means that the feature representation in the second point-of-
viewmust be located closely to the epipolar line.
The fundamental matrix provides a geometric relation

between two images of the same scene acquired by different
points-of-view. This matrix is estimated by using the epipolar
geometry supported by a RANSAC-based approach. This
approach makes it possible to detect wrong matches, each one
defined as a pairwise feature with a large bilateral distance. These
points are usually known as outliers and should not be considered
for motion estimation, see equation (1). This process uses a
cross-matching approach (with the k-nearest neighbor algorithm)
for filtering pairwise features having a largematching distance.

erriBL ¼ errif 1 errip (1)

where errif is the distance between the ith feature f to its epipolar
line (defined by the p and the fundamental matrix). The sum of
the bilateral error from all pairwise features gives an overall
measure of the quality that can be expected for the egomotion
estimation.
After consistency checking phase, the egomotion is obtained

by decomposing the homography matrix (H) into rotation and
translation (R and t) matrices (Nister, 2004). The homography
is a transformation that maps points of the first image into the
corresponding points on the second image. For the sea-floor
scenario, the assumption that the scene is roughly flat can be
considered without losing generalization. This assumption is
necessary to estimate the homography (known as the co-
planarity constraint). An singular-value decomposition (SVD)
of the homography matrix retrieves some hypothesis for R and
t, see equations (2)-(4):

R ¼ URKVT (2)

t ¼ UtK (3)

n ¼ VnK (4)

where U and V are orthogonal matrices and K a diagonal
matrix, which contains the singular values of matrix H. Up to
eight different solutions are obtained as a result of the
decomposition algorithm for the triplets: RK, tK, nK. Impossible
combinations of R and t are further eliminated by additional
constraints related to the depth.
This egomotion estimation process (Figure 1) assumes that

the dominant motion is expressed by a rigid transformation
based on the set of pairwise features that are obtained during
the computation of the fundamental matrix.

3.3 Stitching
The stitching process implies that the current image is
projected by taking into account the homography matrix. This

step is also known as warping, see Figure 1 (dark green blocks).
Although ROLAMOS increases the robustness of the stitching
process related to the quality of the egomotion estimation, by
removing pairwise features that do not share a consistent
motion profile, there are situations where the resulting pairwise
features could be incoherent (due to the parallax effect, lack of
good features and non-distribution of the features along the
frame). In these cases, the warping process will produce
unreliable results that can compromise the creation of the final
panorama. To detect these situations, ROLAMOS incorporates
an additional stage for outlier removal that is based on the
empirical analysis of the egomotion and the homography
estimative. A Kalman filter (with a model of constant
acceleration) ensures that no sudden transitions are obtained
between consecutive frames. Additionally, it is assumed that
images are acquired sequentially within short periods of time
(the aliasing constraint). As an example, sudden changes such
as a turn of 180° or a large translation will not be admitted. If
some of the previous conditions are detected, the stitching
process of the current observation will not be concluded.
The alignment between two images with different viewpoints

is estimated. This research uses the enhanced correlation
coefficient (ECC) Maximization (Elibol et al., 2013) is used to
improve the quality of the warped image, which constitutes an
additional alignment measure that is robust against geometric
and photometric distortions. This additional registration layer
(the ECC) uses the gradient information and achieves high
accuracy (sub-pixel estimation) that is invariant to illumination
changes due to the zero-mean normalized cross-correlation of
an objective function. This layer refines the egomotion
estimation as well as the registration process. Consequently, it
increases the quality of the final panorama.
The final step of this process is the image blending, which

combines two or more images and creates a panorama which
enables the visual interpretation of the sea-floor and existing
structures. Thus, this step takes into account other misalignments
through the use of spatially-varying weights (feathering). A 2D
Gaussian distribution centers the weights that create a gradient-
like matrix for both images (new warped and panoramic image).
This function determines how this new warped image will blend
with the panoramic image in a computationally efficient
management.More sophisticated blending functions are available
in the literature; however, they are computational demanding for
online processing. So, the blending stage makes it is possible to
obtain a visually appealing panoramic image.

3.4Memorymanagement
The ROLAMOS is a technique mainly developed for AUV/
ROV applications as it creates a robust and accurate panoramic
image. When the AUV operates in large-scale environments, it
has limited computation resources available onboard for
processing the visual information.
To mitigate the limitation related to the large amount of flash

memory (RAM) that is needed to create mosaics, ROLAMOS
proposes a hierarchical structure to manage the computational
resources available onboard, see the yellow blocks in Figure 1.
The proposed memory management stage guarantees that the
ROLAMOS does not jeopardizes the situations awareness
module that is also running inside the AUV (e.g. for object
recognition). Therefore, the first goal of thememorymanagement
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is to control the size of the panoramic image depending on the
RAM (random-access memory) available over time. The mosaic
image is limited in terms of the maximum size and the stitching
pipeline halts when the egomotion of the new observation
increases the size of the mosaic to beyond the safe threshold. In
those situations, the current mosaic image and complementary
data are saved in the disk as a “patch” and, a new mosaic can be
started safely. A “patch” is formed by a local portion of the
panoramic image (composition of sequentially blended images)
that does not exceed the maximum number of pixels and also by
additional information that supports the reference frame, see
Table I.
Table I summarizes the additional information: egomotion,

the corner’s locations and homographies of images. Based on
this information, a hierarchical scheme can be created where
each “patch” is referred to a “global” frame for further
reconstruction.
The next step is restarting the process of mosaic creation,

more specifically, starting a new patch that will comprise a set
of new warped images. For an offline analysis (after the mission
to be concluded): the global mosaic of large-scale environments
cannot be generated from the patches at full resolution as it
probably will exceed themaximum number of pixels allowed by
hardware (for conventional systems). Thus, this method
proposes a solution to scale down the global mosaic due to a
scaling factor that is calculated to fit all patches into the global
mosaic frame without exceeding the maximum pixel limit. In
this way, it is possible to visualize the entire panoramic image at
lower resolution however, the resolution of a specific area of the
panoramic could be extended to the maximum resolution
allowed by the hardware configuration.
The seafloor is usually characterized by areas that are

featureless or have low contrast. In those regions of the seafloor,
it might not exist the necessary number of temporal
correspondences of pairwise features belonging to points-of-
view and, therefore, the stitching process cannot continue – the
ROLAMOS will save the local panoramic image (“Patch”) –
and will restart the again.

4. Results

A set of experiments were conducted as part of this research to
analyze the performance of the proposed technique –

ROLAMOS. For that it was used an i7-4700 @ 2.6GHz � 8

processor computer, without graphics processing unit. These
experiments can be divided into two main groups: sequential
images obtained by data sets and sequential images obtained
using an ROV operating in a real scenario. The first experiment
uses data set images from the Scott Reef (Bryson et al., 2013)
and Florida Reef Tract (Lirman et al., 2006). The Scott Reef
data set comprises a set of underwater images acquired by an
AUVwhich covered an area of 75� 50m of sea-floor and it was
equipped with a high-resolution camera (1,360 � 1,024). As
can be seen from the image sequence, there are three
dominating substrates: reef, sand and transition area, which
cause several challenges in computing the egomotion of the
vehicle. On the other hand, a sequence of images was obtained
during a survey to a reef in the Florida Reef Tract, which is
composed by several vertical and horizontal paths obtained by
Phantam XTL ROV. This vehicle was equipped with a Flea
digital camera and the images have a resolution of 1,024� 768
pixels. An experiment was conducted using a ROV belonging
to INESC TEC (FEUP) that is equipped with an underwater
camera. This acquisition system is composed by aMako G-125
with a 6 mm lens, that allows a resolution of 1,292 � 964 at 30
frames per second (fps). It is important to highlight that some
features of this camera, namely: the auto gain and the auto
exposure, as well as the color correction, hue and saturation,
were kept fixed for the entire experience. The visual system was
calibrated (Wang et al., 2010) using a chessboard to estimate
the intrinsic and extrinsic parameters from corner extraction.
After that, the images can be rectified. The trajectory made by
the ROV during the experience follows closely a free camera
motion as the movement was not restricted in 3D. The frame
rate of data acquisition is high to ensure that the consecutive
frames present overlapping regions. To verify the quality of
the final map, some objects were placed at the bottom of the
underwater environment. These objects make it possible to
verify the texture information that can be expected from the
panoramic images created by ROLAMOS, which is relevant to
a scene understanding algorithms (e.g. for object recognition).

4.1 Visual accuracy
The ROLAMOS is suitable for realistic robotic applications for
monitoring structures of the sea-floor, as well as to support
mission that involves the detection of objects. In both
situations, the visual accuracy of the panoramic image is
extremely important.

Table I Brief description of the variables to the global and patch modules

Short Description
Global Patch

Created after image cycle is finished Created when the pixel count of the current panorama exceeds a defined
size_x
size_y

Total size of the global mosaic size_x
size_y

Total size of the global mosaic

N_images Sum of all images n_images Sum of images in the patch
N_patches Sum of all patches offset_x

offset_y
Offset of the global mosaic from the first image
in the whole mosaicoffset_x

ofsset_y
Offset of the global mosaic from the first
image in the whole mosaic first_homography Homography of the first image in the patch

scale Scale factor for blending the patches
into the full resolution global mosaic

last_homography Homography of the last image in the patch

Egomotion – the motion estimation from visual observations
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An example of the visual accuracy of the ROLAMOS technique
can be verified inFigure 2, which represents a partial representation
of a mosaic image that encompasses eight underwater images,
obtained by Phantam XTL ROV. This result demonstrates the
high definition of the reconstruction process that can be performed
by ROLAMOS: areas of the mosaic that represent the frontiers
from different observations do not include visible artifacts that are
usually caused by the inaccurate combination of several observation
for the same spatial location. These visual artifacts are the main
evidence of an imprecise egomotion estimation or an inappropriate
blending function. These factors have a strong impact on the visual
accuracy of panoramic images. Figure 2 demonstrates that the
texture information of the panoramic image created by
ROLAMOS has high quality, which is caused by the innovations
presented byROLAMOS.
Figure 3 presents the result of a sequence of 22 images whose

trajectory includes one direction change. This scenario has a
good texture information as a total of (approximately) 30,000
features was obtained during the registration/warping process
described above. Moreover, the minimum number of good
matches (after the computation of both fundamental and
homography matrices) was always higher than 12, and
consequently, the egomotion estimative was reliable and no
observationwas discarded.
The final step of the mosaic creation process is the blending,

which combines two sequential observations having
overlapping regions into a single image. The blending is

responsible for an uniformization of the panoramic image,
avoiding visible seams between observations.
The robustness of this step increases the quality of the final

panoramic image and facilitates the upcoming interpretation of the
scenario. This step is considered very expensive in terms of
computational costs; thus, the ROLAMOS technique proposes a
simple but effective implementation of a blending function. Figure
4 shows the influence of different blending approaches. More
specifically, Figure 4(a) depicts the mosaic image obtained with a
simple average function, while Figure 4(b)-(d) shows the results
obtained by applying 2D Gaussian function with a standard
deviation values of 0.2, 0.1 and 0.01, respectively. As expected, the
average blending function leads to a blur effect along the transition
of images (frontiers between observations) and, in addition, it
smooths edges and regions with high texture. In contrary to the
previous result, the 2D Gaussian function preserves the texture
information of panoramic image (specially, regions of transition
between observations). The best result was obtained for a 2D
Gaussian functionwith a small standard deviation.
Figure 5 presents a patch created by an ROV in the INESC

TEC laboratory at the Faculty of Engineering of University of
Porto. This demonstrates the performance of ROLAMOS
during a mission executed by a small ROV in a relevant
scenario. An anchor was placed in the sea-floor to make
possible to validate the quality of the mosaic, as well as to verify
if it possible to identify and recognize objects (Section 4.5). The
visual observations acquired by the ROV were completely

Figure 2 A mosaic image created by a sequence of eight images of the
Florida Reef Tract data set with ROLAMOS

Figure 3 A mosaic image of the Florida Reef Tract data set, with one
direction change.

Figure 4 Panoramic result of a sequence of 22 real images with
different blending methods
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processed and stitched by ROLAMOS. As can be noticed, the
final panoramic image has high resolution, all objects are well
represented (as the gradient-information was kept intact) and
they can be identified easily by humans. It is also important to
refer that the estimation of the egomotion was correctly
determined as it captured the trajectory made by the ROV: with
several direction changes and revisited areas, otherwise, it
would be impossible to characterize and reconstruct this
environment at full resolution.

4.2 Image alignment
The impact of the image alignment mechanism incorporated in
ROLAMOS can be qualitatively analyzed in Figure 5. This figure
shows the panoramic image obtained with the ECC alignment
technique. This technique maximizes the ECC function which
constitutes a robust measure against geometric and photometric
distortions. The result of ROLAMOS without this image
alignment phase is depicted in Figure 6. As can be noticed in the
area highlighted in this figure, the ECC method leads to a better
egomotion estimation and preserves the texture information of
the individual observations in the final panoramic image.
Although the object placed at the bottom of the sea-floor is visible
in both cases, the object was represented with better details in the
panoramic image resulted from the image alignment phase
(Figure 5). Thus, the previous results demonstrate that
ROLAMOS is able to aggregate all observations in a suitable
manner for underwater robotic applications.

4.3Mosaicmanagement
The full Scott Reef data set comprises 9,831 images, on a roughly
square area, which means that it approximately a 100 � 100
image grid. A rough estimation of the memory size of the
resulting global mosaic will be of about 6,845 million pixels by
assuming that each image overlaps the previous by 50 per cent.
As such, the representation of this large-scale environment with
full resolution will be impossible for conventional computers

because the number of pixels exceeds thememory installed in the
majority of computers used in AUV or ROV. In this sense, the
ROLAMOS implements a memory management mechanism
that splits the global panoramic image into local patches that are
created online, see Figure 7(a) and (b). The global mosaic can be

Figure 5 A patch created by stitching of 670 images acquired by a ROV
in a real scenario

Figure 6 A patch created by stitching of 670 images acquired by a ROV
in a real scenario, without ECC

Figure 7 Two examples of the patch creation in a horizontal
representation
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derived from these patches by using the proposed large-scale
image mosaicking algorithm, see Figure 7(c). More specifically,
this example consists of a panoramic image obtained by 22
sequential observations that represent 30 million pixels. It should
be noticed that each patch saves complementary information
(e.g. coordinates, homographies and egomotions) that is relevant
for the creation of the global panoramic image – usually done at
offline. Although the global mosaic of the current example does
not exceed the memory capacity of the current system installed
onboard of the ROV, it can be used as a valid proof-of-concept.
Therefore, ROLAMOS manages the creation of a mosaic by
building different sub-representations of the environment.
ROLAMOS creates each patch during online operations, and
this patch will be used by object recognition algorithms as it
represents a more contextualized information of the scene (when
compared to isolated observations that usually represent a small
portion of the underwater scene).

4.4 Comparison with state-of-art technologies
This section compares the results obtained by ROLAMOS
with other techniques that could be found in the literature.
Some techniques (online and offline) were selected to
determine and compare the impact of different approaches in
the overall performance of the final panoramic image.
A straightforward comparison between ROLAMOS and the

OpenCV (stitching module) is available on Figure 8. Figure 8(a)
depicts a partial mosaic with visual artifacts created by the
OpenCV method. As can be noticed, only some observations
obtained from the entire trajectory were stitched correctly – see
the region of the figure highlighted by a red rectangle – which
indicates the existence of a small black region without any texture
information. Therefore, the OpenCV method was unable to
reconstruct the entire underwater scenario. Figure 8(b) depicts
the same underwater sequence reconstructed by the ROLAMOS.

In practice, Figure 8(b) represents a panoramic image that was
obtained by stitching a set of 1,208 visual observations. The
panoramic image depicts the trajectory performed by the ROV
during its close-range operation (by a factor of scale due to the
unknown depth) as it is an accurate representation of the
underwater environment. Moreover, the complete panoramic
image of Figure 8(a) was created in approximately 3 h, while the
panoramic image of Figure 8(b) was obtained by ROLAMOS in
less than 2 h.
ROLAMOS was conceived to be an online method that can

be incorporated onboard of a ROV or AUV. There are
techniques available in the literature that create panoramic
images offline with a high degree of perceptual accuracy, for
instance, the Pix4DMapper. This software has the ability to
create a high-quality map but the observations must be
considered as data sets and the path made by the observer
should be well defined. The Pix4DMapper configured with two
main steps namely, pre-processing and photomosaic creation.
The pre-processing verifies the number of features collected
from each image (it should be above the minimum number
required for stitching). In the next step, images are stitched and
the photomosaic is created. Figure 9 shows the result obtained
by Pix4DMapper with the same images used by ROLAMOS of
Figure 5). As can be noticed, the results obtained by the
ROLAMOS and Pix4DMapper are similar in aspect.
ROLAMOS represented the underwater scenario without
distorting the objects (e.g. the anchors) which can be important
when one of its goals is to allow the identification of objects.
The panoramic image of ROLAMOS, formed by 670 images,
was computed less than 1 h; however, the Pix4DMapper
required more than 2.5 h. These results demonstrate that the
quality of the panoramic images from both approaches is

Figure 8 Panorama obtained by OpenCV Stitching function (a) and by
ROLAMOS method (b) with Florida Reef Tract data set

Figure 9 A patch created by stitching of 670 images acquired by a ROV
in a real scenario, by the Pix4DMapper software
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comparable, indicating that ROLAMOS represents a good
balance between performance (online calculations) and the
perceptual quality of the panoramic image.

4.5 Object identification
This section presents the application of one advantage of
ROLAMOS – path generation – that can be used by other scene
understanding algorithms to retrieve additional information
from the environment being observed by the ROV or AUV. As
example, this research used an object identification approach
based on bag of words (BOW) to recognize the anchor at the
bottom of the sea-floor during the patch creation process. A
classifier based on support vector machine was trained using
the dictionary of features obtained by the BOW-based
approach that requires images that represent the object, see
Figure 10. The training procedure of this classifier followed the
one-vs-all approach that used 100 samples of images
representing the object. Using this simple but effective process,
the classifier was able to detect the presence of anchors in 83
per cent of the underwater images (30 testing samples were
considered).

5. Conclusion

This research describes a novel technique called ROLAMOS,
which composes sequences of the sea-floor from visual
observations. This method supports recent perception
algorithms for recognizing objects and for scene understanding.
This technique presents a robust registration of monocular
images though an efficient frame-to-frame motion estimation
process (with outlier removal and consistency checking stages)
and a mosaic management mechanism. Overall, the method
makes it possible to reconstruct large underwater areas with a
high resolution. Moreover, ROLAMOS incorporates a mosaic
management approach to overcome hardware limitation which
is usual for underwater vehicles.
An extensive set of experiments were performed in this research

to validate the performance of ROLAMOS. An ROV from the
INESC TEC was used in a real scenario to collect realistic data.
Results obtained in multiple conditions, scenarios and missions
demonstrate that the technique presented in this work has the
ability to accurately reconstruct underwater scenes. ROLAMOS
was compared to other state-of-the-art implementations, and
results from this analysis show that ROLAMOS is a reliable
method as a high number of visual observations were stitched
together, creating complete panoramic images with high
resolution. Therefore, ROLAMOS is suitable for robotic
applications that require for an online, robust and effective
technique to reconstruct the underwater environment from visual
information.

Acknowledgements

This work is financed by the ERDF – European Regional
Development Fund through the Operational Programme for
Competitiveness and Internationalisation – COMPETE
2020 Programme and by National Funds through the
Portuguese funding agency, FCT – Fundação para a Ciência
e a Tecnologia within project POCI-01-0145-FEDER-
030010 and by STRONGMAR Project – STRengthening
MARritime Technology Research Center. The authors
would like to acknowledge the Australian Center for Field
Robotics’ marine robotics group for providing provide real
sea-floor imagery data of the Scott Reef 25 (Bryson et al.,
2013) and the Research Centre in Underwater Robotics of
the University of Girona for providing real sea-floor visual
data of the Florida Reef Tract (Lirman et al., 2006).
The author(s) of this article have not made their research

data set openly available. Any enquiries regarding the data set
can be directed to the corresponding author.

References

Arnaubec, A. Opderbecke, J. Allais, A.G. and Brignone, L. (2015),
“Optical mapping with the ARIANEHROV at IFREMER: the
MATISSE processing tool”, OCEANS 2015 Genova, pp. 1-6,
doi: 10.1109/OCEANS-Genova.2015.7271713.

Bay, H., Tuytelaars, T. and Van, L. (2008), “Surf: speeded up
robust features”, Computer Vision and Image Understanding,
Vol. 110No. 3, pp. p433-p466.

Bonny, M.Z. and Uddin, M.S. (2016), “Feature-Based
image stitching algorithms”, 2016 International Workshop
on Computational Intelligence, pp. 198-203, doi: 10.1109/
IWCI.2016.7860365.

Bryson,M., Johnson-Roberson,M., Pizarro, O. andWilliams, S.
(2013), “Automated registration for multi-year robotic surveys
of marine benthic habitats”, IEEE/RSJ International Conference
on Intelligent Robots and Systems, pp. 205-211, doi: 10.1109/
IROS.2013.6696832.

Elibol, A. Gracias, N. and Garcia, R. (2013), “Efficient topology
estimation for large scale optical mapping”, Springer Tracts in
Advanced Robotics, pp. 1-76, doi: 10.1007/978-3-642-
30313-5_1.

Escartín, J., García, R., Delaunoy, O., Ferrer, J., Gracias, N.,
Elibol, A., Cufi, X., Neumann, L., Fornari, D.J.,
Humphris, S.E. and Renard, J. (2008), “Globally aligned
photomosaic of the lucky strike hydrothermal vent field
(Mid-Atlantic Ridge, 37°18.5’N): release of georeferenced
data, mosaic construction, and viewing software”,
Geochemistry Geophysics Geosystems, Vol. 9 No. 12, doi:
10.1029/2008GC002204.

Ferreira, F., Veruggio, G., Caccia, M., Zereik, E. and Bruzzone,
G. (2013), “A Real-Time mosaicking algorithm using binary
features for ROVs”, 2013 21st Mediterranean Conference on
Control & Automation, pp. 1267-1273, doi: 10.1109/
MED.2013.6608882.

Ferrer, J. Elibol, A. Delaunoy, O. Gracias, N. and Garcia, R.
(2007), “Large-Area Photo- Mosaics using global alignment
and navigation data”, OCEANS 2007, pp. 1-9, doi: 10.1109/
OCEANS.2007.4449367.

Figure 10 Example of images used for training of the classifier

Mosaicking technique for object identification

Alexandra Pereira Nunes et al.

Sensor Review

Volume 39 · Number 3 · 2019 · 387–396

395

http://dx.doi.org/10.1109/OCEANS-Genova.2015.7271713
http://dx.doi.org/10.1109/IWCI.2016.7860365
http://dx.doi.org/10.1109/IWCI.2016.7860365
http://dx.doi.org/10.1109/IROS.2013.6696832
http://dx.doi.org/10.1109/IROS.2013.6696832
http://10.1007/978-3-642-30313-5_1
http://10.1007/978-3-642-30313-5_1
http://dx.doi.org/10.1029/2008GC002204
http://dx.doi.org/10.1109/MED.2013.6608882
http://dx.doi.org/10.1109/MED.2013.6608882
http://dx.doi.org/10.1109/OCEANS.2007.4449367
http://dx.doi.org/10.1109/OCEANS.2007.4449367


Foresti, G. and Gentili, S. (2002), “A hierarchical classification
system for object recognition in underwater environments”,
IEEE Journal of Oceanic Engineering, Vol. 27No. 1, pp. 66-78.

Gracias, N. and Santos, V. (2000), “Underwater videomosaics
as visual navigation maps”, Computer Vision and Image
Understanding, Vol. 79No. 1, pp. 66-91.

Gutiérrez, R.P. (2013), “Image blending techniques and their
application in underwatermosaicing”, Universitat deGirona.

Kim, W.J. and Kweon, I. (2011), “Moving object detection
and tracking from moving camera”, 8th International
Conference on Ubiquitous Robots and Ambient Intelligence,
pp. 23-26, doi: 10.1109/URAI.2011.6146005.

Li, J., Yuan, H. andHong, A. (2011), “Moving vehicle detection
in dynamic background from airborne monocular camera”,
Energy Procedia, Vol. 13, pp. 3955-3961, doi: 10.1016/j.
egypro.2011.11.568.

Lirman, D., Gracias, N., Gintert, B., Gleason, A., Reid, R.,
Negahdaripour, S. and Kramer, P. (2006), “Development and
application of a video-mosaic survey technology to document
the status of coral reef communities”, Environmental Monitoring
andAssessment, Springer, Vol. 125Nos 1/3, pp. 59-73.

Lucas, B.D. and Kanade, T. (1981), “An iterative image
registration technique with an application to stereo vision”,
International Joint Conference onArtificial Intelligence, pp. 674-679.

Marcon, Y. (2014), “LAPMv2: an improved tool for
underwater Large-Area Photo-Mosaicking”, Oceans – St.
John’s, pp. 1-10, doi: 10.1109/OCEANS.2014.7003185.

Martin, C.J.M. and Martin, E.A. (2002), “An underwater
photomosaic technique using adobe photoshop”, The
International Journal of Nautical Archaeology, Vol. 31 No. 1,
pp. 137-147.

Nister, D. (2004), “An efficient solution to the five-point relative
pose problem”, IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. 26 No. 6, pp. 756-770, doi: 10.1109/
TPAMI.2004.17.

Pinto, A.M., Moreira, A.P. and Costa, P.G. (2014a), “An
architecture for visual motion perception of a surveillance-
based autonomous robot”, IEEE International Conference on
Autonomous Robot Systems and Competitions (ICARSC),
pp. 205-211.

Pinto, A.M., Pinto, H. andMatos, A.C. (2016), “Amosaicking
approach for visual mapping of large-scale environments”,
2016 International Conference on Autonomous Robot Systems
and Competitions, pp. 87-93.

Pinto, A.M., Correia, M.V., Moreira, A.P. and Costa, P.G.
(2014b), “Unsupervised flow-based motion analysis for
an autonomous moving system”, Image and Vision
Computing, Vol. 32 Nos 6/7, pp. 391-404, doi: 10.1016/j.
imavis.2014.04.003.

Pinto, A.M., Costa, P.Q., Correia, M.V. and Moreira, A.P.
(2014c), “Enhancing dynamic videos for surveillance and
robotic applications: the robust bilateral and temporal filter”,
Signal Processing: Image Communication, Vol. 29 No. 1,
pp. 80-95, doi: 10.1016/j.image.2013.11.003.

Pizarro, O. and Singh, H. (2003), “Toward large-area
mosaicing for underwater scientific applications”, IEEE
Journal of Oceanic Engineering, Vol. 28 No. 4, pp. 651-672,
doi: 10.1109/JOE.2003.819154.

Srividya, S. and Shobha, G. (2014), “A survey on: underwater
video processing for detecting and tracking moving objects”,
International Journal of Engineering and Computer Science,
Vol. 3 No. 1, pp. 3768-3771.

Wang, Y.M., Li, Y. and Zheng, J.B. (2010), “A camera
calibration technique based on OpenCV”, International
Conference on Information Sciences and Interaction Sciences,
pp. 403-406, doi: 10.1109/ICICIS.2010.5534797.

Corresponding author
Alexandra Pereira Nunes can be contacted at: apn@
inesctec.pt

For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com

Mosaicking technique for object identification

Alexandra Pereira Nunes et al.

Sensor Review

Volume 39 · Number 3 · 2019 · 387–396

396

http://dx.doi.org/10.1109/URAI.2011.6146005
http://dx.doi.org/10.1016/j.egypro.2011.11.568
http://dx.doi.org/10.1016/j.egypro.2011.11.568
http://dx.doi.org/10.1109/OCEANS.2014.7003185
http://dx.doi.org/10.1109/TPAMI.2004.17
http://dx.doi.org/10.1109/TPAMI.2004.17
http://dx.doi.org/10.1016/j.imavis.2014.04.003
http://dx.doi.org/10.1016/j.imavis.2014.04.003
http://dx.doi.org/10.1016/j.image.2013.11.003
http://dx.doi.org/10.1109/JOE.2003.819154
http://dx.doi.org/10.1109/ICICIS.2010.5534797
mailto:apn@inesctec.pt
mailto:apn@inesctec.pt

	A mosaicking technique for object identification in underwater environments
	1. Introduction
	2. Related works
	3. Robust and large-scale mosaicking
	3.1 Pre-Processing
	3.2 Egomotion estimation
	3.3 Stitching
	3.4 Memory management

	4. Results
	4.1 Visual accuracy
	4.2 Image alignment
	4.3 Mosaic management
	4.4 Comparison with state-of-art technologies
	4.5 Object identification

	5. Conclusion
	Acknowledgements
	References


