
A Model for Analyzing Estimation, Productivity, and 
Quality Performance in the Personal Software Process  

Mushtaq Raza 
INESC TEC/Department of Informatics Engineering, 

Faculty of Engineering, University of Porto 
Rua Dr. Roberto Frias, s/n 4200-465 Porto, Portugal 

+351920055092 

uomian49@yahoo.com 

João Pascoal Faria 
INESC TEC/Department of Informatics Engineering, 

Faculty of Engineering, University of Porto 
Rua Dr. Roberto Frias, s/n 4200-465 Porto, Portugal 

+3512250814 00 

jpf@fe.up.pt 

 

 

ABSTRACT 

High-maturity software development processes, making intensive 

use of metrics and quantitative methods, such as the TSP/PSP, can 

generate large amounts of data that can be periodically analyzed 

to identify performance problems, determine their root causes and 

devise improvement actions. However, there is a lack of tool 

support for automating that type of analysis, and hence diminish 

the manual effort and expert knowledge required. So, we propose 

in this paper a comprehensive performance model, addressing 

time estimation accuracy, quality and productivity, to enable the 

automated (tool based) analysis of performance data produced in 

the context of the PSP, namely, identify performance problems 

and their root causes, and subsequently recommend improvement 

actions. Performance ranges and dependencies in the model were 

calibrated and validated, respectively, based on a large PSP data 

set referring to more than 30,000 finished projects. 

Categories and Subject Descriptors 
D.2.9 [Software Engineering]: Management – software process 

models, software quality assurance, time estimation. 

General Terms 
Management, Measurement, Performance. 

Keywords 

Personal Software Process; Performance Analysis; Performance 

Model. 

1. INTRODUCTION 
Currently, according to [1], the top two software engineering 

challenges are (1) the increasing emphasis on rapid development 

and adaptability, and (2) the increasing software criticality and 

need for assurance. The Team Software Process (TSP) and the 

accompanying Personal Software Process (PSP) are examples of 

methodologies that can help individuals and teams improve their 

performance and produce virtually defect free software on time 

and budget [2][3][4], addressing current software development 

challenges. One of the pillars of the TSP/PSP is its measurement 

framework: based on four simple measures - effort, schedule, size 

and defects - it supports several quantitative methods for project 

management, quality management and process improvement [5].  

Software development processes that make intensive use of 

metrics and quantitative methods, such as the TSP/PSP, can 

generate large amounts of data that can be periodically analyzed 

to identify performance problems, determine their root causes and 

devise improvement actions [6]. Although several tools exist to 

automate data collection and produce performance charts, tables 

and reports for manual analysis of TSP/PSP data [7][8][9][10], 

practically no tool support exists for automating the performance 

analysis. There are also some studies that show cause-effect 

relationships among performance indicators [11][12], but no 

automated root cause analysis is proposed. The manual analysis of 

performance data for determining root causes of performance 

problems and devising improvement actions is problematic 

because of the potentially large amount of data to analyze [6] and 

the effort and expert knowledge required to do the analysis. 

To address those shortcomings, we are developing models and 

tools to automate the analysis of performance data produced in the 

context of the TSP/PSP and other high maturity processes, 

namely, identify performance problems and their root causes and 

recommend improvement actions. In previous work [13][14] we 

developed a performance model and a tool to automate the 

analysis of time estimation performance of PSP developers. The 

model was validated based on a small data set from our 

institution. More recently [15][16], we investigated, based on 

existing PSP data, the factors that affect the productivity of PSP 

developers. The current paper goal is to present a comprehensive 

performance model, covering the estimation, quality and 

productivity aspects, calibrated and validated based on a large 

PSP data set, to enable the automated (tool based) performance 

analysis of individual development work with the PSP.  

The rest of the paper is organized as follows. Section 2 describes 

our overall approach. Sections 3 and 4 present the performance 

model conceived based on literature, expert knowledge and 

existing PSP data. Section 5 presents an analysis of existing PSP 

data to validate assumptions in the model. Section 6 presents a 

case study to illustrate the application of the model and compare 

the results of model-based and manual analysis. Section 7 presents 

the conclusions. The appendices contain support tables and charts. 

2. OVERALL APPROACH 
An overview of the artifacts and steps involved in our approach 

for automated performance analysis is shown in Fig. 1. 

In order to enable the automated identification of performance 

problems (first part of activity B1), one has to first decide on the 

relevant performance indicators (PIs) (activity A1) and thresholds 

(activity A3). In order to enable the automated identification of 

root causes of performance problems (second part of activity B1), 

Permission to make digital or hard copies of all or part of this work for 

personal or classroom use is granted without fee provided that copies are 

not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 

otherwise, or republish, to post on servers or to redistribute to lists, 

requires prior specific permission and/or a fee. 

 



one has to first decide on the relevant cause-effect relationships 

(activity A2). Together, the performance indicators, performance 

ranges and cause-effect relationships constitute the performance 

model. The scope of this paper is the development of such 

performance model, i.e., activities A1 to A3. 

After identifying performance problems and root causes, the next 

step is to recommend improvement actions to address those 

causes (activity B2). To enable the automated recommendation of 

such actions, a catalogue of possible improvement actions has to 

be set up for each possible root cause (activity A4).  

 

Figure 1. UML activity diagram identifying the steps and 

artifacts in our approach. 

 

3. PERFORMANCE INDICATORS AND 

DEPENDENCIES 
In this and the next section we present the performance model we 

conceived based on PSP specifications (of base and derived 

measures, estimation methods, etc.), literature review, expert 

knowledge, and analysis of PSP data (benchmarking), for 

enabling the automated performance analysis of PSP developers, 

namely, identification of performance problems and root causes.   

We start by presenting in this section the PIs and dependencies 

(potential cause-effect relationships) between PIs. We considered 

the usual three top level performance characteristics in software 

development—predictability (estimation accuracy), quality and 

productivity—measured in a way specific to the PSP context, as 

explained in the next sections. All the PIs introduced in this 

section are defined in Appendix A. 

3.1 Estimation Accuracy 
We analyze the time (effort) estimating accuracy, and not the cost 

or schedule estimation accuracy, because cost measurement is out 

of the scope of the PSP and schedule planning is seldom 

performed by PSP developers (because the usual scope is the 

development of small programs or components of larger 

programs).  

In the PSP, the time estimation error is defined as shown in the 

top of the summary table in Appendix A. In order to identify the 

factors that influence the behavior of this PI, one has to 

understand the PROBE estimation method used in the PSP [2]. In 

this method, a time estimate is obtained based on a size estimate 

of the deliverable (in lines of code, function points, etc.), and a 

productivity estimate (in size units/hour). So, the accuracy of the 

time estimate will depend on the accuracy of the size and 

productivity estimates, according to the formula shown in the 

bottom of Appendix A. Hence, we conclude that Time Estimation 

Error is affected by Size Estimation Error and Productivity 

Estimation Error according to a formula, as depicted in Fig. 2. It 

is worth noting that, in the case of changes or reuse of existing 

artifacts, only the size of the changes (additions and 

modifications) is considered. 

  

 Figure 2. Performance model for identifying causes of time 

estimation problems. 

In the PROBE method, productivity estimates are based on 

historical productivity, so their accuracy depends on the stability 

of the productivity, as indicated in Fig. 2. We calculate the 

productivity stability up to the project under analysis, based on the 

actual productivity of that project and past projects of the same 

developer (see definition in Appendix A).  

Since in the PSP time is recorded per process phase, the logical 

step to follow when an overall productivity stability problem is 

encountered is to analyze the productivity stability per phase, in 

order to determine the problematic phase(s). Hence, we indicate in 

the right-hand side of Fig. 2 a set of PIs for the productivity 

stability per phase, which together affect the overall productivity 

stability. Although there isn't a comprehensive formula for this 

relationship (without using other variables), the fact is that if all 

the phases have a perfectly stable productivity, then by definition 

the overall productivity will also be perfectly stable. The converse 

is also true, i.e., if the overall productivity is not stable, then at 

least one phase must have an unstable productivity. Hence the 

 act Dynamic View

A. Setup

Performance Model

B. Execution (PSP PAIR tool)

A1. Identify 

performance 

indicators

A2. Identify 

cause-effect 

relations among 

performance 

indicators

Performance 

indicators

Cause-effect 

relationships

A3. Identify 

thresholds for all 

performance 

indcators

Performance 

ranges

A4. Identify 

improv ement 

actions for leaf 

indicators

Catalogue of 

improv ement 

actions

B1. Identify 

performance 

problems and 

root causes

B2. 

Recommend 

improv ement 

actions

Performance 

problems and 

root causes

Recommended 

improv ement 

actions

predictability related 

performance indicator

quality related 

performance indicator

productivity related 

performance indicator

Time 

Estimation Error

Size

Estimation Error

Productivity

Estimation Error

Productivity

Stability

Process

Stability
Defect Density 

in Unit Test

Code Review 

Productivity Stability

Code

Productivity Stability

Design Review 

Productivity Stability

Plan 

Productivity Stability

Legend:

affects according to 

formula or definition

may affect, according 

to literature 

(validation required)

Postmortem 

Productivity Stability

Unit Test

Productivity Stability

Compile

Productivity Stability

Design

Productivity Stability



relationship is affects according to definition. It is worth noting 

that the scope of the PSP is the development of small programs or 

components of larger programs, reason why Requirements, High 

Level Design and System Testing phases are not included, but can 

be found in the more complete TSP. In the case of projects 

developed with programming languages or environments without 

a separate Compile phase, the Compile phase may be absent. 

On the other hand, process changes can cause productivity 

disturbances: usually, after a process change, productivity 

decreases and later on returns to the original productivity or a new 

one [16]. This is an important factor when analyzing PSP training 

data, because the process is changed several times along the 

training, from PSP0 to PSP2.1. Hence, we indicated in Fig. 2 that 

Process Stability may affect Productivity Stability.  

In the PSP literature [2], it is claimed that the effort for finding 

and fixing defects through reviews is much more predictable than 

through testing, because in the former case the review effort is 

proportional to the size of the work product under review and 

defects are immediately located, whilst in the latter case the time 

needed to locate defects is highly variable. High defect density in 

tests is considered a common cause of predictability problems. 

Hence, we indicate in Fig. 2 that the Defect Density in Unit Test 

may affect Productivity Stability. In turn, the defect density in unit 

tests is affected by other factors, as explained in the next section.  

3.2 Quality  
Product quality is usually measured by post-delivery defect 

density [17]. However, since the scope of the PSP is the 

development of small programs or components of large programs 

and information about post-delivery defects is often not available, 

we concentrate our attention on the data that is collected during 

the development process (up to the delivery of the program under 

development to the end user, or the delivery of the component 

under development to subsequent integration and system testing). 

In the PSP literature [2][5], it is proposed an aggregated quality 

measure - the Process Quality Index (PQI), which, according to 

[18], constitutes an effective predictor of post-delivery defect 

density. Hence, we use the Process Quality Index as the top-level 

quality indicator to analyze, as shown in Fig. 3.  

The PQI takes into account five components [5]: 

− The ratio of design time to coding time (Design to Code 

Ratio), which provides an indication of design quality, 

and is recommended to be at least 100%; 

− The ratio of design review time to design time (Design 

Review to Design Ratio), which provides an indication 

of design review quality, and is recommended to be at 

least 50%; 

− The ratio of code review time to coding time (Code 

Review to Code Ratio), which provides an indication of 

code review quality, and is recommended to be at least 

50%; 

− The ratio of compile defects to a size measure (Defect 

Density in Compile), which provides an indication of 

code quality, and is recommended to be less than 10 

defects/KLOC; 

− The ratio of unit test defects to a size measure (Defect 

Density in Unit Test), which provides an indication of 

program quality, and is recommended to be less than 5 

defects/KLOC. 

The PQI components are normalized to [0, 1] such that 0 

represents poor practice and 1 represents desired practice 

(according to the recommended values indicated above). 

   

Figure 3. Performance model for identifying causes of quality 

problems. 

The aggregated PQI value is computed by multiplying the 

normalized values of the components, as shown in Appendix A. 

Hence, in Fig. 3 we indicate the aforementioned 5 components as 

factors that directly affect the PQI according to a formula. Next 

we try to drill down each of the PQI components. 

Both the Defect Density in Compile and the Defect Density in Unit 

Test are affected by the total density of Defects Injected (and 

found) and the percentage of defects removed before compiling 

and testing (called Process Yield in the PSP). In other words, high 

defect densities in compile and test may be caused by a large 

number of defects injected (due to poor defect prevention) and/or 

a large percentage of defects escaped from previous defect filters 

(due to poor design and code reviews). Hence, we show in Fig. 3 

Defects Injected and Process Yield as factors that may affect both 

the Defect Density in Compile and the Defect Density in Unit Test.  

Since in the PSP defects are classified by defect type (based on 

Orthogonal Defect Classification [19]) and ascribed an injection 

and a removal phase [2], in the presence of a high density of 

Defects Injected, a defect causal analysis [20] could be performed 

to determine common causes, such as many defects of the same 

type or from the same activity. However, the data set used in this 

paper contains only summary defect data, and not defect type 

information, reason why we don't decompose Defects Injected 

further in this paper.  

According to the PSP literature [2], the time spent in reviewing a 

work product, measured both in relation with its size or the time 

spent in developing it, is a leading indicator of the review yield 

(percentage of defects found in reviews) and consequently of the 

process yield. In a published study [11], the recommended review 

rate of 200 LOC/hour or less was found to be an effective rate for 

individual reviews, identifying nearly two-thirds of the defects in 

design reviews and more than half of the defects in code reviews. 

Another study in an industrial setting [21] shows an increase in 

inspection effectiveness when the review rate is reduced to a value 

closer to the recommended value. Hence, like other authors [22], 

we indicate in Fig. 3 that the Process Yield may be affected by the 

Design Review Rate, the Code Review Rate, the Design Review to 

Design Ratio, and the Code Review to Code Ratio.  

A too small Design to Code Ratio is usually related to a lack of 

thoroughness of the design artifacts produced (coverage of 

important design views, coverage of requirements, etc.), or even 

Process Quality 

IndexDesign to 

Code Ratio

Defects 

Injected

Process 

Yield

Defect Density 

in Compile

Defect Density 

in Unit Test

Design 

Review Rate

Code

Review Rate

Design Review 

to Design Ratio

Code Review 

to Code Ratio



the total absence of explicit design artifacts. By contrast, at least 

in the context of PSP training, too high values of the Design to 

Code Ratio may be caused by excessively detailed design artifacts 

or by lack of experience with the design methods or notations 

used. However, in both cases, the needed information is usually 

not available or not amenable for automated analysis, so we don't 

decompose further this indicator.  

Regarding Design Review to Design Ratio and Code Review to 

Code Ratio, in case of significant deviations from the 

recommended value (50%), it is useful to look at other indicators 

of review quality - Design Review Rate and Code Review Rate. 

3.3 Productivity  
Software development productivity is usually measured in 

function points per time unit or lines of code (LOC) per time unit 

[23][24][25]. However, both productivity measurement 

techniques have some limitations. On one hand, the measurement 

of function points remains subjective even after project 

completion. On the other hand, productivity measures based on 

LOC have limitations due to the lack of counting standards, the 

dependence on the programming language [26] and the inferior 

economic meaning [27].  

In the PSP, productivity is measured in 'size' units per hour. Any 

size measure can be used as long as it correlates with effort (in 

order to enable effort estimation based on size estimation) and is 

automatically measurable. In this paper, we use LOC/hour as the 

productivity measure, in spite of its limitations, because it is the 

productivity measure most often used in the PSP practice. 

Since in the PSP time is recorded per process phase, the logical 

step to follow when an overall productivity problem is 

encountered is to analyze the productivity per phase, in order to 

determine the problematic phase(s). Hence, we indicate in the 

right-hand side of Fig. 4 a set of PIs for the productivity per 

phase, which together affect (according to a formula) the overall 

productivity. In order to reuse previous PIs, in some cases (as with 

the Design to Code Ratio) we measure the productivity of a phase 

by comparing the time spent in that phase with the Code phase.  

It is expectable that the time spent in Compile and Unit Test is 

affected by the number of defects to fix. In the case of testing, 

there may exist a test development effort independent of the 

number of defects, but even so the majority of the time in the test 

phase is usually spent in bug fixing. For that reason, we indicate 

in Fig. 4 the Defect Density in Compile and Defect Density in Unit 

Test as factors that may affect the productivity in Compile and 

Unit Test, respectively (measured by the ratio with respect to the 

time in Code). Those quality PIs are in turn affected by other 

indicators as explained in the previous section. 

Besides looking at specific phases to determine possible causes of 

overall productivity problems, it may also be helpful to look at 

productivity factors that may affect all the phases. In previous 

studies [15][16], based on the same data set described in section 4, 

we found significant variations of productivity between 

developers that could be partially explained by developers 

experience (measured in KLOC or years) and the level of 

abstraction of the programming language used. We also found 

significant variations of productivity per phase between projects 

that could be partially explained by process variations (process 

level and stability), and domain complexity. Hence we indicate all 

those factors as potentially affecting productivity in the left-hand 

side of Fig. 4. Outside the context of the PSP, similar factors are 

mentioned in the literature, such as the process used [28], the 

generation of programming languages used [29], experience of 

programmers [30] and task complexity [25]. 

  
Figure 4 Performance model for identifying causes of 

productivity problems. 

4. DERIVATION OF PERFORMANCE 

RANGES 
In order to recognize performance problems, we defined a set of 

thresholds and ranges for classifying values of each PI into three 
categories:  

− green:  no performance problem;  

− yellow: a possible performance problem;  

− red: a clear performance problem.  

To define these ranges we took into account the following criteria: 

− recommended values and ranges described in the 

literature (e.g., [2]), some of which were already 

mentioned in the previous section; 

− the actual distribution of existing PSP data, so that there 

is an approximately even distribution of data points by 

the different colors, in a way similar to benchmark-

based software product quality evaluation [31]; 

− thresholds should be rounded to 1 or 2 precision digits. 

For determining the actual distribution of existing PSP data, we 

analyzed a data set from the Software Engineering Institute (SEI), 

containing data collected during the classic PSP for Engineers I/II 

training courses. In this training course, targeting professional 

software engineers, each engineer has to develop 10 small projects 

(the same for all individuals). The development process is refined 

throughout the course, with the introduction of additional 

practices: PSP0 - performance measures and empirical effort 

estimation; PSP0.1 - empirical size estimates; PSP1 - PROBE 

estimation method; PSP1.1 - schedule management; PSP2 - 

design and code reviews and quality management; PSP2.1 - 

design specification templates. The data set contains 31,140 data 

points (project submissions) corresponding to 3,114 engineers that 

performed 10 projects each, during 295 training classes occurred 

between 1994 and 2005. 

In most cases, the 'green' range is located in one of the extremes 

of the scale, the 'red' range in the other extreme, and the 'yellow' 

Coding Rate

Compile to 

Code Ratio

Design Review 

to Design Ratio

Plan to Code 

Ratio

Code Review to 

Code Ratio

Postmortem to 

Code Ratio

Design to Code 

Ratio

Unit Test to 

Code Ratio

Defect Density 

in Unit Test

Defect Density 

in Compile

Developer 

Experience

Process Level

Process 

Stability

Programming 

Language 

Abstraction 

Level

Domain 

Complexity

Productivity



range in the middle. For example, the 'green' range for the Process 

Quality Index is located in the high values of the [0, 1] scale, 

whilst for the  Defect Density in Unit Test (DDUT) it is located in 

the low values of the [0, [ scale. In these cases, benchmark-

based thresholds were first computed based on rounded terciles 

and subsequently cross-checked and refined by comparison with 

literature. For example, according to [5], DDUT should be less 

than 5 defects/KLOC for high performance, but only 20% of the 

data points lays in the [0, 5] range, so we considered a wider [0, 

10] 'green' range instead, containing 31% of the data points. 

For several other PIs, the 'green' range is located somewhere in 

the middle, in order to balance conflicting aspects, such as 

productivity and quality. For example, regarding the Code Review 

Rate, if reviews are performed too fast then the quality of the 

reviews may suffer (low percentage of defects found); if reviews 

are performed too slow, then the productivity is negatively 

affected. In this case, we selected a 'green' range around the 

recommended value of 200 LOC/hour, containing approximately 

1/3 of the data points, and considered 'red' values to exist in both 

extremes of the scale.  

All the performance ranges defined, together with the statistical 

distribution of the analyzed PSP data points across those ranges, 

are shown in Appendix A. It should be noted that, in computing 

the statistical distribution, only the data points with defined values 

for the PI under consideration were used. For example, for the 

review related PIs, projects performed in PSP levels less than 2 

were excluded, because of the absence of explicit review phases. 

5. DEPENDENCIES VALIDATION 
The performance models of Figures 2 to 4 indicate several 'may 

affect' relationships between pairs of PIs suggested from the 

literature and expert knowledge.  In order to validate each 'X may 

affect Y' relationship, from the PSP data set previously described, 

we computed the Spearman's [32] rank correlation coefficient (r) 

and tested the null hypothesis "H0: r=0" against the alternative 

hypothesis "H1: r>0" or "H1: r<0", depending on the sign of the 

expected correlation. The Spearman's test checks if increasing 

values of X are monotonically associated with increasing (r>0) or 

decreasing (r<0) values of Y, independently of the form of the 

relationship (linear or not). The results are shown in Appendix B.  

In all cases except one (case a - Process Stability versus 

Productivity Stability), the result of the test was positive (i.e., the 

null hypothesis was rejected), showing a statistically significant 

correlation between the PIs under analysis.  

In 5 other cases the correlation coefficient is very small (less than 

0.1), indicating a very weak correlation. The extreme case is p - 

Process Level versus Productivity with r=0.014. This specific 

result is not surprising because the progression of PSP levels was 

designed with the goal of obtaining predictability and quality 

gains, whilst productivity gains are expected to occur only in later 

phases (namely integration and system test) beyond the scope of 

the PSP. In a previous study [16], we found a strong impact of 

process changes on the productivity of the phases affected by 

those changes, but when all the phases and factors are put together 

the impact is greatly diminished. In fact, with the progression of 

PSP levels, there is an effort shift from tests to reviews and from 

code to design, but the overall productivity is mostly unchanged. 

For an additional examination of the dependencies between PIs X 

and Y, Appendix B also shows the conditional means E(Y|X), 

considering the discretization of X according to the performance 

intervals defined in Appendix A. In general, there is a monotonic 

evolution of E(Y|X) for increasing intervals of X, consistent with 

the Spearman's test results, with the exceptions highlighted in the 

last column (all corresponding to values of r < 0.1). In the cases 

of non-monotonic behavior of E(Y|X), we consider that there isn't 

enough evidence to validate the dependencies under analysis, so 

the respective arrows are dimmed in Figures 2 to 4. For the cases 

of monotonic behavior of E(YX), Appendix C shows the 

conditional distributions P(Y|X), with both variables discretized, 

for a better visual inspection of the relationship between X and Y. 

6. CASE STUDY 
In the end of the PSP training and at regular times afterwards, 

developers should analyze their personal performance along the 

series of projects developed, and document their findings and a set 

of prioritized and quantified process improvement proposals in a 

Performance Analysis Report (PAR). A goal of our research is to 

help partially automating this kind of analysis. In this section we 

describe how the performance of an individual PSP developer 

(selected based on the availability of his PAR) can be analyzed 

based on the proposed model. We also compare the results of the 

model-based analysis with the results of the manual analysis.  

In this case, the PSP training sequence (PSP Fundamentals and 

PSP Advanced) comprised 7 projects. The developer used the 

Java programming language without an explicit Compile phase. 

The evaluation of the 3 top-level PIs for the 7 projects, together 

with all 'child' PIs defined in our performance model, is shown in 

Table 1. The main top-level performance problems occur in time 

estimation (projects P1, P3 and P7) and in productivity (projects 

P6 and P7). In order to identify the possible causes of those 

problems, we conducted a top-down analysis, from the top-level 

PIs to their affecting PIs (following the structure of Figures 2 to 

4), restricted to the 'red' colored PIs and projects. The results are 

shown in Fig. 5. For example, the time estimation problems of 

projects P3 and P7 have totally different causes: size estimation 

problems in P3 and productivity instability problems in P7. 

A comparison of the conclusions reached in the model-based and 

manual analysis is presented in Table 2. The conclusions are quite 

similar, except for the quality performance, because of the much 

stricter performance ranges considered in the manual analysis.  

Once automated, the model-based analysis has the advantage of 

being almost instantaneous, whilst the manual analysis can take 

significant effort (8 hours in the case studied). Even if it does not 

eliminate the need for a manual analysis, the model-based analysis 

can point out the problematic areas to focus in manual analysis. 

7. CONCLUSIONS AND FUTURE WORK 
We presented a performance model to enable the automated 

identification of performance problems and their root causes, and 

reduce the manual effort of performance analysis in the PSP. 

Since the model is calibrated based on a large data set, it can also 

be used for benchmarking purposes.  

We are currently extending our PSP PAIR (Performance Analysis 

and Improvement Recommendation) tool [13][14] to support the 

analysis of all the PIs presented in this paper. The tool analyzes 

performance data produced by PSP developers in their projects, as 

recorded in the PSP Student Workbook, and pinpoints 

performance problems, possible root causes and suggestions for 

remedial actions. The performance model is given as an XML file 

for easier configuration and extensibility, but the formulas have to 

be programmed in tool extensions. 



Table 1. Evaluation of the full set of PIs in the case study. 

Indicator P1 P2 P3 P4 P5 P6 P7 

Time Estimation  

Error (|TimeEE|) 
73% 34% 63% 1% 28% 39% 72% 

Size Estimation 

Error (|SizeEE|) 
  4% 51% 4% 8% 8% 2% 

Productivity  

Estim.Error (|PEE|) 
  22% 7% 5% 15% 22% 43% 

Productivity 

Stability (|ProdS|) 
  32% 20% 17% 21% 52% 63% 

Plan Prod. Stab.   80% 34% 1% 113% 33% 34% 

Design Prod.Stab.   16% 45% 100% 72% 65% 85% 

Design Review 

Prod. Stab. 
      19% 65% 73% 59% 

Code Prod. Stab.   12% 29% 42% 24% 7% 20% 

Code Review 

Prod. Stab. 
      218% 99% 3% 48% 

Test Prod.Stab.   38% 50% 61% 4% 40% 50% 

Potmortem Prod. 

Stab. 
  36% 36% 18% 46% 60% 51% 

Process Stability 

(ProcS) 
0 0 0 1 2 3 4 

Process Quality 

Index (PQI) 
    0.38 0.07 0.29 0.26 0.12 

Defect Density in 

Unit Test (DDUT) 
26 8 0 20 15 24 17 

Defects Injected 

(DI) 
60 16 25 47 67 122 133 

Process Yield 

 (PY) 
    100% 57% 78% 80% 88% 

Productivity (Prod) 34 23 22 29 21 12 9 

Coding Rate (CR) 85 95 116 138 132 103 88 

Plan to Code Ratio 

(P2C) 
0.23 1.30 1.48 1.35 0.61 1.33 1.20 

Design to Code 

Ratio (D2C) 
0.52 0.51 0.46 0.35 2.07 1.96 4.54 

Design Rev. to Des. 

Ratio (DR2D) 
    0.57 0.74 0.37 0.64 0.19 

Design Review 

Rate (DRR) 
    443 526 171 82 100 

Code Review to 

Code Ratio (CR2C) 
    0.87 0.45 0.62 0.96 0.54 

Code Review Rate 

(CRR) 
    134 308 212 107 164 

Unit Test to Code 

Ratio (UT2C) 
0.57 1.04 0.69 0.68 0.97 1.21 1.29 

Postmortem  to 

Code Ratio (PM2C) 
0.21 0.36 0.57 0.63 0.36 0.96 0.73 

Program. Lang. 

Abstr.Lev. (PLAL) 
3 3 3 3 3 3 3 

Process Level 

(ProcL) 
0 1 2 2 2 2 2 

Developer 

Experience (DevE) 
20 20 20 20 20 20 20 

Domain Complex. 

(DomC) 
1 2 1 1 1 1 1 

 
Figure 5 Summary of major performance problems and root 

causes identified in the case study based on our model. 

 

Table 2. Comparison of major problems and root causes 

identified in manual and model-based analysis. 

Manual Analysis (PAR)  Model-Based Analysis 

Poor time estimation 

accuracy, with time 

underestimation in P3 caused 

by size underestimation, and 

time underestimation in P7 

due mainly to an inneficient 

and unstable DLD process. 

Significant time estimation 

problems in 3 projects (P1, 

P3, P7), caused in P3 by a 

size estimation problem, and 

in P7 by productivity 

instability in several phases 

(DLD, DLDR, CR, UT, PM). 

Product quality problems, 

with average DDUT well 

above the recommended 

value of 5, caused by a high 

number of defects injected. 

No significant process (PQI) 

and product (DDUT) quality 

problems, as compared to 

benchmarks. 

Productivity problems, 

namely at DLD phase, caused 

by an inneficient DLD 

process (long design 

specification documents 

following PSP templates). 

Significant productivity 

problems in two projects, 

caused by slow performance 

in several process phases 

(PLAN, DLD, CR, UT and 

PM), notably in DLD. 

 

As future work we plan to develop techniques for ranking the 

identified root causes of performance problems, to guide 

improvement efforts, by a combination of sensitivity ranking and 

percentile ranking. E.g., Fig. 5 identifies three non-prioritized root 

causes for the poor productivity in project P7—poor productivity 

in Plan, Design and Unit Test phases (as given by the P2C, D2C 

and UT2C ratios). But the data in Table 1 shows that the D2C 

value is the main contributor to the poor productivity in P7, so 

should be ranked first (sensitivity ranking). The same conclusion 

is reached by noting that the D2C value goes much more into the 

red range than the P2C and UT2C values (percentile ranking).  

We also intend to incorporate defect causal analysis techniques 

(namely, decompose Defects Injected per injection phase and, if 

data is available, per defect type), develop separate calibrations 

for different problem domains and programming languages (to 

increase the precision of the analysis), build a comprehensive 

P3 Time 

Estimation Error

Size

Estimation Error

P7 Time 

Estimation Error

Productivity

Estimation Error

Productivity

Stability

Code Review 

Productivity Stability

Design Review 

Productivity Stability

Postmortem 

Productivity Stability

Unit Test

Productivity Stability

Design

Productivity Stability

Plan to Code 

Ratio

Code Review to 

Code Ratio

Postmortem to 

Code Ratio

Unit Test to 

Code Ratio

P6 Productivity

Plan to Code 

Ratio

Design to Code 

Ratio

Unit Test to 

Code Ratio

P7 Productivity

P1 Time 

Estimation Error



catalogue of improvement actions to recommend for each root 

cause, conduct further experiments, and extend the approach for 

analyzing performance data produced in the context of other 

processes (namely TSP and Scrum with TSP combinations) and 

tools (namely cloud-based project management environments).  

8. AKNOWLEDGMENTS 
The authors would like to acknowledge the SEI, in particular W. 

Nichols and J. Over, for facilitating the access to the PSP data for 

performing this study and for helpful discussions. This work is 

partially funded by the Portuguese Foundation for Science and 

Technology (FCT - Fundação para a Ciência e a Tecnologia), 

under research grant SFRH/BD/85174/2012, and by the North 

Portugal Regional Operational Programme (ON.2 – O Novo 

Norte), under the National Strategic Reference Framework 

(NSRF), through the European Regional Development Fund 

(ERDF), in the scope of the BEST CASE program. 

9. REFERENCES 
[1] Bohem, B. 2011. Some Future Software Engineering 

Opportunities and Challenges. In The Future of Software 

Engineering, Springer-Verlag, 1-32. 

[2] Humphrey, W. 2005. PSPsm: A Self-Improvement Process for 

Software Engineers. Addison-Wesley Professional. 

[3] Davis, N. and Mullaney, J. 2003. The Team Software Process 

(TSP) in Practice: A Summary of Recent Results. CMU/SEI-

2003-TR-014. 

[4] Rombach, D., Münch, J., Ocampo, A., Humphrey, W., and 

Burton, B. 2008. Teaching disciplined software development. 

Journal of Systems and Software 81(5): 2008, 747-763. 

[5] Pomeroy-Huff, M., Cannon, R., Chick, T., Mullaney, J., and 

Nichols, W. 2009. The Personal Software ProcessSM (PSPSM) 

Body of Knowledge (Version 2.0). CMU/SEI-2009-SR-018.  

[6] Burton, D. and Humphrey, W. 2006. Mining PSP Data. In 

TSP Symposium 2006 Proceedings. 

[7] The Software Process Dashboard Initiative home page. 

http://www.processdash.com/.   

[8] Philip, J., Kou, H., Agustin, J., Christopher, C., Moore, C., 

Miglani, J., Zhen, S., Doane, W. 2003. Beyond the Personal 

Software Process: Metrics Collection and Analysis for the 

Differently Disciplined. In ICSE 2003. Portland, Oregon. 

[9] Shin, H., Choi, H., and Baik, J. 2007. Jasmine: A PSP 

Supporting Tool. In Proc. of the Int. Conf. on Software 

Process (ICSP 2007), LNCS 4470, Springer-Verlag, 73-83. 

[10] Nasir, M. and Yusof, A. 2005. Automating a Modified 

Personal Software Process. Malaysian Journal of Computer 

Science, vol. 18, 11–27. 

[11] Kemerer, C., and Paulk, M. 2009. The Impact of Design and 

Code Reviews on Software Quality: An Empirical Study 

Based on PSP Data. IEEE Transactions on Software 

Engineering, vol. 35, Issue 4, 534-550. 

[12] Shen, W., Hsueh, N., Lee, W. 2011. Assessing PSP effect in 

training disciplined software development: A Plan–Track–

Review model. Inform. and Soft.Technology 53, 137–148. 

[13] Duarte, C., Faria, J., and Raza, M. 2012. PSP PAIR: 

Automated Personal Software Process Performance Analysis 

and Improvement Recommendation. In Proc. of the 8th Int. 

Conf. on the Quality of Information and Communications 

Technology, IEEE CPS, Lisbon, Portugal. 

[14] Duarte, C., Faria, F., Raza, M., Henriques, P. 2012. Model 

and Tool for Analyzing Time Estimation Performance in 

PSP. In TSP Symposium 2012, CMU/SEI-2012-SR-015, 21-

40. 

[15] Raza, M., Faria, J., Henriques, P., and Nichols, W. 2013. 

Factors Affecting Productivity Performance in PSP Training. 

In TSP Symposium 2013., CMU/SEI-2013-SR-022, 35-45. 

[16] Raza, M., Faria, J. 2014. Factors Affecting Personal Software 

Development Productivity: A Case Study with PSP Data. In 

IASTED SE 2014.  

[17] Jones, C. 2000. Software Assessments, Benchmarks, and Best 

Practices. Addison Wesley.  

[18] Humphrey, W. 2009. The Software Quality Profile. White 

Paper, SEI.  

[19] Chillargee, R., Bhandari, I., et. al. 1992. Orthogonal Defect 

Classification - A Concept for In-Process Measurements. 

IEEE Trans. on Software Eng., Vol. 18, Issue 11, 943-956. 

[20] Card, D. 2005. Defect Analysis: Basic Techniques for 

Management and Learning. Advances in Computers, vol.64, 

259-295. Elsevier. 

[21] Ferreira, A., Machado, R., Costa, L., Silva,  J., Batista, R., 

and Paulk, M. 2010. An Approach to Improving Software    

Inspections Performance. In Proc. of the 2010 IEEE Int. 

Conf. on Soft.Maintenance, 1-8, ISBN 978-1-4244-8640-4. 

[22] Tamura, S. 2009. Integrating CMMI and TSP/PSP: Using 

TSP Data to Create Process Performance Models. CMU/SEI-

2009-TN-033. 

[23] Wagner, S. and  Ruhe, M. 2008. A Systematic Review of 

Productivity Factors in Software Development. In Proc. of 

2nd Int. Workshop on Software Productivity Analysis and 

Cost Estimation (SPACE 2008). 

[24] Maxwell, K. and Forselius, P. 2000. Benchmarking Software 

Development Productivity. IEEE Software, 17(2), 80-88. 

[25] Goparaju, P., Farooq, A., Patnaikc, S. 2012. Measuring 

Productivity of Software Development Teams. Serbian 

Journal of Management 7 (1) (2012), 65-75. 

[26] Card, D. 2006. The Challenge of Productivity Measurement. 

In Proc. of the Pacific Northwest Software Quality 

Conference, Portland, OR. 

[27] Jones, C. 2010. Software Engineering Best Practices: 

Lessons from Successful Projects in the Top Companies. 

McGraw-Hill. 

[28] Scacchi, W. 1995. Understanding Software Productivity. 

Software Engineering and Knowledge Engineering: Trends 

for the Next Decade. World Scientific Press. 

[29] Comstock, C., Jiang, Z., and Naudé, P. 2007. Strategic 

Software Development: Productivity Comparisons of 

General Development Programs. Int. Journal of Computer 

and Information Engineering 1:8 2007, 486-491. 

[30] Banker, R. and Kauffman, R. 1991. Reuse and Productivity 

in Integrated Computer-Aided Software Engineering: An 

Empirical Study. MIS Quarterly, Sept 1991, 14(3):374-401 

[31] Alves, T. 2012. Benchmark-based Software Product Quality 

Evaluation. Doctoral Thesis. University of Minho. 

[32] Navidi, W. 2011. Statistics for Engineers and Scientists, 

Third Edition, McGraw-Hill. 



APPENDIX A - PERFORMANCE INDICATORS 

Indicator  Formula  
Performance Ranges 

Distribution of 

PSP Data 

Green Yellow Red G Y R 

Time Estimation  Error 

(|TimeEE|)* 
|
𝐴𝑐𝑡𝑢𝑎𝑙 𝑇𝑖𝑚𝑒 − 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑇𝑖𝑚𝑒

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑇𝑖𝑚𝑒
| 

 

[0, 20%] ]20%, 40%] ]40%,, [ 41% 26% 33% 

Size Estimation Error 

(|SizeEE|) 
|
𝐴𝑐𝑡𝑢𝑎𝑙 𝑆𝑖𝑧𝑒 − 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑆𝑖𝑧𝑒

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑆𝑖𝑧𝑒
| [0, 20%] ]20%, 45%] ]45%,, [ 36% 29% 35% 

Productivity  Estimat. 

Error (|PEE|) 
|
𝐴𝑐𝑡𝑢𝑎𝑙 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 − 𝐸𝑠𝑡𝑖𝑚.  𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣.

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦
| [0, 20%] ]20%, 40%] ]40%,, [ 35% 27% 38% 

Productivity 

(In)Stability(|ProdS|) 

|
𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 − 𝐻𝑖𝑠𝑡. 𝑃𝑟𝑜𝑑𝑢𝑐𝑡.

𝐻𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 
| 

w/H.P.=TotalSize/TotalEffort for past projects 

[0, 20%] ]20%, 40%] ]40%,, [ 34% 29% 37% 

Process Stability 

(ProcS) 

Number of previous projects performed 

with same process level as current one. 
>=2 1 0 40% 30% 30% 

Process Quality Index 

(PQI) 

min(
𝐷2𝐶

1
, 1) × min (

𝐷𝑅2𝐷

0.5
, 1) × min (

𝐶𝑅2𝐶

0.5
, 1) 

× min (
2 × 10

𝐷𝐷𝐶 + 10
, 1) × 𝑚in (

2 × 5

𝐷𝐷𝑈𝑇 + 5
, 1) 

[0.25, 1] [0.06, 0.25[ [0, 0.06[ 27% 37% 35% 

Defect Density in Unit 

Test (DDUT) 

#𝐷𝑒𝑓𝑒𝑐𝑡𝑠 𝑓𝑜𝑢𝑛𝑑 𝑎𝑛𝑑 𝑟𝑒𝑚𝑜𝑣𝑒𝑑 𝑖𝑛 𝑈𝑛𝑖𝑡 𝑇𝑒𝑠𝑡

𝐴𝑐𝑡𝑢𝑎𝑙 𝑆𝑖𝑧𝑒 (𝐾𝐿𝑂𝐶)
 [0, 10] ]10, 30] ]30, [ 31% 36% 33% 

Defect Density in 

Compile (DDC) 

#𝐷𝑒𝑓𝑒𝑐𝑡𝑠 𝑓𝑜𝑢𝑛𝑑 𝑎𝑛𝑑 𝑟𝑒𝑚𝑜𝑣𝑒𝑑 𝑖𝑛 𝐶𝑜𝑚𝑝𝑖𝑙𝑒

𝐴𝑐𝑡𝑢𝑎𝑙 𝑆𝑖𝑧𝑒 (𝐾𝐿𝑂𝐶)
 [0, 10] ]10, 40] ]40, [ 30% 37% 33% 

(Density of) Defects 

Injected (DI) 

#𝐷𝑒𝑓𝑒𝑐𝑡𝑠 𝑓𝑜𝑢𝑛𝑑 𝑖𝑛 𝑎𝑙𝑙 𝑝ℎ𝑎𝑠𝑒𝑠

𝐴𝑐𝑡𝑢𝑎𝑙 𝑆𝑖𝑧𝑒 (𝐾𝐿𝑂𝐶)
 [0, 50] ]50, 100] ]100, [ 39% 34% 28% 

Process Yield (PY) 
#𝐷𝑒𝑓𝑒𝑐𝑡𝑠 𝑟𝑒𝑚𝑜𝑣𝑒𝑑 𝑏𝑒𝑓𝑜𝑟𝑒 𝐶𝑜𝑚𝑝𝑖𝑙𝑒 & 𝑇𝑒𝑠𝑡

#𝐷𝑒𝑓𝑒𝑐𝑡𝑠 𝑖𝑛𝑗𝑒𝑐𝑡𝑒𝑑 𝑏𝑒𝑓𝑜𝑟𝑒 𝐶𝑜𝑚𝑝𝑖𝑙𝑒 & 𝑇𝑒𝑠𝑡
 [70%,100%] [50%, 70%[ [0, 50%[ 28% 35% 37% 

Productivity (Prod)* 
𝐴𝑐𝑡𝑢𝑎𝑙 𝑆𝑖𝑧𝑒 (𝐿𝑂𝐶)

𝐴𝑐𝑡𝑢𝑎𝑙 𝑇𝑖𝑚𝑒 (ℎ𝑜𝑢𝑟𝑠)
 [35, [ [20, 35[ [0, 20[ 34% 34% 32% 

Coding Rate (CR) 
𝐴𝑐𝑡𝑢𝑎𝑙 𝑆𝑖𝑧𝑒 (𝐿𝑂𝐶)

𝐶𝑜𝑑𝑒 𝑇𝑖𝑚𝑒 (ℎ𝑜𝑢𝑟𝑠)
 [80, [ [45, 80[ [0, 45[ 35% 32% 33% 

Plan to Code Ratio 

(P2C) 

𝑃𝑙𝑎𝑛 𝑇𝑖𝑚𝑒

𝐶𝑜𝑑𝑒 𝑇𝑖𝑚𝑒
 [0.15, 0.4] [0.05, 0.15[   ]0.4, 0.8] [0, 0.05[  ]0.8, [ 32% 41% 26% 

Design to Code Ratio 

(D2C) 

𝐷𝑒𝑠𝑖𝑔𝑛 𝑇𝑖𝑚𝑒

𝐶𝑜𝑑𝑒 𝑇𝑖𝑚𝑒
 [0.5, 1.5] [0.2, 0.5[  ]1.5,2.0] [0,0.2[   ]2.0, [ 33% 35% 32% 

Design Review to 

Design Ratio (DR2D) 

𝐷𝑒𝑠𝑖𝑔𝑛 𝑅𝑒𝑣𝑖𝑒𝑤 𝑇𝑖𝑚𝑒

𝐷𝑒𝑠𝑖𝑔𝑛 𝑇𝑖𝑚𝑒
 [0.3, 0.5] [0.1, 0.3[ ]0.5, 0.8] [0, 0.1[]0.8, [ 28% 52% 20% 

Design Review Rate 

(DRR) 

𝐴𝑐𝑡𝑢𝑎𝑙 𝑆𝑖𝑧𝑒 (𝐿𝑂𝐶)

𝐷𝑒𝑠𝑖𝑔𝑛  𝑅𝑒𝑣𝑖𝑒𝑤 𝑇𝑖𝑚𝑒 (ℎ𝑜𝑢𝑟𝑠)
 [200, 400] [115,200[  ]400,700] [0, 115[  [700, [ 30% 35% 35% 

Code Review to Code 

Ratio (CR2C) 

𝐶𝑜𝑑𝑒 𝑅𝑒𝑣𝑖𝑒𝑤 𝑇𝑖𝑚𝑒

𝐶𝑜𝑑𝑒 𝑇𝑖𝑚𝑒
 [0.3, 0.5] [0.1, 0.3[  ]0.5, 0.6] [0, 0.1[  ]0.6, [ 31% 41% 29% 

Code Review Rate 

(CRR) 

𝐴𝑐𝑡𝑢𝑎𝑙 𝑆𝑖𝑧𝑒 (𝐿𝑂𝐶)

𝐶𝑜𝑑𝑒  𝑅𝑒𝑣𝑖𝑒𝑤 𝑇𝑖𝑚𝑒 (ℎ𝑜𝑢𝑟𝑠)
 [150, 300] [100,150[  ]300,500] [0, 100[  ]500, [ 31% 34% 35% 

Compile to Code Ratio 

(C2C) 

𝐶𝑜𝑚𝑝𝑖𝑙𝑒 𝑇𝑖𝑚𝑒

𝐶𝑜𝑑𝑒 𝑇𝑖𝑚𝑒
 [0, 0.06] ]0.06, 0.2] ]0.2, [ 31% 39% 30% 

Unit Test to Code 

Ratio (UT2C) 

𝑈𝑛𝑖𝑡 𝑇𝑒𝑠𝑡 𝑇𝑖𝑚𝑒

𝐶𝑜𝑑𝑒 𝑇𝑖𝑚𝑒
 [0, 0.3] ]0.3, 0.7] ]0.7, [ 30% 33% 37% 

Postmortem  to Code 

Ratio (PM2C) 

𝑃𝑜𝑠𝑡𝑚𝑜𝑟𝑡𝑒𝑚 𝑇𝑖𝑚𝑒

𝐶𝑜𝑑𝑒 𝑇𝑖𝑚𝑒
 [0.15, 0.4] [0.05, 0.15[  ]0.4, 0.8] [0, 0.05[  ]0.8, [ 38% 42% 20% 

Program. Lang. 

Abstr.Level (PLAL) 

1 (Assembly languages), 2 (C, C++, Pascal, 

Fortran, VB),  3 (Java, C#, VB.Net) 
3 2 1 24% 76% 0% 

Process Level (ProcL) 
0 (for PSP0 and PSP0.1) , 1 (for PSP1 and 

PSP1.1), or 2 (for PSP2 and PSP2.1) 
2 1 0 40% 30% 30% 

Developer Experience 

(DevE) 

KLOC developed in the programming language 

used 
[20, [ [4, 20[ [0, 4[ 36% 31% 33% 

Domain Complexity 

(DomC) 

1 (numerical problems), 2 (text processing 

problems) 
1 2  80% 20% 0% 

*Relationships:  𝑇𝑖𝑚𝑒𝐸𝐸 =  
𝑆𝑖𝑧𝑒𝐸𝐸+1

𝑃𝐸𝐸+1
− 1;    𝑃𝑟𝑜𝑑 =

𝐶𝑅

𝑃2𝐶+𝐷2𝐶(1+𝐷𝑅2𝐷)+1+𝐶𝑅2𝐶+𝐶2𝐶+𝑈𝑇2𝐶+𝑃𝑀2𝐶
.      



APPENDIX B - CORRELATION TESTS  

Id 

Affected 

Indicator 

(Y) 

Affecting 

Indicator 

(X) 

Spearman correlation tests 

(H0: r=0) (1) 

Conditional means E(Y | X) 

for increasing intervals of X (7) 

H1 
(2) n (3) r (4)(8) p (5)(8) 

Reject 

H0? (6) 
XS S M L XL 

Monotonically 

increasing/decreasing 

according to H1? 

a 
Productivity 
(In)Stability 

Process 
Stability 

r<0 24574 -0.006 0.189 No - 40.2 38.8 41.5 - No 

b 
Productivity 
(In)Stability 

Defect Density 
in Unit Test 

r>0 24568 0.032 2.3e-7 Yes - 46.4 38.9 40.8 - No 

c 
Def. Density in 
Unit Test 

Process Yield r<0 9612 -0.398 <2e-16 Yes - 22.7 16.4 6.7 - Yes 

d 
Def. Density in 
Unit Test 

Defects 
Injected 

r>0 27648 0.647 <2e-16 Yes - 10.6 25.6 63.0 - Yes 

e 
Def. Density in 

Compile 
Process Yield r<0 9612 -0.389 <2e-16 Yes - 25.2 16.2 5.5 - Yes 

f 
Def. Density in 

Compile 

Defects 

Injected 
r>0 27648 0.692 <2e-16 Yes - 10.7 32.1 83.1 - Yes 

g Process Yield 
Design Review 
Rate 

r<0 9371 -0.226 <2e-16 Yes 63.1 61.7 56.8 51.3 45.4 Yes 

h Process Yield 
Code Review 
Rate 

r<0 9548 -0.247 <2e-16 Yes 62.1 61.6 58.2 51.8 43.7 Yes 

i Process Yield 
Des. Review to 
Design Ratio 

r>0 9362 0.060 4e-9 Yes 45.2 52.5 54.6 54.5 53.3 No 

j Process Yield 
Code Review 
to Code Ratio 

r>0 9546 0.309 <2e-16 Yes 32.6 44.4 54.5 60.0 63.5 Yes 

k 
Des. Review to 

Des. Ratio 

Design Review 

Rate 
r<0 9677 -0.392 <2e-16 Yes 0.87 0.65 0.54 0.44 0.33 Yes 

l 
Code Review 
to Code Ratio 

Code Review  
Rate 

r<0 9881 -0.615 <2e-16 Yes 1.47 0.75 0.59 0.41 0.26 Yes 

m Productivity 
Prog. Language 
Abstract. Level 

r>0 12507 
0.201 

(0.164) 
<2e-16 Yes - - 32.1 43.1 - Yes 

n Productivity 
Developer 

Experience 
r>0 15481 0.161 <2e-16 Yes - 28.7 35.3 37.8 - Yes 

o Productivity 
Domain 
Complexity 

r<0 27855 
-0.075 

(-0.061) 

2e-13 

(<2e-16) 
Yes - 33.3 30.6 - - Yes 

p Productivity 
Process  

Level 
r>0 27855 

0.014 

(0.010) 

0.011 

(0.012) 
Yes - 33.3 32.7 32.1 - No 

q Productivity 
Process  
Stability 

r>0 27855 0.053 <2e-16 Yes - 33.1 31.3 33.5 - No 

r 
Unit Test to 
Code Ratio 

Defect Density 
in Unit Test 

r>0 27625 0.480 <2e-16 Yes - 0.43 0.75 1.21 - Yes 

s 
Compile to 

Code Ratio 

Defect Density 

in Compile 
r>0 27625 0.630 <2e-16 Yes - 0.077 0.177 0.365 - Yes 

 

Notes: 

(1) H0 denotes the null hypothesis considered in each test (r=0). 

(2) H1 denotes the alternative hypothesis considered in each test (r>0 or r<0 depending on the type of dependency expected). 

(3) n denotes the number of data points. Only the data points with defined values for the variables under analysis were considered. 

(4) r denotes the Spearman's correlation coefficient. 

(5) p is a probability that indicates the statistical significance of the correlation coefficient (the lower the value of p the higher the significance) in the one-
tailed test (because of the nature of  H1). 

(6) We reject the null hypothesis if  p<0.05 (5% significance level). 

(7) The intervals for X are the ones defined for performance ranges in Appendix A, arranged by increasing values (XS - extra small, S - small,  M - medium, 

L - large, XL - extra-large). For example, for DRR the intervals are XS=[0, 115[, S=[115,200[,  M=[200, 400], L=]400,700] and XL=[700, [. 

(8) Between parentheses it is presented the Kendall's tau-b rank correlation results, for the cases in which X has a few discrete values (originating many ties). 

The Kendall's tau-b coefficient is usually recommended over the Spearman's coefficient in the presence of a large number of ties. 



APPENDIX C - CONDITIONAL 

DISTRIBUTION CHARTS 
Key:  R:Red, Y:Yellow, G:Green, +:high interval,  -:low interval 

c) Prob(Defect Density in Unit Test | Process Yield) 

 

d) Prob(Defect Density in Unit Test | Defects Injected) 

 

e) Prob(Defect Density in Compile | Process Yield) 

 

f) Prob(Defect Density in Compile | Defects Injected) 

 

g) Prob(Process Yield | Design Review Rate) 

 

h) Prob(Process Yield | Code Review Rate) 

 

j) Prob(Process Yield | Code Review to Code Ratio) 

 

k) Prob(Design Review to Des. Ratio|Design Review Rate)  

 

l) Prob(Code Review to Code Ratio | Code Review Rate)  

 

m) Prob(Productivity |  Prog. Language Abstraction Level) 

 

n) Prob(Productivity | Developer Experience) 

 

o) Prob(Productivity | Domain Complexity) 

 

r) Prob(Unit Test to Code Ratio|Defect Dens. in Unit Test) 

 

s) Prob(Compile to Code Ratio | Defect Density in Compile) 

 
 

 

75%
41% 32%

21%

45%
45%

4% 14% 23%

0%

25%

50%

75%

100%

PY:G PY:Y PY:R

DDUT:R

DDUT:Y

DDUT:G

56%

20% 10%

38%

46%

20%

6%
34%

70%

0%

25%

50%

75%

100%

DI:G DI:Y DI:R

DDUT:R

DDUT:Y

DDUT:G

79%

45% 34%

19%

46%
48%

2% 9% 18%

0%

25%

50%

75%

100%

PY:G PY:Y PY:R

DDC:R

DDC:Y

DDC:G

56%

18% 9%

42%

47%

18%

2%
35%

73%

0%

25%

50%

75%

100%

DI:G DI:Y DI:R

DDC:R

DDC:Y

DDC:G

43% 40% 32% 25% 20%

35% 37%
38%

36%
31%

23% 23% 30% 39% 49%

0%

25%

50%

75%

100%

DRR:R- DRR:Y- DRR:G DRR:Y+ DRR:R+

PY:R

PY:Y

PY:G

42% 38% 32% 26% 20%

34% 38% 41%
36%

29%

25% 23% 27% 38%
52%

0%

25%

50%

75%

100%

CRR:R- CRR:Y- CRR:G CRR:Y+ CRR:R+

PY:R

PY:Y

PY:G

13% 18% 28% 34% 42%22%
31%

38%
42%

37%
66%

51%
33% 24% 21%

0%

25%

50%

75%

100%

CR2C:R- CR2C:Y- CR2C:G CR2C:Y+ CR2C:R+

PY:R

PY:Y

PY:G

0% 0% 2% 4%
17%14% 19%

30%
40%

43%

25%
30%

31%

29%

23%

26%
28%

22%
16%

10%
35%

23% 15% 11% 6%

0%

25%

50%

75%

100%

DRR:R- DRR:Y- DRR:G DRR:Y+ DRR:R+

DR2D:R+

DR2D:Y+

DR2D:G

DR2D:Y-

DR2D:R-

0% 0% 1% 1%
14%8% 8% 16%

35%

57%

18% 25%

37%

40%

21%

9%
13%

13%

10%

3%

64% 54%
34%

14% 4%

0%

25%

50%

75%

100%

CRR:R- CRR:Y- CRR:G CRR:Y+ CRR:R+

CR2C:R+

CR2C:Y+

CR2C:G

CR2C:Y-

CR2C:R-

52%
33%

0%

31%
35%

0%

17%
32%

0%0%

25%

50%

75%

100%

PLAL:G PLAL:Y PLAL:R

Prod:R

Prod:Y

Prod:G

42% 40% 28%

34% 34%
33%

24% 27%
39%

0%

25%

50%

75%

100%

DevE:G DevE:Y DevE:R

Prod:R

Prod:Y

Prod:G

35% 31%
0%

35% 30%

0%

31% 39%

0%0%

25%

50%

75%

100%

DomC:G DomC:Y DomC:R

Prod:R

Prod:Y

Prod:G

55%
26%

12%

29%

39%

31%

16%
35%

58%

0%

25%

50%

75%

100%

DDUT:G DDUT:Y DDUT:R

UT2C:R

UT2C:Y

UT2C:G

68%

23%
5%

24%

52%

39%

8%
25%

56%

0%

25%

50%

75%

100%

DDC:G DDC:Y DDC:R

C2C:R

C2C:Y

C2C:G


