
Securing MPTCP Connections: A Solution for
Distributed NIDS Environments

João Pedro Meira
HASLab, INESC TEC
Universidade do Minho

email: joao.p.meira@inesctec.pt

Rui Pedro C. Monteiro
HASLab, INESC TEC
Universidade do Minho

email: rui.p.monteiro@inesctec.pt

João Marco C. Silva
HASLab, INESC TEC
Universidade do Minho

email: joao.marco@inesctec.pt

Abstract—With continuous technological advancement, mul-
tihomed devices are becoming common. They can connect si-
multaneously to multiple networks through different interfaces.
However, since TCP sessions are bound to one interface per
device, it hampers applications from taking advantage of all the
available connected networks. This has been solved by MPTCP,
introduced as a seamless extension to TCP, allowing more reliable
sessions and enhanced throughput. However, MPTCP comes with
an inherent risk, as it becomes easier to fragment attacks towards
evading NIDS. This paper presents a study of how MPTCP can
be used to evade NIDS through simple cross-path attacks. It
also introduces tools to facilitate assessing MPTCP-based services
in diverse network topologies using an emulation environment.
Finally, a new solution is proposed to prevent cross-path attacks
through uncoordinated networks. This solution consists of a host-
level plugin that allows MPTCP sessions only through trusted
networks, even in the presence of a NAT.

Index Terms—MPTCP, NIDS Evasion

I. INTRODUCTION

Although being at the core of network communications for
decades, the regular Transport Control Protocol (TCP) [1]
cannot take advantage of nowadays commonly multihomed
and multiaddressed hosts. While devices supporting multiple
interfaces can be simultaneously connected to multiple net-
works, TCP connections are restricted to a single transport
path between peers.

Enabling transport connections to operate across multiple
and potentially disjoint paths, Multipath TCP (MPTCP) ex-
tends TCP aiming to enhance resource utilisation, connection
resilience, and throughput [2]. It operates by demuxing TCP
sessions into multiple subflows while providing a standard
interface to applications. Each subflow is an independent TCP
session established after the three-way handshake from the
principal flow. This means that different TCP connections
can be used simultaneously and considered part of the same
connection through a locally unique identifier (Connection ID).

Despite its usefulness, it presents a potential security risk
to networks since Network-based Intrusion Detection Systems
(NIDS) can lose their effectiveness when MPTCP is used to
fragment attacks across different paths. In the worst case, no
single point in the network can inspect all the traffic, ham-
pering NIDS from identifying ongoing attacks. An example
of such a scenario consists of hosts connected to multiple
networks with uncoordinated domain administration, such as a

mobile device simultaneously connected to a private network
and a 4G/5G provider.

Considering the increasing number of operating systems
supporting the protocol extension and services taking ad-
vantage of its features [3], it is of utmost importance to
conceive and develop suitable protection mechanisms. Within
this context, the contributions of this work are threefold:

i) a tool for easy configuration of simulated MPTCP en-
abled topologies. This not only allows for assessing
security aspects of MPTCP but also for deploying and
testing generic applications running over the protocol;

ii) a detailed real-world demonstration of how MPTCP can
be exploited to conduct cross-path data fragmentation
attacks undetected by NIDS;

iii) a solution to the demonstrated issue that consists of a
plugin to Intel’s mptcpd daemon, which is the current
primary way to manage MPTCP connections in the user
space of Linux-based operating systems.

This paper is organised as follows: Section II charac-
terises the security-related issues of using NIDS in MPTCP-
enabled environments while presenting the most effective
solution addressing different scenarios; Section III presents a
tool developed to easily study MPTCP-enabled environments.
Based on this, a test scenario is deployed to demonstrate that
solutions up to this point cannot avoid NIDS evasion when
devices are connected through uncoordinated networks; Sec-
tion IV introduces a host-based solution designed to prevent
MPTCP connections from being established through untrusted
networks; Finally, Section V brings the final remarks of using
the proposed solution.

II. RELATED WORK

Security implications of MPTCP have been a concern
since its first specification [4]. Some of them are related to
vulnerabilities in protocol implementations [5], [6] and have
received attention within the current version [2]. The primary
source of concerns, though, arises from the fact that no longer
a connection can be interpreted as a single data stream, which
breaks many of the TCP assumptions with implications to
NIDS operation and consequently to network security [7]. This
characteristic leads to two new scenarios for cross-path data
fragmentation attacks.



The first scenario was described by Foster [8] in which an
attacker takes advantage of NIDS unable to identify multiple
subflows as a unique MPTCP connection. As illustrated in
Figure 1, this type of attack can be performed even against
hosts with a single interface since it supports MPTCP. Here,
the attacker forces data fragmentation of attack payloads
across different subflows, aiming to evade detection at the
network level. Data will be multiplexed at the host’s transport
layer and delivered undetected to the application. Foster also
proposed a couple of solutions to this issue [8]. The first is a
proxy that reassembles MPTCP subflows back to TCP streams
before analysis. The second one extends a NIDS to understand
MPTCP connections, reassembling subflows by itself.

Fig. 1: Single NIDS

The other scenario in which data fragmentation represents
security issues relates to distributed NIDS environments. As
presented in Figure 2, data from the same MPTCP connection
can arrive through different and independent networks, and
even if both networks are monitored by a NIDS, none of them
has a complete picture of traffic content. Within this context,
the problem solution is more complex and depends on the
administrative control of each network and NIDS. When all
detection systems (e.g., NIDS 1 and NIDS 2 in Figure 2) are
controlled by the same entity, it requires coordination mech-
anisms. Barksdale [9] addressed this scenario by proposing
a cooperative approach in which distributed NIDSs redirect
MPTCP traffic to a previously selected primary NIDS. Then,
the second solution in [8] can be applied to reassemble the
traffic.

Fig. 2: Distributed NIDS

Although coordinated NIDS are generally effective, typ-
ically, multihomed devices are connected through networks
operated by different providers, hampering coordination strate-
gies. Therefore, this is a scenario where a generic strategy for
protecting networks from cross-path data fragmentation attacks
in MPTCP is an open issue addressed in this work.

III. CROSS-PATH ATTACKS TO MPTCP

This section presents two of the contributions in this work.
Firstly, it describes a tool developed to simplify the deploy-
ment of experimental MPTCP-enabled environments based on
the network emulator CORE (see Section III-A). Then, a test

scenario is deployed to demonstrate how MPTCP can be used
to evade NIDS in distributed environments (see Section III-B).
The results show that although its increasing support, MPTCP
still can be used for low complex and successful attacks (see
Section III-C).

A. Experimental tool

Even with MPTCP enabled in the Linux kernel by default,
it does not work out of the box, requiring multiple manual
configurations for each interface in a multihomed system.
Typically, these configurations represent a lengthy process that
scales with the number of network interfaces.

To handle these tasks in an experimental environment, this
work introduces a tool to rapidly configure simulated MPTCP-
enabled topologies. This consists of a Python-written parser
for CORE emulator responsible for taking a TOML input
configuration file and automatically deploying a topology with
multihomed devices configured to use MPTCP. An important
aspect of this approach is that an equal session is always cre-
ated for the same configuration file, allowing for consistency
between tests. This tool and its documentation are publicly
available. 1

B. Test environment and methodology

Based on the simulation platform described in Section III-A,
a test topology is deployed to analyse NIDS’s effectiveness
against cross-path attacks in distributed and non-coordinated
environments. The analysis considers two of the most used
open-source NIDS, namely, Snort32 and Suricata3. The tested
topology corresponds to the second scenario in Section II
and consists of NIDS independently analysing partial traffic
traversing different networks (see Figure 2).

Both Snort3 and Suricata work by inspecting data stream
content against predefined rules to identify possible threats.
These rules specify patterns that trigger a correspondent alert
when detected within the analysed flow. In the MPTCP
scenario considered for this work, an adversary can fragment
an attack payload through multiple subflows to evade NIDS’s
anomaly identification processes.

Two baseline scenarios are also deployed to avoid false-
positives when analysing NIDS effectiveness. The first one
(Base 1) aims at evaluating whether they are capable of
detecting attacks when data is fragmented in single flow
TCP sessions (i.e., without MPTCP). The objective is to
identify NIDS’s ability to reassemble fragmented data before
applying their detection processes. The second scenario (Base
2) consists of evaluating whether the new option added to the
TCP header (i.e., value 30) can affect NIDS effectiveness, as it
can change the signature used to detect traffic anomalies. The
baseline scenarios are analysed using just one path between
the attacker and the target.

1https://github.com/MPTCP-Lab/mptcp test bed
2https://www.snort.org/
3https://suricata.io/

https://github.com/MPTCP-Lab/mptcp_test_bed
https://www.snort.org/
https://suricata.io/


The test methodology consists of arbitrarily fragmenting
HTTP-based attack payloads injected in the simulated envi-
ronment across MPTCP subflows in both links of Figure 2. To
do so, a script provokes link failures forcing part of the traffic
to be transmitted through the second link. This approach does
not require crafting IP packets and can be easily replicated in
real scenarios with similar results. The effectiveness of both
NIDS is evaluated by comparing the number and priority (Pt.)
of the alerts triggered in baseline and test scenarios. Alert’s
priority indicates the severity of the anomaly detected. They
vary between 1 and 3 in Suricata and Snort3, where lower
priority values indicate more severe events.

A realistic test case was deployed to evaluate the impact of
these attacks. It uses the database of the vulnerability scanner
Nikto24 to inject anomalous traffic within the tested scenarios
along with the fragmentation strategy previously described.
This database consists of thousands of HTTP requests crafted
to look for possible vulnerabilities in web servers.

C. Test results

Comparing the results from different scenarios shows that
triggered alerts’ number and priority differ significantly. For
the highest alert severity (i.e., priority 1), both Suricata and
Snort3 (see Figure 3) identify a much lower number of
possible attacks in the distributed test scenario. In the case
of Snort3, it only managed to detect 2% of the threats when
compared with the Baseline 1. Similar results are observed for
priority 2 alerts.

Fig. 3: Number of alerts

Even though alert priority can give a good overview of the
severity of detected threats, it is also interesting to analyse the
triggered rules and how they vary in the different scenarios.
As exemplified in Table I, for “Cross-Site Scripting Attempts”,
both NIDS managed to detect around 300 occurrences when
inspecting traffic in the baseline scenarios. However, when
fragmenting the traffic across multiple MPTCP subflows, these
occurrences dropped to just 2, representing around 1% of the
initial amount.

Contrary to priority 1 and 2, the number of alerts with
priority 3 rises substantially, leading to an overall increase

4https://cirt.net/Nikto2

in the total number of alerts reported by both NIDS in the
distributed scenario. However, these alerts are mostly false
positives. What happens is that both NIDS fail to detect the
real threats and end up triggering other alerts that are not
accurate and typically have a lower priority.

TABLE I: Example of alerts per scenario

Alert description and Priority (Pt.) Scenario
Base 1 Base 2 Test

Suricata
Possible cross-site scripting attempt [Pt.1] 299 299 2
GLP WEB SERVER /etc/passwd [Pt.2] 268 268 48
Can’t match response to request [Pt.3] 0 2950 5748

Snort3
Likely cross-site scripting attempt [Pt.1] 284 284 2
SERVER-WEBAPP /etc/passwd [Pt.2] 267 267 0
Response before client request [Pt.3] 2 2 6912

Although the results presented for the test scenario are the
combination of both NIDS running on different networks, most
false-positive alerts occur in the NIDS connected to the main
subflow network. Therefore, for a real-life scenario, depending
on how the attack is conducted, one of the networks will
probably not have access to any hint of a possible threat. This
aspect ratifies the relevance of providing network administra-
tors with mechanisms to manage MPTCP connections within
their administrative domains.

The entirety of the results is also publicly available5, and
the tests conducted can easily be reproduced using the tool
described in Section III-A.

IV. PROPOSED SOLUTION

Although some efforts have tried to secure MPTCP-enabled
environments, Section III demonstrates the protocol still can
be easily used to evade NIDS by fragmenting payload attacks
through different subflows. This is particularly critical in
scenarios where subflows are established in networks with no
coordinated control. Up to this point, the proposed strategies
relied on processing traffic at each network entry point. In this
case, none of the NIDS can inspect the entire flow looking for
possible threats. Neither the detection system in one network
has information about the remaining networks to which a
device is connected.

Instead of solving the problem at the network level, this
work introduces a security-focused plugin designed to address
the issue at the host level. This solution extends the mptcpd
with a mechanism that only allows MPTCP sessions through
trusted networks, which can avoid partial traffic arriving
through uncontrolled networks. The proposed solution works
even in the presence of Network Address Translation (NAT)
and is publicly available6 to be used either in the simulated
environment (see Section III) or in production systems.

As of version 0.8 of mptpcd (the current version at the
time of writing this paper), developing a security extension
that preserves the modularity and extendability purposes of

5https://github.com/MPTCP-Lab/mptcp-nids-evasion-tests
6https://github.com/MPTCP-Lab/net check plugin

https://cirt.net/Nikto2
https://github.com/MPTCP-Lab/mptcp-nids-evasion-tests
https://github.com/MPTCP-Lab/net_check_plugin


using plugins is a challenging task since, mptcpd does not
provide the necessary mechanisms to such logic. Thus, some
modifications to mptcpd were required.7

A. Plugin
Securing MPTCP connections at the host level consists of

controlling which networks a device can use for multipath
sessions. To do so, the proposed plugin6 uses either an
allowlist or blocklist approach, indicating the trusted and
untrusted networks, respectively. For devices using private
IPv4 addresses, the plugin can use the Session Traversal
Utilities for NAT (STUN) [10] to identify the public address
of its NAT server [11][12] and, consequently, the network to
which it is connected before establishing an MPTCP session.

Each time the plugin is notified about a new IP address for
one of the device’s interfaces, it checks whether the underlying
network is on the allowed or blocked list. If the new address
belongs to an untrusted network, the plugin halts the event
propagation and generates a new flow to remove the previous
interface’s addresses (simulating a process typically triggered
by the kernel). Then, it uses NetFilter8 to set firewall rules
blocking MPTCP communications through that interface.

On the other hand, if the new address belongs to a trusted
network, the proposed plugin allows the event propagation to
lower priority plugins. It also removes any firewall rule previ-
ously set to that interface, allowing MPTCP communications.
Figure 4 details the plugin operation when a new address event
is received.

Fig. 4: New address event handling

Although the plugin prevents MPTCP communication
through the interfaces connected to untrusted networks, it
actually does not block the connection establishment itself.
Since MPTCP falls back to ordinary TCP when one of the
communication sides does not support it [2], the plugin simply
takes advantage of it by removing the MPTCP option from
SYN packets. In this way, ordinary TCP sessions still can be
established through untrusted networks.

7https://github.com/MPTCP-Lab/mptcpd/tree/patched version
8https://www.netfilter.org/

V. FINAL REMARKS AND FUTURE WORK

Since the proposed plugin strips down the MPTCP options,
in a new experimental analysis based on Test scenario in
which the target uses the proposed solution, an attempt by
an attacker to initiate an MPTCP communication through an
untrusted network will fall back to plain TCP, resulting in an
alerts distribution similar to the Baseline 1. If both networks
are trustworthy, MPTCP communication will be established as
expected, allowing to take advantage of its benefits. Moreover,
as the plugin does not prevent communication through un-
trusted networks, it does not affect applications’ functionalities
or QoS.

Notice the proposed solution does not entirely replace those
presented in Section II. Instead, it covers an open issue while
enhancing how users protect and manage MPTCP connections,
allowing for total control of when and where the protocol can
be used. Thus, in future work, integrating this solution with a
coordinated NIDS approach can provide a unique mechanism
towards securing MPTCP-base communications.

ACKNOWLEDGEMENTS

This work is financed by National Funds through the FCT
- Fundação para a Ciência e a Tecnologia, I.P. (Portuguese
Foundation for Science and Technology) within the project
FLEXCOMM, with reference EXPL/CCI-INF/1543/2021.

REFERENCES

[1] “Transmission Control Protocol.” RFC 793, Sept. 1981.
[2] A. Ford, C. Raiciu, M. J. Handley, O. Bonaventure, and C. Paasch,

“TCP Extensions for Multipath Operation with Multiple Addresses.”
RFC 8684, Mar. 2020.

[3] F. Aschenbrenner, T. Shreedhar, O. Gasser, N. Mohan, and J. Ott, “From
single lane to highways: Analyzing the adoption of multipath tcp in
the internet,” in 2021 IFIP Networking Conference (IFIP Networking),
pp. 1–9, IEEE, 2021.

[4] M. Bagnulo, “Threat Analysis for TCP Extensions for Multipath Oper-
ation with Multiple Addresses.” RFC 6181, Mar. 2011.

[5] F. Demaria, “Security evaluation of multipath tcp : Analyzing and
fixing multipath tcp vulnerabilities, contributing to the linus kernel
implementation of the new version of the protocol,” 2016.

[6] V. A. Kumar and D. Das, “Data sequence signal manipulation in
multipath tcp (mptcp): The vulnerability, attack and its detection,”
Computers & Security, vol. 103, p. 102180, 2021.

[7] C. Pearce, “Multipath tcp, pwning today’s networks with tomorrow’s
protocols,” tech. rep., Blackhat, 2014.

[8] H. A. Foster, “Why does mptcp have to make things so complicated?:
cross-path nids evasion and countermeasures,” 2016-09.

[9] I. Barksdale, Warren L., “A cooperative ids approach against mptcp
attacks,” 2017-06.

[10] M. Petit-Huguenin, G. Salgueiro, J. Rosenberg, D. Wing, R. Mahy, and
P. Matthews, “Session Traversal Utilities for NAT (STUN).” RFC 8489,
Feb. 2020.

[11] M. Holdrege and P. Srisuresh, “IP Network Address Translator (NAT)
Terminology and Considerations.” RFC 2663, Aug. 1999.

[12] K. B. Egevang and P. Srisuresh, “Traditional IP Network Address
Translator (Traditional NAT).” RFC 3022, Jan. 2001.

https://github.com/MPTCP-Lab/mptcpd/tree/patched_version
https://www.netfilter.org/

	Introduction
	Related work
	Cross-path attacks to MPTCP
	Experimental tool
	Test environment and methodology
	Test results

	Proposed solution
	Plugin

	Final remarks and future work
	References

