Safety analysis of software components of a
dialysis machine using model checking

M.D. Harrison!* (orcid.org/0000-0002-5567-9650), M. Drinnan?, J. C.
Campos®?, P. Masci®?, L. Freitas', C. di Maria?, and M. Whitaker?

'School of Computing Science, Newcastle University, Newcastle upon Tyne NE1 7RU,
UK,
2Regional Medical Physics Department, Royal Victoria Infirmary, Newcastle upon
Tyne, NE1 4LP
3Dep. Informética / Universidade do Minho, Braga, Portugal
“HASLab / INESC TEC, Braga, Portugal

Abstract. The paper describes the practical use of a model checking
technique to contribute to the risk analysis of a new paediatric dialysis
machine. The formal analysis focuses on one component of the system,
namely the table-driven software controller which drives the dialysis cycle
and deals with error management. The analysis provided evidence of the
verification of risk control measures relating to the software component.
The paper describes the productive dialogue between the developers of
the device, who had no experience or knowledge of formal methods, and
an analyst who had experience of using the formal analysis tools. There
were two aspects to this dialogue. The first concerned the translation of
safety requirements so that they preserved the meaning of the require-
ment. The second involved understanding the relationship between the
software component under analysis and the broader concern of the sys-
tem as a whole. The paper focuses on the process, highlighting how the
team recognised the advantages over a more traditional testing approach.

Keywords: Risk analysis, formal methods, model checking, medical de-
vices, haemodialysis

1 Introduction

The risk analysis required to satisfy regulatory requirements (for example [4, 16])
includes an assessment of the hazards associated with a medical device. These
hazards include possible hardware and software failures. Examples of hardware
failure include, for example, faulty connections or pump failure. Risk analysis, as
part of a submission for certification by a regulator, is an onerous task typically
requiring substantial amounts of test data. Developing such a submission is es-
sential when dealing with life-critical medical systems. Medical device standards
(see for example [4]) require that measures have been taken to ensure that risks
associated with use of the device are as low as reasonably practical. The required
measures include careful identification of hazards and demonstration that risks

2 Harrison and others

associated with these hazards have been mitigated. One part of demonstrating
that hazards have been mitigated is to establish requirements of the system
that demonstrate that there are barriers between a hazard and its consequence.
Processes that are recommended to achieve such confidence include team based
scrutiny of the use of documented processes as well as testing that requirements
have been satisfied.

This paper describes part of a safety analysis process. It describes how model
checking analyses were used to demonstrate that a particular software component
within the system satisfied requirements described in a risk log. The focus of the
paper is to look at the process and to discuss how the team used the model
checking analysis to consider the broader safety requirements of the system. The
formal analysis that was generated as a result of the process described in the
paper was submitted as evidence to the regulator.

2 The NIDUS device

Dialysis and ultrafiltration (removal of excess water) are extremely difficult pro-
cedures in small children with failing kidneys because the total volume of blood
in the child’s circulation is very small. The Newcastle experimental Infant Dialy-
sis and Ultrafiltration System (NIDUS) has been used at Newcastle-upon-Tyne’s
Royal Victoria Infirmary (RVI) for some time. It does not use a traditional dial-
ysis circuit, and the circuit volume of about 10 mL is suitable for treating infants
with a total blood volume less than 100 mL. Before the device could be used
more widely, it was necessary to identify and assess the risks of using it before
the device could achieve regulatory approval.

The device is implemented using several software components. These include
device drivers (for example, the motors that control the infusion pumps), com-
ponents that enable the device to recognise and manage system failures (for
example, the presence of bubbles in tubing) and components that provide the
interface to allow the operator of the device to be aware of its status and to
control the system. The component under consideration manages the drivers.
Its logic of operation is organised as a control table. The table describes two
aspects of the controller. It describes the attributes of the state of the device
that control the dialysis process and it describes how the state of the device
changes in response to events. Hence in Figure 1, RST _InitS1 (identified in the
left hand column) is a state that has attributes Power, Motorl, Motor2 etc.
(top row) with values ALLOWI12V, MIFWDMAX, M2SAFE etc. (as described
in the row labelled RST_InitS1). At the same time the right hand side of the
table describes transitions. Hence, for example an M1Stall event (as identified in
the top row) causes a transition from the RST_InitS1 state to the RST_InitS2
state.

*NAME Power Motorl Motor2 Hep Valve Alarm | WashTimer | DialysisTimer |___Flash Mode HardFault Bubble AgreeAir 12Voff | Mistall
iT PowerOn TRIP12V MIUNSTALL |M2UNSTALL HEPUNSTALL PERIUNSTALL UNLATCH INHIBIT lZLRO ZERO DISABLE RESET HardFault :
T ColdStart TRIPI2V MISAFE M2SAFE HEPSAFE PERISAFE | UNLATCH _ INHIBIT |ZERO HOLD ENABLE RESET HardFault ST ColdStart ST ColdStart |
iT WarmStart TRIP12V MISAFE M2SAFE HEPSAFE PERISAFE _ UNLATCH _ INHIBIT |ZERO HOLD ENABLE | [|
! — v
RESET stuff ! H
ST Start TRIPI2V MISAFE M2SAFE HEPSAFE PERISAFE VALVESAFE _ QUIET \ZERO HOLD RESET HardFault RST Erors RST Errors RST Ready |
ST Ready ALLOW12V MISAFE M2SAFE HEPSAFE [PERISAFE VALVESAFE QUIET |ZERO HOLD RESET HardFault RST Erors ST Errors |
ST InitS1 ALLOW12V MIFWDMAX ~M2SAFE HEPSAFE ~ PERISAFE PREP ACTIVE IZERO HOLD RESET HardFault RST Erors RST_Errors ST_ColdStart |RST._Inits2.
ST InitS2 ALLOW12V MISTOP M2FWDMAX |HEPSAFE |PERISAFE FLUSH ACTIVE 1ZERO HOLD RESET HardFault RST Errors RS Errors ST Coldstart | RST
ST InitHep ALLOW 12V MISTOP M25TOP HEPBCKMAX |PERISAFE FLUSH ACTIVE \ZERO HOLD RESET HardFault RST Erors RST Errors ST ColdStart |
ST Relax ALLOW12V MISAFE M2SAFE HEPSAFE _|PERISAFE | FLUSH ACTIVE JZERO HOLD RESET HardFault RST Errors RS Errors ST ColdStart |
ST All ALLOW12V MIRESET | M2RESET HEPRESET PERISAFE VALVESAFE ACTIVE 1ZERO HOLD RESET HardFault RST Erors RS Errors ST Coldsiart |
RESET errors
ST Errors TRIPI2V MIUNSTALL | M2UNSTALL 'HEPUNSTALL PERIUNSTALL VALVESAFE WARN \HOLD HOLD ENABLE RESET HardFault RST Overpressu RST Bubble !
ST Overpressure TRIP12V MIUNSTALL |M2UNSTALL HEPUNSTALL PERIUNSTALL UNLATCH WARN JHOLD HOLD VALVE RESET HardFault RST Overpressure]
AT AckOverpressure TRIPI2V MIUNSTALL | M2UNSTALL | HEPUNSTALL PERIUNSTALL VALVESAFE A WARN IHOLD HOLD ENABLE RESET HardFault RST Overpressure !
ST Bubble TRIPL2V MIUNSTALL | M2UNSTALL 'HEPUNSTALL PERIUNSTALL UNLATCH WARN 'HOLD HOLD RESET HardFault RST Bubble .
AT AckBubble TRIPI2V MIUNSTALL | M2UNSTALL | HEPUNSTALL PERIUNSTALL VALVESAFE WARN |HOLD HOLD RESET HardFault RST Bubble |
I, 1
Prime heparin ! !
IEP Prime TRIPI2V MISAFE M2SAFE HEPSAFE PERISAFE FLUSH NOTIFY 1zERO HOLD I - ~se HardFault !
IEP Wam TRIPL2V MISAFE M2SAFE HEPSAFE PERISAFE _|UNLATCH _ NOTIFY |ZERO HOLD ENABLE WASH HardFault H
WASH from fresh kit I 1
VA Start TRIPL2V MISAFE M2SAFE HEPSAFE PERISAFE VALVESAFE QUIET IZERO HOLD ENABLE WASHING _ HardFault WA Emors | WA Errors WA Ready |WA Emors WA
VA Ready ALLOW12V MISAFE M2SAFE HEPSAFE PERISAFE _ VALVESAFE _ QUIET 1HOLD HOLD WASTEOPEN | WASHING __ HardFault WA Ermors | WA Errors IWA Emors WA
WASH after any other activity H I
VA Restart TRIPI2V MISAFE M2SAFE HEPSAFE PERISAFE VALVESAFE | QUIET JHOLD HOLD WASHING _ HardFault WA Erors | WA Errors WA Decision WA Erors WA
VA Decision TRIPI2V MISAFE M2SAFE HEPSAFE PERISAFE VALVESAFE QUIET IHOLD HOLD WASHING _ HardFault WA Emors | WA Errors !
VA Incomplete ALLOW 12V MISAFE M2SAFE HEPSAFE PERISAFE VALVESAFE WARN IHOLD HOLD WASHING _ HardFault WA Ermors | WA Errors
VA NotReady ALLOW12V MISAFE M2SAFE HEPSAFE PERISAFE VALVESAFE WARN |HOLD HOLD WASHING _ HardFault WA Ermors | WA Errors
WASH start prime cycle
VA SIP LLOWI2V
VA SIF 2 WASHING
WASH start washing cycles H
VA SIFill ALLOW12V MIBCKMAX | M2STOP HEPSAFE PERIPERFUSE PREP ACTIVE JHOLD HOLD WASHING _ HardFault WA Emors | WA Errors WA Stop
VA FillRIx ALLOW 12V MISTOP M25TOP HEPSAFE PERIPERFUSE PREP ACTIVE IHOLD HOLD WASHING _ HardFault WA Errors WA Errors WA Stop
VA SIS2 ALLOW12V MIFWDMAX | M2BCKMAX | HEPSAFE PERIPERFUSE DIAL ACTIVE Imick HOLD WASHING _ HardFault WA Ermors | WA Errors WA Stop
VA FlushRIx ALLOW12V MISTOP M2STOP HEPSAFE PERIPERFUSE DIAL ACTIVE \TICK. HOLD WASHING _ HardFault WA Ermors | WA Errors WA Stop
VA S2Flush ALLOW12V MISTOP M2FWDMAX |HEPSAFE PERIPERFUSE FLUSH ACTIVE ITICK HOLD WASHING _ HardFault WA Erors | WA Errors WA Stop

Fig. 1. A fragment of the control table

Suryoeyod [epowr Suisn syuauoduIod aIemijos Jo sisAfeue AjoJeg

4 Harrison and others

The controller involves 93 states and 30 events and the spreadsheet has been
generated directly from the data structure that drives it. Each state attribute
describes an attribute of the behaviour of the hardware system, for example:

— Attributes Motor1, Motor2 and Hep describe the proximal, distal and hep-
arin syringes respectively. Values of the attributes include whether the sy-
ringe pump is driving forward or backward, and whether “fast” or “slow”.

— Valve and Bubble describe the valve assembly and the bubble detectors. The
valve may, for example, be safe or open to the baby.

— Flash and Alarm describe features of the user interface. For example Flash
shows, amongst other displays, that a clip is open or closed, and the Alarm
can warn or notify or be quiet.

3 Verification Approach

The risk assessment for the device requires a multiplicity of evidence. These
sources include clinical trials, software and hardware test results and documen-
tation of the development process. The problem with trials and test results is
that they do not guarantee the absence of problems. Our goal was to use for-
mal analysis as one source of evidence that all risks have been assessed. This
was made easier in the present case because the spreadsheet was an encoding
of the data structure used to drive the controller. The analysis of the controller
involved the following steps.

1. The developers created a risk log which described informal system safety
requirements designed to mitigate hazards (Section 4). These covered the
whole range of hardware and software hazards.

2. The state transition table was translated into a behavioural model that could
be analysed using a model checker (Section 5).

3. Requirements, derived from the risk log, were then considered and those that
related to the controller were expressed in a formal logic (Section 6).

4. These risk related properties were checked against the model that had been
derived from the transition table. Where they failed, further discussion with
the developers indicated either a flaw in the controller, or a situation which
was considered either not to be hazardous, or to be a failure in the formu-
lation of the property. The process of checking the properties, based on the
requirements, often resulted in refinement of the properties or modifications
to the control table or the controller mechanism. The results of this process
were documented in the risk log (Section 7).

The process of property formulation and discussion was a significant element in
the risk analysis of the controller.

4 Translating the risk log into requirements

The risk log (see Figure 2) formed the basis for the risk assessment. It de-
scribed the requirements that were considered to mitigate risks and linked the

Safety analysis of software components using model checking 5

requirements to the evidence that they were satisfied. It was this document that
provided material relating to the software controller component that was the
source of the dialogue between developers and the formal analyst. Regulatory
authorities typically require that risk control measures are included as require-
ments (see BS EN 62304:2006 [4] for example). Each control measure should be
verified and the verification documented. As already stated, verification is typi-
cally taken to mean that some form of systematic testing has taken place. The
BS EN 62304 standard requires a risk analysis path: “from hazardous situation
to the software item; from the software item to the software cause; from the
software cause to the risk control measure; to the verification of the risk control
measure”. The process of proving regulatory requirements has been discussed in
more detail in [14].

Some of the requirements in the risk log were either completely or partially
relevant to the software controller and these provided the basis for the analy-
sis. Converting a software controller requirement into a property of the model
involved discussion between the developers and the analyst. When a formulated
property failed, examples of the failure were presented to the development team.
In Figure 2 MAL.GENERROR is highlighted in red because the property that
describes this requirement, at the particular stage of the risk assessment process
at which the log was current, was false. As will be illustrated, this property was
further refined and the red highlighting removed. Note that the spreadsheet in
Figure 1 shows similar highlighting indicating changes to the control table that
arose and thus required an iteration of the analysis.

In this way requirements were refined iteratively, involving the whole team.
Our aim was to formulate a requirement of the controller as a property of the
model and if the property failed explain why it failed. Failure of a property
could mean that: (i) the model did not capture the functionality of the device;
(ii) the property was not correctly formulated; (iii) there was an issue in the
design that could either be dealt with in another way, for example hardware
or through some mitigating process. An additional mitigating factor might be,
for example, a requirement on the clinician to strictly adhere to an operating
procedure. This analysis process was documented to provide evidence that all
reasonable measures had been taken to ensure the safety of the device. This
encouraged the developers to be confident that the device was safe as well as
indicating small design changes to improve safety. When treating premature and
sick infants, proper in vivo testing is almost impossible and the consequences
of failure can be very serious. This formal process has proved invaluable. An
example of a requirement in the risk log described in Figure 2, and used as
illustration in Section 6, is:

“During DIALYSIS, when the digital syringe is moving forwards then
the proximal syringe is necessarily moving backwards.”

The developer produced a partial translation of this in discussion with the ana-
lyst. The formulation indicates the logic without noting the temporal dimension
of the property or the precise nature of the sets { M2Fwd} and {M1Bck}.

If M2 in {M2Fwd} — M1 in {M1Bck}

6 Harrison and others

Ref [~ Requirement =]
MAL.GENINHIBIT The alarm is only inhibited during the RESET phase. It is always the case that wh
MAL.GENBABY The BABY valve can only be open while the system is in DIALYSIS mode. It is always the case that wh

It is always the case that wh
M1 IN { M1Withdraw, M1R¢
It is always the case that wh
M1 IN { M1Withdraw, M1R¢
For all error conditions and

Note this condition logically
all errors have been cleared
IF ErrorCondition THEN Nex

MAL.GENS1IMOVE During access to the baby, the BABY valve is open.

MAL.GENS2STOP During access to the baby, the distal syringe is never running.

For all error conditions and all system states, the next state will be an ERROR state.

MALGENS251 During DIALYSIS, when the distal syringe is moving forwards then the proximal syringe is Itis always the case that wh
: necessarily moving backwards. IFM2 IN{M2Fwd } -> M11l
MALGENS1S2 During DIALYSIS, when the distal syringe is moving backwards then the proximal syringe is Itis always the case that wh
. necessarily moving forwards. IF M2 IN{ M2Bck } -> M1IN

Fig. 2. Risk Log in development

5 Translating the state transition table into a formal
model

5.1 The specification language

The simple state transition table used to drive the controller readily lends itself
to a mechanical process. We used the IVY tool [5] because it was readily available
to us. It provides a front end to the NuSMV model checker [6]. IVY supports
an action orientated logic language MAL (Modal Action Logic) that provides
a textual structure similar to the diagrammatic structure of tools such as SRC
[10]. A reason for using this particular toolset was that we were interested in
the possibility of producing a tool that would be more easily understandable
to an interdisciplinary team. Our goal is that IVY be used eventually without
formal methods expertise. The intention was that the tool should provide a key
element in communication within the team while at the same time providing the
evidence that a requirement under analysis was satisfied.

MAL enables the easy description of state machines such as the table that
drives the dialysis machine. Attributes are used to capture the information
present in the state of the device and actions transform these states. MAL de-
scribes a logic of actions and is used to write production rules that describe the
effect of actions on the state of the device. This style of specification was found
easy to use by software engineers [15]. For this reason MAL was preferred to
the notation which is used by the NuSMV model checker. The language also
enables the expression of deontic operations, in particular permissions were used
in our analysis. Non-determinism is possible when more than one action is al-
lowed in the same state of the described model. MAL rules are a convenient way
to describe the behaviour of the state table that drives the dialyser. The logic
provides:

— a modal operator []- : [ac]ezpr is the value of expr after the occurrence of
action ac — the modal operator is used to define the effect of actions;

Safety analysis of software components using model checking 7

— a special reference event [|: [Jezpr is the value of expr in the initial state(s)
— the reference event is used to define the initial state(s);

— a deontic operator per: per(ac) meaning action ac is permitted to happen
next — to control when actions might happen;

— a deontic operator o0bl: 0bl(ac) meaning action ac is obliged to happen some
time in the future. Note that 0bl was not used in this analysis.

The notation also supports the usual propositional operators. As an illustration,
the following example declares two boolean attributes that describe whether
the device is on (poweredon), whether it is dialysing (dialysingstate) and two
actions (start and pause). It describes the effect of the action pause as setting the
attribute dialysingstate to false and leaving the attribute poweredon unchanged.
Priming is used to identify the value of the attribute after the action takes
place. A permission predicate restricts the pause action to only happen when the
system is dialysing and powered on. The keep function preserves the value of the
attribute poweredon in the next state. If an attribute is not modified explicitly
or is not in the keep list, then its value in the next state is left unconstrained.

interactor dialyser
attributes
poweredon, dialysingstate : boolean
actions
start pause
axioms
[pause] |dialysingstate’ & keep(poweredon)
per(pause) — dialysingstate & poweredon

5.2 The Translation

The spreadsheet was translated systematically into MAL. During the analysis
an automatic translator was developed based on translation patterns (explained
further below) identified during the manual process. The automatic translator
takes the CSV file representing the state transition model and produces its cor-
responding MAL representation following a translation strategy described in [8].
This ensures that the MAL model represents the finite state model, as described
by the spreadsheet, accurately.

As an illustration of the translation consider the situation when an event
occurs and the controller software changes the state. We consider the transition
involving M1Stall in state RST _InitS1 highlighted in Figure 1. Events are de-
scribed in MAL as actions. These actions transition to different states depending
on the current state. The controller software assumes that a pipeline of events
exists, each tick of the system process causes the next event to be taken from the
pipeline. If the pipeline is empty then a specified default transition is taken. The
model includes no specification of a pipeline of events, rather it assumes that at
any stage of the process the pipeline may become empty and as a consequence
the “default” event / action is taken. When several actions are possible because

8 Harrison and others

the guard for each of them is satisfied then one of the actions is taken non-
deterministically. There are some circumstances where it is necessary to prove
properties that assume that the pipeline is never empty. For these situations we
added an additional meta-attribute that becomes false if a default action occurs
in a path (dfltchk).

The MAL description of the effect of M1Stall, when the event occurs in state
RST_InitS1, is as follows:

statedist = sdRSTInitS1 — [acM1Stall] trRSTInitS2

This MAL rule describes a transformation. When the state is RSTInitS1 the
action acM1Stall leads to the state RSTInitS2. The attribute statedist indicates
the current state. If RSTInitS1 is the current state then statedist takes the value
sdRSTInitS1. The model defines a set of transformations that change current
state to specified new states. Hence trRSTInitS2 specifies a transformation to
the state RSTInitS2 as is described below.

trRSTInitS2 = Power' = ALLOWI12V & Motorl’ = M1STOP &
Motor2' = M2FWDMAX & Hep' = HEPSAFE &
Peri’ = PERISAFE & Valve’ = FLUSH&
Alarm’ = ACTIVE & WashTimer’ = ZERO &
DialysisTimer’ = HOLD & Flash' = ENABLE &
Mode' = RESET & statedist’ = sdRSTInitS2

This transformation specifies new values for each of the attributes, for exam-
ple the value of the attribute Motor! becomes M1STOP etc. This state transi-
tion is further augmented in the model to include attributes that do not appear
explicitly in the state transition table as follows:

seclr’ = GREEN & 'audiblealert’ & fkeyl’ = FIBLANK &
fkey2’ = F2BLANK & fstop’ = F3STOP

These additional attributes deal with features of the controller that are only
listed as comments in the spreadsheet, and have the following meaning, and are
not currently supported by the translator.

statedist marks the current state, designed to ease the model’s identification
of the current state.

seclr describes the colour of the state pane on the display.

audiblealert whether the alert if any is audible.

fkeyl the function display for key1.

fkey2 the function display for key2.

fstop the function display for stop.

6 Requirements expressed in formal logic

6.1 Refining a sketch requirement as a CTL property

As discussed in Section 4, the risk log contains a list of requirements developed
in response to known hazards. The example to be considered in more detail was
initially sketched by developers as:

Safety analysis of software components using model checking 9

If M2 in {M2Fwd} — M1 in {M1Bck}

This semi-formal representation indicates that it should always be the case that
if the state of the motor M2 is “moving forward” then the motor M1 should be
“moving backward”. Further discussion with the developers produced refinement
of this sketch requirement. The two sets M2FWD and M1BCK were described
as “enumerations” in MAL using the following syntax:

M2FWD = { M2FWDMAX, M2FWDUNUF }
M1BCK = { MIBCKMAX, M1BCKUF, MIWITHDRAW }

All these states involved forward and backward motion in the two motors. Having
defined the relevant state attributes as specified in the spreadsheet model, the
next step was to formulate a precise version of the property as a basis for the
analysis. The notation used was that supported by the NuSMV model checking
tool.

The property notation CTL [7] is widely used and provides two kinds of tem-
poral operator: operators over paths and operators over states. Paths represent
the possible future behaviours of the system. When p is a property expressed
over paths, A(p) expresses the property that p holds for all paths and F(p) that
p holds for at least one path. Operators are also provided over states. When ¢
and s are properties over states, G(q) expresses the property that ¢ holds for
all the states of the examined path; F(¢) that ¢ holds for some states over the
examined path; X (q) expresses the property that q holds for the next state of
the examined path; while [¢Us] means that ¢ holds until s holds in the path.

CTL contains a subset of the possible formulae that arise from the combina-
tion of these operators. AG(¢) means that ¢ holds for all the states of all the
paths; AF(q) means that ¢ holds for at least one state in all the paths; EF(q)
means that ¢ holds in at least one state in at least one path; EG(¢) means that
¢q holds for all states in at least one path; AX(¢) means that ¢ holds in the next
state of all paths; EX (¢) means that there is at least one path for which ¢ holds
in the next state; A[qUs] means that ¢ holds until some other property s holds
in all paths; E[qUs| means there exists at least one path in which ¢ holds until
some property s.

6.2 Categories of requirements

The discussion of all the elements of the risk log led to a consideration of re-
quirements that fall into the following categories:

P1: specified states are inaccessible in dangerous circumstances. The property
described in Section 6.1 is an example of such a property. Another example
is that: “it should not be possible to dialyse an infant with heparin in the
blood circuit”.

P2: when the dialysis machine is error free it always generates a correct dialysis
sequence. This sequence includes wash and dialysis stages.

P3: when an error event occurs then the device is taken to an appropriate error
state.

10 Harrison and others

P4: states can only be reached if combinations of states have happened in the
past. An example of such a property is that relevant reminders are always
displayed to “close a clamp before the next phase of the cycle can com-
mence”.

7 Risk related properties checked of the model

The particular requirements that fall into these categories will be considered
in detail in this section. An important part of the description is the discussion
within the team that triggered the refinement of initial versions of properties.

P1: Unsafe Combinations of states cannot occur

The requirement (of Section 6.1) was formulated in CTL (using the MAL nota-
tion “in” for membership of an enumerated set) as:

AG(Motor2 in M2FW D — Motorl in M1BCK) (1)

This property specifies that it is always the case, for all states, that when Motor2
is in a forward state then Motor! is in a backward state. This property is not
true of the model (as was revealed during an analysis meeting) producing a
counter-example that indicates one set of circumstances in which the property
fails. Figure 3 describes the sequence starting from the initial state (column
1), ending at a state where the property fails to be true (column 6). Columns
indicate values held by attributes. These are named in the left hand column
(i.e., column 0). For example, the attribute Power has value ALLOW12V in
column 4. The colour yellow is used to indicate that a state attribute has changed
value between successive states. The path indicates (as shown in the row marked
main.action) that from the initial state the device defaults (that is it takes the
action acDefault) because there are no events in the queue. This action is followed
by Key2, followed by 12voff, 12von and M1stall which leads to the state where
the property fails. Discussion during the risk meeting explored the implications
of the sequence and came to the conclusion that this exception was acceptably
safe and could therefore be excluded. A process then continued of excluding
states before formulating a property that excluded all discovered exceptions:

AG(Motor2 in M2FWD — (Motorl in M1BCK |
statedist in {sdRSTInitS2, sd WAS2Empty,
sdWAFlushRlx, sd WAS2Flush})

The risk analysis team considered each of these exceptions and noted that the
common property of these counter-examples was that they occurred when the
device was not in dialysis mode, hence the following property was constructed:

AG((Motor2 in M2FWD &
Mode in {DIALYSE, DIALYSING})
— Motor! in M1BCK)

Safety analysis of software components using model checking 11

The property formulated as a result of this observation is true for the model.
It could be argued that visual inspection of the spreadsheet would have been
sufficient to indicate the problem in this particular case. However this systematic
approach to finding paths to potentially hazardous states provides an exhaustive
approach.

1 2 3 4 5 6
main.action acDefault acKey2 acl2Voff acl2Von acMlstall
Alarm INHIBIT INHIBIT QUIET QUIET ACTIVE ACTIVE
DialysisTimer ZERO HOLD HOLD HOLD HOLD HOLD
Flash DISABLE ENABLE ENABLE ENABLE ENABLE ENABLE
Hep HEPUNST AL HEPSAFE HEPUNSTAL HEPSAFE HEPSAFE HEPSAFE
Mode RESET RESET RESET RESET RESET RESET
Motor1 MI1UNSTALL M1SAFE MLUNSTALL M1SAFE M1FADMAX M1STOP
Motor2 MZUNSTALL MZSAFE MZUNSTALL M2SAFE M2 SAFE M2 FWDMAX
Peri PERIUNSTAL PERISAFE PERISAFE PERISAFE PERISAFE PERISAFE
Power TRIP12V TRIP12V TRIP12V ALLOWI2YV ALLOWI2YV ALIOWI12V
Valve UNLATCH UNLATCH VALVESAFE VALVESAFE PREP FLUSH
WashTimer ZERO ZERO ZERO ZERO ZERO ZERO

Fig. 3. Counter-example to property 1

P2: Staying in the dialysis cycle
The requirement described in the risk log is expressed as follows:

MAL.DIALCYCLE: Unless there are errors or user actions, the system
stays in the ‘dialysis cycle’

The requirement aims to ensure that, barring error events or user interven-
tions, the transition table will always cause the device to complete the same
haemodialysis process. To check the requirement it is first assumed that no such
cycle exists. This property should fail and give, as an example of failure, one
cycle that is of the appropriate form. Once the cycle is discovered, and it is the
correct ‘dialysis cycle’, the next stage is to show that it is the only possible cycle
that can be generated using the relevant actions.

The first step in demonstrating this requirement is to find a cycle, show it is
the only cycle and check that is the required cycle. The cycle must begin with
the action M1out in the state DIA_Wdraw. The approach therefore is to show
that, once reached, this state is reached again. However it is necessary to be
more precise than this. The cycle must be achieved with a subset of actions, ex-
cluding for example error actions or user interventions. Only specific actions are
recognised are valid “drivers” of the cycle. A “meta”-attribute motorsandwaits
is therefore introduced that is set true by the first action and preserved by oper-
ations : M1in, M2in and Waitlsecond. All other actions set the motorsandwaits

12 Harrison and others

attribute to false. A counter-example to the CTL property:

AG((statedist = sdDIAWdraw —
AX(AG(/(motorsandwaits & (2)
statedist = sdDIAW draw))))

should then generate the cycle. This is illustrated in the trace fragment in Figure
4. The sequence fragment starts with the state DIAWdraw (bottom row, column
23) when motorsandwaits is false and ends with the state DIAWdrawRIz (column
29). The sequence of actions that make up the cycle are shown in a row at the
top of the table (acM1out etc.). This sequence is indeed the “dialysis cycle” as
acknowledged by the domain experts during a meeting. The other rows show the
values of the state attributes relating to each state as represented by a column
of the table. The value of motorsandwaits is shown in the penultimate row and
remains true throughout. This, however, is only part of the analysis because it
identifies one cycle only. It does not exclude the possibility that there are others.
It is further necessary to check that no other sequences can be produced using
this subset of actions, i.e., the discovered cycle is unique. This can be achieved
by using properties that require that at each step of the cycle any valid action
will result in the next step of the cycle as discovered in the counter-example.

J 23 24 25 26 27 28 29
main.action acl2Von acMlout acWaitlsecc acMlin acMzin acWaitlsecc acMlin
Alarm ACTIVE ACTIVE ACTIVE ACTIVE ACTIVE ACTIVE ACTIVE
DialysisTimer TICK TICK TICK TICK TICK TICK TICK
Flash NOSAMPLE NOSAMPLE DOSAMPLE ENDSAMPLE NOSAMPLE NOSAMPLE NOSAMPLE
Hep HEPINFUSE HEPINFUSE HEPINFUSE HEPINFUSE HEPINFUSE HEPINFUSE HEPINFUSE
Mode DIALYSING DIALYSING DIALYSING DIALYSING DIALYSING DIALYSING DIALYSING
Motorl M1WITHDR, M1STOP MI1FWDUNU M1BCKUF M1STOP M1RETURN MIWITHDR,
Motor2 M2STOP M2STOP M2BCKUF M2FWDUNU M2STOP M2STOP M2STOP
Peri PERIPERFUS PERIPERFUS PERIPERFUS PERIPERFUS PERIPERFUS PERIPERFUS PERIPERFUS
Power ALLOWLIZY ALLOWIZ2V ALLOWIZ2V ALLOWI2YV ALLOWI2V ALLOWI2YV ALLOW12V
Valve BABY BABY DIAL DIAL DIAL BABY BABY
WashTimer ZERO ZERO ZERO ZERO ZERO ZERO ZERO
motorsandwaits | FALSE TRUE TRUE TRUE TRUE TRUE TRUE
statedist sdDIAWdray sdDIAWdray sdDIASIS2 sdDIAS2SL sdDIAReturi sdDIAReturi sdDIAWd ray

Fig. 4. Proving the ‘dialysis cycle’

So for each state a property, demonstrating uniqueness is proved, for example:

AG (statedist = sdDIAWdraw —
AX (motorsandwaits — statedist = sdDIAWdrawRlz))

Each state in the discovered cycle is considered and it is demonstrated that the
only successor in each state, using the subset of events, is the next state found
in the original cycle.

Safety analysis of software components using model checking 13
P3: Errors lead to error states

An important issue in the risk log was to ensure that error events would always
lead to error states. This was expressed in the risk log as:

MAL-GENERROR: For all error conditions and all system states, the
next state will be an error state.

It was also required that the device would remain in an error state if further
error events occur. To formulate the property a set of actions that represent the
error events is first defined using MAL notation.

ErrorEventSet = acHardFault | acOverpressure |
acBubble | acPeriStall

The set ErrorStateSet is defined in the model as an enumerated set that includes
all the states that are determined to be error states. The required property was
then agreed to be:

AG(AX (ErrorEventSet — statedist in ErrorStateSet))

During the meeting this property was checked and found to be false. The reason
for this failure, as determined by the counter-example, was that the Alarm can
be inhibited and when this happens the property fails to be true. The property
was therefore refined to include Alarm ! = INHIBIT.

AG(Alarm ! = INHIBIT —
AX (ErrorEventSet — statedist in ErrorStateSet))

This property is also false. The state that offends in this case had not been
counted as an error state and should have been. The set ErrorStateSet was there-
fore further augmented. The final refinement of the property further restricts to
those states for which Mode is not RESET.

AG(Alarm != INHIBIT & Mode ! = RESET — (3)
AX (ErrorEventSet — statedist in ErrorStateSet))

Finally STWarmStart must also be excluded. This state is not considered
to be problematic. Its occurrence is clear and will not cause confusion. These
successive refinements have weakened the property and therefore a justification
is required at each stage that the refined property is adequate mitigation for the
possibility of an unrealised error. Discussion with the developers confirmed that
this weakened formulation of the property was sufficient mitigation for possible
risks and an explanation is provided in the risk log.

14 Harrison and others

P4: States can only be reached if combinations of states have
happened in the past

As was noted in the case of property P2, additional “meta-attributes” were in-
troduced to the model so that it was possible to enrich the properties that could
be proved using the model checker. In the case of P2, motorsandwaits was intro-
duced to enable consideration of sequences of a subset of non error actions. Other
requirements in the risk log could not be formalised as CTL properties using the
original attributes of the model. In particular those properties that related to
combinations of states that had happened in the past required such formulation.
An example of a requirement of this kind is concerned with whether information
is provided by the user interface to indicate to the user of the machine that a
specific action should be carried out. Flash is a state attribute in the model that
specifies the content of an information display. For example:

“MAL.HEPCLIP: The user is instructed to close clip before changing
syringe, and re-open afterwards.”

Several Flash messages, specified by the attribute Flash, indicate dialyser warn-
ing displays. For example, Flash = HEPCLOSE indicates that “close the heparin
clip” has been transmitted. The attribute hepclipopen was included in the model
specification and is set to true and continues to be true after a flash message that
indicates that the heparin clip is open: Flash = HEPOPEN. It is made false by
Flash taking values HEPCLOSE or HEPSYRINGE. The following fragment in-
volving the Hepin specifies a transition to the state HEPClip. This state includes
a change to the Flash attribute Flash' = HEPCLOSE and therefore hepclipopen
is set to false.

statedist in {sdDIAReady} — [acHepin)
trHEPClip & !motorsandwaits’ & keep(...) & hepclipopen’

We then check the property:
AG(Mode = DIALYSING — hepclipopen)

The property asserts that you can only reach a dialysing state if a message to
open the clip was the most recent flash relating to the clip and that the message
had previously occurred. This property checked to be false. The state HEPPrime
is also a clear indication to open the clip but does not involve the relevant flash.
The model was changed therefore so that the meta-attribute was also set to true
when visiting HEPPrime. The property then becomes true.

Safety analysis of software components using model checking 15

8 Discussion and Related work

The contribution of this paper is a practical demonstration of the use of formal
techniques to analyse a component of a safety critical system. The approach was
not novel. Similar techniques were being described and applied in the 1990s.
For example, a mature set of tools have been developed by Heitmeyer’s team
using SRC [10]. Their approach uses a tabular notation to describe requirements
which makes the technique relatively acceptable to developers. Atlee and Gan-
non described a similar approach in [2]. In some domains, other than medical
domains, formal mathematically based methods have been effective in analysing
and assessing risks systematically (see for example, [13,3]). Despite the success
of these techniques there is a continuing perception that formal methods are not
easy to use and that they cannot be scaled to substantial systems. These barri-
ers to their use have limited their uptake in medical domains. Recent research
with the cooperation of the US Food and Drugs Administration (FDA) have led
to increased possibilities for their potential use [12,14]. The novelty here has
been to apply this technique in a medical team where typically small teams with
limited resources are involved.

The translation of the table into MAL, including meta-attributes, involved
682 lines, including 119 lines of state definitions and 152 lines of type and con-
stant definitions. The development of the first model, by hand, took about seven
hours. It was possible to make most changes to the model and show the results
interactively during meetings with the development team without disturbing
the flow of the meeting. Hence the refinement of requirements and the careful
analysis of the hazards were facilitated by the process. The analysis involved 23
properties. On the rare occasions when it was not possible to refine a property
during the meeting, for example when meta-attributes were required, this could
be achieved within an hour outside the meeting. Verifying all the properties to-
gether on a MacBook Pro with Intel Core i5 clocked at 2.9GHz, with 8GB RAM
and SSD memory, took 1.7 seconds. The exercise shows that, with appropri-
ate expertise and using available artefacts (the table, safety requirements), the
use of formal methods required little additional effort and supported effective
discussion of the risks between the developers.

There are several ways in which it can be demonstrated that a device satisfies
safety requirements using formal techniques. One way of doing this is to develop
the device formally by refining the model as supported by tools such as Event
B [1]. An initial model is first developed that specifies the device characteristics
and incorporates the safety requirements. This initial model is gradually refined
using details about how specific functionalities are implemented. This was not a
realistic approach in the present case because, when the analysis was to be done,
the device had already been developed. Indeed such techniques are not feasible
given the typical resources available to medical device developers. Alternatively
a model could be generated from the program code of an existing device, using
a set of transformation rules that guarantee correctness, as discussed in [11].
This approach could have been used for other software aspects of the device,
however it is unclear how well such techniques scale. Proving that the model

16 Harrison and others

of this component of the software is correct with respect to the device was
not a problem for the particular example because the software was driven by a
table and the table was translated directly into the model. The analysis does
not attempt to prove that the software drivers themselves were implemented
correctly.

9 Conclusion

The risk analysis process described in the paper succeeded because the controller
is table driven and it was relatively easy to generate a model from the table.
It also succeeded because a mixed disciplinary team was involved. This team
included one person who was able to use the formal tools and provide an expla-
nation of the requirements and model formulations. It is standard practice to use
a table to drive software that controls a multi-step process as in this case. How-
ever there are cases where this does not happen and moreover, as in this case,
the software covered by the controller is only part of the software. The dialysis
machine also includes user interface features, for example capacity to enter new
values for thresholds relevant to the dialysis process. These are involved in the
initial set-up of the machine. Other analyses, involving several of the authors,
have focussed on existing IV infusion pumps [9]. In these cases such a table
driven process, with the capacity to be automated, has not been possible. The
analysis described in this paper therefore raises questions about the potential for
extending this approach to a broader class of medical systems. The challenges
raised by this analysis in the context of small-scale developments, such as this
one, are:

Systematic modelling: While formal approaches to the development of soft-
ware that refine safety requirements exist (see [17]), these are not yet feasible to
use given the available tools and skills of existing small development teams. In
this case the formal methods expertise was recruited short-term for the purpose

Mized disciplinary teams: There was substantial benefit in recognising and
using expertise from sources outside the development team. A mixed discipline
approach is already in practice in the case of small companies or innovative pre-
commercial developments. It would make sense therefore to add these analytical
skills to the toolkit available to the device developers.

Mixed styles of analysis: As in this case a well defined and yet important soft-
ware component may be analysed formally. The formal analysis of the controller
table can also improve the testing coverage of the device drivers themselves al-
though this was not done in this case. It is also good practice to have multiple
independent arguments to demonstrate the safety of the system. Hence it makes
sound sense to use formal techniques to improve confidence in the risk analysis.

This paper illustrates how formal techniques may be used successfully as part
of the risk analysis process associated with the development of a medical device.
This is part of the submission that has gone forward for regulation. The safety
requirements that were formulated and proved, and improvements in the light of
requirements failure, illustrate how the analysis led to improvement in the safety

Safety analysis of software components using model checking 17

of the design while providing a concise basis for evidence that part of the system
is safe. The technique is readily repeatable. Tools that have been developed
allow the automated development of models from control tables. The analysis
approach complements testing techniques and provides a systematic solution to
the safety assessment of critical devices.

Acknowledgements This work has been funded by: EPSRC research grant
EP/G059063/1: CHI+MED (Computer—-Human Interaction for Medical Devices). It
has also been financed by the ERDF — European Regional Development Fund through
the Operational Programme for Competitiveness and Internationalisation - COMPETE
2020 Programme, and by National Funds through the FCT — Fundagao para a Ciéncia
e a Tecnologia (Portuguese Foundation for Science and Technology) within project
POCI-01-0145-FEDER-006961.

References

1. J-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge
University Press, 2010.

2. J. M. Atlee and J. Gannon. State-based model checking of event-driven system
requirements. IEEE Transactions on Software Engineering, 19(1):24-40, 1993.

3. J. Barnes, R. Chapman, R. Johnson, B. Everett, and D. Cooper. Engineering the
tokeneer enclave protection software. In IEEFE International Symposium on Secure
Software Engineering. IEEE, 2006.

4. BSI. Medical device software - software life cycle processes. Technical Report
BS EN 62304:2006, British Standards Institution, CENELEC, Avenue Marnix 17,
B-1000 Brussels, 2008.

5. J. C. Campos and M. D. Harrison. Systematic analysis of control panel interfaces
using formal tools. In N. Graham and P. Palanque, editors, Interactive systems:
Design, Specification and Verification, DSVIS ’08, number 5136 in Lecture Notes
in Computer Science, pages 72—-85. Springer-Verlag, 2008.

6. A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Se-
bastiani, and A. Tacchella. NuSMV 2: An Open Source Tool for Symbolic Model
Checking. In K. G. Larsen and E. Brinksma, editors, Computer-Aided Verification
(CAV 702), volume 2404 of Lecture Notes in Computer Science. Springer-Verlag,
2002.

7. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 1999.

8. L. Freitas and A. Stabler. Translation strategies for medical device control software.
Technical report, Newcastle University, August 2015.

9. M. D. Harrison, P. Masci, J. C. Campos, and P. Curzon. Demonstrating that
medical devices satisfy user related safety requirements. In Michaela Huhn and
Laurie Williams, editors, Software Engineering in Health Care: 4th International
Symposium, FHIES 2014, and 6th International Workshop, SEHC 201/, Washing-
ton, DC, USA, July 17-18, 2014, Revised Selected Papers, pages 113-128. Springer
International Publishing, Cham, 2017.

10. C. Heitmeyer, J. Kirby, B. Labaw, and R. Bharadwaj. Scr: A toolset for specifying
and analyzing software requirements. In Computer Aided Verification, pages 526—
531. Springer, 1998.

18

11

12.

13.

14.

15.

16.

17.

Harrison and others

G. J. Holzmann. Trends in software verification. In Keijiro Araki, Stefania Gnesi,
and Dino Mandrioli, editors, FME 2003: Formal Methods, volume 2805 of Lecture
Notes in Computer Science, pages 40-50. Springer-Verlag, 2003.

B. Kim, A. Ayoub, O. Sokolsky, I. Lee, P. Jones, Y. Zhang, and R. Jetley. Safety-
assured development of the GPCA infusion pump software. In Proceedings of the
ninth ACM international conference on Embedded software, EMSOFT ’11, pages
155-164, New York, NY, USA, 2011. ACM.

G. Klein, J. Andronick, K. Elphinstone, T. C. Murray, T. Sewell, R. Kolanski, and
G. Heiser. Comprehensive formal verification of an OS microkernel. ACM Trans.
Comput. Syst., 32(1):2, 2014.

P. Masci, A. Ayoub, P. Curzon, M.D. Harrison, I. Lee, O. Sokolsky, and H. Thim-
bleby. Verification of interactive software for medical devices: PCA infusion pumps
and FDA regulation as an example. In Proceedings ACM Symposium Engineering
Interactive Systems (EICS 2013), pages 81-90. ACM Press, 2013.

A.F. Monk, M. Curry, and P.C. Wright. Why industry doesn’t use the wonderful
notations we researchers have given them to reason about their designs. In D.J.
Gilmore, R.L. Winder, and F. Detienne, editors, User-centred requirements for
software engineering, pages 185—189. Springer, 1991.

US Food and Drug Administration. General principles of software validation:
Final guidance for industry and FDA staff. Technical report, Center for Devices
and Radiological Health, January 2002. Available at http://http://www.fda.
gov/medicaldevices/deviceregulationandguidance.

S. Yeganefard and M. Butler. Structuring functional requirements of control sys-
tems to facilitate refinement-based formalisation. In Proceedings of the 11th Inter-
national Workshop on Automated Verification of Critical Systems (AVoCS 2011),
volume 46. Electronic Communications of the EASST, 2011.

