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Abstract— The multirotor UAVs are being integrated into a
wide range of application scenarios due to maneuverability
in 3D, versatility and reasonable payload of sensors. One of
the application scenarios is the inspection of structures where
the human intervention is difficult or unsafe and the UAV can
provide an improvement of the collected data. At the same time
introduce challenges due to low altitude missions and also the
fact of being manually operated without line of sight. In order to
overcome these issues, this paper presents a LiDAR-based real-
time collision avoidance algorithm, denoted by Escape Elliptical
Search Point with the ability to be integrated into autonomous
and manned modes of operation. The algorithm was validated
in a simulation environment developed in Gazebo and also in
a mixed environment composed by a real robot in an outdoor
scenario and simulated obstacle and LiDAR.

I. INTRODUCTION
In recent years, there has been an increasing research

effort with multirotor Unmanned Aerial Vehicle (UAV) in
a wider range of scenarios, such as search rescue missions,
surveillance and inspection tasks. One of the reasons is the
fact that this type of vehicles provides the required ma-
neuverability to navigate through complex three-dimensional
scenarios with a reasonable payload of sensors. Considering
the application scenarios of inspection, the multirotor UAV
provides the ability to collect data from different positions,
angles and distances, and at the same time reduce the cost
and the human risk. Most of this operations are performed
through an operator or more recently in fully autonomous
missions. In both cases, and due to low altitude operation
and the existence of structures like buildings, power lines or
even natural obstacles like trees, the risk of crashing, damage
structures and injury surrounding people has been increased.

Therefore, this paper proposes to address the research area
of real-time obstacle avoidance for manned and autonomous
multirotor UAVs. Based on the work developed by [1]
for rotorcraft UAVs and the evaluation performed of the
advantages of LiDAR solutions [2] for obstacle avoidance,
we propose to extend the method with a reactive obstacle
avoidance algorithm based on LiDAR and applied to mul-
tirotor, denoted by Escape Elliptical Search Point - LiDAR-
based Collision Avoidance (E2SP-LCA).

The E2SP-LCA algorithm bounds the map and searches
for any point that lies inside a safety volume (obstacle). Due
to the dynamics of the vehicle, the safety volume will be
proportional to the vehicle speed, taking also into account
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the direction of the velocity and the position of the waypoint.
When an obstacle is found, the algorithm evaluates a set of
candidate points to avoid the collision (escape points). As
the UAV is normally blind above and below its position, the
algorithm proposes to avoid the obstacle performing a path
as horizontal as possible. If no valid escape point is found, it
will intentionally deviate from the original trajectory to try
to overpass the obstacle.

The paper is outlined as follows: Section II presents
the related work starting with the obstacle detection and
map representation followed by real-time obstacle avoidance
techniques. In Section III is detailed the E2SP-LCA, followed
by its implementation and the obtained results, in Section
IV. In Section V are exposed some algorithm remarks and
considerations, followed by Section VI that presents the
conclusions and the proposed future work to improve this
project.

II. RELATED WORK

This section presents the research works related to map
representation and obstacle detection, as well as real-time
obstacle avoidance algorithms.

A. Obstacle Detection and Map Representation

In the field of multirotor UAVs, the detection of an
obstacle is mainly performed through monocular cameras[3],
LiDAR[2][4], stereo cameras[2] or their combination[2],
depending on the application scenario. Their advantages and
drawbacks have been evaluated in [2].

Being active sensors, LiDARs are typically insensitive to
the light of the environment, having more accuracy and better
performance for far obstacles. The low processing power
required makes them more efficient for real-time applica-
tions. However, the collected data is produced sequentially,
the maximum range is limited and requires more electrical
power. Approaches like [4] and [5] are some of the examples
that use LiDAR-based detection systems.

On the other side, the stereo cameras provide a snapshot
of the environment at one instant (global shutter cameras),
producing a dense 3D range information, with color cor-
respondence and capable of detecting objects from long
distances (depending on the baseline between the cameras).
However, this system highly depends on the visual envi-
ronment conditions and requires a significant processing
power. Besides that, its range accuracy decreases with range
squared. In [6] is used a stereo vision system for obstacle
detection.



In addition to the systems referred above, there are other
solutions like [7] and [3] that uses a monocular technique to
avoid collision with structures.

In the most basic way, the obstacles can be represented on
a map by a simple point cloud with the measures given by a
LiDAR or the features extracted from images. However, this
is computationally costly and can compromise the real-time
requirement. For reducing this cost, the data can be clustered,
resulting in a sparse representation. Another disadvantage of
this method is that is not possible to distinguish between free
and unmapped spaces.

Using a point cloud as input, the memory space required
for storing the map information can be reduced using tech-
niques like the representation by means of octrees, Octomaps
or Voxel Grids [8].

Other ways of representing occupancy maps are analyzed
and summarized in [9].

B. Real-time Obstacle Avoidance Algorithms

In [4] is presented a solution with a helicopter to perform
infrastructure inspection with collision avoidance, using a
fixed 2D LiDAR and two flight modes. The pirouette descent
mode creates a spinning LiDAR with a cylindrical field
of view by rotating the helicopter around its yaw axis
while descending vertically. The waggle cruise flight mode
performs a horizontal sweep while flying forward, allowing
to scan a corridor-shaped space. It provides two solutions
to avoid obstacles and reach the goal, however, it does not
have a global map, which implies some constraints for the
avoidance maneuver to be completed successfully, as not
having obstacles above the vehicle. Besides that, as it only
uses a fixed 2D LiDAR, the quality of the generated map is
strongly dependent on the quality of its position estimation.

Another obstacle avoidance maneuver is presented in [1]
that considers the vehicle as a sphere and constructs a safety
volume around it. Whenever an obstacle enters the safety
volume, it constructs an ellipse around the obstacle and
searches for a point that allows a free path from the current
position to the escape point and that also ensures a collision-
free path through a defined distance from the escape point,
on the direction to the waypoint. If no clear path is found,
it extends the ellipse radius (a certain number of times) and
performs another search. If no free path is found with the
maximum ellipse radius, the UAV will hover until a pilot
takes control of it.

The escape point has the advantage of allowing an uninter-
rupted flight for avoiding the obstacle, otherwise, the vehicle
would need to stop (hover) and recalculate the trajectory
considering arbitrary avoidance points.

Although it is applied to aircraft, Sabatini et al. [10]
have implemented an obstacle avoidance ellipsoid-shaped
safety zone around obstacles. The planning algorithm for the
obstacle avoidance takes into account the aircraft dynamics,
velocity, acceleration and distance to the obstacle. In a case
of high velocities and/or accelerations, the time to find an
alternative path and the distance to the obstacle are the major

inputs of the cost function, as they are the main parameters to
be considered in critical situations (an aircraft cannot hover).

III. E2SP-LCA - ESCAPE ELLIPTICAL SEARCH POINT -
LIDAR-BASED COLLISION AVOIDANCE

The E2SP-LCA can be resumed as an algorithm that
follows the classical architecture of mobile robots navigation.
Whenever it gets an update of the occupancy map, performs
a search for potential obstacles between the UAV position
and the waypoint, that can cause a damage on the vehicle or
blocking it from reaching the desired position (algorithm 1),
and tries to avoid them.

Figure 1 illustrates the algorithm behavior. On every map
update, it starts to search for obstacles inside a safety zone
that is created around the UAV, and propagated through a
certain direction, by means of spheres of variable radius srad
and centers distance dcenter.

The direction of the safety zone is given by the weighted
sum (parameters n and m) of the vector from the vehicle po-
sition to the waypoint (~u) and the UAV velocity ( ~W Pvelocity).
For calculating the center’s separation is used the equation
1, presented in [1], where V is the voxel size, however,
the radius of the spheres is a defined parameter that is
proportional to the vehicle’s velocity norm. This approach
ensures that some vehicle dynamics (at every moment) is
taken into account in the search for potential obstacles, as
the velocity affects the safety volume size and propagation
direction.

Algorithm 1 W U = E2SP(W Ob, W P, waypoint)
obstacle← false

srad ← k ·
(∥∥∥ ~W Pvelocity

∥∥∥+ 1)

)
~u← waypoint−W Pposition

~d← n · û+m · ˆW Pvelocity

dcenter ← 2
√
srad · V − V 2

4

for i = 0→ n spheres do
center[i] =W P + i · dcenter ·

~d
‖d‖

end for
for each cell ∈W Ob do

for each center do
distance←‖cell − center‖
if distance < srad then
obstacle← true
if distance < closest dist then

W Oc ← cell
closest dist← distance

end if
end if

end for
end for
if obstacle then

W U← sch esc(W Ob,
W P, waypoint,W Oc)

end if
return W U



Fig. 1. E2SP-LCA algorithm representation.

dcenter = 2

√
sradV −

V 2

4
(1)

If any occupied cell is inside the spheres, the path is
considered obstructed and is called the function to search
for an alternative path (sch esc). If more than one obstacle
is found, for searching an escape will be only considered
the closest obstacle W Oc, as it is the one with the greatest
probability of causing an UAV crash.

For search for an alternative path, it is placed an ellipse
centered on the closest obstacle, with a horizontal direction
~ehor normal to the vector ~w, defined by the vehicle position

and the closest obstacle, and a vertical direction ~ever parallel
to the vertical axes of the world frame (k̂ = (0, 0, 1)).

With an ellipse defined by equation 2, θ can be limited to
a ∆θ value. For example, if ∆θ = π/2, θ ∈ [−π;−3π/4] ∪
[−π/4;π/4]∪ [3π/4;π[, will result a valid search marked in
blue on figure 2.

x = rhor · cos(θ)
y = rver · sin(θ)

(2)

Fig. 2. Ellipse aperture. Valid zone in blue. Ellipse defined by a horizontal
radius rhor and a vertical radius rver .

Defining the valid angular aperture of the ellipse will
constrain the avoidance path, not allowing the avoidance
from above or below the obstacle. This angular aperture can
be configured taking into account the application and the
sensor in use. For example, if it is used a LiDAR sensor with
a low vertical aperture, it is interesting to keep the vehicle
as horizontal as possible.

For optimizing the avoidance path, the distance to travel
should be as small as possible, so the direction of search
(right to left or left to right) of a valid escape point will
depend on the values of the distance from the left and right
horizontal limit edges of the ellipse to the waypoint (distl
and distr, respectively). Those limit edges are obtained by
setting θ to 0 (zero) or π on the ellipse equation 6 with the
parameters represented on figure 2.

After been chosen the first escape point to be considered,
the algorithm will search candidates on the edge of the
ellipse (limited by an angular aperture ∆θ), by incrementing
(or decrementing) an angular step θstep. For each candidate
escape point, the following conditions are evaluated:

• Clear path from current position to the candidate escape
point;

• Clear path between the escape point and the waypoint
along a predefined distance (L);

If both conditions are verified, the candidate escape point
is considered valid, otherwise, the ellipse size is increased
by ∆r hor and the procedure is repeated for the new ellipse.

A clear path is determined by verifying if there is any
point/obstacle pt that lies inside a cylinder between two
points p1 and p2 with radius srad. For that, two vectors are
generated, ~d12 = p2− p1 and ~d1t = pt− p1. Calculating the



Fig. 3. Obstacle avoidance high level architecture.

dot product:

D = ~d12 · ~d1t (3)

If D < 0 or D >
∥∥∥ ~d12∥∥∥2, the point is outside the cylinder

limits, otherwise, it has to be tested the closest distance from
pt to the line segment defined by p1 and p2.

Assuming α as the angular difference between vectors d12
and d1t, and considering the fact that sin2 + cos2 = 1 and the
dot product D = cosα ·

∥∥∥ ~d12∥∥∥ ·∥∥∥ ~d1t∥∥∥ which is equivalent to
equation 3. Considering the distance from a point to the line
segment, defined by sinα ·

∥∥∥ ~d1t∥∥∥ and the squared distance to

the cylinder center given by d2cyl = (1− cos2 α) ·‖d1t‖2 we
obtain

d2cyl =

(
1− ( ~d1t · ~d12)2/

(∥∥∥ ~d1t∥∥∥2 ·∥∥∥ ~d12∥∥∥2)) ·∥∥∥ ~d1t∥∥∥2 (4)

by applying the dot product D. Therefore, considering
equation 3, dcyl can be rewrite as:

d2cyl =
∥∥∥ ~d1t∥∥∥2 −

 D∥∥∥ ~d12∥∥∥


2

(5)

Having equation 5, if d2cyl > s2rad, the path is clear,
otherwise, there is an obstacle on the evaluated path and
the candidate escape point is not valid.

Once a valid candidate escape point is found (using
equation 6 with θ constrained), it is passed for the navigation
through (W U).

W U =W Oc + rhor · ˆehor · cos θ

+ rver · ˆever · sin θ
(6)

If no valid escape point is found, after a predefined number
of increases of the ellipse radius, the vehicle is commanded
to move side-to-side through parameterized distance. If in
that movement a clear path is found, the normal operation
is returned, if not, the vehicle return to the point where
the obstacle was detected, generates a warning message and
waits for a manual control.

IV. IMPLEMENTATION AND RESULTS

In order to evaluate the E2SP-LCA algorithm, we di-
vided the validation into two phases: the first one was
performed with the support of the simulation environment
Gazebo[11][12] and the second one in a mixed environment
composed by a real multirotor UAV in an outdoor scenario
and a simulated obstacle and LiDAR sensor. Both approaches
were implemented to validate the robustness of the E2SP-
LCA algorithm into different scenarios and in the particular
case of the second test, also to ensure that the first tests of the
algorithm were performed without risking a UAV with higher
payload and more costly sensors like the LiDAR Velodyne
VLP-16.

The algorithm was implemented in the framework ROS
(Robotic Operating System)[13] in order to ensure a more
straightforward integration between the simulation environ-
ment and the real multirotor UAV. The high level archi-
tecture is despited in figure 3 and is composed by three
layers: Sensors, responsible for the sensor data acquisition,
providing the LiDAR output in body frame reference BL
and an estimated vehicle pose, velocity and acceleration in
global frame W P through an Extended Kalman Filter (EKF)
data fusion block of GPS and INS; Perception/Mapping,
responsible for building a list of obstacles with the support
of the Octomap toolbox that will generate unbounded voxels
W O with a predefine resolution of 0.4 meters. To improve
the CPU performance and ensure real-time requirements we
introduce a new feature to the Octomap to create a bounded
voxels W Ob that will be passed through a topic to the
avoidance planning layer; Avoidance Planning, implements
the E2SP-LCA algorithm detail in section III based on the
bounded voxels W Ob and provides an output action denoted
by W U with a collision avoidance path planning escape point
expressed in equation 6.

A. Simulation

The simulation environment chosen to benchmark E2SP-
LCA algorithm was Gazebo. Other simulators were con-
sidered, like MORSE[14] but the Gazebo was the one
that provides a feasible integration with the autopilot PX4
project[15] through the Software In The Loop (SITL) and
a simulated multirotor UAV model with a LiDAR payload
sensor[16].

The simulation environment is depicted in figure 4, is
composed by several walls and a path defined by a purple



Fig. 4. Avoidance path into a complex scenario, with the purple line as
ideal path, the yellow line as the UAV trajectory, red dot as the left extreme
of the ellipse and the yellow dot as the chosen escape point

line in the right figure. The obstacle avoidance trajectory is
represented by the yellow line and is possible to observe that
the UAV was able to overcome the obstacles and reach in a
safe manner the desired position.

Figure 5 presents a situation where the UAV was not able
to detect an escape point based on the predefined angular
constrain (∆θ = π/2) in order to avoid the UAV pass the
obstacle from above (figure 2). This figure also represents a
situation where the vehicle is capable of finding an escape
after performing a movement parallel to the wall.

Fig. 5. Avoidance of a large obstacle, with the purple line as ideal path,
the yellow line as the UAV trajectory, green dot as the right extreme of the
ellipse and the yellow dot as the chosen escape point

In order to evaluate the contribution of the bounded voxels
W Ob method against the unbounded voxel map, it was
created a simulated environment, depicted in figure 6. The
UAV navigate through it and the processing time for the
obstacle search algorithm took an average of 7 ms with
a standard deviation of 4.43 ms. For a fixed volume of
20 meters around the UAV position, the processing time
decrease to an average of 1 ms with a standard deviation
of 0.36 ms. Once the map representation is completed, the
unbounded method will stabilize in processing time while
the bounded method keeps a low and constant time of

processing during the UAV navigation. This allows us to
conclude that this approach is more feasible in unstructured
scenarios where the vehicles must navigate and keep the real-
time constraints independent of the scenario.

Fig. 6. Map for testing bounding method

With respect to the avoidance escape point, the required
time processing in the simulation environment was 1.41 ms
with a standard deviation of 0.97 ms for a scenario detailed
in figure 4 composed by ∼ 760 voxels (bounded voxels).
The simulations were performed with a CPU i7-740QM @
1.73GHz, 8 GB of DDR3 RAM, NVIDIA GeForce GTX
460M, running the Ubuntu 14.04 LTS.

B. Field tests with a real UAV and a simulated sensor and
obstacle

Based on the results obtained in the simulation environ-
ment, the second phase was the validation with a real UAV in
an outdoor scenario (ISEP Campus) mixed with a simulated
obstacle and payload LiDAR. The LiDAR used during field
tests and the obstacle were the one that has been used for
the simulation tests detail in section IV-A.

The implemented architecture is detailed in figure 7. The
UAV is running internally the obstacle avoidance describe in
figure 3 and receives remotely the simulated data from the
LiDAR.

Fig. 7. Implemented architecture for real UAV in an outdoor scenario
(ISEP Campus) mixed with a simulated obstacle and payload LiDAR.

The UAV is a customized hexacopter, depicted in figure
8, equipped with an open-source autopilot, Pixhawk board
running PX4 Firmware and an embedded onboard computer,
Odroid XU3, running Ubuntu 14.04 with Robot Operating
System (ROS) Indigo.

The outdoor field test was composed by a simulated ob-
stacle (3x3x1 meters) and the real UAV perform a trajectory



Fig. 8. Real UAV in an outdoor scenario (ISEP Campus) with virtual wall.

towards a position that requires an avoidance maneuver. The
trajectory and the avoidance path is depicted in figure 8, with
the yellow line being the UAV avoidance trajectory W U.

Fig. 9. UAV trajectory in RVIZ and in the Google Earth image. The yellow
line represents the real UAV avoidance trajectory W U.

For the field test scenario, the embedded CPU average
time processing for the obstacle search algorithm was 0.397
ms with a standard deviation of 0.1041 ms (∼ 83 bounded
voxels), with the avoidance escape point requiring 8.63 ms
with a standard deviation of 0.136 ms

V. REMARKS

The E2SP-LCA is a collision avoidance algorithm that is
capable of performing a safe inspection with low compu-
tational cost. This is obtained by considering as potential
obstacles only the ones that lie inside a bounded volume,
around the UAV position. The safety volume (volume inside
which any occupied cell will be treated as an obstacle) has a
dynamic behavior, once it is clearly dependent on the UAV’s
velocity, both in size (that depends on the velocity module)
and direction of propagation, that depends both on the vector
that connects the UAV current position and the desired one,
and on the direction of its velocity vector). This dependence
on the velocity vector can be tuned using the parameters n
and m (algorithm 1), which makes E2SP-LCA an algorithm
that takes into account some vehicle dynamics and suitable
for any multirotor UAV.

Another parameter that can be tuned is the aperture of the
search ellipse, as well as the valid zone, meaning that it can
be configured to work on a wide set of cases. For example,
considering the figure 2, if a vehicle is able to detect what
is above him and is operating on an environment where the
obstacles are wide and have low height, the algorithm can
be adapted to accept the top part of the ellipse as a valid
zone and give a greater value to rver than to rhor (this will
set a preference to overpass the obstacles from above).

Adding to this, this approach tries to find a solution
whenever a valid escape point is not found, moving parallel
to the obstacle and trying to find a clear path from a different
position(figure 5). However, the algorithm will perform this
maneuver only a limited number of times, not ensuring that
the desired point will be reached. If no valid path is found,
the algorithm will ask to the pilot to take control of the
vehicle, hovering on the position where it first detected the
obstacle.

As all the obstacles are referenced to a global frame, the
E2SP-LCA relies on a good navigation and estimation of the
vehicle’s position. Another drawback of this approach is that
the algorithm can enter on an infinite loop mode. This case
might happen on an environment with many obstacles, if it
keeps finding an obstacle while avoiding another (previously
detected), entering on a mode of constant avoidance that
might lead to a deviation from the desired point.

VI. CONCLUSIONS AND FUTURE WORK

The paper presents a LiDAR-based real-time collision
avoidance method for multirotor UAVs with the ability to
ensure an autonomous structure inspection mission without
a predefined out of bounds areas. The collision avoidance
method was validated in a simulation environment developed
in Gazebo and also in a mixed environment composed by a
real UAV performing a mission in an outdoor scenario and
a simulated obstacle and LiDAR. This approach provides
a safe method to validate the vehicle behavior without the
possibility of damage the sensors like LiDAR and also
the ability to test in a small-scale UAV (low payload). In
both scenarios, campus ISEP, and simulation environment,
the vehicle was able to detect the obstacle and generate a
collision avoidance safe path. For future work, we intend to
validate the algorithm with an UAV with payload capability
for a LiDAR Velodyne VLP-16 and perform the validation
with natural obstacles like trees and also in the presence
of structure obstacles, for instance, power lines, bridges and
electricity poles. Another line of work will be the integration
of the vision-based power line detection method denoted
by PLineD[17] with the E2SP - Escape Elliptical Search
Point. The expected output of this future research work
is the ability to combine the LiDAR information with the
monocular vision system required by the PLineD algorithm
and ensure an, even more, robustness UAV autonomous
inspection procedure.
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