
Exploiting Partial Knowledge for Efficient Model
Analysis

Nuno Macedo, Alcino Cunha, and Eduardo Pessoa

INESC TEC & Universidade do Minho, Portugal

Abstract. The advancement of constraint solvers and model checkers has
enabled the effective analysis of high-level formal specification languages.
However, these typically handle a specification in an opaque manner,
amalgamating all its constraints in a single monolithic verification task,
which often proves to be a performance bottleneck.
This paper addresses this issue by proposing a solving strategy that
exploits user-provided partial knowledge, namely by assigning symbolic
bounds to the problem’s variables, to automatically decompose a veri-
fication task into smaller ones, which are prone to being independently
analyzed in parallel and with tighter search spaces. An effective imple-
mentation of the technique is provided as an extension to the Kodkod rela-
tional constraint solver. Evaluation shows that, in average, the proposed
technique outperforms the regular amalgamated verification procedure.

1 Introduction

The steady advancement of constraint solvers and model checkers renders the
automatic analysis of software models increasingly efficient. Thus, high-level
formal specification languages – like Alloy [9], B [1] or TLA+ [10] – are currently
backed up by effective tool support that promotes the effortless specification and
analysis of complex systems. In fact, such frameworks have reached a level of
maturity that enables their application in industrial scenarios [16].

Nonetheless, such tools are still affected by scalability issues. One approach
to tackle this issue is to allow the user to provide additional a priori knowledge
about the problem’s domain, thus reducing its search space. For this effect, the
Kodkod [21] model finder supports the definition of partial instances, obtaining
impressive performance gains. Its language, based on relational logic, is sufficiently
simple, yet powerful, to be used directly by end users, but its relevance also lies
in its usage by the Alloy Analyzer to automate the analysis of Alloy specifications,
and as an alternative back-end for ProB, B’s model checker and animator.

Kodkod’s partial instances define lower- and upper-bounds for the problem’s
variables, concretely stating which values must and may be assigned to a variable,
respectively. While useful, such bounds are rather inflexible and often do not
allow the user to specify all available partial knowledge. In this paper we advocate
the support for richer partial instances by allowing the user to declare symbolic
bounds for the problem’s variables. We then show how such partial knowledge
can be exploited to improve the performance of automated analysis procedures.

Fig. 1: Dependency graph for the hotel room locking system.

Verification is typically handled opaquely by solvers, resulting in the “amalga-
mation” of the variables and constraints into a single search problem. Symbolic
bounds give rise to dependencies that can be used to automatically decompose
the amalgamated problem into smaller ones. Candidate partial solutions can be
generated from a subset of one such decomposed problem, and further refined
in independent solving tasks taking into account the remainder problem. This
strategy can lead to better scalability since these independent solving tasks i)
have smaller search spaces (in particular once the symbolic bounds specified by
the user are factored in) and ii) are prone to being executed in parallel.

Consider the analysis of the specification of a hotel room locking system [9].
The specification of this system in Kodkod consists of a set of Rooms, a set of
Keys (assigned to rooms through a relation keys) and a set of potential Guests,
restricted by appropriate constraints (e.g., the same key cannot be assigned to
two different rooms). These elements are static components of the problem, in the
sense that, although several assignments are possible, once defined they remain
frozen. Other parts of the system are dynamic and evolve over time (explicitly
modeled in Kodkod by the set of Time instants under analysis). This is the case,
for example, of the keys registered at the rooms (relation r_keys) or assigned to
guests (relation g_keys) at any given instant of time. The possible assignments
to those relations depend on the static ones (e.g., relation g_keys must only
relate existing Keys to potential Guests inside the Time period under analysis).
Unfortunately, in Kodkod this inclusion dependency cannot be captured by the
bounds defined in partial instances, requiring the user to express it in a normal
constraint. Using the extension proposed in this paper, such dependencies can be
explicitly declared using symbolic bounds in the partial instance definition (in
this case setting the upper-bound to the cross product of the static relations),
resulting in the dependency graph depicted in Fig. 1. Using information from
the dependency graph (in particular the number of dependencies), our proposed
solving strategy will split the problem, first generating candidate partial solutions
for a subset of variables. These partial solutions will then be incorporated into new
problems extended with the remaining variables and the respective constraints, to
be solved in parallel and with tighter bounds once the dependencies are resolved.
Naturally, not all of these candidate partial solutions can be extended to full
satisfiable instances, meaning that many of them can be discarded in this process.

This paper formalizes the strategy described above and implements it as an
extension to Kodkod. Kodkod is well-suited to deploy such strategy due to: i)

its native support for partial instances, that will allow an efficient embedding of
the partial solutions into the remainder problem; ii) its ability to incrementally
generate solutions, that will allow the efficient iterative generation of the partial
solutions; and iii) its powerful symmetry breaking mechanism, that will avoid the
generation of isomorphic candidate partial solutions. The implementation of the
strategy both relies and preserves these distinctive features. Experimental evalua-
tion of this extension shows that it can indeed outperform Kodkod amalgamated
execution for complex problems, particularly for satisfiable (SAT) problems. To
balance the performance of the technique for unsatisfiable (UNSAT) problems,
we propose a hybrid technique that minimizes performance deterioration in such
scenarios, preserving the benefits of the decomposed strategy otherwise.

Section 2 formalizes symbolic partial instances and the decomposed strategy.
Section 3 presents its implementation as an extension to Kodkod, which is then
evaluated in Section 4. Section 5 compares this work with previously proposed
techniques, and Section 6 wraps up and points directions for future work.

2 From Symbolic Bounds to Decomposed Model Finding

The proposed strategy is formalized over relational model finding problems as
embodied by Kodkod [21]. This formalization is sufficiently powerful and flexible
to express general analysis procedures like model checking and animation.

2.1 Relational Model Finding with Symbolic Bounds

Model finders search for variable bindings that satisfy certain problem constraints.
In Kodkod, problems are represented by a set of relations R with the associated
constraints specified in relational logic (a flavor of first-order logic enhanced with
transitive closure). A valid binding b : R → T , denoted by problem instance in
Kodkod, assigns to each relation a tuple set from T , constructed from a universe
of atoms A, such that a formula φ with free-variables from R holds. In order to
restrict the search space, upper- and lower-bounds are imposed to these relations
(known as a partial instance). The former typically encode typing restrictions,
while the latter may encode partial knowledge about the problem. The tuples
comprising these bounds must be uniform on their arity.

Definition 1. A (relational) model finding problem P is a tuple 〈A, l, u, φ〉 where
A is a universe of atoms, l, u : R → T assign to each relation variable r ∈ R
lower- and upper-bounds, respectively, with l(v) ⊆ u(v), and φ is a relational logic
formula over R variables. A binding b : R → T is a solution of P if φ holds and
b(v) ⊆ u(v)\l(v) for every r ∈ R.

For simplicity, components of P are denoted as AP , lP , uP and φP , respectively.
Fig. 2a depicts part of the encoding of the Hotel specification in Kodkod, for a

problem of size n = 2 (n is the max size of sets Room and Guest and the exact size
of Time and Key). The lower- and upper-bounds appear between square brackets in
the declaration of the variables. Notice how equal lower- and upper-bounds fix the

A= {R1,R2,K1,K2,G1,G2,T1,T2}
R= Time : [{T1,T2},{T1,T2}]

Key : [{K1,K2},{K1,K2}]
Room : [{},{R1,R2}]
Guest : [{},{G1,G2}]
keys : [{},{(R1,K1),(R2,K1),(R1,K2),(R2,K2)}]
guests : [{},{(R1,G1,T1),(R2,G1,T1),. . .,

(R1,G2,T2),(R2,G2,T2)}]
. . .
g_keys : [{},{(G1,K1,T1),(G2,K1,T1),. . .,

(G1,K2,T2),(G2,K2,T2)}]
φ = g_keys in Guest → Key → Time && . . . &&

all k:Key | one keys.k && . . . &&
all t:Time | one r.r_keys.t && . . .

(a) The Hotel problem in normal Kodkod.

A = {R1,R2,K1,K2,G1,G2,T1,T2}
R= Room : [{},{R1,R2}]

Key : [{K1,K2},{K1,K2}]
Guest : [{},{G1,G2}]
keys : [{},Room → Key]
Time : [{T1,T2},{T1,T2}]
guests : [{},Room → Guest → Time]
. . .
g_keys : [{},Guest → Key → Time]

φ = all k:Key | one keys.k && . . . &&
all t:Time | one r.r_keys.t && . . .

(b) The Hotel problem with symbolic
bounds.

Fig. 2: Hotel room locking system problem for n = 2.

valuation of Key and Time. The model finding procedure, denoted by JP K : R → T ,
searches for an instance for a problem P . Kodkod does so by encoding relations
into matrices of boolean variables and computing a propositional formula by
converting relational operators into matrix operations, which is then passed to
an off-the-shelf SAT solver. If there is no satisfying solution, an empty binding
⊥ : ∅ → T is assumed to be returned (this is not the same as an empty model
that binds every R variable to an empty tuple set).

Kodkod allows users to iterate through valid instances. This can be embodied
by a scenario exploration operation [13] next, that given the previous problem
and the last known solution, generates a novel problem to be solved:

next(〈A, l, u, φ〉, b) = 〈A, l, u, φ ∧ ¬b〉

For a binding b, b denotes its encoding into a predicate that exactly character-
izes it [13]: by adding the negation of this predicate to the iterated problem’s
constraints, only different instances will be generated.

Kodkod problems assume relations to be bound by constant tuple sets, as
depicted in Fig. 2a for Hotel. As mentioned above, upper-bounds usually encode
typing restrictions. For instance, we know that a valid binding for g_keys is
included in the Cartesian product of Room, Key and Time. However, since we
are forced to use constants in the declarations, the upper-bound must be ap-
proximated by the Cartesian product of the upper-bounds of those sets, and
a constraint must be included in the problem to enforce the desired typing
restriction (in Kodkod the Cartesian product is denoted by →).

In this paper we propose to extend Kodkod problems with a notion of symbolic
bounds, allowing users to bound relations with arbitrary Kodkod relational expres-
sions that explicitly refer other relations rather than using just constant tuple
sets. This will reduce the verbosity of the declarations and constraints, but most
importantly, will expose the dependencies between relations in their declaration,
that will be later exploited by the decomposed solving strategy presented in
Section 2.2. Using this extension, the upper-bound of relation g_keys can now be

declared directly as the desired Cartesian product (Fig. 2b), avoiding the extra
constraint in φHotel. From such bound declarations the dependency graph of the
declared relations can be constructed (see Fig. 1).

Naturally, symbolic bounds must be resolved prior to being solved. This
action, denoted by bP c for a problem P , is achieved by iteratively replacing
each relation reference with its respective bounds (lower or upper) and expand-
ing the relational expression. This process must eventually result in constant
bounds for every relations, thus the dependency graph must be acyclic. If the
relations referred in the symbolic bounds are not bound exactly, the relational
expression cannot exactly evaluated, and thus such relational expressions in must
also be included in φP . For instance, the upper-bound Room → Key of relation
keys would be resolved to {(R1,K1),(R2,K1),(R1,K2),(R2,K2)} and constraint
keys in Room → Key would be added to φHotel, since Guest is not exactly bound.

2.2 Decomposed Model Finding

A binding over a subset of variables Rp ⊆ R is a candidate partial solution of
a problem if it is within the bounds defined for Rp variables and the conjuncts
of the constraint defined exclusively over Rp hold. Let b|A denote the domain
restriction of mapping b to set A, and through an abuse of notation, φ|Rp

denote
the conjuncts of φ that refer exclusively to Rp.

Definition 2. A binding b : Rp → T is candidate partial solution of a model
finding problem P = 〈A, l, u, φ〉 with symbolic bounds if Rp ⊆ R for l, u :
R → T , and it is a solution of the partial (model finding) problem P↓ =
b〈A, l|Rp , u|Rp , φ|Rp〉c.

This definition assumes the empty binding ⊥ to be a candidate partial solution of
every problem. Partial solutions can be embedded into the bounds of the original
problem, binding Rp relations exactly, leaving only Rr = R\Rp to be solved.
Moreover, symbolic bounds in Rr referring to Rp variables will be assigned
stricter tuple sets after resolution. For relations depending uniquely on Rp (or
other exactly bound relations) resolution will exactly calculate the value of the
relational expressions in the symbolic bounds, avoiding the need for additional
constraints in φ, as in Fig. 2b. Let ⊕ denote the overriding of mappings.

Definition 3. A candidate partial solution b : Rp → A can be integrated into a
model finding problem P = 〈A, l, u, φ〉 as b〈A, l ⊕ b, u⊕ b, φ〉c, denoted by P ⊕ b.

The integration of a candidate partial solution b does not entail a SAT problem
by itself, since there may not exist an extension to b for which φ holds.

The decomposed model finding strategy will generate candidate partial solu-
tions until an instance is found to an integrated problem. This strategy is encoded
in Algorithm 1, relying only on regular model finding procedures. Essentially,
given the current state of the partial problem P↓, the procedure successively
generates candidate partial solutions p, that are integrated into the full problem
until a full solution is found or ⊥ is returned, rendering P UNSAT. Suppose P

Input: A model finding problem P = 〈A,R, l, u, φ〉 and a subset of variables
Rp ⊆ R.

Output: A solution for the problem P or ⊥, and the updated formula for the
partial problem.

P↓ ← 〈A, l|Rp , u|Rp , φ|Rp〉
repeat

p← JbP↓cK;
b← JbP ⊕ pcK;
if b = ⊥ then

P↓ ← next(P↓, p);
end

until b 6= ⊥ ∨ p = ⊥;
return 〈b, φP↓〉;

Algorithm 1: Algorithm for decomposed model finding.

Room : [{R1},{R1}]
Key : [{K1,K2},{K1,K2}]
Guest : [{G1},{G1}]
keys : [{(R1,K1),(R1,K2)},

{(R1,K1),(R1,K2)}]

(a) Candidate partial solution
p obtained from bHotel↓c.

Time : [{T1,T2},{T1,T2}]
r_keys : [{},{(R1,K1,T1),(R1,K1,T1),(R1,K2,T2),(R1,K2,T2)}]
. . .
g_keys : [{},{(G1,K1,T1),(G1,K1,T1),(G1,K2,T2),(G1,K2,T2)}]

(b) Result of integrating and resolving p into Hotel, i.e.
bHotel⊕ pc.

Fig. 3: Decomposed model finding for Hotel.

to be the Hotel problem in Fig. 2b and Rp to include Room, Key, Guest and keys.
Solving bP↓c could produce the candidate partial solution in Fig. 3a. After being
integrated into P and resolving the symbolic bounds as bP ⊕ pc, the constant
bounds in Fig. 3b are obtained. Note how these are considerable smaller than
those defined in the amalgamated problem in Fig. 2a, potentially speeding up the
solving of the integrated problem. This algorithm is prone to being parallelized
on the exploration of the integrated problems, as will be shown in Section 3.

The procedure is complete, since every partial solution may be eventually
explored. To speed up instance iteration, the current formula φP↓ of the partial
problem is also returned to avoid the generation of candidate partial solutions
p that have already been fully explored (i.e., for which problem JbP ⊕ pcK has
already returned ⊥). This process cannot be managed by next since the partial
solution under instance b may still produce additional full solutions. Iteration of
decomposed problems is thus captured by the following definition, that given the
output of Algorithm 1 returns a new problem that can be inputed back into it:

next(〈A,R, l, u, φ〉, 〈b, φP↓〉) = 〈A,R, l, u, φ ∧ ¬b ∧ φP↓〉

2.3 Criterion for Decomposing Problems

The previous section has shown how to decompose the model finding of a problem
given a subset of variables Rp. This subset can be defined manually, but ideally,

it should be derived automatically, and several criteria can be proposed to do so.
The usage of symbolic bounds enabled us to define a simple criterion that lead
to substantial gains in efficiency in most examples in our evaluation.

Looking at the entailed dependency graph and given a threshold t, relations
with outdegree (number of dependencies) bigger than t, or that depend directly
or indirectly from one of those, are left out of Rp. The intuition behind this
criterion is that variables with more dependencies benefit more from prior solving.
If more than a single connected component is left, only the largest one if kept
in Rp. The number of candidate partial solutions should be manageable, and
such disconnected components usually give rise to an explosion of non-symmetric
solutions, unlike connected relations whose valuations are most likely restricted by
the constraints. We also found that setting t to the maximum outdegree typically
provides optimal performance. In our running example, this would assign to Rp
Room, Key, Guest and keys, resulting in a behavior similar to that of Fig 3. The
criterion was applied to all examples considered in Section 4.

3 Decomposed Kodkod

This section describes a concrete implementation of the decomposed strategy
described in the previous section as an extension to Kodkod [11].

3.1 Implementation Overview

The decomposed solver implements the strategy presented in Section 2.2: given
a problem P and a set of Rp variables, the procedure automatically extracts
φP |Rp depending on the occurrence of Rp variables, and then solves the problem
following the general idea behind Algorithm 1. P↓ is deployed as a regular
Kodkod problem and generates candidate partial solutions pi, and for each pi,
an integrated problem P ⊕ pi is created that can also be deployed under regular
Kodkod. To avoid unnecessary translations, φP |Rp

is not included in the integrated
problem, since it is already known to hold for pi. However, unlike the abstract
formalization from Section 2.2, these integrated problems are launched in parallel
rather than explored sequentially. The number i of candidate partial solutions
is unknown a priori, so a (configurable) threshold is imposed on the number of
launched parallel threads. The state of P↓ is also internally preserved, rather
than being constructed at each iteration, benefiting from the performance gains of
incremental SAT solving. When one of the P ⊕ pi procedures finishes and is SAT,
the full solution sik is pushed into a blocking queue that the user can inspect.
UNSAT integrated problem are discarded. Remainder integrated problems keep
being solved and launched in the background until the blocking queue fills up,
providing a buffer of full solutions.

When the user asks for another solution succeeding sik , the system iterates
the P ⊕pi problem (by negating the full solution sik into it), and pushes it to the
execution queue (which is LIFO since it is cheaper to solve iterated problems).
Nonetheless, other integrated problems executing in the background could have

already pushed solutions into the queue, so there is no guarantee that succeeding
full solutions will share the same partial solution. Thus, although the set of
candidate partial solutions explored is identical, iteration order differs from that
of Algorithm 1. The set of solutions returned by each of the integrated problem
is disjoint since partial solutions are unique. Moreover, SAT integrated problems
are directly and independently iterated (unlike the sequential Algorithm 1 that
iterated the overall decomposed problem).

For UNSAT problems, every candidate partial solution must be explored,
which may entail an overwhelming number of integrated problems to solve. As will
be evident in Section 4, this may be a bottleneck for the decomposed strategy. To
address this issue, a hybrid strategy is proposed where the integrated problems
are paired with a thread solving the amalgamated problem P . In the worst
case, P will finish first and be handled as a regular model finding problem
(terminating the running integrated problems); in the best case a SAT (or every
UNSAT) integrated problem will finish before P , terminating it. This guarantees
no repeated full solutions are returned. This strategy resembles portfolio parallel
SAT solving [8], where identical solvers with different parameters competitively
solve the same problem. Nonetheless, the hybrid approach is expected to have
slightly deteriorated performance due to cache interference.

3.2 Symmetry Breaking

Symmetry breaking greatly reduces the number of generated solutions by de-
termining equivalences between atoms and avoiding the generation of instances
considered isomorphic. This is particularly relevant when solving partial prob-
lems as it determines the number of integrated problems that will be launched.
Kodkod’s symmetry breaking procedure starts by detecting the symmetries of
a problem based on its bounds [21], and then generates a symmetry breaking
predicate [6] that is added to the problem’s constraint. This section describes how
these procedures were adapted in order to be sound in the decomposed scenario.
Symbolic bounds are assumed to be resolved at this point.

Symmetry detection searches for atom permutations that map valid bindings
to valid bindings and invalid to invalid based on the declared bounds. For in-
stance, relation s : [{},{(A1,B1),(A2,B1)}] induces a symmetry {A1,A2}, since
permuting these two atoms results in identical bounds (see [21] for technical
details). Thus, solutions s = {(A1,B1)} and s = {(A2,B1)} are considered iso-
morphic. Clearly, the fixed valuation for Rp relations in integrated problems
cannot be considered as these would break additional symmetries: assuming
Rr = s and Rp = r :[{},{(A1,B1),(A2,B1)}], partial solution r = {(A1,B1)})

would break the symmetry between A1 and A2, distinguishing s = {(A1,B1)} from
s = {(A2,B1)}. The bounds of P↓ may also cause incongruences if considered
independently. For r :[{},{(A1,B1),(A2,B1)}] and s : [{},{(A1,B1),(A1,B2)}]

no symmetries are detected, but if Rp = r and P↓ considers only r, symmetry
{{A1,A2}} would be detected, meaning that it will return, for instance, solution
r = {(A1,B1)} and not r = {(A2,B1)}. The issue persists in integrated problems,
as considering only s would result in the symmetry {B1,B2}. To preserve the

soundness of the symmetry detection procedure, the original bounds Pl and Pu of
every relation R must be considered in both the partial and integrated problems.
Relations not relevant to each problem should then be ignored when generating
the symmetry breaking predicate. Our extension implements this strategy.

The generation of the symmetry breaking predicate imposes an ordering on
the boolean variables resulting from the translation of the relations R into SAT,
constructs a lexicographical order over them and generates predicates that force
minimal valuations (see [6] for details). The main insight is that the variable
ordering must be preserved between the partial problem and the integrated
problems, otherwise the procedure will not be sound. Consider an example
with r : [{},{A1,A2}] and s : [{},{A1,A2}], producing 4 boolean variables,
rA1, rA2, sA1 and sA2, denoting whether A1 and A2 belong to r and s, respectively.
Since A1 and A2 are symmetric, a lexicographical order [rA1, sA1] ≤ [rA2, sA2]
will be constructed, allowing 10 different valuations for the boolean variables.
Now, if Rp = s, 3 partial solutions will be generated, s = {}, s = {A2} and
s = {A1,A2}, giving rise to 3 integrated problems with [rA1,F] ≤ [rA2,F], [rA1,F] ≤
[rA2,T] and [rA1,T] ≤ [rA2,T]. These allow only 9 valuations: solution r = {A2}

and s = {A1} will be disregarded. If the ordering is preserved, problems with
[F, rA1] ≤ [F, rA2], [F, rA1] ≤ [T, rA2] and [T, rA1] ≤ [T, rA2] allow the expected 10
solutions. Our implementation guarantees that the ordering is preserved between
partial and integrated problems by prioritizing Rp variables.

4 Empirical Evaluation

To evaluate the performance of the procedure, several Kodkod problems with
scalability problems were collected. Hotel(1) is a SAT version of the Hotel

specification where a counter-example is found, and Hotel(2) is a fixed UNSAT
version. RBT(1) is a structural problem that generates red-black trees (SAT) with
n nodes, while RBT(2) checks whether every red-black tree is balanced (UNSAT).
Hand is a structural problem that models the Halmos handshake puzzle for n
persons: Hand(1) generates instances of the puzzle (SAT) and Hand(2) checks
whether the answer to the puzzle holds (UNSAT). Regarding dynamic problems,
Dijk models Dijkstra’s mutual exclusion algorithm for n processes and mutexes:
Dijk(1) searches for a valid instance (SAT) while Dijk(2) checks whether
deadlocks may occur (UNSAT). Ring models a leader election algorithm over
ring network topologies: Ring(1) checks a liveness property that fails (SAT),
in Ring(2) the liveness property holds (UNSAT), and Ring(3) checks a safety
property that holds (UNSAT). Finally, Span models a distributed algorithm that
calculates the spanning tree of a graph, with Span(1) and Span(2) searching for
instances with different properties (both SAT). For Ring and Span, n denotes
the number of nodes in the network. Since Kodkod may only perform bounded
model checking, trace length t of 15 was imposed on Dijk, 20 on Hotel and Ring,
and 9 on Span. These problems, available in the code repository [11], range from
very few candidate partial solutions to tens of thousands, as well as from low to
high satisfiability ratios. All were modeled with symbolic bounds, which have a

larger impact in the search space of Dijk and Hotel, and decomposed according
to the criterion from Section 2.3.

4.1 Setup

Tests were run in amalgamated, parallel and hybrid mode, with and without
symbolic bounds, for increasing n sizes, with a timeout (TO) of 10000 seconds.
Problems solved under a second are not presented since performance differences
would be negligible. The most efficient SAT solvers supported by the latest version
of Kodkod [20] were used, namely Glucose [2] and MiniSat [7]. The performance
tests were run on commodity hardware, namely in a quad core 4 GHz Intel Core
i7 with hyperthreading, with 8 GB memory and running OS X 10.10.

Decomposed problems were solved with 4 parallel integrated problems (3 in
hybrid mode). Our tests show that, as expected, the performance of the purely
parallel approach increases with the number of threads. However, in hybrid mode,
the performance is deteriorated when the amalgamated problem terminates first,
due to cache interference. For instance, in RBT(1) for n = 10, an integrated
problem terminates first, at 3.8s, 4.0s and 4.3s for 2, 4 and 6 threads, respectively.
In contrast, in RBT(2) at n = 8 the amalgamated problem terminates first, at
1.3s, 1.5s and 1.8s for 2, 4 and 6 threads, respectively. The 4 threads provide a
reasonable balance between the benefits of the decomposition while still relying
on the amalgamated problem in the worst case scenario.

Since the parallelization of the solving process is at the core of our approach,
its performance was also compared with that of state-of-the-art parallel SAT
solvers over amalgamated problems. Both Syrup [2] (Glucose’s parallel version)
and Plingeling [5] (Lingeling’s parallel version) were considered, which ranked
at the top of the most recent SAT race1. Plingeling is the only parallel SAT
solver currently distributed with Kodkod, although Syrup could be trivially added
since Glucose is already supported. It should be noted, however, that, unlike our
technique, these parallel SAT solvers do not yet support incremental executions,
and as such cannot be used to efficiently iterate through alternative solutions.

The results for the SAT and UNSAT problems using Glucose are summarized
in Tables 1 and 2, respectively, including the number of candidate partial solutions
(p#), the satisfiability ratio (p%, estimated for larger p# values), the performance
of the amalgamated (T0), purely parallel with regular (Tp) and symbolic bounds
(Ts) and hybrid procedures with symbolic bounds (Th), as well as the performance
gain between T0 and Th (G). The results are detailed in Fig. 4 for RBT and Hotel,
including Syrup’s performance.

4.2 Satisfiable Problems

For most problems (Dijk(1), Hand(1), Hotel(1) and RBT(1)) the hybrid ap-
proach considerably outperforms the amalgamated execution, even for problems
with a large number of candidate partial solutions and reduced satisfiability ratio,

1 http://baldur.iti.kit.edu/sat-race-2015/.

http://baldur.iti.kit.edu/sat-race-2015/

like RBT(1). In fact, the speedup may reach orders of magnitude, like Hand(1) at
n = 16, Hotel(1) at n = 11 and RBT(1) at n = 12, with speedups of 916x, 1086x
and 118x, respectively. At larger n values, several amalgamated problems timeout
while the decomposed procedure still takes few seconds to execute. As Figs. 4a
and 4c show, for SAT problems the performance of amalgamated executions tends
to increase exponentially, unlike the decomposed strategy. For Span(2) speedups
are less significant, going up to 4.6x. Finally, for Ring(1) and Span(1), results
range from slowdowns of 0.5x to speedups of 1.2x. Here, it can be seen that the
purely parallel approach would actually be outperformed by the amalgamated
procedure, but the hybrid mode balances the losses. However, these problems
were solved below 6s, thus these differences are not very significant. For the
specifications for which symbolic bounds impact the search space, (Dijk(1) and
Hotel(1)) the purely parallel approach shows in average a 4x speedup. For the
other specifications, performance differences are marginal, as expected.

Results with MiniSat (not shown in the table) in general mirror those obtained
with Glucose. For instance, Hand(1) at n = 14, Hotel(1) at n = 9 and RBT(1)

at n = 10, have speedups of 528x, 376x and 14x, respectively. Regarding the
comparison with parallel SAT solvers, Syrup follows the tendency of Glucose,
as hinted by Figs. 4a and 4c, albeit with considerably improved performance.
Thus, problems that were considerably outperformed by the decomposed strategy
remain so: Hand(1) at n = 16, Hotel(1) at n = 11 and RBT(1) at n = 12, have
speedups of 650x, 255x and 7x, respectively. For Ring(1), Span(1) and Span(2),
which are solved below 6s, Syrup actually performs slightly worse than Glucose.
For the considered specifications, Plingeling is usually outperformed by Syrup, so
the same conclusions apply.

4.3 Unsatisfiable Problems

Although, as expected, the purely parallel execution is often outperformed by the
amalgamated execution, the hybrid execution is able to compensate the losses. In
fact, results show that the amalgamated approach is never more than 2x faster
than the hybrid approach for the considered specifications under considerable
n sizes. Figs. 4b and 4d depict the overall tendency, with the hybrid execution
mostly accompanying the performance of the amalgamated execution.

Specifications where the amalgamated execution outperforms the hybrid
strategy are usually balanced by the results of their SAT counter-part. For
instance, for the UNSAT Dijk(2), the hybrid approach is about 1.5x slower than
the amalgamated approach for every n size; however, for the SAT Dijk(1), the
speedup of the hybrid approach ranges from 20x to 30x. Thus, in average, the
performance of the decomposed strategy outperforms the amalgamated approach.
Interestingly, for RBT(2) and Ring(2), the hybrid approach actually outperforms
amalgamated execution: for RBT(2) at n = 11 there is a 6x speedup, and for
Ring(2) at n = 5 a 553x speedup. For larger n values the amalgamated execution
times out, while the hybrid approach still terminates within reasonable time. The
impact of using symbolic bounds is also manifest in the UNSAT scenarios.

Model n p# (p%) T0 Tp Ts Th G
Dijk(1) 27 28 (0.93) 25.3 4.8 1.1 1.1 23.3
Dijk(1) 28 29 (0.93) 30.6 4.8 1.2 1.2 26.4
Dijk(1) 29 30 (0.93) 43.9 5.4 1.3 1.3 32.7
Dijk(1) 30 31 (0.94) 28.3 5.7 1.4 1.4 20.1
Hand(1) 14 1 (1.00) 81.5 0.6 0.6 0.6 127.3
Hand(1) 15 0 (0.00) 2.1 0.1 0.1 0.1 14.3
Hand(1) 16 1 (1.00) 1496.2 1.6 1.6 1.6 916.3
Hand(1) 17 0 (0.00) 40.6 0.1 0.1 0.2 240.7
Hand(1) 18 1 (1.00) TO 4.7 4.7 5.1 +∞
Hand(1) 19 0 (0.00) 2724.8 0.2 0.2 0.2 13910.2
Hand(1) 20 1 (1.00) TO 874.5 871.3 1047.2 +∞
Hotel(1) 8 12833 (0.60) 64.1 2.9 1.0 0.9 71.6
Hotel(1) 9 211470 (>0.6) 216.0 3.4 1.0 0.9 236.5
Hotel(1) 10 >999999 (>0.6) 224.4 4.0 1.1 0.9 237.2
Hotel(1) 11 >999999 (>0.6) 1106.1 4.5 1.2 1.0 1086.3
Hotel(1) 12 >999999 (>0.6) 184.8 4.9 1.3 1.0 178.2
RBT(1) 9 4862 (0.01) 1.6 0.5 0.5 0.5 2.9
RBT(1) 10 16796 (0.00) 55.8 3.1 3.3 4.0 13.9
RBT(1) 11 58786 (0.00) 240.8 1.6 1.6 2.0 121.6
RBT(1) 12 208012 (0.00) 2350.5 17.0 17.3 19.9 118.2
RBT(1) 13 >999999 (0.00) TO 133.3 133.5 164.6 +∞
Ring(1) 8 16072 (>0.1) 1.9 193.8 196.2 4.2 0.5
Ring(1) 9 125673 (>0.1) 1.5 1.1 1.2 1.2 1.2
Ring(1) 10 >999999 (>0.1) 1.6 2.2 2.1 2.0 0.8
Ring(1) 11 >999999 (>0.1) 2.6 61.8 62.1 5.1 0.5
Ring(1) 12 >999999 (>0.1) 3.4 20.4 19.1 5.4 0.6
Span(1) 14 >999999 (1.00) 1.1 1.7 2.0 1.8 0.6
Span(1) 15 >999999 (1.00) 1.3 2.4 2.4 2.2 0.6
Span(1) 16 >999999 (1.00) 2.0 2.6 2.7 2.7 0.7
Span(2) 14 >999999 (1.00) 15.2 3.5 3.5 3.3 4.6
Span(2) 15 >999999 (1.00) 9.0 4.2 4.0 4.2 2.1
Span(2) 16 >999999 (1.00) 6.3 4.4 4.5 5.0 1.3

Table 1: Summary of the SAT performance tests.

Likewise the SAT case, MiniSat results are similar to those of Glucose. For
instance, Dijk(2) preserves the 1.5x slowdown in average, albeit at slightly
higher performance times, while Ring(2) at n = 5 the amalgamated execution
times out while the hybrid takes 18s. Comparing with parallel SAT solvers, the
results are also similar to those obtained for the SAT problems. For instance, for
Ring(2) at n = 5 the speedup persists but reduced to 244x, while the slowdown
at Dijk(2) is in average increased to 2x. This phenomenon is hinted in Figs. 4b
and 4d, where Syrup has a similar growth curve to that of Glucose but with better
performance. Plingeling continues to be in general outperformed.

4.4 Threats to Validity

The performance of the decomposed strategy is highly dependent on the order
on which the candidate partial solutions are generated, since they determine the
satisfiability of the integrated problems. However, since the generation of partial
solutions is extremely efficient, and the UNSAT integrated problems are often
quickly discharged, our technique has been able to handle problems with very
large number of partial solutions and very small satisfiability ratio, like RBT(1).

The partition criteria automatically inferred from the symbolic bounds is not
necessarily optimal. However, manual experiments have not found any better

Model n p# (p%) T0 Tp Ts Th G
Dijk(2) 27 28 (0.00) 23.9 79.0 55.2 37.6 0.6
Dijk(2) 28 29 (0.00) 24.7 98.7 67.8 37.1 0.7
Dijk(2) 29 30 (0.00) 31.1 115.4 80.4 47.2 0.7
Dijk(2) 30 31 (0.00) 32.0 132.8 93.7 49.6 0.6
Hand(2) 12 1 (0.00) 6.0 6.6 6.9 5.1 1.2
Hand(2) 13 0 (0.00) 0.2 0.1 0.1 0.1 1.8
Hand(2) 14 1 (0.00) 127.3 724.2 162.7 122.9 1.0
Hand(2) 15 0 (0.00) 2.5 0.1 0.1 0.1 16.8
Hand(2) 16 1 (0.00) 2537.5 TO TO 2912.8 0.9
Hotel(2) 4 75 (0.00) 6.5 12.7 10.8 12.3 0.5
Hotel(2) 5 312 (0.00) 68.2 128.7 109.9 134.6 0.5
Hotel(2) 6 1421 (0.00) 234.7 1973.7 1820.5 460.3 0.5
Hotel(2) 7 7016 (0.00) 772.1 TO TO 1416.5 0.5
Hotel(2) 8 12833 (0.00) 2023.6 TO TO 3432.4 0.6
RBT(2) 9 4862 (0.00) 7.3 6.7 6.8 7.9 0.9
RBT(2) 10 16796 (0.00) 70.1 25.0 25.4 28.8 2.4
RBT(2) 11 58786 (0.00) 721.7 100.3 102.8 118.1 6.1
RBT(2) 12 58786 (0.00) TO 567.8 564.9 721.7 +∞
Ring(2) 4 24 (0.00) 10.8 0.7 0.7 3.1 3.5
Ring(2) 5 89 (0.00) 4486.8 6.6 6.6 8.1 552.8
Ring(2) 6 415 (0.00) TO 238.3 237.1 318.0 +∞
Ring(3) 5 89 (0.00) 1.4 2.5 2.4 2.8 0.5
Ring(3) 6 415 (0.00) 4.9 13.4 13.3 8.9 0.6
Ring(3) 7 2372 (0.00) 14.6 105.8 104.8 24.4 0.6
Ring(3) 8 16072 (0.00) 76.1 1100.5 1098.1 134.7 0.6
Span(1) 5 58 (0.00) 0.2 7.6 1.2 0.3 0.7
Span(1) 6 457 (0.00) 0.6 342.9 7.8 1.0 0.6
Span(1) 7 5777 (0.00) 4.4 663.4 337.2 9.0 0.5
Span(2) 5 58 (0.00) 0.4 3.1 2.9 0.7 0.6
Span(2) 6 457 (0.00) 0.6 30.0 30.1 1.1 0.5
Span(2) 7 5777 (0.00) 1.9 786.9 780.4 4.2 0.5

Table 2: Summary of the UNSAT performance tests.

partition for the considered problems. Nonetheless, the soundness of the decom-
posed strategy would be preserved by alternative partition criteria, and since
our tool accepts the set Rp of variables that will determine the partial problem,
the user is free to manually define the decomposition or experiment with other
automated criteria.

5 Related Work

The decomposition of Alloy models into smaller problems to improve the per-
formance of the solving process has been previously explored [22]. Likewise
our technique, constraints are split in two, and solutions to the first are fed
as partial information to the second. Partition criteria are chosen by testing
candidates at small scopes. The iteration of solutions and symmetry breaking
are not addressed. Evaluation mainly focuses on the small scope tests for SAT
problems, with speedups not reaching an order of magnitude. The partitioning
and parallelization of Alloy analysis procedures has also been proposed [18]. Here,
each parallel problem solves the same constraints but within a restricted search
space, defined by a range of solutions. Ranges are derived from the structure of
the models, disregarding the constraints, resulting in unpredictable complexity.
This is addressed by allowing the dynamic partition of problems. In a different

(a) RBT(1) specification (SAT). (b) RBT(2) specification (UNSAT).

(c) Hotel(1) specification (SAT). (d) Hotel(2) specification (UNSAT).

Fig. 4: Performance times for the RBT and Hotel specifications.

study [17], the same authors explore a technique to infer partitions on the SAT
propositional variables from high- level Alloy models with small scopes. Likewise
our strategy, both techniques obtain speedups up to two orders of magnitude
before the amalgamated analyses timeout, but since evaluation is performed in
clusters direct comparisons should be read with care. By allowing the definition
of symbolic bounds, our approach is able to explore additional knowledge about
the problem’s domain without burdening the user, since that information would
still have to be integrated in the constraints otherwise.

Techniques have been proposed to extract finer Kodkod partial instances from
high-level specifications, still relying on its constant tuple set bounds. In [15] an
extension to the Alloy language for the specification of instances is proposed, that
can be mapped into Kodkod bounds. Our approach extends the expressiveness
of partial instances at the Kodkod level. Since Alloy natively support binding
expressions in the declaration of the relations, symbolic bounds could easily be
retrieved from regular Alloy specifications without any extension to the language.

Many techniques have been proposed for parallelizing SAT solvers [8,14], most
based on the Conflict-Driven Clause Learning (CDCL) algorithm and exploiting
clause learning and sharing. In general, these fit into two families [8]: competitive
(or portfolio) approaches, where the solvers explore the same search space, the
fastest returning the solution; and cooperative approaches, following a divide
and conquer strategy, where the search space is split and the solution is built
from the results of the solvers. Focusing on top ranking solvers from the latest
SAT competitions, Plingeling [4] falls in the former category, deploying solvers
with different configurations, with minimal clause sharing, while Syrup [3] follows

an hybrid approach, with an initial portfolio phase that switches to cooperative
after a certain threshold. These solvers, however, do not support incremental
solving, and thus cannot be used to effectively iterate solutions. Moreover, our
technique could be adapted to run in a distributed environment, unlike modern
solvers based on clause sharing.

A parallel SAT solving approach that is more closely related to ours is the
one followed by JaCk-SAT [19]. Here, the set of boolean variables is split through
heuristics, and the clauses are divided accordingly. Problems are then deployed
in parallel to solve the two sets of variables independently; solutions are then
checked over the clauses referring to both sets of variables, and are rejected if
not. This process can be repeated recursively. This technique, however, is not
able to compete with the performance of modern parallel SAT solvers.

6 Conclusions

This paper proposes the usage of symbolic partial knowledge to enhance the
analysis of declarative specifications through their automatic decomposition into
partial solutions and subsequent parallelization of the solving process with tighter
search spaces. This strategy is formalized and an effective implementation for
the Kodkod constraint solver is provided. This extension is able to automatically
analyze relational model finding problems, while still preserving the ability to
iterate over solutions and the soundness of the symmetry breaking algorithm,
and exploit partial knowledge for increased efficiency.

Our evaluation has shown that, even in commodity hardware, the technique is
able to outperform amalgamated problems for most satisfiable specifications; the
hybrid approach addressed the worst case scenarios, providing balanced results in
comparison with the amalgamated execution. In fact, it rivals with state-of-the-art
parallel SAT solvers. We also show that decomposing the problems based on the
dependency degree of the problem’s variables is a suitable partition criteria.

Although we believe Kodkod to be powerful enough to be used by end users,
we expect the extension presented to be exploited by analyzers for high-level
specifications. In the future we intend to derive symbolic bounds directly from the
binding expressions of Alloy’s declarations, thus benefiting the large community
of Alloy users. The decomposed strategy is already being used in the back-end
of Electrum [12], a temporal extension to Alloy. As in Hotel, in such scenarios
the partition criteria naturally degenerates into a division between the static
and dynamic variables. To support full (non-bounded) model checking for such
problems, we are currently exploring a generalization where Kodkod is used
for the generation of the static partial solutions, while the integrated dynamic
problems are checked in parallel by off-the-shelf model checkers, such as NuSMV.

References

1. J. Abrial. The B-book – Assigning programs to meanings. Cambridge University
Press, 2005.

2. G. Audemard and L. Simon. Glucose, version 4.0. Available at http://alloy.mit.

edu/kodkod/download.html, October 2014.
3. G. Audemard and L. Simon. Lazy clause exchange policy for parallel SAT solvers.

In C. Sinz and U. Egly, editors, SAT’14, held as part of VSL’14, volume 8561 of
LNCS, pages 197–205. Springer, 2014.

4. A. Biere. Lingeling, Plingeling, PicoSAT and PrecoSAT at SAT race 2010. Technical
Report 10/1, FMV Reports Series, Institute for Formal Models and Verification,
Johannes Kepler University, 2010.

5. A. Biere. Plingeling, version ayv-86bf266-140429. Available at http://fmv.jku.

at/lingeling/, April 2014.
6. J. M. Crawford, M. L. Ginsberg, E. M. Luks, and A. Roy. Symmetry-breaking

predicates for search problems. In KR’96, pages 148–159. Morgan Kaufmann, 1996.
7. N. Eén and N. Sörensson. MiniSat, version 2.2.0. Available at http://minisat.

se/MiniSat.html, July 2010.
8. S. Hölldobler, N. Manthey, V. H. Nguyen, J. Stecklina, and P. Steinke. A short

overview on modern parallel SAT-solvers. In AICACSIS’11, pages 201–206. IEEE,
2011.

9. D. Jackson. Software Abstractions: Logic, Language, and Analysis. MIT Press,
revised edition, 2012.

10. L. Lamport. Specifying Systems, The TLA+ Language and Tools for Hardware and
Software Engineers. Addison-Wesley, 2002.

11. N. Macedo. Pardinus, version 0.3. Available at https://github.com/nmacedo/

Pardinus/, September 2016.
12. N. Macedo, J. Brunel, D. Chemouil, A. Cunha, and D. Kuperberg. Lightweight

specification and analysis of dynamic systems with rich configurations. In FSE’16.
ACM, 2016.

13. N. Macedo, A. Cunha, and T. Guimarães. Exploring scenario exploration. In
FASE’15, volume 9033 of LNCS, pages 301–315. Springer, 2015.

14. R. Martins, V. M. Manquinho, and I. Lynce. An overview of parallel SAT solving.
Constraints, 17(3):304–347, 2012.

15. V. Montaghami and D. Rayside. Extending Alloy with partial instances. In ABZ’12,
volume 7316 of LNCS, pages 122–135. Springer, 2012.

16. C. Newcombe, T. Rath, F. Zhang, B. Munteanu, M. Brooker, and M. Deardeuff.
How Amazon web services uses formal methods. Commun. ACM, 58(4):66–73,
2015.

17. N. Rosner, C. G. L. Pombo, N. Aguirre, A. Jaoua, A. Mili, and M. F. Frias. Parallel
bounded verification of Alloy models by TranScoping. In VSTTE’13, volume 8164
of LNCS, pages 88–107. Springer, 2013.

18. N. Rosner, J. H. Siddiqui, N. Aguirre, S. Khurshid, and M. F. Frias. Ranger:
Parallel analysis of Alloy models by range partitioning. In ASE’13, pages 147–157.
IEEE, 2013.

19. D. Singer and A. Monnet. JaCk-SAT: A new parallel scheme to solve the satisfiability
problem (SAT) based on join-and-check. In PPAM’07, volume 4967 of LNCS, pages
249–258. Springer, 2007.

20. E. Torlak. Kodkod, version 2.1. Available at http://alloy.mit.edu/kodkod/

download.html, September 2015.
21. E. Torlak and D. Jackson. Kodkod: A relational model finder. In TACAS’07,

volume 4424 of LNCS, pages 632–647. Springer, 2007.
22. E. Uzuncaova and S. Khurshid. Constraint prioritization for efficient analysis of

declarative models. In FM’08, volume 5014 of LNCS, pages 310–325. Springer,
2008.

http://alloy.mit.edu/kodkod/download.html
http://alloy.mit.edu/kodkod/download.html
http://fmv.jku.at/lingeling/
http://fmv.jku.at/lingeling/
http://minisat.se/MiniSat.html
http://minisat.se/MiniSat.html
https://github.com/nmacedo/Pardinus/
https://github.com/nmacedo/Pardinus/
http://alloy.mit.edu/kodkod/download.html
http://alloy.mit.edu/kodkod/download.html

	Exploiting Partial Knowledge for Efficient Model Analysis

