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Temporal dissipative solitons in a three-level atomic medium confined in a photonic-band-gap fiber
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We obtained a propagation equation for an optical pulse at an electromagnetically induced transparency
window guided on a gas-filled hollow-core photonic crystal fiber. This equation admits dissipative solitons whose
analytical expression was also obtained. Depending on the parameter region, they may be stable or unstable. We
simulated a typical experimental arrangement and found some cases for which the equation parameters are such
that it admits stable solitons.
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I. INTRODUCTION

Electromagnetically induced transparency (EIT) is an opti-
cal effect based on quantum interference that provides a narrow
spectral transparent window within an absorption medium [1].
This phenomenon was first proposed in 1990 [2] and was
observed in 1991 [3], and since then, it has attracted a lot
of attention from the scientific community due to its unique
properties, such as a sharp variation in dispersion and large
nonlinear properties that make it extremely appealing for a
large number of applications, including slow light [4], quantum
memory [5], all-optical switching [6,7], and controlled light
storage [8,9].

The EIT effect can be considerably enhanced when the
active medium is confined in a small region, such as a hollow
planar waveguide [10,11] or hollow-core photonic crystal
fibers (HC-PCF) [12–14]. Moreover, further improvements
are possible when Doppler broadening is avoided by filling the
waveguide with cold atoms. However, the small dimensions
of the region enclosing the active medium can make the
adsorption of atoms to fiber walls significant, thus increasing
dephasing rates. This process can be considerably reduced if
the fiber walls are coated. Ghosh et al. managed to obtain
EIT with nanowatt power levels by coating the fiber core with
organosilane and, furthermore, by using a light-induced atomic
desorption process that releases the atoms into the core [14].
Another scheme to avoid adsorption was recently proposed by
Bajcsy et al. and uses a dipole trap along the fiber axis that
attracts atoms away from the walls [7].

Besides reducing the optical intensities required to observe
EIT, enclosing the active medium in a HC-PCF also offers
the advantage of gaining better control over the dispersive
properties. In effect, these can be manipulated to some degree
by the modification of the fiber geometry, that is, the core and
hole size, as well as the hole spacing, which can be extremely
relevant in some applications that depend on the dispersive
profile.
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Here, we address the EIT effect for a � medium confined
in a HC-PCF. By using a multiscale perturbation technique
on both the density matrix time evolution and the probe field
propagation equations, we obtain the equation for the slowly
varying pulse envelope, which has the form of a complex
Ginzburg-Landau equation (CGLE) with an additional term
associated with the imaginary part of the group velocity. As
expected, the parameters in this equation depend not only
on the active medium and control field but also on the fiber
characteristics. We then investigate analytical solutions of this
equation, namely, their form, parameter region of existence,
and stability. Using typical values for a three-level � atomic
system enclosed in a HC-PCF, we search for possible stable
pulse solutions.

This article is structured as follows: Sec. II contains the
derivation of the propagation equation for the probe field.
In Sec. III we present the analytical solutions of the latter
equation. In Sec. IV we show some simulation results for
typical EIT arrangement on a HC-PCF, and in Sec. V we
summarize the main results of our work.

II. PROPAGATION MODEL

Consider a three-level atomic system in the � configuration
as illustrated in Fig. 1 and two optical fields in close
resonance with the transitions 1-3 and 2-3, namely, the
probe E = 1

2 [Ē(t,r)ei(βpz−ωpt) + c.c.] and the control field
Ec = 1

2 [Ēc(r)ei(βcz−ωct) + c.c.], respectively, where ωp,c and
βp,c are the angular frequencies and propagation constants.
Actually, we consider a continuous-wave control field and a
pulsed probe field, both guided inside a HC-PCF filled with a
gas whose molecules have a � configuration of energy levels.
In the dipolar moment approximation, the Hamiltonian of the
interaction is given by

Ĥint = −�

2
[�p(t,r)ei(ω31−ωp)t+iβpz |3〉 〈1|

+�c(r)ei(ω32−ωc)t+iβcz |3〉 〈2| + H.c.],

where �p,c are the Rabi frequencies associated with the
corresponding transition field and are given by �p = Ēμ13/�

and �c = Ēcμ23/�, where μ13 and μ23 are the electric
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M. FACÃO, S. RODRIGUES, AND M. I. CARVALHO PHYSICAL REVIEW A 91, 013828 (2015)

2

3

1 

δc δp

Ωp, ωp
Ωc, ωc

FIG. 1. (Color online) Energy-level diagram and excitation
scheme of the three-level � system considered.

dipole moments and ω31 and ω32 are the frequencies, which
correspond to transitions 3-1 and 3-2, respectively.

The time evolution of the density operator in the interaction
picture is given by

dρ̂I

dt
= 1

i�
[Ĥint,ρ̂I ] + L̂(ρ̂I ), (1)

where L̂ is the Lindblad superoperator that describes the
relaxation and decoherence processes. The Lindblad term is
given in the Appendix for the cases considered here, i.e.,
spontaneous emission from level 3 to levels 2 and 1 and
energy-conserving dephasing effects. Hence, the evolution
equations read

dρ11

dt
= −i

�p

2
ρ̃13 + i

�∗
p

2
ρ̃31 + γ33

2
ρ33,

dρ̃12

dt
= −i

�c

2
ρ̃13 + i

�∗
p

2
ρ̃32 − �12ρ̃12,

dρ̃13

dt
= −i

�∗
p

2
ρ11 − i

�∗
c

2
ρ̃12 + i

�∗
p

2
ρ33 − �13ρ̃13,

dρ22

dt
= −i

�c

2
ρ̃23 + i

�∗
c

2
ρ̃32 + γ33

2
ρ33,

dρ̃23

dt
= −i

�∗
p

2
ρ̃21 − i

�∗
c

2
ρ22 + i

�∗
c

2
ρ33 − �23ρ̃23,

dρ33

dt
= i

�p

2
ρ̃13 + i

�c

2
ρ̃23 − i

�∗
p

2
ρ̃31 − i

�∗
c

2
ρ̃32 − γ33ρ33,

where �12 = γ12 − i	, �13 = γ13 + iδp, �23 = γ23 + iδc are
the complex decoherence parameters, with γij being the total
decay rates, considering Sij and Dij as given in the Appendix,
and δp = ωp − ω31,δc = ωc − ω32, and 	 = δc − δp are the
detunings between the optical fields and level-transition
frequencies. In writing the population evolution equations
we assumed equal decay rates from the highest energy level
to the lower ones. The tilde versions of the density matrix
coefficients correspond to the initial ones by factoring out the
rapid oscillations, namely,

ρ̃12 = ρ12e
i	t−iβcz+iβpz, ρ̃13 = ρ13e

−iδpt+iβpz,

ρ̃23 = ρ23e
−iδct+iβcz.

For convenience, we shall write the above system of equations
in the following matrix representation:

dρ

dt
= (A0 + Ap)ρ, (2)

where ρ stands for the vector of the density matrix coefficients
ρii and ρ̃ij and A0 and Ap are the �p-independent and
-dependent parts of the system matrix, respectively.

In what follows we will consider the evolution of the
complex envelope, and we will denote it by E , that is,
E = Ē(t,r)ei(βpz−ωpt), where Ē(t,r) is the slowly varying part
of that complex envelope. E will propagate according to

∂2E
∂z2

+ ∇2
t E − 1

c2

∂2E
∂t2

= μ0
∂2P

∂t2
, (3)

where ∇t is the transverse Laplacian, c is the vacuum light
velocity, μ0 is the magnetic permeability, and the polarization
is P = ε0χsolidE in the solid regions of the fiber and P =
2Nμ13ρ

S
31 in the gas regions. Here, N is the density of

gas molecules, and ρS
31 is the corresponding density matrix

coefficient in the Schrödinger representation. Note that ρ̂I

in the interaction picture is related to ρ̂S in the Schrödinger
picture by ρ̂I = eiĤAt/�ρ̂Se−iĤAt/�, where ĤA is the atomic
Hamiltonian. Hence, ρS

31 = ρ31e
−iω31t = ρ̃31e

i(βpz−ωpt), where
ρ̃31 = ρ̃∗

13.
Furthermore, Eqs. (2) and (3) will be solved using a

multiscale perturbation method identical to the one used in [15]
with the new variables t0 = t, t1 = δt, t2 = δ2t, z0 = z, z1 =
δz, z2 = δ2z, where δ is a dimensionless small parameter, and
a power series expansion for Ē and ρ of the form

Ē(t1,t2,x,y,z1,z2) = δĒ(1) + δ2Ē(2) + δ3Ē(3) + · · · ,

ρ(t1,t2,x,y,z1,z2) = ρ(0) + δρ(1) + δ2ρ(2) + δ3ρ(3) + · · · ,

where ρ is the vector of the density matrix coefficients con-
sidered above, obtained by factoring out the rapid oscillatory
term. Note that this term oscillates in the scales of t0 and z0.
This implies that E is also given by a similar power series
expansion and that, in contrast to the slowly varying Ē and
ρ, E also depends on t0 and z0 through the rapid oscillatory
term. In order zero, we have only the equation for ρ(0) that
reads

A0ρ
(0) = 0

and gives

ρ
(0)
11 = 1, ρ

(0)
ij = 0 for i,j �= 1.

In first order in δ, the equation for ρ(1) reads

A0ρ
(1) = −Ap(Ē(1))ρ(0).

The solution of the above system is ρ̃
(1)
31 = (Lμ13/�)Ē(1),

which in the Schrödinger picture is ρ
S(1)
31 = (Lμ13/�)E (1),

where L is given by

L = −2(	 − iγ12)

4(	 − iγ12)(δp + iγ13) + |�c|2 .

In first order in δ, the equation for the optical field is

∂2E (1)

∂z2
0

+ ∇2
t E (1) − 1

c2

∂2E (1)

∂t2
0

= μ0ε0χ
∂2E (1)

∂t2
0

,

where χ ≡ χ (ωp; x,y) is equal to the electric susceptibility
of the solid material or equal to 2c2μ0Nμ2

13L/� if (x,y) is in
the solid or gas region, respectively. The above equation has
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solutions of the form E (1) = F (x,y)E(1)(t1,t2,z1,z2)e−iωpt+iβpz

if

−β2
pFE(1) + E(1)∇2

t F + ω2
p

c2
n2(ωp; x,y)FE(1) = 0, (4)

where

n2(ωp; x,y) = 1 + χ (ωp; x,y). (5)

Dividing Eq. (4) by E(1), we obtain an eigenvalue equation
for F , whose eigenvalue is the propagation constant βp. This
equation may be solved for the adequate fiber geometry, and
the dispersion relation βp(ω) may be retrieved. Furthermore,
multiplying by F ∗ and integrating in x and y give

β2
p =

∫
F ∗∇2

t F dxdy + k2
p

∫
n2|F |2dxdy∫ |F |2dxdy

, (6)

where kp = ωp/c. In second order in δ we obtain

A0ρ
(2) = ∂ρ(1)

∂t1
− Ap(Ē(1))ρ(1) − Ap(Ē(2))ρ(0),

whose solution gives

ρ̃
(2)
31 = μ13

�

(
LĒ(2) + B

∂Ē(1)

∂t1

)
, (7)

where the expression for B is shown in the Appendix. For the
probe field, we have

∂E (2)

∂z2
0

+ ∇2
t E (2) − 1

c2
(1 + χ )

∂2E (2)

∂t2
0

= −2
∂2E (1)

∂z0∂z1
+ 2

c2

∂2E (1)

∂t0∂t1
+ i

c2

dχ

dωp

∂3E (1)

∂t2
0 ∂t1

+ 2χ

c2

∂2E (1)

∂t0∂t1
.

In order to avoid secular terms for E (2), the right-hand side of
the equation should be equal to zero, which gives

−2iβpF
∂E(1)

∂z1
− 2iωp

c2

(
1 + χ + ωp

2

dχ

dωp

)
F

∂E(1)

∂t1
= 0.

Multiplying by F ∗ and integrating in x and y, we obtain

i
∂E(1)

∂z1
+ iβ ′

p

∂E(1)

∂t1
= 0, (8)

where β ′
p = ∂βp/∂ωp. Without any loss of generality, we

assume E (2) = 0 and obtain the following equation in third
order

A0ρ
(3) = ∂ρ(2)

∂t1
+ ∂ρ(1)

∂t2
− Ap(Ē(1))ρ(2) − Ap(Ē(3))ρ(0),

whose solution gives

ρ̃
(3)
31 = μ13

�

(
LĒ(3) + μ2

13

�2
G|Ē(1)|2Ē(1)

+B
∂Ē(1)

∂t2
+ C

∂2Ē(1)

∂t2
1

)
, (9)

where the expressions for G and C can be found in
the Appendix. Also in third order in δ, the probe field

equation is

∂E (3)

∂z2
0

+ ∇2
t E (3) − 1

c2
(1 + χ )

∂2E (3)

∂t2
0

=
[
−2iβpF

∂E(1)

∂z2
− F

∂2E(1)

∂z2
1

−2iωp

c2

(
1 + χ + ωp

2

dχ

dωp

)
F

∂E(1)

∂t2

+ 1

c2

(
1 + χ + 2ωp

dχ

dωp

+ ω2
p

2

d2χ

dω2
p

)
F

∂2E(1)

∂t2
1

− G|F |2F |E(1)|2E(1)] ei(βpz−ωpt),

where G = 2ω2
pμ0Nμ4

13G/�
3. Since we expect that the light

is well confined inside the core, we will not consider the
nonlinear Kerr effect in the cladding. For the same reasoning
as above, namely, to avoid secular terms for E (3), the right-
hand side should be zero. Moreover, multiplying by F ∗ and
integrating in x and y yield

i
∂E(1)

∂z2
+ 1

2βp

∂2E(1)

∂z2
1

+ iβ ′
p

∂E(1)

∂t2
−

(
1

2
β ′′

p + (β ′
p)2

2βp

)

× ∂2E(1)

∂t2
1

+ g|E(1)|2E(1) = 0, (10)

where

g =
∫
G|F |4dxdy

2βp

∫ |F |2dxdy
(11)

and β ′′
p = ∂2βp/∂ω2

p. We first note that the term of the second
derivative with respect to z1 and the one containing (β ′

p)2 may
cancel due to (6). Then adding Eq. (8) multiplied by δ2 and
Eq. (10) multiplied by δ3, we obtain

i
∂E

∂z
+ iβ ′

p

∂E

∂t
− 1

2
β ′′

p

∂2E

∂t
+ g|E|2E = 0.

At this stage we should note that since the linear response L of
the gas is complex, our propagation constant should also be a
complex quantity. Let us write it as βp = βr + iβi , with βr and
βi being real. The imaginary part will lead to pulse attenuation
proportional to exp(−βiz), but since ei(βpz−ωpt) was factored
out, the solution of the above equation is not attenuated.
Here, we reintroduce exp(−iβiz) in the equation by defining
a new envelope E′ = E exp(−iβiz). Moreover, the pulse will
propagate with a group velocity equal to 1/β ′

r . Hence, making
the change of variables τ = t − β ′

rz, the equation for E′ is

i
∂E′

∂z
− 1

2
β ′′

p

∂2E′

∂τ 2
+ g|E′|2E′ = −iβiE

′ + β ′
i

∂E′

∂τ
.

Applying the usual change of variables, i.e., U =√
ε0cn̄

∫ |F |2dxdy/2E′, where n̄ is an average real refractive
index in the illuminated region, and separating the real and
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imaginary coefficients, we obtain

i
∂U

∂z
− 1

2
β ′′

r

∂2U

∂τ 2
− i

2
β ′′

i

∂2U

∂τ 2
+ γr |U |2U + iγi |U |2U

= −iβiU + β ′
i

∂U

∂τ
,

with γr + iγi = 2g/(ε0cn̄
∫ |F |2dxdy). Also, applying

q = τ0

√∣∣∣∣ γr

β ′′
r

∣∣∣∣U, Z = z

z0
, T = τ

τ0
,

and

z0 = τ 2
0

|β ′′
r | ,

we arrive at the dimensionless form for the propagation
equation that takes the form of the well-known cubic Ginzburg-
Landau equation with an imaginary group-velocity term:

i
∂q

∂Z
− D

2

∂2q

∂T 2
+ s|q|2q

= iαq + ξ
∂q

∂T
+ iν

∂2q

∂T 2
+ iσ |q|2q. (12)

It should be pointed out that, with the exception of an
extra term associated with diffraction, this equation is similar
to the one obtained by Huang et al. when considering
a third-order approximation [15]. Here, D = β ′′

r /|β ′′
r | is 1

for normal group-velocity dispersion (β ′′
r > 0) and −1 for

anomalous group-velocity dispersion (β ′′
r < 0); s = γr/|γr |

is also ±1, α = −βiz0, ξ = z0β
′
i/τ0, ν = β ′′

i /(2|β ′′
r |), and

σ = −γi/|γr |. Note that the parameters in this equation depend
not only on the three-level gas and control field value but also
on the fiber geometry, which suggests that the dispersive and
nonlinear properties of a HC-PCF filled with a � system can
be manipulated to a significant extent. In the following we will
analyze the solutions of Eq. (12).

III. SOLITON SOLUTIONS

As long as D and s have symmetrical signs, i.e., Ds = −1,
the left-hand side of Eq. (12) is the nonlinear Schrödinger
equation (NLSE) that admits bright solitons. If ξ = 0, the
equation is the cubic CGLE, which admits pulselike solutions
for both Ds = −1 and Ds = 1 [16]. In fact, its stationary
solutions were written in terms of hyperbolic-shape pulses with
a chirp parameter [16–18]. However, they are stable only when
Ds = −1, α = 0, and ν > 0, with this last condition required
to assure stability in the frequency domain [18]. Furthermore,
Eq. (12) also exhibits stationary solutions for finite ξ and α = 0
in the form of a chirped traveling solution [19].

In our case, we cannot have α = 0 unless γ12 = 0 and we
are in the exact resonance, 	 = 0. But in this latter case,
the nonlinear term would also be zero. Hence, we follow the
search for stable solutions in the case α �= 0. First, we start by
considering that Ds = −1 and that the terms on the right-hand
side of Eq. (12) are small enough to allow a perturbation
approach around the hyperbolic secant soliton of the NLSE.
Let us also assume the case D = −1 and s = 1 and introduce

the solution

q(T ,Z) = η(Z)sech{η(Z)[T − T0(Z)]}
× exp[−ik(Z)T + iζ (Z)],

and let us find the Z evolution for η(Z),k(Z),T0(Z), and ζ (Z)
using the procedure described in [20,21]. The results are

dη

dZ
= 2ηα + 4

3
ση3 − 2

3
νη(η2 + 3k2) − 2kηξ,

dk

dZ
= −4

3
νη2k − 2

3
η2ξ,

dT0

dZ
= −k,

dζ

dZ
= 1

2
(η2 − k2) + T0

dk

dt
.

The equations for η and k have two points of equilibrium,
ηe = 0 and any k and

ηe =
√

3(ξ 2 + 4αν)

4ν(ν − 2σ )
, ke = − ξ

2β
.

Assuming ν > 0, there are real solutions for ηe if ξ 2 +
4αν > 0 and ν − 2σ > 0 or if ξ 2 + 4αν < 0 and ν − 2σ < 0.
However, for this equilibrium point to be stable, it is necessary
that ξ 2 + 4αν > 0.

Then, motivated by the analytical results of [17–19], we
look for solutions of Eq. (12) with a nonnegligible right-hand
side and with both nonzero ξ and nonzero α in the form

q(T ,Z) = A sech1+id

[
B

(
T − Z

v

)]
exp[i(KZ − �T )],

where A,B, v,K,�, and the chirp parameter d are all real.
Substituting this expression in Eq. (12) and considering
separately the equations for the real and imaginary parts, we
obtain

� = − ξ

2ν
,

1

v
= −Dξ

2ν
,

B2 = α + ξ 2

4ν

νd2 − ν − Dd
, (13)

K = B2

[
D(d2 − 1)

2
+ 2νd

]
+ D�2

2
,

A2 = 3B2d(1 + 4ν2)

2(Dσ + 2νs)
, (14)

where d satisfies

(Dσ + 2sν)d2 + 3(2σν − sD)d − 2(Dσ + 2sν) = 0. (15)

Let us first consider the solutions corresponding to Dσ +
2νs = 0. In this case, the chirp parameter is d = 0, and we have
σ/ν = −2s/D = ±2. From (14) we can conclude that A2 =
2(ν/σ )B2, implying that a chirp-free solution exists only when
s/D = −1 and that it satisfies A2 = B2. On the other hand,
from (13), with d = 0, we also have B2 = −[α + ξ 2/(4ν)]/ν,
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FIG. 2. (Color online) Curve of σs defined by Eq. (19) when
Ds = −1 (blue solid line) and Ds = +1 (red dashed line). The
existence of solutions requires that σ is above σs when α + ξ2

4ν
< 0

or below σs if α + ξ2

4ν
> 0.

which in turn requires α/ν < −[ξ/(2ν)]2, that is, α/ν < −�2,
for this type of solution to exist.

Similar constrains exist when Dσ + 2νs �= 0. In fact, since
A and B are real, we must have

d

Dσ + 2νs
> 0 (16)

and

α + ξ 2

4ν

νd2 − ν − Dd
> 0. (17)

It is possible to show that the only solution of (15) satisfying
condition (16) is given by

d = 3(sD − 2σν) +
√

9(sD − 2σν)2 + 8(Dσ + 2sν)2

2(Dσ + 2νs)
.

(18)

Equation (17) is satisfied if α + ξ 2

4ν
> 0 and νd2 − ν − Dd >

0 or if α + ξ 2

4ν
< 0 and νd2 − ν − Dd < 0. Even though the

denominator of (17) has two roots, namely, d− = D−√
1+4ν2

2ν

and d+ = D+√
1+4ν2

2ν
, condition (16) implies that for a combi-

nation of parameters (D,s,ν,σ ) only one of these two roots
is allowed. In fact, again assuming that ν > 0 for stability
reasons, the denominator will be positive when Dσ + 2sν > 0
for d > d+ and when Dσ + 2sν < 0 for d < d−. Using (18)
in each of these expressions reveals that if σ is below the curve
defined by

σs = ν(3
√

1 + 4ν2 + Ds)

4 + 18ν2
, (19)

the denominator will be positive, while it will be negative
above that curve. The curves defined by this equation for Ds =
±1 are represented in Fig. 2. A similar result was obtained in
Ref. [16] for s = +1. Hence, for solutions to exist, σ < σs and
α + ξ 2

4ν
> 0 or σ > σs and α + ξ 2

4ν
< 0.

Note that for small ν the curve σs becomes σs = ν(3+Ds)
4 ,

which for Ds = −1 coincides with the boundary of stability
σ = ν

2 that was obtained using the perturbation analysis. We
have performed a preliminary stability analysis that included
the determination of the continuous spectrum of the spectral
stability equations and direct numerical simulation of the
evolution equation (12) using pseudospectral methods. This
analysis showed that the solutions are stable for σ < σs and
α + ξ 2/(4ν) > 0; however, the continuous spectrum is stable
for ν > 0 only if α + ξ 2/(4ν) < 0. Hence, in analogy to what
has been proved for the cubic CGLE [16,18], we have a
region of stable solitons and unstable linear waves and unstable
solitons and stable linear waves. Fortunately, as was observed
in simulations of Eq. (12), the instability of the linear waves is
not very pronounced in the case of small α + ξ 2/(4ν).
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FIG. 3. (Color online) The real part of the propagation constant for both fibers and two peak values of the control Rabi frequency (in s−1).
The population decay and dephasing rates are (a) all equal to 6.28 × 107 s−1 (case 1) and (b) γ13 = γ23 = 18.1 × 106 s−1,γ33 = 36.1 × 106 s−1

(case 2). Circles correspond to values determined numerically, and the lines correspond to fourth-degree polynomial fittings.
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FIG. 4. (Color online) The imaginary part of the propagation constant for fiber 2 and two peak values of the control Rabi frequency
(in s−1). The population decay and dephasing rates are (a) all equal to 6.28 × 107 s−1 (case 1) and (b) γ13 = γ23 = 18.1 × 106 s−1,γ33 =
36.1 × 106 s−1 (case 2). Circles correspond to values determined numerically, and the lines correspond to fourth-degree polynomial fittings.

IV. RESULTS AND DISCUSSION

In the following, we consider a gas of rubidium and its
energy levels 5S1/2 F = 2, 5S1/2 F = 3, and 5P1/2 as |1〉 , |2〉,
and |3〉, respectively. For these � levels, the control and probe
wavelengths may be considered to be numerically identical
and equal to 795 nm, and μ13 = 2.54 × 10−29 C m. We have
also considered two photonic-band-gap fibers with hexagonal
structured claddings whose solid material is silica. The pitches
and hole diameters are 2.5 and 2.3 for fiber 1 and 4.0 and
3.9 μm for fiber 2, respectively. In both fibers, the core
diameter is taken to be three times the hole diameter. The
results below were all obtained by considering a fiber core
filled with rubidium gas at 0.1 mbar of pressure, which in STP
conditions gives N = 2.46 × 1021 m−3. The cladding holes
were considered to be filled with air. We also consider that the
control field is in exact resonance with the energy difference
between levels 2 and 3, i.e., δc = 0. Moreover, we set all γij

equal to 6.28 × 107 s−1 (case 1), which is a typical value
for room-temperature EIT experiments [14]. For comparison
purposes, we also add the results obtained considering all
Dij = 0 and S31 = S32 = 18.1 × 106 s−1 [22], such that γ12 =
0,γ13 = γ23 = 18.1 × 106 s−1, and γ33 = 36.1 × 106 s−1

(case 2).
We have determined the optical modes around the resonant

wavelength for the two fibers using the refractive index (5)
for several values of the control Rabi frequency and in both
conditions of population decay and dephasing rates, using
COMSOL MULTIPHYSICS [23]. The control field fundamental
mode was obtained by considering the HC-PCF filled with
air. Figures 3 and 4 show the real and imaginary parts of the
propagation constant for some of these results. Our results
show that βr closely follows the 	 dependency of the real
part of n given by Eq. (5), but the imaginary part βi is much
more dependent on the control Rabi frequency and the fiber

geometric parameters. Let us note that a positive imaginary
part for β or n is loss and a negative one is gain. The EIT
arrangement always gives a positive imaginary part of n;
however, in certain conditions, as in Fig. 4(a), we arrive at
βi < 0, which may be interpreted as an increase in confinement
along the propagation of the mode due to higher loss in the
periphery of the core, resulting in a reverse of confinement
loss. Note that in obtaining n we have used the transverse (x,y)
dependency of �c, such that the core is much more transparent
in the center and less transparent in the periphery. The other
cases that are shown in Fig. 4 correspond to loss. The βi for
fiber 1, which is not shown in the figures, was positive and
three orders of magnitude larger than those of fiber 2 (Fig. 4).
One of the probe modes is represented in Fig. 5.

Based on the results in the previous sections, we search
for two distinct cases: one for which the right-hand side
of Eq. (12) is very small and we have bright solitons only
slightly perturbed by the nonzero imaginary parts of the
susceptibility and nonlinear parameter and one for which
the right-hand side of Eq. (12) is nonnegligible and we

FIG. 5. (Color online) Transverse distribution of the fundamental
mode for the probe field at fiber 2, with 	 = 0 and �p

c = 7 ×
1011 s−1.

013828-6



TEMPORAL DISSIPATIVE SOLITONS IN A THREE- . . . PHYSICAL REVIEW A 91, 013828 (2015)

100 50 50 100
106 s 1

1.0

0.5

0.5

1.0

1.5

2.0

σ

(a)

100 50 50 100
106 s 1

15

10

5

σ

(b)

FIG. 6. Dependence of σ with 	 as calculated using σ = −Im[G(�eff
c )]/|Re[G(�eff

c )]| for (a) case 1 using �eff
c = 7 × 1011 s−1 and

(b) case 2 using �eff
c = 7 × 1010 s−1.

have the conditions of stable pulse solutions. To obtain σ

we need the imaginary and real parts of g as given by
Eq. (11). Since the magnitude of βi is considerably lower
than the magnitude of βr , we have βp ≈ βr , and g may
be written as g ≈ Ḡ

∫ |F |4dxdy/(2βr

∫ |F |2dxdy), where
Ḡ = ∫

G|F |4dxdy/
∫ |F |4dxdy. Using this approximation,

σ = −Im[G(�eff
c )]/|Re[G(�eff

c )]|, with �eff
c being an effective

value of �c that gives Ḡ. This expression is independent of the
fiber, and its 	 dependence is shown in Fig. 6 for the two cases
considered. For the considered 	 range, the dependence of σ

on 	 is negligibly affected by �eff
c with respect to the global

aspect and also to numerical values. If we want σ to be small
(|σ | < 1), the detuning 	 should have a value around 	 =
±25 × 106 s−1 in case 1 and around the resonance (	 = 0)
with |	| up to 0.6 × 106 s−1 in case 2. We further analyzed the
magnitude of the other parameters for case 1 since this case is
closer to actual experimental conditions. If we consider fiber
1, ν cannot be made small around ±25 × 106 s−1. However,
for fiber 2 and for the peak control Rabi frequencies that
have been considered, ν is small at these 	’s, and for 	

around 25 × 106 s−1, s = 1 and D = −1, which enables the
possibility of nonlinear Schrödinger solitons. On the other

FIG. 7. (Color online) Soliton evolution as simulated using
Eq. (12) with D = 1, s = 1, α = 0.0246, ξ = −0.0011, ν = 3.5 ×
10−4, and σ = −91.5 up to Z = 40.

hand, for stable dissipative solitons we need α + ξ 2

4ν
> 0.

Among the cases that have been considered, the parameters
for fiber 2 in the case of high γij (case 1) obey α + ξ 2

4ν
> 0 for

the major part of the analyzed 	 range. However, ν > 0 only
for 	 > 6 × 109 s−1 and 	 > 9 × 109 s−1 for �

p
c = 7 × 1011

s−1 and �
p
c = 1 × 1012 s−1, respectively. Let us consider

	 = 6.2 × 109 s−1 for fiber 2, case 1, and �
p
c = 7 × 1011 s−1,

which gives s = 1,D = 1,σ = −90.7 as calculated using (11)
and ν = 3.5 × 10−4. If we further consider τ0 = 50 ps, we
get α = 0.0246 and ξ = −0.0011. For this set of parameters,
the pulse solution derived above has an amplitude A = 0.02
and chirp parameter d = −1.43. The steady propagation is
shown in Fig. 7 up to Z = 40 for an input consisting of the
unperturbed soliton. In this case, the background instability
was only significant around Z = 400, which corresponds to
z = 1 m. Note that this dissipative soliton should have a
peak power of 3 μW since γr = 5.4 × 104 W−1 m−1 and will
propagate at 1.8% of the vacuum light velocity.

V. CONCLUSIONS

We deduced a propagation equation for the optical field
on a resonant three-level � atomic system enclosed in
a HC-PCF using a multiscale perturbation approach. The
propagation equation is identical to the one deduced elsewhere,
but its parameters are dependent on the fiber-guiding effect
through the complex propagation constant and transverse-
mode distribution. In certain parameter regions, this equation
supports stable dissipative solitons whose analytical form we
have deduced. We have also confirmed that for a typical gas
and HC-PCF the parameters are such that stable pulses do
exist. The stability of these pulses was considered by direct
integration of the evolution equation, whose results indicate
that even though they are stable in a parameter region that
coincides with the region with an unstable background, they
propagate steadily for considerable distances. Nevertheless, a
careful stability analysis of these solitons will be addressed
in a future work, along with a more extensive study of
the contribution of the fiber geometry to the propagation
characteristics.
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APPENDIX

Considering that spontaneous emission occurs only from
level 3 to levels 2 and 1, described by S32 and S31, respectively,
and that the energy-conserving dephasing effects are described
by Dij , the Lindblad term L̂(ρ̂I ) in (1) is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S31ρ33

−D12ρ12

− S31+S32
2 ρ13 − D13ρ13

−D12ρ21

S32ρ22

− S31+S32
2 ρ23 − D23ρ23

− S31+S32
2 ρ31 − D13ρ31

− S31+S32
2 ρ32 − D23ρ32

−(S31 + S32)ρ33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The parameter B in Eq. (7) is given by

B = 2i[4(	 − iγ12)2 + |�c|2]

[4(	 − iγ12)(δp + iγ13) + |�c|2]2
= i

dL

dωp

,

and G and C in Eq. (9) are as follows:

G = c1 + c2|�c|2 + c3|�c|4
γ23γ33[−4(	 + iγ12)(δp − iγ13) + |�c|2][4(	 − iγ12)(δp + iγ13)�c + �3

c]2
,

c1 = −32(	 − iγ12)2(	 + iγ12)γ13(δ2
c + γ 2

23)γ33,

c2 = −8(	 − iγ12)[12(	2 + γ 2
12)γ13γ23 − i{γ12(2δcγ13 − δpγ23 + iγ13γ23) + 	[δc(δp + δc − iγ13) + 2γ13γ23 + γ 2

23]} γ33],

c3 = 2i{12	2γ23 − γ12(γ13 + γ23)γ33 + 	[−(δp + δc)γ33 − 2iγ23(6γ12 + γ33)]},

C = 8{4(	 − iγ12)3 + [2δc − 3δp − i(2γ12 + γ13)]|�c|2}
[4(	 − iγ12)(δp + iγ13) + |�c|2]3

= −1

2

d2L

dω2
p

.
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