
Towards a Mostly-Automated Prover
for Bit-Vector Arithmetic

Iago Abal
HASLab / INESC TEC & Universidade do Minho

Braga, Portugal
iagoabal@di.uminho.pt

Jorge Sousa Pinto
HASLab / INESC TEC & Universidade do Minho

Braga, Portugal
jsp@di.uminho.pt

ABSTRACT
We present work in progress on the development of EasyBV,
a specialized theorem prover for fixed-size bit-vector arith-
metic.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation; I.2.3 [Artificial Intelligence]: Deduction and The-
orem Proving

General Terms
Algorithms, Verification

Keywords
Bit-vectors, Theorem proving, SMT, Rewriting

1. INTRODUCTION
The theory of fixed-size bit-vectors has gained momentum

as a means to support encodings of verification problems in-
volving word-level operations. While being a decidable the-
ory supported by most SMT solvers, bit-vectors can preserve
the high-level structure of a problem that would be lost us-
ing traditional propositional encodings. For instance, 32-bit
multiplication is a bit-vector operation satisfying well-known
properties, but at the bit-level it is represented by thousands
of operations with no obvious meaning. Ideally, we want
solvers to take advantage of this to handle problems more
efficiently than a SAT solver can handle their bit-level coun-
terpart. However, the only decision procedure for bit-vector
arithmetic supporting non-linear operations is bit-blasting,
which consists in translating a bit-vector problem into pure
propositional SAT. This means that the high-level structure
of the problem will be lost anyway.

Modern SMT solvers include preprocessing steps that per-
form local and global simplifications on the input problem
before bit-blasting [3]. This preprocessing has been instru-
mental in the performance improvements recently achieved

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
C3S2E-13 2013, July 10-12, Porto [Portugal]
Copyright 2013 ACM 978-1-4503-1976-8/12/06 ...$15.00.

by SMT solvers for the theory of bit-vectors, but it is in-
sufficient for many industrial scale scenarios. In particu-
lar, bit-blasting non-linear operations like multiplication is
quadratic on the size of the operands. As a consequence,
problems with heavy use of non-linear arithmetic tend to
be intractable, as their propositional encoding may grow ex-
ponentially on the size of bit-vectors. This is a frequent
situation in domains like public key cryptography, where
operations such as multiplication and modulo are used in-
tensively on large bit-vectors.

In our previous work we have explored the development
of a rewriting system for bit-vector arithmetic to simplify
equivalence problems in the domain of cryptography [1].
This prototype was tested using a small number of case
studies from symmetric, public-key and elliptic-curves cryp-
tography obtaining considerable speedups. Interestingly, we
found that SMT solvers are missing straightforward but im-
portant algebraic rules, such as (a[n] mod b[n]) mod b[n] ≡
a[n] mod b[n]. But the greater speedups were obtained by
(sometimes tricky) equivalences that require estimating up-
per bounds for subterms, thus being substantially expen-
sive to exploit. A simple, yet representative, example is
a[n] mod k ≡ a[n], which holds provided that we can stati-
cally show that any assignment for a[n] will be lesser than the
constant k. The overall experience provided evidence that
effective simplification of an arbitrary bit-vector problem
will hardly be achieved in an automated fashion. The above
results motivate us to our current proposal for a mostly-
automated theorem prover for bit-vector arithmetic, in which
domain-specific rewriting rules play a fundamental role. We
believe this as yet unexplored approach will prove to be more
efficient than current solutions.

2. OVERVIEW
EasyBV is a specialized theorem prover for the combined

theory of bit-vectors, arrays and uninterpreted functions.
It combines SMT solving with word-level simplifications to
tackle the formula explosion problem created by bit-blasting.
Figure 1 depicts the high-level architecture of the EasyBV
toolset. The rule compiler parses rule files containing rewrit-
ing rules, typechecks each of these rules and stores them in
the database. Rules can be checked at any time to guarantee
that they state valid equivalences between bit-vector terms.
The rule checker combines testing with SMT solving to offer
a lightweight but practical approach to rule verification. The
proof engine is the core component of the system, perform-
ing tactic-driven simplifications on the input problem until
this can be handed to an SMT solver. It will either return

Rule checker SMT solver

Rule compiler
Rule

database
Proof engine

.rule .smt .tactic

Figure 1: EasyBV architecture.

a proof log in case of success, provide a counterexample if
some is reported by the SMT solver, or fail if simplification
was insufficient. In the latter case, the user shall refine the
rewriting system or the tactic script.

In order to illustrate the proving workflow, let us consider
the problem of determining the satisfiability of b 6= 0 ∧
f(0) = 0∧ f((a mod b) mod b) 6= (a = 0) ? 0 : f(a mod b),
for bit-vectors of 1024-bits size. This problem is quite repre-
sentative of those that (so far) we have found in the domain
of public key cryptography, and turns out to be intractable
by modern SMT solvers (namely Z3 3.2.1, CVC4 1.2, and
MathSAT5 5.2.5).

Defining the rewriting system.
EasyBV incorporates a number of builtin rules of gen-

eral usefulness, but hard problems will require developing
domain-specific sets of rules. Rules are organized into mod-
ules thus simplifying reusability. Even though EasyBV may
provide some hints using simple heuristics, the user is re-
sponsible for finding the adequate set of rewriting rules for
simplification. Normally, a rule database is built incremen-
tally as new problems arise, and this effort is considerably
reduced after a few representative cases. The typechecker
guarantees that the specified rules are safe and will not pro-
duce runtime errors when used by the rewriter, these er-
rors include size-mismatching and division-by-zero. EasyBV
would conveniently suggest the following rule given the above
example: (a[n] mod b[n]) mod b[n] → a[n] mod b[n].

Verifying the rewriting rules.
At some point, rules should be verified to gain confidence

in the proofs performed by EasyBV. However, rewriting rules
like the above often state general properties on arbitrary-
sized bit-vectors, and cannot be proved automatically. Yet,
proving a rule correct for some concrete bit-vector sizes may
still be difficult for modern SMT solvers. For instance, our
rule is hard to prove for bit-vectors larger than 16 bits. Look-
ing for a compromise, we rely on a combination of random
testing and SMT solving: some of the variables are set to
randomly generated values until the resulting rule instance
is effectively solvable. In our example, we may randomly
pick a value for a[n], say k, and then rely on an SMT solver
to check that (k mod b[n]) mod b[n] ≡ k mod b[n]. In com-
parison with regular testing, each test vector verifies the

equivalence for 2n values of b[n], thus a few test cases may
cover a significant portion of the state space.

Writing the tactic script.
Rewriting is performed automatically and the user can

only customize the set of rules to be used. User guidance is
mostly important to decide whenever we shall apply expen-
sive global simplifications, or transformations that may be
counterproductive. Notice that sometimes it is necessary to
apply transformations that will first increase the size of the
problem, in order to enable further simplifications. EasyBV
offers a declarative tactic language that allows a coarse con-
trol of the simplification process. The highly declarative
nature of tactics reflects our decision to trade-off efficiency
for robustness. EasyBV also provides a standard proving
strategy that will usually work for moderately complicated
problems.

Solving the problem.
The rewriter is invoked automatically on any subterm

that has changed and thus may be subject to further sim-
plification. Rewriting is performed bottom-up and mod-
ulo associativity and commutativity (AC). We implement
an efficient algorithm for AC rewriting based on bipartite
graphs matching [2]. EasyBV will simplify the input prob-
lem according to what is specified by the tactic script, and
then will call an external SMT solver only if the simplified
problem can be solved in reasonable time. If bit-blasting
would explode producing a huge boolean SAT problem, then
EasyBV will fail indicating that simplification was insuffi-
cient. Our problem is reduced to b 6= 0 ∧ f(0) = 0 ∧
(a = 0) ? f(a mod b) 6= 0 : ⊥ after rewriting and if-lifting.
This new formula is considerably easier and can be handed
to any state-of-the-art solver. Anyway, a global simplifica-
tion pass would perform constant propagation replacing first
a and then f(0) with 0, thus showing the problem unsatis-
fiable.

3. ACKNOWLEDGMENTS
This work is funded by ERDF - European Regional De-

velopment Fund through the COMPETE Programme (op-
erational programme for competitiveness) and by National
Funds, through FCT - Fundação para a Ciência e a Tecnolo-
gia, within project FCOMP-01-0124-FEDER-020486; and
by ERDF through the COMPETE Programme, within pro-
ject FCOMP-01-0202-FEDER-023137.

4. REFERENCES
[1] I. Abal, A. Cunha, J. Hurd, and J. Sousa Pinto. Using

term rewriting to solve bit-vector arithmetic problems.
SAT’12, pages 493–495. Springer-Verlag, 2012.

[2] S. M. Eker. Associative-commutative matching via
bipartite graph matching. Comput. J., 38(5):381–399,
1995.

[3] V. Ganesh, S. Berezin, and D. L. Dill. A decision
procedure for fixed-width bit-vectors. Technical Report
CSTR 2007-06, Department of Computer Science,
Stanford University, 2006.

	Introduction
	Overview
	Acknowledgments
	References

