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ABSTRACT

Non-rectangular cores of standard-cell-based régaratble logic can be used to fill space left orst8g-on-Chips,
thereby providing the system with hardware recamfdpility. The proposed architecture for a nonaagular
reconfigurable core is based on a fixed set ofksldbat implement logic functions, interconnecti@msl configurable
switching. The basic blocks connect by abutmerfbtm clusters and clusters abut to form a complet®nfigurable
core. A software tool was created to generate erlgael netlist and the floorplan data of the rdimpmable logic core
together with a basic testbench. Cores with notarglar shapes were created using 90 nm and 48tammdard-cell
technologies and validated by simulation. The tesdémonstrate the feasibility of a flexible, tegluyy-independent
architecture for non-rectangular reconfigurableidazpres that can be physically implemented usirsgaadard digital
design flow.
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1. INTRODUCTION

Today’'s embedded systems integrate digital andognedchnologies into a single chip, known as Syst@rChip
(SoC), in order to achieve increased performangstem reliability, and reduction in packaging aedttcosts. As
fabrication technology advances and processeskshdasign costs escalate due to increasing systenplexity, and
challenging integration and verification tasks. tR#rthe digital circuitry of a SoC is comprised fofed digital logic
blocks, but another part is often custom desigaed, may benefit from redesigns and updates, orhmag a dual use
(regular and test mode, for example). This is gsswhen reconfigurable digital blocks exist, tlase capable of
supporting different digital functions after silitdabrication. The use of reconfigurable logic ®mn SoCs reduces
development risk, because it enables a quick aexpensive correction or update of the digital cdesign function,
while still maintaining performance levels apprapei for a broad range of applications. Inside a,3o€space left after
placing the analog circuitry and other large IPesois very often non-rectangular (Figure 1). Weppee using a non-
rectangular core of standard-cell-based reconflgaréogic to fill that space, thereby adding to fiveal product the
advantage of reconfigurability with a potentialljjost design cycle. The goal of the current workidsdevelop a
variable-shape reconfigurable core architecture taedtools to support its implementation throughegular ASIC
design flow, in order to achieve the cost-efficientlusion of such cores in SoC-based consumertreldcs
applications.
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Figure 1. System-on-Chip — Example of space lefirgftacement of other hard macros and fixed logic.



2. PROPOSED ARCHITECTURE

The proposed general core architecture is based fixed set of basic cells, commonly available tendard cells
libraries, which implement logic, switch and rogtiblocks. The circuits presented here were deviasead proof of
concept of the overall programmable core architectlihe basic blocks connect by abutment to fotmgher structural
level identified as a cluster. Cluster cells conigcabutment to other cluster cells to form theordigurable logic core
with the desired shape (Figure 2). Part of the @&@eamcupied with fixed digital logic that suppotte programmable
core operation and reconfiguration. The configoratf the core is done serially by a scan chain.
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Figure 2. Programmable logic core on SoC implemeasean array of programmable cells and fixed sugpgic.
2.1 Architectural Overview

The architecture of the embedded programmable logie proposed is based on a typical island-stp&A. Three
different structures are required: logic, switcll aouting blocks.

The logic blocks hold the mapped digital functiomdaconnect to adjacent routing blocks that mayveelithe data
signals to any core location. A switch block islutted wherever the routing channels intersect. @ lle®e basic blocks
connect by abutment to form a more complex celh dtigher structural level identified as a clusteluster blocks
connect by abutment to other cluster blocks to fthereconfigurable logic core with the desiredpghal hey can be
shapped together to form a programmable fabrit@fdesired size and shape. This gives the circthiitacture a fine-
grain characteristic, the most suitable to servemegtangular shapes.

The implementation of the three types of blockasel using just a small set of standard cells. Bygustandard cells,
commonly available CAD tools can be used and tlwgn@mmable core architecture can be physically emginted
through a standard digital logic design flow.

In this architecture the definition of the numbédata inputs to the logic block defines the amttiire for the routing
and switch blocks. In this sense, the logic bloahgecture defines the routing and switch blodiat tsurround it and
must be used together

2.2 Cluster

The non-rectangular programmable core is compogea @roup of macrocells known as clusters. Eachtetublock
contains one logic block (LB), one horizontal ragtiblock (HRB), one vertical routing block (VRB)dmne switch
block (SB) (Figure 3). The logic block containsak-up table to define the logic function assigriedt, and has
combinational and sequential outputs interfacingédical and horizontal unidirectional tracks dwe trouting block.
These tracks intersect in the switch block and@uéed to other tracks through it.
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Figure 3. Cluster block hierarchical organization.

The cluster block is physically implemented by amtating its basic blocks. This is done automéiiday procedures
written in the scripting language of the EDA toded. For this work, these procedures were writtersiILL
programming language and executed within Cadened&o Layout Editor. Each of the basic blocks sthtnave been
previously implemented by the standard digital gieglow. For that purpose, their gate-level netliahd floorplan can
be used.

The cluster block is the same for all positions tbe non-rectangular core. The fixed circuit conimgctto the
programmable core must take into consideration dlaton-used inputs of the core must be tied togic value (all
unused outputs of the core can be left floatingpjs Bituation occurs for all cluster blocks on bfweindary of the shape.

2.3 LogicBlock (LB)

The logic block (LB) may contain one 2- or 4-ingabk-up table that is used to implement the regpmfible logic

function assigned to the cluster cell. The loolaipd’s implementation uses scan flip-flop cells tten be programmed
through their scan input. The contents of the fllgps will define the truth table. The input daigrals control the

selection signals of the multiplexers that route thok-up table contents to the logic block’s comaitional and

sequential outputs. The sequential output is implaed by a non-scannable flip-flop cell. This clks not belong to
the configuration chain. Additional circuits in thegic block ensure that its sequential and contimnal outputs do not
toggle during serial programming. The interfacenalg orientation and the schematic representafi@n2sinput LB can

be seen in Figure 4.

For an N-input LB, 2 flip-flop cells and an N-input multiplexer cell @' 2-input multiplexer cells are needed to
implement the look-up table.

In normal operation, the clock signal to the progmang flip-flop cells is disabled (gated with comhbtional logic and
the programming mode enable signal) to avoid asithti power consumption, since in this mode the nomgning flip-

flop cells need only to maintain their output. Tdéleck signal is enabled when the core is in prognamg mode. In
normal operation, the global reset signal is agptiely to the flip-flop cell to the sequential datatput. In this way, the
circuit mapped to the logic block can be reset auitiresetting the LUT. The LUTSs are reset whernréset global signal
is asserted in programming mode.

The schematic representation of the 2-input LB shthe relation between the programmed logic vaja@s3) in each
of the programming flip-flop cells and the value tbe output ¢ut) and inverted outputo(itz) for each data input
combination in0, in1). The logic value programmed in the last flip-flogll @5) defines whether the output of the logic
block is registered or not.

For a cluster surrounded by other clusters, LB trfata is provided by the HRB on the adjacent elysthile its output
data is connected to the HRB in the same clustes.clock, reset and programming mode enable sigmalsupplied by
the VRB in the same cluster. The programming clgiut comes from the VRB in the adjacent clustet &g output
connects to the VRB in the same cluster.
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Figure 4. 2-input LB schematic representation atetiace signals and orientation in block symbol.

2.4 Routing Block

The routing circuitry in the configurable core imapients the connections between all logic blocks @tavs the
propagation of any data signal to potentially anyeclocation. The routing circuitry of a clustedlde composed of a
vertical and a horizontal routing block. These thlocks interface with the logic and switch block e same and
adjacent clusters.

2.4.1 Horizontal Routing Block

The horizontal routing block (HRB) has 4 horizontalidirectional tracks (when a LB with a 2-inpubkeup table is
used) or 6 horizontal unidirectional tracks (whehBawith a 4-input look-up table is used). The uredtional tracks
area buffered. A mechanism using three-state buffs was implemented to control the drive of tlagizontal tracks
by the LB output signals. This mechanism was alseduto disconnect the tracks from the SBs conrgedtinthe

horizontal tracks to avoid conflicts. The accesshef LB output signals to the horizontal tracksniplemented using
three-state buffers controlled by programmableffyp cells. The access of the horizontal trackgh® LB input pins is
implemented through a multiplexer tree whose selecsignals are controlled by flip-flop cells. Ti¢RB circuit

implemented to work together with a 2-input LB épresented, together with the HRB interface sigod&ntation, in
Figures 5 and 6. The same implementation for apdtinB differs in the amount of horizontal traclend uses an
enlarged multiplexer tree, instantiated four tintes;onnect the horizontal tracks to the 4 LB iigput
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Figure 5. HRB interface signals and orientation ocklsymbol for a 2-input LB architecture.

Again, the clock signal to the programming flipgh is disabled during normal operation and enaldadng
configuration. The programmable flip-flop cells aeset only when the reset signal is assertedagrpmming mode.

HRB behavior is determined by two groups of signélge is related to the horizontal track data dgyaad to the
connections to the LB in the adjacent clustg)..8). The other is related to the LB outputs and theimnections to the
horizontal tracks in the same clusted.(11). The two sections are described on Table 2 afdeTarespectively. It is
not possible to connect both LdBit andoutz output signals to the same horizontal (Table 3).

Table 2. Horizontal routing block truth table —iloglock inputs

a0 al a2 | a3 track toin0
0 0 X X trackO_left right
0 1 X X trackl right left
1 0 X X track2_left right
1 1 X X track3_right_left
a0 al a2 | a3 track toinl
X X 0 0 trackO_left right
X X 0 1 trackl right left
X X 1 0 track2_left right
X X 1 1 track3_right_left

Table 3. Horizontal routing block truth table —iloglock outputs

a4 a5 ab a7 out to track

1 0 0 0 trackO_left_right
0 1 0 0 trackl_right_left
0 0 1 0 track2_left_right
0 0 0 1 track3_right_left
a8 a9 al0 | all outzto track

1 0 0 0 trackO_left_right
0 1 0 0 trackl_right_left
0 0 1 0 track2_left_right
0 0 0 1 track3_right_left

For a cluster surrounded by other clusters in thggammable core, the HRB input data is providedheyl B and SB in
the same cluster and by the HRB in the adjacesteduwhile its output data is connected to theirSe same cluster
and to the HRB and LB in the adjacent clusters. Tloek, reset and programming mode enable glolgplads are
supplied to the HRB by the SB of its own clusteneTprogramming chain input comes from the SB insdame cluster
and its output is connected to the SB in the adijaciester.
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Figure 6. HRB schematic implementation for use &i®rinput LB.

2.4.2 Vertical Routing Block

The vertical routing block (VRB) performs two fuimis. Like the horizontal routing block, it carrigs or 6
unidirectional tracks for data propagation (for-soR 4-input LB, respectively). In addition, the BRs used to feed the
cluster with the clock, reset and programming medable global signals. Figures 7 and 8 show therfate signals
orientation and circuit implementation of a VRB #oR-input LB.

©
3
o @ 2
IX IN I(D
o o o
S S S 5
R N
?U ?U fU |(ll
clk_out_sb e~ [ [ | v — clk
rstz_out_sb -e— — rstz
pmode_out_sb - —— pmode

trackO_bottom_top_input —
trackl_top_bottom_output -—
track2_bottom_top_input —
track3_top_bottom_output -e—

—» track0_bottom_top_output
— trackl_top_bottom_input
—» track2_bottom_top_output
— track3_top_bottom_input

RARARN
guA
AlAlAdA

-

SqINo

Figure 7. VRB interface signals and orientation arcklsymbol for a 2-input LB architecture.
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Figure 8. Schematic of a VRB for use with a 2-inpBt L

The VRB input and output signals are connectech&o 3B in the same and adjacent clusters. The cleslet and
programming mode enable global signals are supplig¢ie VRB by the SB in the adjacent cluster. phagramming
chain input is supplied by the LB in the same @usind its outputs are supplied to the LB in tha@eht cluster.

2.5 Switch Block

The switch block, besides propagating the clocketr@nd programming mode enable global signalgsisonsible for
supporting the programmable connection betweetrdos of its cluster and the other clusters cotatem it. The logic
implementation of the switch block is based onWitton switch [2] as it is the one that presents liest area-efficiency
for architectures where the routing tracks spary amle logic block. The track connections are immated using 3-
input multiplexer cells controlled by flip-flop del An implementation of this cell for a 4-input L&ill be the similar,
but will use additional 3-input multiplexer cells accommodate the larger number of connections.ifitbeace signals
and orientation and the circuit representation 8Bafor a 2-input LB can be seen in Figures 9 ahd 1
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Figure 9. SB interface signals and orientation atkkymbol for a 2-input LB architecture.



This block implements the same clock scheme akBhend the HRB to avoid the additional power conptiaon in the
functional mode. It also implements the same drtuireset the programmable flip-flop cells only programming
mode.

The SB input and output signals connect to the HIR8 VRB blocks that surround it. The clock, reset programming
mode enable signals are supplied to the SB by RB W the same cluster. The SB provides these gkibaals to the
VRB in the adjacent cluster. The programming chiajrut is supplied by the HRB in the adjacent clusted its output
connects to the HRB in the same cluster.
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Figure 10. Switch block schematic implementationgf@-input LB.

The connections between horizontal and verticalksahat the switch block supports are detailetable 4 (switch
block for a 2-input LB).

Table 4. Switch block truth table (for a 2-inpugilo block)

trackO left right output trackO bottom_top output track3 top bottom_output
a0 | al input track a2 | a3 input track a4 | a5 input track
trackO_left right 0 0 trackO_left righ ( ( akd left right
track2_bottom_top 0O 1 | trackO bottom top O 1 track3_right_left
track3_top_bottony 1 0 trackl right_left 1 0| track3 top bottdm

Not allowed | 1 1 Not allowed 1 1 Not allowed
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trackl top bottom_ output

track2 left right output

track2 bottom_top output

2.6 Configuringthe Core

The programmable core is configured through théalehain that connects the scan flip-flops usedstiore the
programming information. The configuration is penfied with a serial bit stream using the availalsknschains. With
the proposed architecture, it is also possiblerégiam the complete core by programming in parakeih line or group
of lines of clusters. The external wrapper cellt tarrounds the programmable core is responsiliieadoessing in
parallel the programming chains input and outpgmais or by connecting them into a single chaimepgresentation of a

a0 | a7 input track a8 | a9 input track alo | all input track
0 0 track2_left right 0 0 track2_left righ t ( aka_left_right
0 1 trackl_right_left 0 1| trackO_bottom topO 1 | track2_bottom_top
1 0 | trackl top bottomp 1 0 | trackl top bottomp 1 0 track3_right_left
1 1 Not allowed 1 1 Not allowed 1 1 Not allowed
track3 right leftt output trackl right left output

al2 [ al13 input track al4 [ al5 input track

0 0 | trackl_top_bottonp O 0 | track3_top_bottom

0 1 | track2_bottom top O 1 | trackO_bottom top

1 0 track3_right_left 1 0 trackl right lef]

1 1 Not allowed 1 1 Not allowed

non-rectangular programmable core is shown in Eidudr, where a single chain is used to configuretie.

2.7 Design Example

The same non-rectangular programmable core is osdtis section with one example digital circuitppad onto it.
This circuit doesn’t represent any particular kndwnction. The image presented on Figure 12 shawsthe LB input
and output signals in use together with the tracded to propagate those signals through the ctwe different dotted
lines on the figure are used to represent therdifftedata paths established between the LBs afippmg and they are
presented with different patterns for a cleareuafization. The arrows represent the signals immat output direction.
The clock, reset and programming mode enable glsigalals are supplied to all clusters through tMRBs. These

signals are not shown in the figure.
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Figure 11. Programmable core serial bit streamigardtion.
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Figure 12. Programmable core with mapped circuit.

3. AUTOMATIC GENERATION OF THE RECONFIGURABLE CORE

A software tool was created that, given the shdpbeoprogrammable core, the number of data inffitsr 4) and the
size of the basic blocks, generates a gate-lewdisinef the reconfigurable core, a basic testbeand data for the
backend flow required for the physical implememtatdf the blocks.

The shape of the programmable core defined by amaft "+” and "-” that represents the desired sbafihe tool

generates the logic, routing and switch blockshie form of gate-level netlists that employ techggldependent
standard cells. The generator creates a gate+etdt of the reconfigurable core by connecting t¢tuster cells to meet
the requested shape. These gate-level netlistbeamsed in a standard digital design flow and dalook can be

implemented and validated as a standalone logickblm this way common CAD tools and optimized skaml cells

from commercially available libraries can be usedlucing the design risk associated with the ragardble core and
its impact on the SoC design cycle.

The generator also creates a wrapper top-levelfaethe entire core, in order to connect the digima the boundary
clusters to signal buses so as to ease the intmyraf the core with the rest of the SoC. The weapeell that is
automatically created is a very simple cell thatrexts the programming chains of each line of elgsinto a single
serial chain and maps the programmable core imerfggnals to data buses. The wrapper cell thatsneebe created
when integrating the core on a SoC will control de®nection of the programmable chains, supplynéeded control
signals, and tie the unused input signals.

In addition, the generator creates a ready-to-estrltench implementing a single task that, by Bgnmogramming a
sequence of 0's and 1's, counts the number of progring flip-flop cells on the complete core and panes it to the
expected value. With this task, the maximum opegatiequency for the programming mode of operatian be easily
determined early in the design cycle.

The backend preparation data is created in the fofrhEF files [6] (a standard for representing pbgk layout
information) that describe each basic block floarnphnd a set of scripts to automatically createatigract and layout
views of the cluster cell and the programmable .core

An additional utility tool was implemented thatrisdorms a user-friendly text file with the mappimformation for
each cluster into a bit stream that can be usedrally configure the core.



4. EXAMPLESAND RESULTS

Programmable cores with non-rectangular shapes, ('S, "T”, "U") were created and different logicuinctions
manually mapped onto them. There are currentlyawtstto automatically map digital designs onto mectangular
cores.

Validation was performed in two different ways. Tfiest simulations performed with the gate-levellisés for the
programmable core were functional simulations owligh no timing associated. This group of simulatovas used to
functionally validate the proposed architecturehbfatr the programming and for the normal mode oérafion. The
second group of simulations used time-annotatendata cell netlists combined with an appropriateeisad model.
This group of simulations was done to evaluate wittne accuracy the performance and maximum opgrigguency
of the implemented programmable cores and, inwhyg, to quantify its performance. The same teseheior both
simulations was applied and a simple digital desigrs mapped onto ax3 programmable core. The programming
circuitry operated at more than 850 MHz for a 90ecommercial CMOS process, under the assumptiorthlieabngest
path between two flip-flops (in the mapped circgianned two cluster cells. The speed of the majugd is design
dependent, but this approach establishes an ujppieiof 850 MHz. The approximate area for each @usvith 2-input
look-up tables is 160@m?*for a 90 nm process and 306 for a 45 nm process based on a predictive mode[§F]At
the smaller technology node, a X200 programmable core requires around 16mm

An example layout of a cluster cell is presented-mure 13 for a 90 nm process. Figure 14 showstn-rectangular
core that is automatically created through instaiatih of several cluster cells. The size of thesiguis around 204Bm*
The core has 318 clusters and the total core ar@#5mm.
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Figure 13. Cluster cell layout
Comparing Figures 3 and 13, it is possible to ifgoh the layout of a cluster cell the basic bletkat compose it.

Some cluster cells are highlighted on the prograbdeneore layout shown in Figure 15.



Figure 14. Programmable core layout for a S-shape ¢

5. CONCLUSIONSAND FUTURE WORK

The results obtained in this work demonstrate #asibility of a flexible, technology-independenttitecture for non-
rectangular reconfigurable logic cores, that ispsufed by an automatic generation tool and that lmarphysically
implemented using a standard digital design flole proposed work flow is based on the hierarctocghnization of
the core circuitry and allows a nonrectangular paiognable core to be created and validated on & dlesign cycle
time, as happens with any common fixed digitalddgock.

We have identified several points of interest #taduld be taken into consideration in future walated to the current
proposal. One direction is to have a more flexitxee organization. A first step would be updatihg generator to
create cores with variants of the proposed ardhitec(for example, look-up tables with more inpatsd a higher
number of tracks on routing blocks). Another impattstep would be developing tools (or, perhapaptidg existing
tools) for quickly mapping any digital design omg@nerated core, so that parameters that characierike routability
and area-delay and delay-power products, can lily esaluated.
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