Check for
Updates

Efficient Embedding of Strategic Attribute Grammars
via Memoization

José Nuno Macedo
jose.n.macedo@inesctec.pt
HASLab & INESC TEC, University of Minho
Braga, Portugal

Marcos Viera
mviera@fing.edu.uy
Universidad de la Republica
Montevideo, Uruguay

Abstract

Strategic term re-writing and attribute grammars are two
powerful programming techniques widely used in language
engineering. The former relies on strategies to apply term re-
write rules in defining large-scale language transformations,
while the latter is suitable to express context-dependent lan-
guage processing algorithms. These two techniques can be
expressed and combined via a powerful navigation abstrac-
tion: generic zippers. This results in a concise zipper-based
embedding offering the expressiveness of both techniques.
Such elegant embedding has a severe limitation since it
recomputes attribute values. This paper presents a proper
and efficient embedding of both techniques. First, attribute
values are memoized in the zipper data structure, thus avoid-
ing their re-computation. Moreover, strategic zipper based
functions are adapted to access such memoized values. We
have implemented our memoized embedding as the Ztrategic
library and we benchmarked it against the state-of-the-art
Strafunski and Kiama libraries. Our first results show that we
are competitive against those two well established libraries.

CCS Concepts: « Software and its engineering — Soft-
ware development methods; Specification languages; «
Theory of computation — Program reasoning.

Keywords: Strategic Programming, Attribute Grammars,
Zippers, Generic Traversals

ACM Reference Format:
José Nuno Macedo, Emanuel Rodrigues, Marcos Viera, and Jodo
Saraiva. 2023. Efficient Embedding of Strategic Attribute Grammars

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

PEPM °23, January 16-17, 2023, Boston, MA, USA

© 2023 Association for Computing Machinery.

ACM ISBN 979-8-4007-0011-8/23/01...$15.00
https://doi.org/10.1145/3571786.3573019

41

Emanuel Rodrigues
jose.e.rodrigues@inesctec.pt
HASLab & INESC TEC, University of Minho
Braga, Portugal

Joao Saraiva
saraiva@di.uminho.pt
HASLab & INESC TEC, University of Minho
Braga, Portugal

via Memoization. In Proceedings of the 2023 ACM SIGPLAN Interna-
tional Workshop on Partial Evaluation and Program Manipulation
(PEPM °23), January 16—17, 2023, Boston, MA, USA. ACM, New York,
NY, USA, 14 pages. https://doi.org/10.1145/3571786.3573019

1 Introduction

Strategic term re-writing [18] and Attribute Grammars (AG)
[13] are two powerful language engineering techniques. The
former provides an abstraction to define program/tree trans-
formations: a set of re-write rules is applied while traversing
the tree in some pre-defined recursion pattern, the strategy.
The latter extends context-free grammars with attributes
in order to specify static, context-dependent language algo-
rithms.

There are many tools that support these techniques for
the implementation of (domain specific) programming lan-
guages [3, 6, 8,9, 11, 16, 17, 22, 23, 26, 30-32]. Unfortunately,
most of these tools are large systems supporting one of the
techniques, using their own AG or strategic specification
language. As a consequence, they would require a consider-
able effort to extend and combine. There are, however, two
exceptions: the Silver system [31] and the Kiama library [26]
do support both techniques.

More recently, a combined embedding of the two tech-
niques has been proposed in [19]. This embedding relies
on a generic mechanism to navigate on both homogeneous
and heterogeneous trees: generic zippers [1, 12]. Since both
attribute grammars and strategies rely on the same generic
tree traversal mechanism, each of the techniques can be ex-
pressed by generic zippers as shown in [20, 21], for AGs,
and in [19], for strategic term re-writing. The embedding
of the two techniques in the same simple setting has a key
advantage: AGs and strategies embeddings can be easily
combined, thus providing language engineers the best of the
two worlds.

As previously shown in [10], the simple zipper-based em-
bedding of AGs [20, 21] does not provide a proper embedding
of the formalism: attribute values are re-calculated during
the decoration of the tree. This not only goes against the
semantics of AG formalism, where one attribute value is

https://orcid.org/0000-0002-0282-5060
https://orcid.org/0000-0003-4317-1144
https://orcid.org/0000-0003-2291-6151
https://orcid.org/0000-0002-5686-7151
https://doi.org/10.1145/3571786.3573019
https://doi.org/10.1145/3571786.3573019
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3571786.3573019&domain=pdf&date_stamp=2023-01-15

PEPM °23, January 16-17, 2023, Boston, MA, USA

computed at most once, but it also dramatically affects the
attribute evaluator’s performance. The combined embedding
of strategies and AGs in that setting, as proposed in [19], has
exactly the same performance issues.

In order to provide an efficient zipper-based embedding
of strategic term re-writing and attribute grammars, that we
call strategic AGs, we implement zipper-based strategies on
top of the memoized zipper-based embedding of AGs [10].
Thus, strategies access memoized attribute values in the
tree nodes, rather than having to re-compute such attribute
values via the inefficient (non-memoized) embedding of AGs,
as proposed in [19]. The purpose of this paper is three-fold:

e Firstly, we define zipper-based strategic combinators
that can access memoized attribute values as supported
by the efficient memoized embedding of zipper-based
AGs [10]. Thus, we extend the Ztrategic library, devel-
oped in [19], with new combinators which work on
trees where attribute values are memoized in the tree’s
nodes.

e Secondly, we improve the performance of the zipper-
based strategic combinators. Influenced by the (at-
tribute) grammar formalism, where terminal symbols
are more suitable handled outside the formalism (usu-
ally specified via regular expressions and processed
via efficient automata-based recognizers), we update
zipper-based Ztrategic library combinators to not tra-
verse such symbols. This does not limit the expres-
siveness of the strategic library, but does result in a
considerable performance improvement of the imple-
mentations.

e Thirdly, we perform a detailed study on the perfor-
mance of the non-memoized implementation proposed
in [19] and our implementations. We consider four
well-known language engineering tasks, namely, name
analysis, program optimization, code smell elimination
and pretty printing, which we elegantly expressed in
the strategic and/or AG programming styles. Then,
we compare the performance of our implementations
against the state of the art Strafunski [17] system - the
Haskell incarnation of strategic term re-writing - and
Kiama [26] - the combined embedding of strategies
and AGs in Scala.

Our preliminary results are surprising: the embedding
of strategic term re-writing behaves similarly to Strafunski.
However, the embedding of strategic AGs vastly outperforms
Kiama’s solutions.

This paper is organized as follows: Section 2 introduces
strategic term re-writing, attribute grammars, a combined
embedding of strategic AGs, and memoized AGs. Section 3
combines memoized AGs with strategies, and details a differ-
ent implementation of Ztrategic that maximizes efficiency
for the usage of memoized AGs; the concept of navigable
symbols is also introduced in this library. Section 4 compares

42

José Nuno Macedo, Emanuel Rodrigues, Marcos Viera, and Joao Saraiva

add(e, const(0)) — e (1)
add(const(0),e) — e (2)
add(const(a), const(b)) — const(a + b) (3)
sub(el, e2) — add(el,neg(e2)) (4)

neg(neg(e)) — e %)

neg(const(a)) — const(—a) (6)

var(id) | (id, just(e)) € env — e (7)

Figure 1. Optimization Rules

the performance of our work with the Strafunski and Kiama
libraries, and elaborates on the obtained results. Section 5
details the relevant state of the art on strategic programming
and AGs. Section 6 concludes our work and presents links
to the relevant libraries and to a replication package.

2 Zipping Strategies and Attribute
Grammars

In this section, we describe the zipper-based Strategic At-
tribute Grammars embedding introduced in [19] that com-
bines strategic programming and attribute grammars. Before
we describe the embedding in detail, let us consider a mo-
tivating example that requires two widely used language
engineering techniques: language analysis and language op-
timization. Consider the (sub)language of Let expressions as
incorporated in most functional languages, including Haskell.
Next, we show an example of a valid Haskell let expression
p=leta=b+0

c=2
b=letc=3inb+c
in a+7-c¢

and, we define the heterogeneous data type Let that we use
to model let expressions in Haskell itself.
data Let = Let List Exp
data List = NestedLet String Let List

| Assign String Exp List

| EmptyList
data Exp = Add Exp Exp

| Sub Exp Exp

| Neg Exp

| Var String

| Const Int

Consider now that we wish to implement a simple arith-
metic optimizer for our language. Figure 1 presents such
optimization rules directly taken from [15].

The first six optimization rules define context-free arith-
metic rules. If we consider those six rules only, then strategic
term re-writing is an extremely suitable formalism to express
the desired optimization, since it provides a solution that
just defines the work to be done in the constructors (tree
nodes) of interest, and "ignores” all the others.

Efficient Embedding of Strategic Attribute Grammars via Memoization

Strategic Term Re-writing: In fact, we can easily express
this optimization in Ztrategic: the strategic term re-writing
library of the combined embedding. We start by defining the
worker function, that directly follows the six rules we are
considering:
expr :: Exp — Maybe Exp
expr (Add e (Const 0)) = Just e
expr (Add (Const 0) t) = Just t
expr (Add (Const a) (Const b)) = Just (Const (a+ b))
expr (Sub a b) = Just (Add a (Neg b))

expr (Neg (Neg /) = Just f
expr (Neg (Const n)) = Just (Const (—n))
expr — = Nothing

The worker function expr takes an Exp value, pattern
matches on it, and in the cases of the rules returns the op-
timized expression. In all other cases, it returns Nothing.
Notice that the optimizations are made locally, no recursion
is involved. Having expressed all re-writing rules in function
expr, now we need to use strategic combinators that navi-
gate in the tree while applying the rules. In Figure 7 of the
Appendix we show the complete API of Ztrategic, with all
such possible combinators. In this case, to guarantee that all
the possible optimizations are applied we use an innermost
traversal scheme. Thus, our optimization is expressed as:
opt :: Zipper Let — Maybe (Zipper Let)
opt t = applyTP (innermost step) t

where step = failTP ‘adhocTP* expr

Function opt defines a Type Preserving (TP) transforma-
tion; i.e. the input and result trees have the same type. Here,
step is the transformation applied by the function applyTP
to all nodes of the input tree ¢ using the innermost strategy
combinator. The re-write step performs the transformation
specified in the expr worker function for all the cases consid-
ered by the optimizations and fails silently (failTP) in other
case. Notice in the signature the use of Zipper to navigate
through the structure (of type Let) to be transformed.

Let us now consider the context dependent rule 7 in our
optimization. This rule requires the computation of the en-
vironment where a name is used. This environment has to
be computed according to the non-trivial scope rules of the
Let language. The semantics of Let does not force a declare-
before-use discipline, meaning that a variable can be declared
after its first use. Consequently, a conventional implementa-
tion of the scope rules naturally leads to an algorithm, that
traverses each block twice: once for accumulating the decla-
rations of names and constructing an environment and a sec-
ond time to process the uses of names (using the computed
environment) in order to check for the use of non-declared
identifiers.

In fact, both the scope rules and context dependent re-
writing are not easily expressed within strategic term re-
writing,.

43

PEPM ’23, January 16-17, 2023, Boston, MA, USA

Attribute Grammars: The formal specification of scope
rules is in the genesis of the Attribute Grammar formal-
ism [14]. AGs are particularly suitable to specify language
engineering tasks, where context information needs to be
first collected before it can be used.

We start by specifying the scope rules of Let via an AG.
Due to space limitations, we adopt a visual AG notation that
is often used by AG writers to sketch a first draft of their
grammars. Thus, the scope rules of Let are visually expressed
in Figure 2. We define an extra type Root, to identify the root
of the tree:
data Root = Root Let

The diagrams in the figure are read as follows. For each
constructor/production (labeled by its name) we have the
type of the production above and below those of its children.
To the left of each symbol we have the so-called inherited at-
tributes: values that are computed top-down in the grammar.
To the right of each symbol we have the so-called synthe-
sized attributes: values that are computed bottom-up. The
arrows between attributes specify the information flow to
compute an attribute. Thus, the AG expressed in Figure 2 is
the following. The inherited attribute dcli is used as an accu-
mulator to collect all names defined in a Let: it starts as an
empty list in the Root production, and when a new name is
defined (productions Assign and NestedLet) it is added to the
accumulator. The total list of defined names is synthesized in
attribute dclo, which at the Root node is passed down as the
environment (inherited attribute env). Moreover, a nested
let inherits (attribute dcli) the environment of its outer let.
The type of the three attributes is a list of pairs, associating
the name to its Let expression definition.

The ZipperAG [20] library of the combined embedding
defines a set of simple AG-like combinators; namely the
combinator “child”, written as the infix function .$, to access
the child of a tree node given its index, and the combina-
tor parent to move the focus to the parent of a tree node.
With these two zipper-based AG combinators, we are able
to express in a AG programming style the scope rules of Let.
For example, let us consider the synthesized attribute dclo.
In the diagrams of our visual AG the NestedLet and Assign
productions we see that dclois defined as the dclo of the third
child. Moreover, in production EmptyList attribute dclo is a
copy of dcli. This is exactly how such equations are written
in the zipper-based AG, as we can see in the next function':
dclo:: AGTree [(String, Zipper Root) |
dclo t = case (constructor t) of

Letye; — dclo (t.$1)
NestedLety sy — dclo (t.$3)
Assigny sy — dclo (£.$3)
EmptyListy iy — dcli t

The function constructor and the constructors used in the case alternatives
is boilerplate code needed by the AG embedding. This code is defined once
per tree structure (i.e., AG), and can be generated by template Haskell [25]

PEPM °23, January 16-17, 2023, Boston, MA, USA

Root dcli eny Let dclo
i
deli env LCtd('/n deli env L’L‘St(/r‘/n env Lap
Exp Exp
env env
env Ep env B env Eap

José Nuno Macedo, Emanuel Rodrigues, Marcos Viera, and Joao Saraiva

. ist List
deli env List dclo deli env {/(/()\
String (Ill'Ewp deli env Lust dclo
i List
Exp env Ezp dcli env delo
St?‘i’ﬂ,_(] Number St’l'i!ly deli env Let delo deli env Listdclo

Figure 2. Attribute Grammar Specifying the Scope Rules of Let

Consider now the case of defining the inherited attribute
env that we will need to express optimization (7). In most
diagrams an occurrence of attribute env is defined as a copy
of the parent. There are two exceptions: in productions Root
and NestedLet. In both cases, env gets its value from the
synthesized attribute dclo of the same non-terminal/type.
Thus, the Haskell env function looks as follows:
env:: AGTree [(String, Zipper Root) |
env t = case (constructor t) of

Rootp — dclo t
Letye; — dclo t
— env (parent t)

We omit here the definition of attribute dcli, where the
declared names are being accumulated.

Combining Strategies and Attribute Grammars: AG
evaluators decorate the underlying trees with attribute val-
ues. Thus, an instance of attribute env is associated to every
Var node, defining its environment. Recall that env of var (id)
is the missing ingredient to implement rule (7).

Since we work with a combined embedding, we define a
strategic re-writing worker function that implements rule 7:
expC :: Exp — Zipper Root — Maybe Exp
expC (Var i) z = expand (i, lev z) (env z)

expC _ z = Nothing

The variable i is expanded according to its environment,
as defined by rule 7. Because the Let language has nesting
we use an attribute named lev to distinguish definitions with
the same name at different nested levels. Thus, the expand
function looks up the defined variable i in the level lev or
a lower level, in its environment env. In case it is found,
the expanded definition of variable i is returned, otherwise
the optimization is not performed. The definitions of the
function expand and the attribute lev are omitted for brevity.

Now we combine this rule with the previously defined
expr, implementing rules 1 to 6, and apply them to all nodes.
opt’ :: Zipper Root — Maybe (Zipper Root)
opt’ r = applyTP (innermost step) r

where step = failTP ‘adhocTPZ" expC ‘adhocTP* expr

44

Our motivating example shows the abstraction and ex-
pressiveness provided by combining strategies and attribute
grammars in the same zipper-based setting [19]. However,
this embedding of AGs has a severe limitation since when
decorating the tree, it re-computes the same attribute in-
stances. The reader may have noticed that every time the
worker function expC is called, then the call to env z does
lead to the (re)decoration of the full tree. Thus, the number
of calls to rule (7) results in the same number of full tree
(re)decorations. As expected, this drastically affects the per-
formance of the AG embedding[10] and, consequently, of
the combined one, as well.

2.1 Term Re-Writing via Higher Order AGs

Classical AGs have a severe drawback: every computation
has to be expressed in terms of the underlying AST. In fact,
Higher-order AGs (HAG) [33] were introduced with the main
goal of solving this limitation. In HAGs when a computation
cannot be easily expressed in terms of the original AST, a
better suited data structure can be computed before. Thus,
HAG do support term re-writing as shown in [24]. The zipper
based embedding of AGs supports this extension [21]. Next,
we show the Let optimization in a pure HAG setting.
optRoot :: Zipper Root — Root

optRoot ag = case (constructor ag) of

Rootp — Root $ optLet (ag.$1)

optLet :: Zipper Root — Let
optLet ag = case (constructor ag) of
— Let (optList (ag.$1)) (optExp (ag.$2))
optList :: Zipper Root — List
optList ag = case (constructor ag) of
EmptyListy i — EmptyList
Assignp sy — Assign (lexeme_Name ag)
(optExp (ag.$2)) (optList (ag.$3))
NestedLety ;s — NestedLet (lexeme_Name ag)
(optLet (ag.$2)) (optList (ag.$3))
optExp :: Zipper Root — Exp

LetLet

optExp ag = case (constructor ag) of

Addgyy — case (lexeme_Add1 ag, lexeme_Add2 ag) of

Efficient Embedding of Strategic Attribute Grammars via Memoization

(e, Const 0) — e
(Const 0,t) — t
(Const a, Const b) — Const (a+ b)

— Add (optExp (ag.$1)) (optExp (ag.$2))

— Add (lexeme_Subl ag) (Neg (lexeme_Sub2 ag))

SubExp
Constgyy, — Const (lexeme_Const ag)
Negpxp — case (lexeme_Neg ag) of
(Neg (Neg f)) — f
(Neg (Const n)) — Const (—n)
_ — Neg (optExp (ag.$1))
Vargyy — — case expand (lexeme_Var ag, lev ag) (env ag) of

FJust e
Nothing — Var (lexeme_Var ag)

This fragment expresses a single transformation/re-writing
of the original AST into a new (higher-order) tree. In order
to guarantee that all the possible optimizations are applied,
we define a circular attribute higher-order attribute, named
attributable attribute ata, that is evaluated until a fix point is
reached [28].
circ :: Root — Root
circ = fix (Af ata — if ata = (optRoot $ mkAG ata)

then ata else f (optRoot $ mkAG ata))

The higher-order solution corresponds to the computation
of this higher-order attribute and we write optHAG = circ.

As clearly shown in optHAG, term re-writing via circular
HAG does not offer the expressiveness offered by strategic
programming. Firstly, all non-terminals/types and their pro-
ductions/constructors are included in the HAG solutions,
even when there is no useful work to be performed there.
Secondly, the recursion scheme is fixed and coded directly
in attribute equations. Thus, it can not be reused. In fact,

— e

the definition of traversals and recursion schemes is against
the declarative nature of standard AGs. In order to avoid
trivial and polluting equations, AG systems offer a set of
copy-rule abstractions allowing the automatic generation
of such attribute equations. Thus, we may consider some
form of attribute equation generation that always generates
the equations that call the constructor without doing useful
work. The automatic generation of copy rules, however, may
induce hidden (real) circular attribute dependencies, that are
hard to identify and debug.

2.2 Memoized Attribute Grammars

In order to avoid attribute re-computation and, consequently,
to improve the performance of the AG embedding, memo-
ization was incorporated into the zipper-based AGs [10]. To
memoize the computed attributes for a given data structure,
anew similar data structure is defined where a memoization
table (here referred to as m) is associated with each node.
All dependent data structures are merged into a single one,
which allows for easier handling of the memoization tables:
data Let m = Root (Let m) m

| Let (Let m) (Let m) m

| NestedLet String (Let m) (Let m) m

45

PEPM ’23, January 16-17, 2023, Boston, MA, USA

| Assign String (Let m) (Let m) m
| EmptyList m
| Add (Let m) (Let m) m
| Sub (Let m) (Let m) m
| Neg (Let m) m
| Var String m
| Const Int m

Thus, the type of the memoization table for any given
node can be, for example, a tuple in which each value might
contain a memoized attribute. In our Let example, this tuple
and an empty memoization table are defined as follows:

type MemoTable = (Maybe Env -- dcli
,Maybe Env --dclo
,Maybe Env) -- env

emptyMemo = (Nothing, Nothing, Nothing)

Next, we have to define Let as an instance of the Memoizable
data class, with a memoization table of type MemoTable.
instance Memoizable Let MemoTable where

updMemoTable :: (m — m) — Let m — Let m

updMemoTable = updMemoTable’

getMemoTable :: Let m — m

getMemoTable = getMemoTable’

We omit the definition of the functions getMemoTable’ and
updMemoTable’ as they are simple Haskell functions that get
and replace the memoization table of a node, respectively.

Each of the attributes to be memoized is defined as a data
type. This will be useful in determining which attribute is to
be memoized when computing attributes.
data At _dcli = Att_dcli
data Att_dclo = Att_dclo
data Att_env = Att_env

Finally, we define how each of the attributes is stored in
the memoization table. For this, we use the Memo data class,
specifying, for example, how the attribute dcli interacts with
our MemoTable, storing a value of type Env:
instance Memo Att_dcli MemoTable Env where

mlookup _ (a,_,_) =a

massign — v (a, b, ¢) = (Just v, b, c)

Here, the function mlookup defines how to obtain a dcli
value from the memoization table and massign defines how to
update it. We define similar instances for the other attributes.

The definition of the instances of Let and its attributes as
instances of Memo and Memoizable allow for the usage of
the memo function, which hides all the memoization work
enabling writing memoized attributes in a similar fashion
to the non-memoized examples shown before. Next, we re-
defined the dclo attribute using memoization:
dclo :: (Memo Att_dclo MemoTable Env)

= AGTree_m Let MemoTable Env
dclo = memo Att_dclo $
Aag — case (constructor ag) of
— dclo.@. (ag.$1)
— dclo.@. (ag.$1)

Rootp
Letp et

PEPM °23, January 16-17, 2023, Boston, MA, USA

NestedLetj; — dclo.@. (ag.$3)
— dclo.@. (ag.$3)
EmptyListy ;s — dcli ag

Assigny st

This attribute will be computed similarly to the non-memoized

version when there is no value computed for it previously,
and the result will be automatically stored in the memoiza-
tion table. If the attribute was computed previously, then the
previous value is re-used.

The env attribute defined in this fashion will be stored
automatically when computed, and further uses of this at-
tribute will just re-use the previously computed value. Any
attributes that are used to compute env are also memoized.
env:: (Memo Att_env MemoTable Env)

= AGTree_m Let MemoTable Env
env=memo Att_env$
Aag — case (constructor ag) of
Rootp — dclo ag
Lety ey — dclo ag
_ — env ‘atParent’ ag

The combinators (.@.) and atParent perform an attribute
computation at a given child and at the parent, respectively,
returning the result of the computation and new tree with the
memotables possibly updated. Thus, attribute computations
are represented by a State-monad with type:
type AGTree_m dtype m a = Zipper (dtype m)

— (a,Zipper (dtype m))

3 Combining Attribute Memoization with
Zippers

As shown in [10] the attribute evaluation of memoized zipper-
based AGs is much faster than the non-memoized one. As we
will show in Section 4, the combined embedding proposed
in [19] suffers from the same performance issues. Before we
discuss such performance results, we introduce a new set
of strategic combinators that do work with memoized at-
tributes, yielding an efficient embedding of both techniques.

3.1 Memoized Strategies

The memoized attributes showcased previously are extremely
powerful performance-wise and they can be used directly
with the existing Ztrategic library. In fact, the memoized
attributes produce two outputs: the actual attribute value,
as well as the resulting data structure, with all computed
attributes stored in the respective memoization tables. By
ignoring the updated data structure and using only the at-
tribute value, these memoized attributes can be plugged
directly into Ztrategic. We define exprM, similar to previ-
ously defined expr but operating on the memoized data type
Let MemoTable. When the node is transformed and there
is no memoization table to place in the new node, we use
emptyMemo to define an empty table.

exprM :: Let MemoTable — Maybe (Let MemoTable)

exprM (Add e (Const 0) m) = Just$e

46

José Nuno Macedo, Emanuel Rodrigues, Marcos Viera, and Joao Saraiva

exprM (Add (Const 0 _) t _) = Just$t
exprM (Add (Const a _) (Const b _) m) = Just $ Const (a+ b) m
exprM (Sub a b m) = Just $ Add a (Neg b emptyMemo)

emptyMemo
exprM (Neg (Neg f —) -) = Just$ f
exprM (Neg (Const n m) _) = Just $ Const (—n) m
exprM _ = Nothing

We define exprX, similar to previously defined expC but
using memoized attributes. Recall that this function applies
optimization rule 7, replacing a variable name by its defini-
tion whenever is possible. We use again the auxiliary func-
tion expand to perform this task. Because the result is an Exp
which is not compatible with the memoized Let datatype, we
use the function buildMemoTreeExp to convert it.
exprX :: Let MemoTable — Zipper (Let MemoTable)

— Maybe (Let MemoTable)
exprX (Vari_) z=1let (e,_) = envz
(L) =levz
in fmap (buildMemoTreeExp emptyMemo) $
expand (i, 1) e
exprX _ z = Nothing

Notice that we are ignoring the second component of the
results of the evaluation of env and lev which is the zipper
with the updated memotables. Having defined the type spe-
cific worker functions exprX and exprM, we can now build
a strategy to apply them to all nodes, through the innermost
strategy. Because we have two different data types here,
namely the non-memoized Let nodes, here denoted by Root,
and the memoized Let nodes denoted by Let MemoTable,
we use auxiliary functions buildMemoTree and letToRoot to
convert the types before and after application of the strategy.
opt :: Root — Root
opt t = letToRoot (fromZipper t')

where z :: Zipper (Let MemoTable)

z = toZipper (buildMemoTree emptyMemo t)
Just ' = applyTP (innermost step) z
step = failTP ‘adhocTPZ* exprX ‘adhocTP* exprM

We have just presented our first zipper-based strategic
AG definition using memoized attributes. However, this opti-
mization strategy is much slower than the previous definition
which does not use memoized attributes. To solve this, we
need to dig deeper into how internal data structure naviga-
tion in strategies is defined, through the zipper mechanism.

The navigation in a zipper is provided by the generic
zippers library [1]. This library includes the toZipper :
Data a = a — Zipper a function that produces a zip-
per out of any data type, requiring only that the data types
have an instance of the Data and Typeable type classes. It
includes also functions right, left, down and up to move
the focus of the zipper towards the corresponding direc-
tions. They all have type Zipper a — Maybe (Zipper a),
meaning that such functions take a zipper and return a new
zipper when the navigation does not fail. There are also
functions to get and set the node the zipper is focusing on,

Efficient Embedding of Strategic Attribute Grammars via Memoization

namely getHole :: Typeable b = Zipper a — Maybe b and
setHole :: Typeable a = a — Zipper b — Zipper b.

While navigating in a zipper where memotables are nodes
of the tree, we need to guarantee that memotables are not
considered when traversing all the nodes of a memoized zip-
per. In fact, part of the performance loss of our new definition
of let derives from unneeded strategic traversals inside each
node’s memoization tables. Thus, we start by defining new
versions of the generic zippers functions that do avoid nav-
igating in some nodes of the tree, namely the memotable.
Next, we define function right’ that has this behaviour.
right’ :: StrategicData a = Zipper a — Maybe (Zipper a)
right’ z = case right z of

FJust r — if isNavigable r then Just r else right’ r

Nothing — Nothing

This function checks if the node we are traversing towards
is navigable as defined by function isNavigable (defined in
class StrategicData that we will explain in Section 3.3). If it
is, right’ behaves as the zipper function right would. If it
is not, we skip it by navigating to the right again. There
is a function named left’ with an equivalent behaviour. In
Section 3.3 we extend this notion of navigable nodes to other
(AG) symbols, and we will show how to define a memotable
to not be navigable.

Having defined the memoization tables as nodes that are
not navigable, the performance of the new opt implementa-
tion using memoized attributes is better, but still worse than
the non-memoized version. The strategies previously shown
assume that the underlying data structure does not change.
For a tree with several nodes, transforming a single node
should result in changing that same node without impacting
the rest of the tree. However, when combining strategies
with memoized AGs, this is not the case anymore. When
traversing a node, we might compute an attribute which will
traverse the whole tree while computing and/or memoizing
attributes in all of its nodes, effectively changing them.

Because of this, a memoization-friendly version of the
Ztrategic library was developed. The focus of this version
of the library will be in allowing the propagation of mem-
oization throughout the data structure while traversing it.
For each visited node, instead of returning just the result of
traversing that node, we also return the updated zipper of the
data structure. While keeping this in mind, the semantics are
kept as similar to the original implementation as possible.

Before we present the combinators that navigate in mem-
oized zippers, let us start by presenting some basic functions
that are their building blocks. First, we introduce a function
to elevate a user-defined function to the zipper level. Let us
recall the original definition of this function, in Ztrategic:
zTryApplyMZ :: (Typeable a, Typeable b)

= (a — Zipper ¢ — Maybe b) — TP ¢

Our new implementation of this function follows a similar
type signature:

47

PEPM ’23, January 16-17, 2023, Boston, MA, USA

zTryApplyMZ :: (Typeable a)
= (a — Zipper ¢ — Maybe (Zipper c)) — TP ¢

We omit the definition of zTryApplyMZ for brevity: it re-
quires a function that takes the node a to be transformed, as
well as Zipper c which points to the same node, and returns
a Maybe (Zipper c), meaning either an updated zipper, or
a Nothing value representing no changes. Note that the re-
quired function should output an updated Zipper c, instead
of a plain value b as was required in the original definition, i.e.
the function can be a memoized attribute, that updates mem-
otables in the zipper. The zTryApplyMZ function returns a
TP ¢, in which TP is a type for specifying Type-Preserving
transformations on zippers, and c is the type of the zipper. It
is defined as follows:
type TP a = Zipper a — Maybe (Zipper a)
type TU m d = (forall a . Zipper a — (m d, Zipper a))

For example, if we are applying transformations on a zipper
built upon the Let data type, then those transformations are
of type TP Let. Similarly to Strafunski and Ztrategic, we also
introduce the type TU m d for Type-Unifying operations,
which aim to gather data of type d into the data structure m.

Unlike in Ztrategic, these transformations also return a
Zipper a value, which is the updated version of the input
zipper. Therefore, both Type-Preserving and Type-Unifying
strategies will update the data structure being traversed, as
required by the memoized AGs.

Next, we define a combinator to compose two transforma-
tions, building a more complex zipper transformation that
tries to apply each of the initial transformations in sequence,
skipping transformations that fail.
adhocTPZ :: Typeable a = TP (d m) —

(a — Zipper (d m) — Maybe (Zipper (d m))) — TP (d m)
adhocTPZ f g = maybeKeep [(zTryApplyMZ g)

Very much like the adhocTP combinator described in [19],
the adhocTPZ function receives transformations f and g
as parameters, as well as zipper z. The previously shown
zTryApplyMZ function changes g into a TP transformation,
which is then combined with f by function maybeKeep. Func-
tion maybeKeep tries to apply the second function it receives
(here it being the transformed g function), and if it fails, f is
applied instead.

Let us return to the Let optimization described in previous
section. Let us also consider a function exprZM, similar to
expr but receiving also a zipper as argument and returning
an updated zipper (we will be defining this function later).
Then, we can use adhocTPZ to combine the exprZM function
with the default failing strategy failTP:
step = fail TP ‘adhocTPZ* exprZM

The rest of the Ztrategic library is re-written to accommo-
date for the different definitions of the types of transforma-
tions, including the functions failTP and idTP.

PEPM °23, January 16-17, 2023, Boston, MA, USA

Using the right’ zipper navigation function defined before,
we can now define for example a combinator that navigates
in all navigable nodes of a tree.
allTPright :: StrategicData (d m) = TP (d m) — TP (d m)
allTPright f z = case right’ z of

Nothing — return (z, z)

Just r - fnap (romJust . ef) (f)

This function is a combinator that, given a type-preserving
transformation f for zipper z, tries to travel to the node
located to the right using zipper function right’, and if it
succeeds, it applies f and returns with function left’. If it
fails, the original zipper is returned. Because the result of f
is an optional Maybe value, we use fmap to apply navigation
back to the left inside it. There is also a similar allTPdown
combinator that navigates downwards on the zipper.

The definition of high-level strategies, such as full_tdTP
(full, top-down, type-preserving), is similar to Ztrategic. How-
ever, the input data must be an instance of StrategicData so
that they do consider the introduced navigable mechanisms.
We refer to the definition of innermost in [19], and we show
our updated definition:
innermost :: StrategicData (d m) = TP (d m) — TP (d m)
innermost s = repeatTP (once_buTP s)

The full API of our extended versions of Ztrategic is avail-
able in Figure 7 in appendix.

Let us return to our Let running example. Function exprX
applied rule 7 through the usage of memoized attributes, but
with the updated data structures they produce being ignored.
Let us now define function exprMZ, similar to function exprX
but reusing the updated zippers that the memoized attributes
produce, which we label z’ and z”. We change this updated
zipper by using the zipper function setHole to set its current
value to expr, which is the value we would return directly
in previous definition exprX.
exprZM :: Let MemoTable — Zipper (Let MemoTable)

— Maybe (Zipper (Let MemoTable))
exprZM (Var i _) z

=let (¢,2') =envz
(LZ")=levZ
expr :: Maybe (Let MemoTable)
expr = fmap (buildMemoTreeExp emptyMemo) $

expand (i, 1) e
in fmap (Ak — setHole k z'’) expr

exprZM _ z = Nothing

We once again define a strategy for optimization of Let ex-
pressions, using memoized attributes and the new Ztrategic
library module for propagation of memoization tables. We
use the exprM function defined previously, as it does not
depend on attributes and thus does not need any changes.
opt :: Root — Root
opt t = letToRoot (fromZipper $ fromFust

(applyTP (innermost step) z))

José Nuno Macedo, Emanuel Rodrigues, Marcos Viera, and Joao Saraiva

where z :: Zipper (Let MemoTable)
z = toZipper (buildMemoTree emptyMemo t)
step = fail TP ‘adhocTPZ* exprZM ‘adhocTP‘ exprM

This version of the Let expression optimization strategy
is much more efficient than the non-memoized version pre-
sented before. Although this memoization mechanism intro-
duces some intrusive code in our definitions, the improve-
ment in terms of runtime is worth this effort. We compare the
performance of non-memoized and memoized approaches
in detail in Section 4.

3.2 Memoization Table Correctness

The running example in this paper does not address an under-
lying concern with attribute memoization, specifically, the
invalidation of outdated attribute computations. Since Type-
Preserving strategies change the underlying data structure,
actions such as updates, insertions and removal of nodes
can make the values of certain attributes invalid. If an at-
tribute value is memoized first and then the data structure is
changed, said value is kept memoized, and thus following
attribute computations on that node yield incorrect results.

We address this problem by providing two alternative
strategy application patterns for data structures with memo-
ization. We use applyTP_unclean when we do not care about
cleaning the memoization tables after application of a strat-
egy, which would be the case for the running example in
this paper. If such cleaning of memoization tables is required,
the combinator applyTP will perform such cleaning after
application of a strategy.

We showcase this problem by defining a simple attribute,
named adds, which counts the number of Add nodes in a Let
tree. The number of Add nodes in a Let tree decreases when
optimization opt is applied due to several optimization rules
being targeted at these nodes. As such, we define:
optValue_unclean | = adds (opt_unclean (adds l))

I = adds (opt_clean (adds 1))

optValue_clean

Both of these values contain an initial usage of attribute
adds which 1) counts the number of Add nodes in a given
Let (we ignore this value), and 2) memoizes all computed
attributes in said Let. With the values of adds already mem-
oized in the data structure, one variant of opt is then used
to optimize the data structure. Finally, attribute adds is used
again to compute the number of Add nodes, and this usage
will attempt to look up the memoized values in the data struc-
ture. For optValue_unclean, the incorrect, pre-optimization
value is obtained, while optValue_clean will produce the cor-
rect result.

We can guarantee node-to-node correctness of attributes
through the usage of the non-memoized version of Ztrategic,
such that the usage of memoized attributes does not change
the underlying data structure’s memoization tables, comput-
ing only the attribute value. We do this when defining exprX,
which we have concluded to be inefficient.

Efficient Embedding of Strategic Attribute Grammars via Memoization

Thus we have the trade-off of gaining performance at
the cost of potential correctness of the results when using
memoized attributes with strategies. It is the responsibility of
the programmer to be careful on if any memoized attributes
change with the transformations being applied to the data
structure, and if they do, to use the proper mechanisms to
work around it. For type unifying strategies, such concerns
are unneeded as the data structure is being consumed.

3.3 Navigable Symbols

Since strategies (typically) traverse all nodes of a data struc-
ture, every memoization table stored in every node would
be treated as additional data and be unnecessarily traversed.
As shown in the definition of zipper function right’, we use
the predicate isNavigable to avoid traversing the memotable
nodes. When defining a strategic AG, however, there are
other symbols that may not be traversed, since they are usu-
ally handled outside the grammar formalism. Indeed, the
terminal symbols of a grammar are usually handled outside
the formalism. They are often specified via regular expres-
sions, and not by grammars. Moreover, they are efficiently
processed via efficient automata-based recognizers. Thus, we
consider terminal symbols as non navigable symbols/values
in our trees, as opposed to Strafunski and Ztrategic.

To allow for this behaviour, any data type to be traversed
using this library must define an instance of StrategicData.
As an example, we can define this instance easily with the
default behaviour of not skipping any nodes, for the Let
datatype:
instance StrategicData Let

We could optimize this by instead of defining our own be-
haviour for our data, for example by skipping any node that is
an Intor a String, which we expect to never want to traverse
directly. That is not to say that we cannot change any Int or
String in our traversals; we would expect to change Strings
when traversing a Var constructor, but not by directly visit-
ing the String node (which in itself is a list of Char that would
also be traversed individually). We also define MemoTable as
not navigable. We can define it like so:
instance StrategicData (Let MemoTable) where

isNavigable z = = (isJust (getHole z :: Maybe MemoTable)

V isfust (getHole z :: Maybe String)
V isJust (getHole z :: Maybe Int))

The isNavigable function should return false whenever z
points towards a terminal symbol/node or to the memotable
node. In this case, besides the memotable we consider only
two terminal symbols, String and Int, but we could define
more complex logic in this function, such as skipping only
negative integers.

We reflect of the performance impact of this change in
section 4. We also require this change to define memoization
in a strategic setting.

49

PEPM ’23, January 16-17, 2023, Boston, MA, USA

4 Performance

In this section, we compare the performance of the Ztrategic
library with state-of-the-art libraries Strafunski and Kiama.
In terms of expressiveness, Ztrategic is capable of repre-
senting AGs, strategies, and the combination of AGs and
strategies in a unified setting. Thus, we focus our analysis
in the runtime and memory consumption of different im-
plementations of a Haskell code smell eliminator, a repmin
program, a Let optimizer (as described in this paper), and an
advanced multiple layout pretty printing algorithm.

All implementations of these strategic AGs, together with
the necessary resources (tests, scripts, etc) to replicate our
study, are available in our replication package as detailed
in Section 6. All tests were run 10 times and averaged in a
ThinkPad 13 (2nd Gen, Intel i7-7500U (4) 3.500GHz) laptop
with 8 Gb RAM and EndeavourOS Linux x86 64 bits.

4.1 Strategic Haskell Smell Elimination

Source code smells make code harder to comprehend. A smell
is not an error, but it indicates a bad programming practice.
Smells occur in any language and Haskell is no exception. For
example, inexperienced Haskell programmers often write
I = [] to check whether a list is empty, instead of using the
predefined null function. We implemented this full Haskell
language refactoring tools as a pure strategic program. It
detects and eliminates all Haskell smells as reported in [7].

In order to compare Ztrategic with the Haskell state-of-the-
art Strafunski counterpart we run both strategic solutions
with a large smelly input. We consider 150 Haskell projects
developed by first-year students as presented in [2]. In these
projects there are 1139 Haskell files totaling 82124 lines of
code, of which exactly 1000 files were syntactically correct 2.
Both Ztrategic and Strafunski smell eliminators detected and
eliminated 850 code smells in those files. Figure 3 shows the
runtime (left) and memory consumption (right) of running
both libraries.

There are three entries in these figures: a normal Ztrategic
implementation, a Ztrategic implementation in which we
skip unnecessary nodes (corresponding to terminal symbols)
in the traversal, and a similar implementation in Strafunski.

Strafunski outperforms Ztrategic, which is to be expected
as Ztrategic library has an additional overhead of creating
and handling a zipper over the traversed data. However,
when skipping terminals, Ztrategic has almost the same per-
formance of the well established and fully optimized Stra-
funski system.

4.2 Repmin as a Strategic Program

The repmin problem is a well-known problem widely used
to show the power of circular, lazy evaluation as shown by
Bird[4]. The goal of this program is to transform a binary

The student projects used in this benchmark are available at this work’s
repository.

PEPM °23, January 16-17, 2023, Boston, MA, USA

Haskell Smell Elimination

W Zrategic W Zwategicw/o Terminals @ Strafunski

Runtime (secands)

José Nuno Macedo, Emanuel Rodrigues, Marcos Viera, and Joao Saraiva

Haskell Smell Elimination

W Zvategic W Zwategicwio Terminals @ Strafunski

Memary Usage (M)

» N ¥]) > A] B] 2] 2 i\ & > \] A 2 ©
A A QT 8T Y a8 1T e 0T 0 G g0 TP B T (@ T i e o

Number of Lines of Code

Al N ¥] O] A 3 B X 2 4] 2 i\ & > \] A R ©
B e I L AL G I et

Number of Lines of Code

Figure 3. Haskell Smells elimination: Ztrategic versus Strafunski

Strategic RepMin

W Ziategic 4 Stafunski @ Kiama

Runtime (seconds)

Strategic RepMin

W Zusiegc & Swatunski @ Kama

Memary Usage (M)

Repmin Size

Repmin Size

Figure 4. Strategic Repmin: Ztrategic versus Strafunski versus Kiama

leaf tree of integers into a new tree with the exact same
shape but where all leaves have been replaced by the mini-
mum leaf value of the original tree. The repmin problem can
be easily implemented by two strategic functions: First, a
Type Unifying strategy traverses the tree and computes its
minimum value. Then, a Type Preserving strategy traverses
again the tree and constructs the new tree, using the previ-
ously computed minimum. In Figure 4 we show the results
of implementing these solutions using strategies in Ztrategic,
Strafunski and Kiama. Here, Repmin size refers to the num-
ber of nodes the input binary tree contains. Again, Ztrate-
gic behaves very similar to Strafunski and both outperform
Kiama’s implementation in speed and memory consumption.

4.3 Repmin as an Attribute Grammar

We also compare the performance of repmin when fully ex-
pressed as an AG. Actually, the Kiama implementation of
repmin is part of the Kiama library. It is very similar to the
Ztrategic version of repmin in [10], which we use here.
Figure 5 shows the results of comparing our memoized im-
plementation of repmin in Ztrategic using AGs, with Kiama.

50

To be able to compare the performance the strategic and AG
solutions, we run them with exactly the same inputs.

In Figure 5 (left) we can see that the non-memoized ver-
sion of Ztrategic increases its execution time exponentially
and is much slower than the other versions. > However, when
we zoom in to the behavior of the other implementations in
Figure 5 right, we can notice that memoized Ztrategic outper-
forms Kiama. In fact, for a tree with 40000 nodes, the mem-
oized Ztrategic AG runs in 0.3 seconds, while Kiama needs
0.78 seconds to perform the same task. When we compare
these results with the strategic solution (shown in Figure 4),
where Kiama is outperformed by Ztrategic and Strafunski,
we see that, for 40000 nodes, the AG version of Kiama’s
implementation is 5.65 times faster than the strategic imple-
mentation for the same library. Comparatively, Ztrategic’s
non-memoized AG is 292 times slower than the strategic ap-
proach, while the non-memoized AG is 2.4 times faster than
the strategic approach. The overall faster implementation
is the strategic Strafunski’s with a runtime of 0.27 seconds,

3 All these runtime numbers, and the numbers used to produced all Figures,
are available in a spreadsheet included in our replication package.

Efficient Embedding of Strategic Attribute Grammars via Memoization

Table 1. Runtime of pretty printing Let Expressions for in-
creasingly larger let inputs.

let1 | let2 let3 | let4 | let5 | let6
AG 0 0,02 0,1 0,91 7,95 | 68,49
MemoAG 0,01 0,01 0,02 0,03 0,06 0,1
Kiama 0,72 5,79 | 292,69 - - -

thus 1.11 times faster than the memoized AG. The memoized
AG is extremely competitive considering that is has added
overload of handling zippers and a memoization table.

4.4 Let Optimization

We have implemented the let strategic AG algorithm in
Kiama, as it also provides strategies and AGs.

Figure 6 shows the performance of optimizing several Let
inputs, in terms of runtime and memory usage. Along the
X axis, Let size refers to the number of nested let blocks
contained in the input data to be optimized. The Ztrategic
implementation once again vastly outperforms Kiama in
both runtime and memory consumption, for any input size.
Because the Kiama implementation shows a poor perfor-
mance, compared to our memoized strategic AG, we also
include Kiama’s baseline execution: it just generates the in-
put AST and prints it without performing any optimization.
This task already takes more time than the optimization in
the memoized Ztrategic. Kiama uses an advanced mecha-
nism to combine strategies and AGs where ASTs are defined
by reachability relations [27]. The mechanism to transform a
tree into relations already induces a significant overhead in
the Kiama baseline execution. This also drastically influences
the memory usage of Kiama’s solutions as we can see in the
Kiama’s solution for the repmin problem in Figure 4.

4.5 Multiple Layout Pretty Printing

We have expressed the large and complex optimal pretty
printing AG, presented in [29], both in the Ztrategic and
Kiama libraries. This AG specifies a multiple layout pretty
printer that adapts the layout according to the available
width of the page. Indeed, it defines a complex four traversal
algorithm and it is one of the most complex AG available.

We used the Ztrategic and Kiama versions of this algo-
rithm to pretty print let expressions from our running exam-
ple. Table 1 presents the runtime in seconds of executing the
same pretty printing with the non-memoized and memoized
Ztrategic and Kiama AG embeddings. Here, the number of
a Let expression refers to its nesting level, such that Let n
will have n nested let declarations as well as 10 variable
declarations for each nested declaration.

As expected the memoized Ztrategic solution is much
faster than the non-memoized counterpart. The Kiama solu-
tion shows the poorest performance and is only able to pretty
print the smaller three let expressions. This large AG defines
many attributes and the tree/attribute relations mechanism
used by Kiama to fully support strategic AGs do induce a
considerable overhead.

51

PEPM ’23, January 16-17, 2023, Boston, MA, USA

5 Related Work

This paper is inspired by the work of Sloane who developed
Kiama [26]: an embedding of strategic term re-writing and
AGs in the Scala programming language. It is an embed-
ding of strategic AGs, and relies on Scala mechanisms to
navigate in the trees and memoizes attribute values on a
global memoization table to avoid attribute recalculation.
Our library relies on zippers and uses local memo tables to
avoid attribute recalculation. Kiama uses reachability rela-
tions and the notion of attribute families to fully support
strategic AGs. Attributes that depend on their context are
defined parametrized by the tree they belong to. This allows
sub-trees to be shared while maintaining the correctness of
context-dependent attributes, since the same attribute has a
different entry in the memoization table for the original tree
and the one resulting from a re-write. On the other hand,
context-independent attributes can use previously memo-
rized values on modified trees. This approach is similar to our
use of applyTP and applyTP_unclean, albeit finer-grained, as
only context-dependent attributes are cleaned.

The extensible AG system Silver [31] has also been ex-
tended to support strategic term re-writing [15]. Strategic
re-writing rules can use the attributes of a tree to refer-
ence contextual information during re-writing, much like
we present in our work. While we use a functional embed-
ding, Silver compiles its own Strategic AG specification into
low code. The paper includes several practical application
examples, namely the evaluation of A-calculus, a regular ex-
pression matching via Brzozowski derivatives, and the nor-
malization of for-loops. All these examples can be directly
expressed in our setting. They also present an application to
optimize translation of strategies. Because our techniques
rely on shallow embeddings, where no data type is used to
express strategies nor AGs, we are not able to express strat-
egy optimizations, without relying on meta-programming
techniques [25]. Nevertheless, our embeddings result in very
simple and small libraries that are easier to extend and main-
tain, specially when compared to the complexity of extending
and maintaining a full language system such as Silver.

RACR [5] is an embedding of Reference Attribute Gram-
mars in Scheme, that allows graph re-writing and incre-
mental attribute evaluation. A dynamic attribute dependency
graph is constructed during evaluation in order to determine
which attributes are affected by a re-writing and therefore
should be re-evaluated. To keep our embedding simple we
do not perform that kind of analysis, although incorporating
it is an interesting line of possible future work.

JastAdd is a reference attribute grammar based system [9].
It supports most of AG extensions, namely reference and cir-
cular AGs [28]. It also supports tree re-writing, with re-write
rules that can reference attributes. JastAdd, however, pro-
vides no support for strategic programming, that is, there is
no mechanism to control how the re-write rules are applied.

PEPM °23, January 16-17, 2023, Boston, MA, USA

RepMin AG

A MemoZrategic @ Kiama m Zuategic

onds)

100

Runtime (sec:

José Nuno Macedo, Emanuel Rodrigues, Marcos Viera, and Joao Saraiva

RepMin AG

A Memo Zuategic @ Kiama

» ® ® » » Y ® o
o o ¥ 5 5 5 5 o

Repmin Size

s

Figure 5. AG Repmin. Left: Ztrategic versus memoized Ztrategic and Kiama. Right: memoized Ztrategic and Kiama.

Let Expression Optimization

B Zirategic A Memo Zirategic @ Kiama @ Kiama Baseline

Runtime (seconds)

Let Size

Figure 6. Let Optimization:

The zipper-based AG embedding we integrate in Ztrategic
supports all modern AG extensions, including reference and
circular AGs [10, 21]. Because strategies and AGs are first
class citizens we can smoothly combine any of such exten-
sions with strategic term re-writing.

In the context of strategic term re-writing, the Ztrategic
library is inspired by Strafunski [17]. In fact, Ztrategic al-
ready provides almost all Strafunski functionality. There
is, however, a key difference between these libraries: while
Strafunski accesses the data structure directly, Ztrategic op-
erates on zippers. As a consequence, we can easily access
attributes from strategic functions and strategic functions
from attribute equations.

6 Conclusion

This paper presented an embedding of strategic attribute
grammars, which combine strategic term re-writing and the
attribute grammar formalism. Both embeddings rely on mem-
oized zippers: attribute values are memoized in the zipper
data structure, thus avoiding their re-computation. Strategic
zipper based functions access such memoized values.

52

Let Expression Optimization

W Zirategic A Memo Zirategic

Memary Usage (Mb)

8 10 12 14 1

Let Size
Ztrategic versus Kiama

We compared the performance of our embedding with
state-of-the-art libraries Strafunski and Kiama. We have im-
plemented in these three libraries several language engineer-
ing tasks, namely, a let optimizer, a code refactor, and an
advanced pretty printing algorithm. Our results show that
the embedding strategic term re-writing behaves very simi-
lar to Strafunski. Our results also show that our embedding
of strategic AGs vastly outperforms Kiama’s solutions.

Acknowledgements

This work is financed by National Funds through the Por-
tuguese funding agency, FCT - Fundacio para a Ciéncia e a
Tecnologia, within project LA/P/0063/2020. The first author
is also sponsored by FCT grant 2021.08184.BD. We would
like to thank Tony Sloane for his validation of the Kiama
implementations used in Section 4.

Replication Packages
All the necessary resources to replicate this study, as well
as the full set of results, are publicly available as embedded

hyperlinks for the base ZippersAG, Strafunski, Ztrategic and
Kiama libraries as well as Examples used in this paper.

https://hackage.haskell.org/package/ZipperAG-0.9
https://hackage.haskell.org/package/Strafunski-StrategyLib
https://bitbucket.org/zenunomacedo/ztrategic/
https://github.com/inkytonik/kiama
https://tinyurl.com/pepm2023tools

Efficient Embedding of Strategic Attribute Grammars via Memoization

A Ztrategic API

Strategy types
type TP a = Zipper a — Maybe (Zipper a)
type TU m d = (forall a . Zipper a — (m d, Zipper a))

Strategy Application

applyTP :: TP a — Zipper a — Maybe (Zipper a)
applyTP_unclean :: TP a — Zipper a — Maybe (Zipper a)
applyTU :: TU m d — Zipper a — (m d, Zipper a)
applyTU_unclean :: TU m d — Zipper a — (m d, Zipper a)

PEPM ’23, January 16-17, 2023, Boston, MA, USA

Traversal Combinators

allTPright ::

TP a— TP a

oneTPright :: TP a — TP a
allTUright = TU md — TU md

allTPdown ::

TP a— TP a

oneTPdown:: TP a — TP a
allTUdown :: TU md — TU m d

Traversal Strategies

Primitive strategies]JZ uZ_tde; - ;? a= g a
. ull_bu 2TPa— TP a
Zi:ftw ZP_T TU m d once tdTP TP a— TP a
fail TP TP a once_buTP :: TP a— TP a
failTU = TU md stop_tdTP TP a— TP a
ryTP TP a— TP a stop_buTP TP a— TP a
repeatTP :: TP a — TP a innermost :: TP a— TP a
outermost :: TP a— TP a
Strategy Construction full tdTU =TU md— TU md
monoTP :: (a — Maybe b) — TP e full_buTU e TUmd— TU md
monoTU =:(a—md) > TUmd once_tdTU = TU md — TU m d
monoTPZ :: (a — Zipper e — Maybe (Zipper e)) — TP e once buTU = TU md — TU m d
monoTUZ :: (a — Zipper e — (m d, Zipper e)) — TU m d stop_tdTU =TU md — TU md
adhocTP :: TP e — (a — Maybe b) — TP e stop_buTU = TU md — TU m d
adhocTU =TUmd— (a—> md) > TUmd foldrITU = TU m d — Zipper e — (d — d — d) — d
adhocTPZ :: TP e — (a — Zipper e — Maybe (Zipper e¢)) — TP e foldlITU = TU m d — Zipper e — (d — d — d) — d
adhocTUZ :: TU m d — foldrTU = TU md — Zippere — (d > c—¢c) > c—c
(a — Zipper ¢ — (m d Zipper ¢)) > TU md foldITU = TU md — Zippere — (c—>d—c) > c—c

Composition / Choice

seqIP :TPa— TPa— TP a

choiceTP :: TP a— TP a— TP a

seqITU =TUmd—>TUmd—TU md
choiceTU :: TU md —- TU md — TU m d

AG Combinators

(.$) :: Zipper a — Int — Zipper a
parent :: Zipper a — Zipper a

(.]) :: Zipper a — Int — Bool

Memoized AG Combinators
(.@.) :: (Zipper a — (r,Zipper a))

— Zipper a — (r,Zipper a)

atParent :: (Zipper a — (r, Zipper a))

— Zipper a — (r, Zipper a)

atRight :: (Zipper a — (r,Zipper a))

— Zipper a — (r, Zipper a)

atLeft :: (Zipper a — (r, Zipper a))

— Zipper a — (r, Zipper a)

memo : attr — AGTree_m d m a — AGTree_m d m a

Figure 7. Full Memoized Ztrategic API and AG Combinators

References
[1] Michael D. Adams. 2010. Scrap Your Zippers: A Generic Zipper for

Heterogeneous Types. In WGP ’10: Proceedings of the 2010 ACM SIG-

PLAN workshop on Generic programming. ACM, New York, NY, USA,
13-24. https://doi.org/10.1145/1863495.1863499

[2] José Bacelar Almeida, Alcino Cunha, Nuno Macedo, Hugo Pacheco,
and José Proenca. 2018. Teaching How to Program Using Automated
Assessment and Functional Glossy Games (Experience Report). Proc.
ACM Program. Lang. 2, ICFP, Article 82 (July 2018), 17 pages. https:
//doi.org/10.1145/3236777

[3] Emilie Balland, Paul Brauner, Radu Kopetz, Pierre-Etienne Moreau,
and Antoine Reilles. 2007. Tom: Piggybacking Rewriting on Java. In
Term Rewriting and Applications, Franz Baader (Ed.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 36-47.

53

[4] R. S. Bird. 1984. Using Circular Programs to Eliminate Multiple
Traversals of Data. Acta Informatica 21 (January 1984), 239-250.
https://doi.org/10.1007/BF00264249
Christoff Biirger. 2015. Reference Attribute Grammar Controlled Graph
Rewriting: Motivation and Overview. In Proceedings of the 2015 ACM
SIGPLAN International Conference on Software Language Engineering
(Pittsburgh, PA, USA) (SLE 2015). Association for Computing Machin-
ery, New York, NY, USA, 89-100. https://doi.org/10.1145/2814251.
2814257
[6] James R. Cordy. 2004. TXL - A Language for Programming Language
Tools and Applications. Electronic Notes in Theoretical Computer Science
110 (2004), 3-31. https://doi.org/10.1016/j.entcs.2004.11.006 Proceed-
ings of the Fourth Workshop on Language Descriptions, Tools, and
Applications (LDTA 2004).

[5

—

https://doi.org/10.1145/1863495.1863499
https://doi.org/10.1145/3236777
https://doi.org/10.1145/3236777
https://doi.org/10.1007/BF00264249
https://doi.org/10.1145/2814251.2814257
https://doi.org/10.1145/2814251.2814257
https://doi.org/10.1016/j.entcs.2004.11.006

PEPM °23, January 16-17, 2023, Boston, MA, USA

(7]
(8]

—_
N=)
—

(10]

(12]
(13]

(14]

(15]

(16]

(17]

[18

[t

[19]

[20]

[21]

Jonathan Cowie. 2005. Detecting Bad Smells in Haskell. Technical
Report. University of Kent, UK.

Atze Dijkstra and S. Doaitse Swierstra. 2005. Typing Haskell with
an Attribute Grammar. In Advanced Functional Programming, Varmo
Vene and Tarmo Uustalu (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 1-72.

Torbjorn Ekman and Goérel Hedin. 2007. The JastAdd extensible Java
compiler. SIGPLAN Not. 42, 10 (Oct. 2007), 1-18. https://doi.org/10.
1145/1297105.1297029

Joao Paulo Fernandes, Pedro Martins, Alberto Pardo, Jodo Saraiva, and
Marcos Viera. 2019. Memoized zipper-based attribute grammars and
their higher order extension. Sci. Comput. Program. 173 (2019), 71-94.
https://doi.org/10.1016/j.scic0.2018.10.006

Robert W. Gray, Steven P. Levi, Vincent P. Heuring, Anthony M.
Sloane, and William M. Waite. 1992. Eli: A Complete, Flexible Com-
piler Construction System. Commun. ACM 35, 2 (Feb. 1992), 121-130.
https://doi.org/10.1145/129630.129637

Gérard Huet. 1997. The Zipper. Journal of Functional Programming 7,
5 (Sept. 1997), 549-554.

Donald E Knuth. 1968. Semantics of context-free languages. Mathe-
matical systems theory 2, 2 (1968), 127-145.

Donald E. Knuth. 1990. The genesis of attribute grammars. In Attribute
Grammars and their Applications, P. Deransart and M. Jourdan (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 1-12. https://doi.org/
10.1007/3-540-53101-7_1

Lucas Kramer and Eric Van Wyk. 2020. Strategic Tree Rewriting in
Attribute Grammars. In Proceedings of the 13th ACM SIGPLAN Inter-
national Conference on Software Language Engineering (Virtual, USA)
(SLE 2020). Association for Computing Machinery, New York, NY, USA,
210-229. https://doi.org/10.1145/3426425.3426943

Matthijs Kuiper and Jodo Saraiva. 1998. Lrc - A Generator for Incre-
mental Language-Oriented Tools. In 7th International Conference on
Compiler Construction, CC/ETAPS’98 (LNCS, Vol. 1383), Kay Koskimies
(Ed.). Springer-Verlag, 298-301.

Ralf Lammel and Joost Visser. 2002. Typed Combinators for Generic
Traversal. In Practical Aspects of Declarative Languages, Shriram Krish-
namurthi and C. R. Ramakrishnan (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 137-154.

Sebastiaan P. Luttik and Eelco Visser. 1997. Specification of Rewriting
Strategies. In Proceedings of the 2nd International Conference on Theory
and Practice of Algebraic Specifications (Amsterdam, The Netherlands)
(Algebraic’97). BCS Learning & Development Ltd., Swindon, GBR, 9.
José Nuno Macedo, Marcos Viera, and Jodo Saraiva. 2022. Zipping
Strategies and Attribute Grammars. In Functional and Logic Program-
ming - 16th International Symposium, FLOPS 2022, Kyoto, Japan, May
10-12, 2022, Proceedings (Lecture Notes in Computer Science, Vol. 13215),
Michael Hanus and Atsushi Igarashi (Eds.). Springer, 112-132. https:
//doi.org/10.1007/978-3-030-99461-7_7

Pedro Martins, Jodo Paulo Fernandes, and Jodo Saraiva. 2013. Zipper-
Based Attribute Grammars and Their Extensions. In Programming
Languages, André Rauber Du Bois and Phil Trinder (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 135-149.

Pedro Martins, Jodo Paulo Fernandes, Jodo Saraiva, Eric Van Wyk, and
Anthony Sloane. 2016. Embedding Attribute Grammars and Their
Extensions Using Functional Zippers. Sci. Comput. Program. 132, P1
(Dec. 2016), 2-28. https://doi.org/10.1016/j.scic0.2016.03.005

54

José Nuno Macedo, Emanuel Rodrigues, Marcos Viera, and Joao Saraiva

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

Marjan Mernik, Nikolaj Korbar, and Viljem Zumer. 1995. LISA: A Tool
for Automatic Language Implementation. SIGPLAN Not. 30, 4 (April
1995), 71-79. https://doi.org/10.1145/202176.202185

Thomas Reps and Tim Teitelbaum. 1984. The Synthesizer Generator.
SIGPLAN Not. 19, 5 (April 1984), 42-48. https://doi.org/10.1145/390011.
808247

Jodo Saraiva. 2002. Component-Based Programming for Higher-Order
Attribute Grammars. In Generative Programming and Component Engi-
neering, ACM SIGPLAN/SIGSOFT Conference, GPCE 2002, Pittsburgh, PA,
USA, October 6-8, 2002, Proceedings. 268-282. https://doi.org/10.1007/3-
540-45821-2_17

Tim Sheard and Simon Peyton Jones. 2002. Template Meta-
Programming for Haskell. In Proceedings of the 2002 ACM SIGPLAN
Workshop on Haskell (Pittsburgh, Pennsylvania) (Haskell *02). Associ-
ation for Computing Machinery, New York, NY, USA, 1-16. https:
//doi.org/10.1145/581690.581691

Anthony M. Sloane, Lennart C. L. Kats, and Eelco Visser. 2010. A
Pure Object-Oriented Embedding of Attribute Grammars. Electronic
Notes in Theoretical Computer Science 253, 7 (2010), 205-219. https:
//doi.org/10.1016/j.entcs.2010.08.043

Anthony M. Sloane, Matthew Roberts, and Leonard G. C. Hamey.
2014. Respect Your Parents: How Attribution and Rewriting Can Get
Along. In Software Language Engineering, Benoit Combemale, David J.
Pearce, Olivier Barais, and Jurgen J. Vinju (Eds.). Springer International
Publishing, Cham, 191-210.

Emma Séderberg and Gorel Hedin. 2013. Circular Higher-Order Refer-
ence Attribute Grammars. In Software Language Engineering, Martin
Erwig, Richard F. Paige, and Eric Van Wyk (Eds.). Springer Interna-
tional Publishing, Cham, 302-321.

S. Doaitse Swierstra, Pablo R. Azero Alcocer, and Jodo Saraiva. 1999.
Designing and Implementing Combinator Languages. In Advanced
Functional Programming, S. Doaitse Swierstra, José N. Oliveira, and Pe-
dro R. Henriques (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
150-206.

Mark G. J. van den Brand, Arie van Deursen, Jan Heering, H. A. de Jong,
Merijn de Jonge, Tobias Kuipers, Paul Klint, Leon Moonen, Pieter A.
Olivier, Jeroen Scheerder, Jurgen J. Vinju, Eelco Visser, and Joost Visser.
2001. The ASF+SDF Meta-Environment: A Component-Based Lan-
guage Development Environment. In Proceedings of the 10th Interna-
tional Conference on Compiler Construction (CC °01). Springer-Verlag,
Berlin, Heidelberg, 365-370.

Eric Van Wyk, Derek Bodin, Jimin Gao, and Lijesh Krishnan. 2008.
Silver: an Extensible Attribute Grammar System. Electronic Notes in
Theoretical Computer Science 203, 2 (2008), 103—-116. https://doi.org/
10.1016/j.entcs.2008.03.047

Eelco Visser. 2001. Stratego: A Language for Program Transforma-
tion Based on Rewriting Strategies. In Proceedings of the 12th Interna-
tional Conference on Rewriting Techniques and Applications (RTA ’01).
Springer-Verlag, Berlin, Heidelberg, 357-362.

H. H. Vogt, S. D. Swierstra, and M. F. Kuiper. 1989. Higher Order
Attribute Grammars. SIGPLAN Not. 24, 7 (jun 1989), 131-145. https:
//doi.org/10.1145/74818.74830

Received 2022-10-18; accepted 2022-11-15

https://doi.org/10.1145/1297105.1297029
https://doi.org/10.1145/1297105.1297029
https://doi.org/10.1016/j.scico.2018.10.006
https://doi.org/10.1145/129630.129637
https://doi.org/10.1007/3-540-53101-7_1
https://doi.org/10.1007/3-540-53101-7_1
https://doi.org/10.1145/3426425.3426943
https://doi.org/10.1007/978-3-030-99461-7_7
https://doi.org/10.1007/978-3-030-99461-7_7
https://doi.org/10.1016/j.scico.2016.03.005
https://doi.org/10.1145/202176.202185
https://doi.org/10.1145/390011.808247
https://doi.org/10.1145/390011.808247
https://doi.org/10.1007/3-540-45821-2_17
https://doi.org/10.1007/3-540-45821-2_17
https://doi.org/10.1145/581690.581691
https://doi.org/10.1145/581690.581691
https://doi.org/10.1016/j.entcs.2010.08.043
https://doi.org/10.1016/j.entcs.2010.08.043
https://doi.org/10.1016/j.entcs.2008.03.047
https://doi.org/10.1016/j.entcs.2008.03.047
https://doi.org/10.1145/74818.74830
https://doi.org/10.1145/74818.74830

	Abstract
	1 Introduction
	2 Zipping Strategies and Attribute Grammars
	2.1 Term Re-Writing via Higher Order AGs
	2.2 Memoized Attribute Grammars

	3 Combining Attribute Memoization with Zippers
	3.1 Memoized Strategies
	3.2 Memoization Table Correctness
	3.3 Navigable Symbols

	4 Performance
	4.1 Strategic Haskell Smell Elimination
	4.2 Repmin as a Strategic Program
	4.3 Repmin as an Attribute Grammar
	4.4 Let Optimization
	4.5 Multiple Layout Pretty Printing

	5 Related Work
	6 Conclusion
	A Ztrategic API
	References

